Evolving Existing Systems to Service-Oriented Architectures: Perspectives
and Challenges

John Hutchinson, Gerald Kotonya, James Walkerdine, Peter Sawyer, Glen Dobson, Victor Onditi
Computing Department, Lancaster University, Lancaster, LAl 4YR, UK
{hutchinj, gerald, walkerdi, sawyer, dobsong, onditi}@comp.lancs.ac.uk

Abstract

The advent of and growing interest in Service-
Oriented Architectures (SOA) present business leaders
with a number of problems. They promise to deliver
hitherto unseen business process agility, but at the risk
of making investment in existing systems obsolete. The
established orthodoxy is that the maintenance problem
presented by installed systems is about finding an
acceptable balance between risk involved in evolving
the system and benefits offered by the update. SOAs
represent a "paradigm-shift" and, as such, present a
more complicated problem: how to minimise the risk to
their investment (existing software systems) and exploit
the benefits of migrating to SOA. We provide a review
of a number of approaches that may contribute to a
pragmatic strategy for addressing the problem and
outline the significant challenges that remain.

1. Introduction

Businesses use software systems in every corner of
their operations. This suggests a strong relationship
between a business’ success and the “fitness for
purpose” of the software systems that it relies on. As
businesses grow and adapt to the prevailing market
conditions, so too must their software systems and
there is a well-established understanding that the
usefulness of a given software system is dependent on
its continued maintenance and evolution to reflect the
needs of its changing environment [1]. The advent of
service-oriented architectures (SOA) presents an
altogether more challenging dilemma. The growing
interest in SOA is driven by the promise that it will
allow businesses to achieve broad-scale interoperability
of their software systems (through service reuse and
process agility), while maintaining the flexibility
required to continually adapt these systems to changing
business needs. In 2004, Leavitt cited a report
predicting that worldwide spending on web service-

based software projects would increase ten-fold in the
five years to 2008, to around $11 billion [2]. But SOA
represents a paradigm shift in the way business
functionality is implemented and delivered. Thus, the
potential benefits of services and SOA threaten to make
the tremendous investment in existing systems
obsolete. However, we believe that SOA provides a
viable means for industry to support changes in
business while leveraging past IT investments, through
a process of progressive evolution rather than
wholesale replacement. The challenge is to understand
the issues that must be addressed if the migration of
existing systems to SOA is to be successful.

The remainder of this paper is organized as follows:
Section 2 outlines the main advantages of service,
which are prompting so much attention in business, and
considers how the motivating factors are likely to result
in “hybrid” systems; Section 3 gives our summary of
the key challenges that threaten the migration process;
Section 4 described some process-oriented approaches
to evolving existing systems and outlines a combined
strategy. Section 5 provides some concluding remarks.

2. Adopting SOAs

2.1. The Vision

SOAs present a compelling vision for businesses.
Conceptually, services bring together a layer of
business functionality and a layer of technological
implementation. Technologically, Brown et al [3]
provide an excellent summary of what services are,
whilst suggesting that it is not the individual features
that matter, but the aggregation of them. So, we expect
services to be “coarse grained”, “discoverable”,
“loosely coupled”, etc. From a software engineering
perspective, services are the embodiment of interface-
based design — and thus can be seen as progression of a
trend that has brought modular design, object-
orientation and components.

From a business perspective, services are about
appropriate packaging of functionality and flexibility.
Capturing system knowledge in a way that is
appropriate for business users and developers is
difficult [4], but services provide a mechanism for
packaging functionality in meaningful unit for
development, provision, sale and consumption.
Moreover, they do so in a way, and with a business
model, that affords a high degree of flexibility to
provider and consumer alike. It is for this reason that
they promise to allow businesses to become more
responsive than ever to the needs of individual
customers and markets. However, it is not just business
systems that promise to benefit from the service model,
it is envisaged that embedded systems will also be able
to augment their functionality in the face of unusual, or
even exceptional, circumstances. It is not surprising
that business leaders identify services and service-
oriented computing (SOC) with acquiring and
maintaining business advantage.

The problem that accompanies a major shift in the
way business functionality is packaged and offered is
that it threatens to make what already exists obsolete,
even when existing systems represent massive
investment. This effect is compounded in the case of
services because they appear to offer freedom from
such a legacy “tie-in”: if a new service provider offers a
new improved service, you simply change service
provider. Of course, much of the hype surrounding the
arrival of service and service-oriented marketplace
both fuels and feeds upon these issues.

