
ReMMoC: A Reflective Middleware to support
Mobile Client Interoperability

Paul Grace1, Gordon S. Blair1, and Sam Samuel2

1 Distributed Multimedia Research Group, Computing Department, Lancaster
University, Lancaster, LA1 4YR, UK
{gracep, gordon}@comp.lancs.ac.uk

2 Global Wireless Systems Research, Bell Laboratories, Lucent Technologies,
Quadrant, Stonehill Green, Westlea, Swindon, SN5 7DJ, UK

lsamuel@lucent.com

Abstract. Mobile client applications must discover and interoperate
with application services available to them at their present location. How-
ever, these services will be developed upon a range of middleware types
(e.g. RMI and publish-subscribe) and advertised using different service
discovery protocols (e.g. UPnP and SLP) unknown to the application
developer. Therefore, a middleware platform supporting mobile client
applications should ideally adapt its behaviour to interoperate with any
type of discovered service. Furthermore, these applications should be de-
veloped independently from particular middleware implementations, as
the interaction type is unknown until run-time. This paper presents ReM-
MoC, a reflective middleware platform that dynamically adapts both
its binding and discovery protocol to allow interoperation with hetero-
geneous services. Furthermore, we present the ReMMoC programming
model, which is based upon the Web Services concept of abstract ser-
vices. We evaluate this work in terms of supporting mobile application
development and the memory footprint cost of utilising reflection to cre-
ate a mobile middleware platform.

1 Introduction

Mobile computing is characterised by users carrying portable devices that al-
low communication between people and continuous access to networked services
independent of their physical location. The popularity of this field, driven by
new wireless network and mobile device technologies, has produced a variety
of innovative application types (e.g. context aware applications, m-commerce,
ad-hoc communities, mobile gaming and many others). To support these, new
middleware is emerging that addresses the problems of weak connection, limited
device resources and fluctuating network QoS inherent to the domain. These so-
lutions range from extensions to well-established middleware for fixed networks
[1–3] and middleware designed explicitly to support mobile applications [4–6].
However, the different solutions introduce the problem of middleware hetero-
geneity [7]. These platforms offer different communication paradigms, includ-
ing: remote method invocation, publish-subscribe, message-oriented and tuple



2 Paul Grace, Gordon S. Blair, and Sam Samuel

spaces. Furthermore, implementations of individual paradigms vary e.g. SOAP
and IIOP for remote method invocation. Therefore, mobile clients implemented
upon one middleware type (e.g. SOAP) will not interoperate with discovered
services implemented upon different platforms (e.g. IIOP or Publish-Subscribe).
As an example, a tourist guide client implemented using publish-subscribe can
only interoperate with matching tourist information publishers. Furthermore,
tourist guide services at a different location implemented using an alternative
middleware (e.g. a SOAP service), would require a separate client application
and middleware implementation.

Similarly, services are advertised using one of the contrasting service discov-
ery protocols. At present, there are four main service discovery technologies: Jini,
Service Location Protocol (SLP), Universal Plug and Play (UPnP) and Saluta-
tion. In addition, new technologies are emerging to better support the discovery
of services in mobile environments (e.g. JESA [8] & Centaurus [9]) and across
wireless ad-hoc network types (e.g. SDP in Bluetooth and Salutation Lite). Util-
ising only one of these technologies to discover services will mean that services
advertised by the other types will be missed. For example, a set of devices within
a room (e.g. lights, video, CD player) advertising their services using UPnP can-
not be used by a mobile device looking for services using SLP. This problem is
likely to become significantly worse in the future with the advent of ubiquitous
computing, enabled by emerging technologies to discover and interact with the
services an embedded device offers.

We argue that adaptive middleware is required to support the interoperation
of mobile clients with heterogeneous services. Using this approach, the mid-
dleware should alter its behaviour dynamically to: i) find the required mobile
services irrespective of the service discovery protocol and ii) interoperate with
services implemented by different middleware types. We advocate reflection and
component technology as well suited techniques to develop middleware with
these capabilities. Reflection is a principled method that supports introspection
and adaptation to produce configurable and reconfigurable middleware.

For an application to dynamically operate using different middleware imple-
mentations it must be programmed independently from them. Hence, an ab-
stract definition of the application services functionality is required. The mobile
client application, which requests this service, can then be developed using this
interface in the style of IDL programming. A request of the abstract service is
mapped at run-time to the corresponding concrete request of the middleware im-
plementation. The emerging Web Services Architecture includes a Web Services
Description Language (WSDL) that provides this format of abstract and con-
crete service definition. We propose that WSDL offers a suitable programming
model for such a reflective middleware.

