
The Open Overlays Collaborative Workspace Environment

Chris Cooper1, David Duce1, Muhammad Younas1, Wei Li1, Musbah Sagar1, Gordon Blair2,

Geoff Coulson2, Paul Grace2
1Oxford Brookes University

2Lancaster University

Abstract

Next-generation Grid applications will operate within and across many heterogeneous network
types, will employ a wide range of device types ranging from supercomputers to sensor motes; and
will require many more “interaction paradigms” than merely RPC and message-passing. The Open
Overlays project proposes a middleware approach to satisfy these emerging needs. In this paper we
describe an application scenario, wildfire management, that encompasses these needs, and our
approach to constructing a component of this scenario, a collaborative workspace tool (svgCWE).
This is being constructed using Web technologies: SVG and RDF. Information in the collaborative
workspace is regarded as an annotation of the workspace resource which can be described with an
RDF model. The architecture of svgCWE is designed so that a variety of different kinds of RDF
repository (centralized, replicated and distributed) can be used. The paper describes the first
prototype of svgCWE and draws some tentative conclusions about the advantages of the approach.

1. Introduction
This paper describes a collaborative workspace
tool being developed at Oxford Brookes
University as part of the Open Overlays project
in the Fundamental Computer Science for e-
Science programme. This project is undertaking
fundamental research relating to advanced
middleware and advanced networking — and,
crucially, exploring an approach that integrates
these two key areas. The approach integrates a
component oriented middleware platform
oriented toward next-generation Gridware with
an extensible set of interaction types and
advanced network services, and on an
architectural framework for the internals of
future Grid middleware.

There is a trend towards diversity in both
end-systems and networked infrastructures. The
spectrum of end-systems includes high
performance supercomputers, desktop, laptop,
PDA and miniature sensor devices. Networked
infrastructure includes high speed LAN-based
systems, lower speed WANs, infrastructure-
based wireless networks, and ad hoc wireless
networks. The latter range from relatively static
to highly dynamic configurations.

The range of “interaction paradigms” used at
the application level has also increased.
Beginning with point-to-point interactions (e.g.
RPC and SOAP messaging), the range of
interaction paradigms is expanding to include,
for example, reliable and unreliable multicast,
media streaming, publish-subscribe, tuple-space

communication, and peer-to-peer based
resource location or file sharing.

The project seeks to provide a Grid
middleware infrastructure that can span and
integrate the kinds of diversity just described.
The essence of the approach is to place a
flexible and configurable set of middleware
frameworks over a layer of overlay networks
and to construct the whole architecture in terms
of a lightweight component model that can be
implemented on a wide range of device types.

In order to exercise the middleware
concepts, we are developing application
scenarios. The first scenario is based on wildfire
management. Section 2 describes the
application scenario and section 3 describes the
approach taken to providing a collaboration tool
for this scenario. Section 4 discusses related
work and section 5 discusses the achievement
so far and future work.

2. The Application Scenario
We are considering (with advice from
environmental scientists/geographers at Royal
Holloway University of London and The Open
University) a scenario based on a remote region
with poor accessibility. Fire fighters in this
scenario have very limited means at their
disposal: aerial attack is not possible, the main
instruments for fire-fighting are hand beaters
and pre-cut fire breaks (which in general will
have become overgrown). The fire-fighters have
little idea where the fire boundary is and there is

no communication between different groups of
fighters.

In the scenario, we posit a number of
advances. Fire fighters carry PDA-like devices
which can present data, video and audio
information; these devices enable
communication with other fire fighters and
those directing operations (controllers). The
locations of these devices, hence the locations
of fire fighters are known.

We also posit the availability of sensors to
provide information for controllers: in particular
mobile cameras (for example attached to the
PDAs carried by fire fighters) to give
controllers a view of the fire, but more
importantly sensors for environmental
conditions. The most important factor is wind
velocity: magnitude and direction; though
rainfall and moisture content of the combustile
materials are also important parameters in
determining how fire spreads. These sensors are
assumed to be portable; more may be brought
into play as necessary and they may be
destroyed by the fire. They are assumed to
communicate through radio, i.e. data gathering
does not require human intervention. The
locations of the sensors are assumed to be
known. Portable environmental sensors are
available now commercially (though not
packaged in the way a full realisation of this
scenario would require). Research in sensor
networks is addressing questions such as self-
organisation of ad hoc networks of sensors;
questions that the Open Overlays middleware
infrastructure is also addressing. Hence it is
valuable to have a sensor component in the
scenario.