2.2. Understanding the motivations for using
SOAs

The problem still remains, though: how should
existing systems, in many cases providing core, or even
critical, business functionality, be migrated to SOAs?
Although there is probably no single answer, it is
necessary to unpack the likely motivations for
businesses wishing to adopt SOAs. For many
businesses, the true value of services is not the
possibility of “dynamic service discovery” and “late
binding”. Instead, it is the ability to rationalise their
existing systems into meaningful chunks of business
functionality that can be reconfigured easily and
quickly to exploit new business opportunities. In other
words, the relative immaturity of the standards for
service discovery and service-centric system
engineering is not necessarily an impediment to SOA
adoption. The real hindrance is the lack of methods for
the daunting task of unravelling the architectures of
existing systems.

Although the technical challenges of “re-factoring”
a substantial, mission critical system are considerable,
the associated business challenges are just as great.
Companies must embark upon a thorough self-
examination to determine which business processes,
supported by existing/legacy systems, need to be
liberated as services in an SOA.

Appreciating the need for this profound business
process analysis task allows us to identify the “chicken
and egg” nature of services and SOA adoption:
businesses will begin to use service technologies
internally because of the advantages that the SOA
paradigm can bestow. When they do so, they will
proceed by representing their key business processes as
candidate services. In some case, when these processes
are implemented as services, businesses will identify
new revenue streams associated with providing their
services to external consumers. Conversely, businesses
will also identify which of their business processes do
not align with their “core competencies”, making them
prime candidates for out-sourcing (essentially equating
to “dogs” in a growth-share matrix). In an SOA world,
replacing in-house services with 3™ party provided
services should be seamless and painless.

We believe, then, that the answer to how to migrate
existing systems to SOAs lies in progressive evolution,
involving possibly many intermediate stages where
core existing system functionalities are integrated into
what amount to SOAs. Initially, this may involve
adding functionality as a service, but progressively,
obsolete functionality will be replaced by more and
more independently implemented services. We can
characterise the many forms of intermediate system as
“hybrid”.

2.3. Hybrid systems

In reality, probably most of the software systems
supporting global business are “hybrid” systems.
However, our concern here is with the particular issues
associate with integrating existing/legacy systems with
services and SOAs. An underlying assumption is that
an existing system will continue to operate in
conjunction with some sort of service-oriented system.
This could mean that systems operate in parallel; the
existing system providing some subset of business
functionality and the new service-based system
providing the novel functionality and the two do not
interact. This is not what we envisage. Instead, it is
expected that part of all of an existing system will be
integrated with new functionality that is implemented
as services. The new functionality may be developed

and operated in-house, or it may be consumed from an
external provider.

Given the different types of system that exist in the
installed software base, their form and function and
their potential to be evolved for further use in a
potentially infinite number of new scenarios, there are a
myriad different types of systems that will result from
such evolution strategies. However, particular types of
system are likely to be prevalent. Their nature will
depend on the relationship between the provider and
consumer of the service element, and the treatment of
the existing system. Although obviously a
simplification, such a consideration gives four distinct
types of system as shown in Fig. 1.

Services: Provider/Consumer
Relationship

Same (Internal) Different (External)

Existing System:

“As is” Type 1 (ad hoc)

Type 2 (hybrid)

Existing System:

“Servicised” Type 3 (hybrid)

Type 4 (SOC)

Figure 1. Evolved system types

We can consider the nature of these different types
separately:

Type 1: Combining parts of an existing system with
additional software elements that are implemented
internally as services will result from an attempt to use
services as an implementation mechanism only. The
primary benefits will be the adoption of an interface-
driven development strategy for the new functionality,
and the availability of a set of standards and protocols
to guide the development. The term “guide” is used to
highlight the ad hoc nature of the development process:
difficulties may be overcome by use of non-standard
procedures. It is most probable that no deconstruction
of a business’ processes will have been undertaken if
this form of development is followed. Such an ad hoc
strategy will not deliver the main potential benefits of
services and SOAs but will represent a “first step” into
a service world.

Type 2: This type of hybrid system imposes stricter
adherence to the norms and expectations of SOC. The
externally provided service cannot be adjusted to
overcome difficulties and thus the existing system may
require deeper modification to make it compatible.