In this paper, we document the design and implementation of a reflective mid-
dleware platform, named ReMMoC (Reflective Middleware for Mobile Comput-
ing), which combines reflective middleware and the WSDL programming model
to provide a solution to the problem of interoperation from mobile clients. Section
2 presents a typical mobile scenario to illustrate the heterogeneous properties of



ReMMoC: A Reflective Middleware to support Mobile Client Interoperability 3

the mobile environment. The concepts of reflection, component technologies and
component frameworks used by ReMMoC are then described in section 3. An
overview of ReMMoC is presented in section 4 and a description of the mapping
of middleware paradigms to WSDL is given in section 5. Section 6 evaluates the
performance of ReMMoC in supporting a typical mobile application and related
work in the field of mobile middleware is identified in section 7. Finally, overall
conclusions and future work are described in section 8.

2 Mobile Scenario

In this section we present a mobile computing scenario to illustrate middleware
heterogeneity that exists in the mobile domain. In the example, three applica-
tion services are available to mobile users at two locations. Instances of each
service are implemented using different types of middleware and advertised us-
ing contrasting service discovery protocols. Application 1 is a mobile sport news
application, whereby news stories of interest are presented to the user based on
their current location. Application 2 is a jukebox application that allows users
to select and play music on an audio output device at that location. Finally,
application 3 is a chat application that allows two mobile users to communicate
with one another. 

 

 

Sport News 
Channel 

P/S Publisher 

CORBA Chat 
Application

P/S Chat 
Application 

 
SLP 

SLP 

SLP 

Sport 
News 

SLP 

Jukebox 
Service 

SOAP Server 

UPnP 

  

SOAP Server 

Mobile 
User  

Jukebox 
Service 

CORBA Server 

SLP 

Coffee Bar (802.11b Wireless Network) Public House (802.11b Wireless Network) 

Fig. 1. An mobile computing scenario, populated with heterogeneous middleware.

Figure 1 illustrates two locations (a coffee bar and a public house) in the
session of a mobile user and the mobile services that can be interacted with.
At each location the same application services are available to the user, but
their middleware implementations differ. For example, the Sport News service is
implemented as a publish-subscribe channel at the coffee bar and as a SOAP ser-
vice in the public house. If fixed middleware were to be used, then two separate
applications and middleware implementations would be needed on the device.



4 Paul Grace, Gordon S. Blair, and Sam Samuel

Similarly, the chat applications and jukebox services are implemented using dif-
ferent middleware types. However, this is not the only type of heterogeneity in
the scenario, the services themselves must first be discovered by the mobile ap-
plication before interaction can occur. Nevertheless, in this setting the service
discovery technologies are different, i.e. the services available at the public house
are discoverable using SLP and the services at the coffee bar can be found using
both UPnP and SLP. If the mobile user utilises only one service discovery proto-
col then they may miss some available resources and in the worst-case scenario
find none.

Given scenarios of this type, the authors argue that a mobile middleware
platform should be reconfigurable to interact with different middleware types
and utilise different service discovery protocols. In turn, this will allow the de-
velopment of mobile applications independently of fixed platform types whose
properties are unknown to the application programmer at design time.

3 Component Model

3.1 Background on OpenCOM

OpenCOM [10] is a lightweight, efficient and reflective component model, built
atop a subset of Microsoft’s COM. Higher level features of COM, including distri-
bution, persistence, transactions and security are not used, whilst core aspects
including the binary level interoperability standard, Microsoft’s IDL, COM’s
globally unique identifiers and the IUnknown interface are the basis of the im-
plementation. The fundamental concepts of OpenCOM are interfaces, recepta-
cles and connections (bindings between interface and receptacles). An interface
expresses a unit of service provision and a receptacle describes a unit of service
requirement. OpenCOM deploys a standard runtime substrate that manages the
creation and deletion of components, and acts upon requests to connect and dis-
connect components. Furthermore, a system graph of the components currently
in use is maintained to support the introspection of a platform’s structure (using
the IMetaArchitecture interface).