The scenario also assumes the availability of
simulations to predict the spread of the fire.
There are a number of wildfire simulators
available, for example Farsite (Faresite, 2005).
Fire simulators in general are resource intensive
and this gives a fixed Grid component to the
scenario.

The scenario contains a number of different
types of actors:

• Controllers (mobile and fixed). We assume

peer-to-peer rather than hierarchical
relationships between controllers. Multiple
controllers could be involved if the fire is
large or crosses administrative boundaries.
Controllers may have fixed or mobile
locations.

• Field Worker (mobile). Field workers will
have PDAs and their locations will be
known. Field workers may split into
different kinds of groups: for example, those

charged with fire-fighting and those charged
with deploying sensors.

• Sensors (mobile - portable).
o Environmental sensors: wind velocity -

magnitude and direction. Currently these
are valuable resources and hence field
workers would move them in response to
changing conditions.

o Video cameras generating video streams.
Video cameras may be portable (on the
top of portable masts - moved around the
site by field workers) or wearable (e.g.
miner's helmet style).

The scenario contains a rich variety of types

of communication:

• Audio: Telephone-like audio communication
between field workers/controllers using
PDA-like devices or computers.Video: Low
rate video footage is exchanged between
field workers and controllers.

• Location Information: Location of field
workers (their PDAs); location of sensors
(GPS information). Sensor Information:
Video (see above), environmental
conditions, wind velocity.

• Collaborative Workspace Environment: to
support sharing ideas, issuing commands
and helping decision making.
The scenario is completed by conceiving the

fire-fighting groups and controllers as forming
dynamic, mobile Grids, and the simulation
facilities being provided by a dynamic Grid
embedded in a wider fixed Grid infrastructure.

The scenario as described involves highly
heterogeneous device and networking
technologies, and it calls for a wide range of
interaction paradigms, for example reliable ad
hoc multicast for command propagation,
stream-based multicast for group audio
communication, publish-subscribe for sensor
data collection, SOAP-based messaging for
communication with objects in the fixed Grid,
etc.

Figure 1 shows a mock-up of the kind of
display that might be presented to a controller,
showing the locations of controllers, field
workers and sensors, overlaid on a map of the
affected region.

Figure 1: Mock-up of a controller’s display

A key requirement is the ability to share

such visual presentations between the human
actors in the scenario, the controllers and field
workers. This is the function of the
collaborative workspace tool (svgCWE) that is
the focus of this paper. svgCWE provides the
basis for graphical communication between
controllers, controllers and field workers, and
field worker to field worker. svgCWE is used to
present maps overlaid with visualizations of
sensor information (including positions of
actors), and output from simulations.
Controllers and field workers need to be able to
sketch on the drawing surface, for example to
give an estimate of the local fire boundary, to
highlight particular features, or to suggest
changes to how resources are deployed.

In addition to the collaborative workspace

tool, the scenario includes audio and video tools
which will be assembled from existing
components.

3. svgCWE Architecture and
Implementation
The collaborative workspace tool is being
developed using a variety of Web technologies,
the main ones being Scalable Vector Graphics
(SVG) and the Resource Description
Framework (RDF). SVG is an XML application
(markup language) for 2D graphics, providing a
rich set of 2D drawing primitives and attributes,
transformations and animation capabilities.
RDF is essentially a data model. The basic
building block of RDF is a statement asserting
that a resource (the subject) has a given property

(the predicate) with a given value (the object).
It is one of the Web technologies at the core of
the so-called Semantic Web (Antoniou and van
Harmelen, 2004). RDF makes no assumptions
about the domain to which it is applied. The
vocabulary used in RDF data models can be
expressed in a schema language called RDF
Schema (RDFS) or in more comprehensive
languages such as the Web Ontology Language
(OWL). Query languages for RDF data models
are emerging.