This strategy may be capable of delivering some of
the “off-the-shelf” benefits of services and SOAs but
will not result in the difficult adoption of a genuine
business service culture. Core business functionalities
will remain static and fixed but benefits from the use of
externally provided services may generate enthusiasm
for and commitment to further adoption of SOAs.

Type 3: “Servicising” the existing systems (e.g.,
wrapping systems to offer functionality as a set of
service-based operations) for use with internally
provided services suggests a much greater commitment
to SOC than Type 1 systems. However, control over
provision and consumption still affords greater
flexibility in the face of problematic difficulties (e.g.
the statefulness or otherwise of the resulting services).
The key factor here is whether the “servicisation”
process is a “lip service” provision of a service
interface or a thorough re-alignment of existing system
provision with identified business services. In the latter
case, the use of internally developed services to extend
functionality is incidental to the commitment to adopt
SOA.

Type 4: This represents a wholehearted
commitment to adopting SOC within an organisation,
especially if it represents the culmination of the
business service analysis process described above.

The particular strategy adopted will affect the
resulting system, but all to one degree or another share
a “hybrid” nature. The inherently greater constraints
imposed on Type 4 systems should mean that the most
profound problem is the identification and wrapping of
existing system elements as a set of services that
operate as services is “expected to operate” (e.g.
Brown’s characterisation [3]). The greater flexibility
available for Type 1 systems may make problems
easier to overcome, but may result in issues that affect
maintainability into the future. Type 2 and Type 3
systems share constraint and flexibility in equal
measure.

It can be seen, though, that “progressive evolution”
could amount to the gradual shift from a Type 1
system, through Types 2 and 3, to a Type 4 system.
Whether such a strategy would deliver the necessary
business benefits would depend on the circumstances,
but, for some businesses, it might represent a lower risk
migration route to SOAs.

Whether systems of these types will behave as
expected raises some important questions. Experience
in the component-based software engineering world
suggest that there will be some significant challenges to
overcome, particularly in the area of architectural
mismatches.

3. Architectural mismatch challenges

If we accept that the most pragmatic way to exploit
services whilst preserving the investment of the
installed software base is some kind of progressive
evolution towards SOAs, and then we have seen that
most forms of integration of existing systems with

services result in what we can only understand as
hybrid systems, we need to consider the viability of
such systems. In many cases, such systems are
becoming the de facto development paradigm [9], but it
should not be assumed that there are no associated
difficulties. The similarities between services and
software components raise some important issues.
Garlan ef al [10] describe a number of significant
challenges that such systems face. They concluded that
the integration of independently developed software
elements usually results in the following deficiencies:

e Code bloat: Interacting programs may grow
excessively large in size.

e Poor performance. This is the result of the
excessive code size and the communication
overhead caused by architectural mismatches.

e Need to modify the existing components:
Integrated software systems usually have subtle
incompatibilities or deficiencies that required
considerable time to understand and remedy.

e Need to reimplement existing functions: Even if a
capability is present in an existing component, it
may be sometimes necessary to reimplement it in
order to cooperate with other components.

o Unnecessarily complex code: Simple sequential
programs often must become multithreaded tools
because of the need to provide concurrent access
to clients.

o Error-prone construction process: Building a
system from its sources can be a very time-
consuming process, due to the high degree of
interdependence between the various components.

The problems can be traced back to architectural
mismatch (i.e. by conflicts between the architectural
assumptions made by the various components). In
order to understand architectural mismatch, it is helpful
to view a system as made up of components (the high-
level computational and data storage entities in the
system) and connectors (the interaction mechanisms
among the components). There are four primary
categories of assumptions that can lead to architectural
mismatch:

1. Nature of components:

o Infrastructure: The assumptions a component
makes about the underlying support it needs to
perform its operations. This support takes the form
of the additional infrastructure that the component
either requires or provides in the form of operating
system, middleware, additional libraries and other
components.

One of the main problems here is that many
software technologies do not require to explicitly
document the requires interfaces. A prominent

example is object-oriented technology where only
the provides interfaces are documented.

Control model: One of the most serious problems
are the assumptions made about what component
holds the main thread of control and how
individual components control the sequencing of
actions. This problem is especially serious if a
number of components, each holding its own event
loop, are integrated into the same process, as is
often the case for services. This may be a
particular problem if existing, or legacy, system
elements are wrapped as services.

Data model: Even if simple conversions of the
data format are performed by the underlying
runtime libraries, assumptions about the nature and
organization of the data a component will handle
remain critical.