SVG is used to represent graphical
information for display in the workspace, which
may be provided by any of the actors using the
workspace and by applications. The design
relies on one key idea: the notion that all
information in the workspace is an annotation of
the workspace that can be represented as an
RDF triple stored in an RDF repository.
Appropriate information for each actor (e.g.
field worker or controller) can be displayed in
the actor’s workspace (effectively the result of a
query of the triple store) and the content of the
workspace can be replayed.

A snapshot of the first version of svgCWE is
shown in figure 2. This shows a background
map with sketched annotations highlighting
particular features.

Figure 2: Snapshot of svgCWE

3.1 The RDF data model

The initial design of svgCWE associates a
single workspace with a single group. Within a
workspace, information is structured as a set of
contexts. A context consists of background
information provided by the application (for
example a map, or the output of a simulation),
and sketch annotation created by the members
of the group.

The essence of the approach taken is that the
workspace of a collaborative group is
considered to be a web resource. Each member
of the group has their own view of the

workspace. Members can add display
information in their view which is then
transmitted to the views of the other members of
the group.

RDF is used to describe both the content and
history of a workspace, the latter to facilitate
replay. The structure of the RDF model is
evolving. Figure 3 shows the RDF class
structure used in the initial prototype.

Figure 3: RDF class Structure

Classes are defined to represent persons, groups,
workspaces, contexts within workspaces,
history nodes (which record changes to the
content of the workspace), and graphical
fragments (elements of graphical content within
the workspace). Properties are defined to relate,
for example, graphical fragment to history node,
history node to contex, and context to
workspace. For further details of this structure
see Cooper et al., 2005.

Whenever a change is made to the content of
the workspace, for example by a member
sketching on the workspace, the change is
recorded as a history node object that is linked
by a history-of assertion to the appropriate
context. An RDF/XML representation of a
history node is shown below.

<svgcwe:HistoryNode>
 <svgcwe:svgFragment
 rdf:parseType="Literal"
 xmlns:svgcwe="...">
 </svgcwe:svgFragment>
 <svgcwe:fillColor>turquoise
 </svgcwe:fillColor>
 <geom2d:x>25</geom2d:x>
 <geom2d:width>300</geom2d:width>
 <geom2d:y>50</geom2d:y>
 <geom2d:height>400</geom2d:height>
 <svgcwe:timestamp>2005-01-28T20:00:00Z
 </svgcwe:timestamp>
 <svgcwe:history-of rdf:nodeID="A0"/>
 <dc:creator rdf:resource=
 "http://svgcwe/person/1"/>
</svgcwe:HistoryNode>

The history node contains assertions about the
graphical content of the sketch (in fact the
object of the assertion is a piece of SVG markup
that represents the sketch), assertions about the
geometrical properties of the sketch, the creator
of the sketch and a timestamp.

Geometrical properties are expressed using
an RDF vocabulary called RDFGeom (Goad,
2004) which is closely related to the way
geometry is expressed in SVG.

RDF content can be retrieved using an RDF
query language such as RDQL. For example a
query to find the timestamp, type, and
geometric attributes of all the history nodes
created by Fred Smith which make assertions
about the workspace identified by the URI
http://svgcwe/ws/1 could be written as follows.

SELECT ?date, ?t, ?x, ?y, ?w, ?h
WHERE
 (?c svgcwe:context-of
 <http://svgcwe/ws/1>)
 (?geom svgcwe:content-of ?c)
 (?geom rdf:type ?t)
 (?g svgcwe:history-of ?geom)
 (?g geom2d:x ?x)
 (?g geom2d:y ?y)
 (?g geom2d:width ?w)
 (?g geom2d:height ?h)
 (?g dc:creator ?person)
 (?g svgcwe:timestamp ?date)
 (?person foaf:name "Fred Smith")
USING ….

The SELECT statement identifies the variables
to return. The WHERE clause describes the
graph patterns to match. Variable names are
prefixed by ‘?’. Where the same variable name
is used in different patterns, the value of the
variable must be the same in each triple pattern
for a successful match. The USING statement
expands the namespace abbreviations (svgcwe
etc.) and has been omitted.