Nature of connectors:

Interfaces: At the syntactic level, interface
mismatches are quite easily solved by the
introduction of glue software in the form of
wrappers and proxies. The semantic level is more
subtle and requires careful analysis. The problem
here is that the semantics of cooperating
components are often not specified at all, only
informally specified or formally specified by
different formalisms (e.g. pre/post-conditions and
ontologies). The first two cases might result in a
considerable test effort, while the compatibility of
specification mechanisms might be a source of
nasty problems in the third case.

Protocols: Once the interfaces are made
compatible, assumptions about the sequence of
actions (the protocol) constitute the next problem.
Almost all interfaces require particular sequences,
be it only that a component must be initialized
before it can be used. More subtle is the handling
of message sequences for a mix of synchronous
calls and events (e.g. generated by a
publish/subscribe mechanism). This problem is
very relevant for services that often use both
communication mechanisms. This means that the
requester must do some bookkeeping in order to
properly pair requests and responses.

Data model: Just as the components make
assumptions about the kind of data the components
will manipulate, so also do they make assumptions
about the data that will be communicated over the
connectors. The call parameters of different
components can be of different types , requiring
the introduction of additional translation routines.

. Global architectural structure:

e Topology of the system's communication
structure: Entities that are central to a collection of
components often assume a star structure with no
direct interaction between the other participants.
For services, this is referred to as orchestration
pattern. The problem arises if other components
assume direct component-to-component
communication. This corresponds to the
choreography pattern of interaction. Conflicts
between these two interaction patterns can easily
result in blocking and deadlocks.

e Presence or absence of particular components or
connectors: If a composition of components is not
carefully modelled it is possible that not all
elements will be available. This is especially an
issue given the late-binding nature of SOAs.

4. Construction process:

Conlflicting assumptions about the order in which
the components and connectors must be combined
to build the system form another hurdle.

o Deployment dependencies: 1f the underlying
platform does not support shared code and
resources, these may have to be duplicated.

® Runtime dependencies: A similar problem occurs
at runtime if different components make different
assumptions about the sequence in which other
entities are instantiated.

Gacek and Boehm [11] also identify a set of
conceptual architectural features that can give rise to
mismatches, such as dynamism, concurrency,
distribution, encapsulation, predictable response time
and re-entrance. This set of architectural features is less
generally applicable to SOC, but illustrates that
architectural assumptions may be complex and not
readily understood. Successful integration of existing
systems and separately developed services will require
very careful analysis of the assumptions made on both
sides.

4. Process approaches and system re-
engineering

A number of different methods and strategies have
been described for evolving systems that are, in part,
applicable to the problem of migrating existing systems
to SOAs. Here we provide brief summaries of three
approaches, which address different issues.

4.1. Renaissance

In response to an appreciation of both the
functionality offered by existing systems and the

investment that they represent, the Renaissance method
[5] presents a set of strategies that put reengineering
above replacement. This is the implicit foundation of
any approach that proposes any form of progressive
evolution. The four key requirements that motivate the
approach (Table 1) help to identify how it can
contribute to the evolution of existing systems to SOA.

Table 1. Renaissance requirements.

1 The method should support incremental
evolution.

2 Where appropriate, the method should
emphasise reengineering, rather than
system replacement.

3 The method should prevent the legacy
phenomena from reoccurring.

4 It should be possible to customise the
method to particular organisations and
projects.

Many of the specific details of Renaissance are
beyond the scope of this summary. However, having
identified the dilemma that exists between maintenance
and replacement [6], the method stresses that an
effective way of mitigating the costs and risks
associated with replacement, system re-engineering —
especially with a view to ongoing system development
— is an attractive approach.

Table 2. Renaissance evolution strategies.

The accommodation of change in a
system, without radical change to its
structure, after it has been delivered
and deployed.

Continued
Maintenance

The transformation of a system by
modifying or replacing its user
interfaces. The internal workings of
the system remain intact, but the
system appears to have changed to the
user.

Revamp

The transformation of a system’s
internal structure without changing
any external interfaces.

Restructure

Rearchitecture | The transformation of a system by
migrating it to a different

technological architecture

The transformation of a system by
redeveloping it utilising some of the
legacy system components.

Redesign with
Reuse

Replace Total replacement of a system.