The approach is extensible. For example we
could easily add assertions about the location of
each member of a group and then search for
history nodes created by members within a
particular region. For example the query:

SELECT ?xloc ?yloc ?date ?t, ?x, ?y, ?w, ?h
WHERE
 (?c svgcwe:context-of
 <http://svgcwe/ws/1>)
 (?geom svgcwe:content-of ?c)
 (?geom rdf:type ?t)
 (?g svgcwe:history-of ?geom)
 (?g geom2d:x ?x)
 (?g geom2d:y ?y)
 (?g geom2d:width ?w)
 (?g geom2d:height ?h)
 (?g svgcwe:timestamp ?date)
 (?g dc:creator ?p)
 (?p svgcwe:location-x ?xloc)
 (?p svgcwe:location-y ?yloc)
AND
 ?xloc>=200 && ?xloc<=300 &&
 ?yloc>=200 && ?yloc<=400

would search for history nodes created by any
member located in the region 200 to 300 in x
and 200 to 400 in y. The AND clause filters
tuples that satisfy the WHERE clause based on
the values of the location-x and location-y
properties.

The development of the RDF data model has
been based on the Jena RDF toolkit (Jena, 2005)
which supports the RDQL query language.
W3C are standardising an RDF query language
called SPARQL and this may be used in later
work.

In Cooper et al. (2005) we discuss how this
approach extends to dealing with application
level queries such as “show all the firebreaks in
a given region”. It is clear that other kinds of
sensor data, not just location information, can
also fit into this general structure.

3.2 The Gridkit architecture

The architecture of svgCWE fits into the
context defined by the Open Overlays
architecture called Gridkit (Grace et al., 2004;
Coulson et al., 2005). The Gridkit architecture
is illustrated in figure 4. The following
description focuses on the important points for
the svgCWE architecture description in section
3.3.

Figure 4: The Gridkit architecture

Gridkit is built in terms of a component

model called OpenCOM v2, which employs a

minimal runtime environment to support the
loading and binding of lightweight software
components. The layer above OpenCOM is a
framework to support the deployment of overlay
networks. The vertical frameworks above this
provide functionality in a number of areas. The
top layer provides XML/SOAP/WSDL-based
APIs to the underlying frameworks.

The OpenCOM component model is shown
in figure 5.

Figure 5: The OpenCOM component model

Components are language-independent
encapsulated units of functionality and
deployment that interact with other components
exclusively through interfaces and receptacles.

For the svgCWE architecture description in
section 3.3, it is the notions of receptacle,
interface and binding that are important.
Interfaces are expressed in terms of sets of
operation signatures and associated datatypes.
Components can support multiple interfaces:
this is useful in embodying separations of
concern (e.g. between base functionality and
component management). Receptacles are
required interfaces that are used to make
explicit the dependencies of a component on
other components. Finally, bindings are
associations between a single interface and a
single receptacle.

3.3 The svgCWE architecture

The current svgCWE architecture is shown in
figure 6. svgCWE is split into two components,
the client and the communication manager. The
former is responsible for the user interface and
presentation, the latter handles communication
between participants. Each participant has their
own copy of the client and communication
manager components. The points to note are the
bindings between the svgCWE client and
communication component, and between the
communications component and RDF
repository and group abstraction interface over
Gridkit. The group abstraction receptacle and
RDF repository receptacle ensure that the
svgCWE components are agnostic to the kind of
overlay used to realize group communication

and the kind of RDF repository used (e.g.
centralized, replicated, or distributed).

The svgCWE client is based on HotDraw
(Johnson, 1992), a framework for structured
drawing editors, originally developed in
SmallTalk, but later ported to Java (Java
HotDraw, 2005). A subset of the code has been
ported to JavaScript to provide the foundation
for svgCWE. We have developed an extensive
set of JavaScript libraries which implement
appropriate parts of the Java Foundation Classes
and JavaSwing classes in order to provide GUI
support (Sagar et al., 2005).

Figure 6: The svgCWE architecture

The svgCWE client can run either within a

Web browser with appropriate SVG and
JavaScript support, or as a Java component
using the Batik SVG Java engine (which
includes JavaScript support).

Communication between Java and
JavaScript is achieved through a communication
manager class which is implemented in both
languages and supports a simple transport
interface with send and receive methods. When
svgCWE is running in a Web browser the
communication is mediated through a Web
server proxy.

The group interaction interface facilitates
dissemination of updates to relevant actors. The
initial development has used a centralised RDF

repository, each member of a group having their
own copy of the repository. We are also
considering both a centralised repository and a
locally developed distributed repository, based
on distributed hash tables, inspired by
RDFPeers (Cai and Frank, 2004). The
middleware framework should allow the shared
workspace to move seamlessly at run-time from
a centralised implementation of the RDF
repository to a distributed implementation.

4. Related Work
Existing commercial products that support on-
line collaboration such as an on-line meeting,
typically use a client server architecture, with
multiple clients accessing a single server. See
Hassler (2004) for a recent review of
commercial products. Such products typically
provide audio/video conferencing, a shared
whiteboard, and possibly application sharing.
Architectures without a centralized server have
been used for shared whiteboards, for example,
wb (Floyd et al., 1997) which used a reliable
multicast protocol to transmit the streams of
timestamped drawing operations generated by
each member to the other members. Earlier
systems seem to have made a commitment to a
particular distribution architecture, in the
svgCWE/Open Overlays approach, we are
exploring the possibility of plugging in either a
centralized, replicated or distributed repository,
allowing the architecture to be tailored to
particular circumstances.

The svgCWE approach builds on the
authors’ earlier work in distributed and
collaborative visualization. For a review of this
area see Brodlie et al. (2004). Distributed
collaborative visualization can be regarded as an
example of application sharing. A particular
concern is the level at which information is
shared, for example as a rendered bitmap (using
technologies such as VNC), as geometry or as
application data (for example using a modular
visualization environment such as NAG’s IRIS
Explorer). The svgCWE approach shares
geometry, though since the geometry and
application level data are regarded as resources,
RDF statements can describe the relationships
between them. From experience gained so far,
this is a flexible and extensible approach, not
least because the annotation is not “hard-wired”
to the underlying resources, so different views
of the application data can be built using
different relationships. This is a strength of the
RDF-based approach.

W3C’s Annotea system (Kahan et al, 2001)
used RDF to model annotations of documents as

a class of metadata. Annotations were viewed as
statements made by an author about a document
and could be stored externally to the document
in one or more annotation servers. Users could
query the annotation server to retrieve, modify
or delete existing annotations and add new
annotations. The Annotea approach influenced
our early thinking in the development of
svgCWE.

Turning to our use of SVG, Qiu, Carpenter
and Fox (2003) describe a shared SVG browser.
They describe the decomposition of the Batik
browser based on the Model-View-Controller
(MVC) paradigm. The view corresponds to the
user interface and the model to a Web service
interface. The model and view are linked by a
publish/subscribe messaging system called
NaradaBrokering. The preparation and
interpretation of messages together with the
messaging system correspond to the controller
component. Collaboration is supported by
replicating Web services and delivering events
generated on a master view client to all
instances of the model, which then service the
associated view components. They also describe
an alternative approach which is to use
NaradaBrokering to multicast the messages
from a single model instance to all collaborating
view components. The svgCWE approach
differs from this work in two respects: firstly the
Open Overlays middleware infrastructure is
very different to the NaradaBrokering
infrastructure; secondly Qiu et al. were not
exploring the use of RDF in their work.

SVG is gaining in popularity, not least in the
mobile phone arena where many products are
using SVG as the base rendering layer. The
svgCWE approach might extend to such
devices, if not immediately, then in the future as
device performance and capabilities improve.

5. Status and Future Work
A first version of the svgCWE tool has been
implemented and a first integration with Gridkit
has been achieved. The integration with Gridkit
is described in detail in Coulson et al. (2005).
The HotDraw functionality required for
svgCWE is functioning. At present each
member of the workspace has their own local
RDF repository (a replicated architecture).
RDQL has been used experimentally to retrieve
information from the RDF repository, but this
has been done to try out RDF model structures
and is not yet integrated with svgCWE.
Collaborative sessions can be replayed from the
RDF repositories in the prototype, but this is
done by traversal of the triple store rather than

by querying. Based on the experience so far, we
are in the process of revising the RDF data
model to incorporate application level concepts
in a more systematic way than was done in the
first approach described in this paper.