Renaissance goes on to list six evolution strategies
(Table 2). Examination of these strategies reveals
something quite interesting with respect to evolving an
existing system to SOA: namely that all of these
strategies could contribute to successful evolution of
this sort. This limits the direct applicability of
Renaissance as it is currently expresses, but does not
diminish the importance of the recognising that
progressive evolution should contain an element of
reengineering as part of the evolution approach.

What Renaissance does appear to lack is an explicit
recognition of the business context. Thus the evolution
strategies are primarily selected on technical and
organisational grounds (e.g. availability of system
knowledge, documentation, etc.).

4.2. COMPOSE

There is an obvious parallel between services and
software components, particularly commercial-off-the-
shelf (COTS) components. A process for evolving an
existing system using COTS components might be a
good candidate for application to evolving systems to
SOAs. Kotonya and Hutchinson [7] describe the use of
the Component-Oriented Software Engineering
(COMPOSE) method to evolve a legacy freight
tracking system so that it supported the demanding
requirements of the company’s larger customers.
Again, the specific details of the process are beyond the
scope of this paper, but the following aspects of
COMPOSE important:

1. COMPOSE interleaves planning and negotiation,
development and verification. The purpose of this
is that many of the challenges of utilizing COTS
components stem from limitations of available
documentation. Verification embeds activities that
check the viability of the system at every stage,
whilst negotiation allows for corrective action.

2. COMPOSE incorporates a viewpoint (VP)-
oriented requirements approach [8]. VPs provide
an excellent mechanism for modelling legacy
system eclements, as well as other concerns, as
service-consumers.

3. COMPOSE uses the notions of service providers
and service consumers as an integral model of the
system being developed. Required “services” are
used to map between system requirements and
available components. There are few significant
differences between third party services with
COTS components from this perspective.

These aspects of COMPOSE mean that it can be
used to model an existing system as a series of refined
sub-systems that provide and consume services. The

resulting model can then be used as, essentially, a
roadmap for progressive evolution.

A potential weakness of applying COMPOSE to
progressive evolution of existing systems to SOAs is
that it doesn’t explicitly address the entire business
context of the proposed activity. Also, although the
viewpoint approach can be used to capture significant
details of the existing system context, as described, it is
intended to do so only insofar as is required to express
the requirements/constraints on the extended
development. That said, the use of services as a
modelling construct promises a great deal for
deconstructing the functionality of an existing/legacy
system.

4.3. SOSA

In the vast majority of cases, the need to utilize an
SOA is part of a process that is not itself technology-
led. In other words, there are external reasons for
wanting to adapt an existing system so that it can
operate in a SOA, and there are some aspects of the
resulting challenge that relate more to those reasons
than to the technical challenge.

The Service-Oriented Solutions Approach (SOSA)
[9] attempts to address these. Again, many of the
details are not relevant, but there are a number of
interesting elements, including:

e Critical Business Issues. SOSA recognises that
the organization that is considering a SOA solution
to its system needs is doing so because it has
identified critical business issues that have to be
addressed. This reminds us that:

o The system is being developed to implement
some sort of business strategy, not as an end in
itself.

o The details of the technical problem are
probably not important in themselves, only
insofar as they affect the business.

o An entirely viable technical solution may
ultimately be rejected for business reasons
(e.g. expensive, too long to develop, etc);
similarly, business priorities may favour an
inelegant technical solution.

o Business Process Improvement. The rationale for
the development activities are determined as part
of a business process improvement exercise, which
involves modelling the existing process,
determining the changes that should be made to
solve the relevant critical business issues and an
explicit attempt to estimate the return on
investment (ROI) associated with the proposals. Of
particular interest here are:

o Note the emphasis on the business context.

o The modelling activity. Even when analysts
and developers are familiar with the system
being adapted, this activity is necessary as
proposals for solutions are sought. However,
in the very worst cases of embedded legacy
systems, this activity will amount to a type of
reverse engineering, potentially providing a
model and level of understanding of the
system that has long been lost.

o Enterprise Service Architecture (ESA). This is
effectively a plan for the organisation’s business
services bus. SOSA’s ESA identifies a set of IT
services that:

o Are derived from an enterprise-wide business
type model;

o Offer operations that are business process-
neutral as well as being user interface-
independent.

Importantly, once developed, this ESA can act as a
road map for an incremental, or progressive evolution
process where functionality that is provided by
existing, legacy, systems is moved to service-based
provision. SOSA is primarily intended for companies
which intend to implement their SOA using “bespoke”
development. As such, it does not explicitly address the
challenges of using third party services, nor the process
of providing service interfaces to existing systems.

4.4. A combined approach

The three approaches discussed here present some
interesting perspectives on the migration to SOA
challenge. None of the approaches provides a process
that addresses all of the challenges. However, together,
they appear to highlight many of the important issues.

Remember that the process of adopting services and
SOAs was characterised as both a technical process and
a business process. The importance of this was
highlighted when looking at different types of hybrid
systems. For a business to fully engage in migration to
SOA, it must be prepared to “servicise” its existing
systems, because it is these systems that support the
core business processes. SOSA provides some pointers
for achieving this process. The enterprise service
model, if adequately mapped on to the functionalities
provided by existing/legacy systems, goes some way to
identifying a business’ key processes. What SOSA does
not offer is a mechanism for providing such a mapping.

Renaissance provides some important pointers for
determining the viability of reengineering an existing
system into services. If the SOSA ESA were used as a
further input to the Renaissance process, it might

provide useful insights into the feasibility of the
“servicisation” process.

COMPOSE could be used to model an ESA and can
support the process of mapping service definitions onto
“components” than can deliver those services. As such,
it could be used to express an ESA that is effectively
delivered by one of more existing systems. However, it
does not offer explicit support for identifying business
services provided by such systems.

5. Conclusion

We believe that the progressive evolution of
existing systems to SOA and the resulting hybrid
systems are a persuasive way forward to ensure a
continued realisation of investment in existing systems
— and an avoidance of costs and risk associated with
wholesale replacement. However, the lessons learnt in
the area of component-based systems suggest that there
are significant problems when trying to integrate
components, or services, from different sources.
Appropriate approaches for progressive evolution of
existing systems must address these challenges. We
have described a number of approaches that address
different aspects of the challenges faced and this
suggests that the problems are not insurmountable.
However, it is important to recognise that appropriate
business processes for migrating to SOAs are as
important as technical processes. The potential
architectural problems simply make the realisation of
those business processes all the more challenging.

6. Acknowledgements

This work is partly funded by the SeCSE project (IST
511680) and we are grateful for the contributions of
our partners.

7. References

[1] M.M. Lehman and L. Belady, Program Evolution:
Processes of Software Change. London: Academic Press.
1985.

[2] N. Leavitt, “Are Web Services Finally Ready to Deliver?”
IEEE Computer, 37(11), 14-18, 2004.

[3] A. Brown, S. Johnston and K. Kelly, "Using Service-
Oriented Architecture and Component-Based Development
to Build Web Service Applications", Cupertino, CA:
Rational Software Corporation (IBM) White Paper, October
2002.

[4] D. Dhungana, R. Rabiser, P. Griinbacher, H. Préhofer,
Ch. Federspiel and K. Lehner, “Architectural Knowledge in
Product Line Engineering”. Proc of the 32nd EUROMICRO

Conference on Software Engineering and Advanced
Applications, Croatia, September 2006.

[5] I. Warren and J. Ransom, "Renaissance: A Method to
Support Software Systems Evolution", Proc of 26th Annual
International Computer Software and Applications
Conference (COMPSAC), Oxford, UK, pp.415-420, August
2002.

[6] K. Bennet, “Legacy Systems: Coping with Success”.
IEEE Software, 12(1). 1995.

[7] G. Kotonya and J. Hutchinson, "A COTS-Based
Approach for Evolving Legacy Systems", to appear in Proc
of the 6th IEEE International Conference on COTS-based
Systems (ICCBSS 2007), Canada, February 26 - March 2,
2007.

[8] G. Kotonya and J. Hutchinson, "Viewpoints for
Specifying Component-Based Systems", in Proc of the
International Symposium on Component-based System
(CBSE7), LNCS Vol 3054, Edinburgh, UK, May 2004.

[9] “Hybrid System Development”, Service Centric System
Engineering (SeCSE) Project (IST 511680) Document
A3.D7. (http://secse.eng.it) 2006.

[10] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural
Mismatch, or, Why it's hard to build systems out of existing
parts”, IEEE Software, 12(6), Nov. 1995.

[11] C. Gacek, and B. Boehm, "Composing Components:
How Does One Detect Potential Architectural Mismatches?,"
in Proceedings of the OMG-DARPA-MCC Workshop on
Compositional Software Architectures, January 1998