Future plans for svgCWE include
experimenting with different kinds of RDF
repositories, including DHT repositories, based
on overlay plugins that have been developed in
Gridkit.

We perceive the following benefits in our
approach:

• SVG provides a convenient

presentation environment for 2D
graphics that is device-independent and
can be built into stand-alone or Web
based clients.

• RDF appears to provide a framework
for managing the display of diverse
kinds of information in a collaborative
setting, where there will be
relationships between the roles that
actors take and the kinds of
information that they require.

• RDF also provides a framework for
expressing relationships between
graphical and other kinds of
information.

• Use of RDF also opens up the
possibility for richer ways of managing
graphical presentations in the future,
for example through ontology-based
semantic markup.

References
Antoniou, G., van Harmelen, F. (2004). A
Semantic Web Primer, The MIT Press. ISBN 0-
262-01210-3.

Brodlie, K.W., Duce, D.A., Gallop, J.R.,
Walton, J.P.R.B, Wood, J.D. (2004).
“Distributed and Collaborative Visualization”,
Computer Graphics Forum, 23(2), pp. 223-251.

Cooper, C, Duce, D., Younas, M., Li, W.,
Sagar, M., Blair, G., Coulson, G., Grace, P.
(2005). “The Open Overlays Collaborative
Workspace”, SVG Open 2005. Proceedings
available at http://www.svgopen.org/2005/

Coulson, G., Grace, P., Blair, G.S., Porter, B.,
Cai, W., Cooper, C., Duce, D., Younas, M.,
Sagar, M., Li, J. (2005). “Open Overlay Support
for the Divergent Grid” to appear in
Proceedings of AHM 2005.

http://www.allhands.org.uk/

FARSITE (2005), Fire Area Simulator,
http://www.farsite.org/ [accessed 24 June 2005]

Floyd, S., Jacobson, V., Liu, C.-G., McCanne,
S., Zhang, L. (1997). “A Reliable Multicast
Framework for Light-Weight Sessions and
Application Level Framing”, ACM Transactions
on Networking, 5(6), pp. 784-803.

Goad, C. (2004), RDFGeom (RDF Geometry
Vocabulary), http://fabl.net/lib/geometry/1.1
November 24, 2004 [accessed 24 June 2005]

Grace, P., Coulson, G., Blair, G., Mathy, L.,
Yeung, W.K., Cai, W., Duce, D., Cooper, C.
(2004). “GRIDKIT: Pluggable Overlay
Networks for Grid Computing”, in Proceedings
of Distributed Objects and Applications
(DOA’04), Lecture Notes in Computer Science,
3291, Springer-Verlag.

Hessler, V. (2004). “Online Collaboration
Products”, IEEE Computer, 37(11), pp. 106-
109.

Java HotDraw (2005), HotDraw,
http://c2.com/cgi/wiki?HotDraw [accessed 24
June 2005]

Jena (2005). Jena Semantic Web Framework,
http://jena.sourceforge.net/

Johnson, R.E. (1992), “Documenting
Frameworks using Patterns”, OOPSLA ’92, pp.
63-76, also in ACM SIGPLAN Notices 27(10),
pp. 63-76.

Kahan, J., Koivunen, M-R., Prud'Hommeaux,
E., Swick, R.R. (2001). “Annotea: An Open
RDF Infrastructure for Shared Web
Annotations”, WWW 10, ACM Press, 2001, pp.
623-632, ISBN 1-58113-348-0.

Cai, M., Frank, F. (2004). “RDFPeers: A
Scalable Distributed RDF Repository based on a
Structured Peer-to-Peer Network”, WWW 2004,
pp. 650-657, ACM Press.

Qiu, X., Carpenter, B., and Fox, G.C. (2003).
“Collaborative SVG as A Web Service”, SVG
Open 2003.
http://www.svgopen.org/2003/paperAbstracts/C
ollaborativeSVGasAWebService.html
[accessed 4 February 2005]

Sagar, M., Cooper, C.S., Duce, D.A. (2005).
“Advanced Mouse Event Model for SVG”, SVG
Open 2005. Proceedings available at
http://www.svgopen.org/2005/