This component model is used to construct families of middleware. More
specifically, each middleware is constructed as a set of configurable component
frameworks (more detail on the component framework concept is provided in
section 3.2) and reflection is used to discover the current structure and behaviour,
and to enable selected changes at run-time. The end result is flexible middleware
that can be specialised to domains including multimedia and real-time systems,
or in our case mobile computing.

3.2 OpenCOM Component Frameworks

A component framework (CF) is defined as a collection of rules and contracts
that govern the interaction of a set of components [12]. The motivation behind
component frameworks is to constrain the design space and the scope for evolu-
tion. A component framework in OpenCOM is itself an OpenCOM component



ReMMoC: A Reflective Middleware to support Mobile Client Interoperability 5

that maintains internal structure (a configuration of components) to implement
its service functionality. The design of these component frameworks is based
upon the concepts of composite components proposed by OpenORB [11]. There-
fore, component frameworks can be composed, replaced and connected together
in the same manner as components. To provide this capability, each OpenCOM
CF implements the base interfaces of an OpenCOM component (IMetaInterface,
ILifeCycle, IConnections) in addition to its own interfaces and receptacles. The
interfaces and receptacles of internal components can be exposed to create these.
The architecture of a component framework is shown in figure 2.

 

CF Service Interfaces 
(Can be exposed 
interfaces of internal 
components) 
 

IMetaInterface 
ILifeCycle 

IConnections 

OpenCOM component 
framework 

CF receptacles 
 (Can be exposed) 

 

ICFMetaArchitecture  

 

Lock 
Interceptor 

IAccept 
Graph of internal 
components 

Fig. 2. An OpenCOM component framework.

To inspect component configurations, the OpenCOM runtime IMetaArchi-
tecture interface examines the external structure of a component or CF (i.e. what
it is connected to). However, it does not inspect or dynamically adapt the inter-
nal structure of a component framework. Therefore, every CF implements the
ICFMetaArchitecture interface; this provides operations to inspect the internal
structure and change the component configuration. To implement this interface
a graph of local components is maintained, which is simply a view of a subset
of the OpenCOM runtime system graph to avoid replicating data.

A component framework constrains the configuration of components to a
valid implementation within its domain. To enforce this policy, each component
framework implements a receptacle called IAccept. When a change to the exist-
ing implementation has been made, a call to the IAccept interface is performed.
This executes a check of the component architecture; if the Accept component
verifies the architecture then the platform can continue its operation, other-
wise, an exception is generated and the framework rolls back to the previous
configuration. The complexity of checking depends upon the implementation of
the Accept component, which can be dynamically changed. The implementation
may have no checking (no component connected), simply check against a list



6 Paul Grace, Gordon S. Blair, and Sam Samuel

of configurations (described in XML) or alternatively incorporate architectural
style rules proposed by [28].

Finally, if a change to the configuration is attempted while one or more
service calls of the component framework are executing then the results of these
invocations would be compromised or lost. Therefore, each framework utilises a
readers/writers lock to access the local CF graph. Standard interface calls access
the lock as a reader (there can be multiple concurrent readers) and every call to
alter the CF configuration, accesses the lock as a writer (a single writer accesses
the lock when there are no readers). The algorithm to implement this property
is a standard readers/writers solution with priority for readers. To enforce this,
every exposed interface automatically has an interceptor, to access and release
the lock, attached.

4 The Design and Implementation of ReMMoC

4.1 Overview

This section describes ReMMoC, a configurable and reconfigurable reflective
middleware that supports mobile application development and overcomes the
heterogeneous properties of the mobile environment. ReMMoC uses OpenCOM
as its underlying component technology and it is built as a set of component
frameworks. Using many component frameworks (e.g. as found in OpenORB)
increases the size of the middleware implementation; extra management func-
tionality for managing reconfiguration exhausts the constrained resources of a
mobile device. Therefore, ReMMoC consists of only two component frameworks:
(1) a binding framework for interoperation with mobile services implemented
upon different middleware types, and (2) a service discovery framework for dis-
covering services advertised by a range of service discovery protocols. These two
frameworks are illustrated in figure 3. The binding framework is configured by
plugging in different binding type implementations e.g. IIOP Client, Publisher,
SOAP client etc. and the service discovery framework is similarly configured by
plugging in different service discovery protocols (A detailed description of the
frameworks is given in the following sections). Adding more component frame-
works for other non-functional properties such as security and resource manage-
ment can extend the platform at a later stage. The ReMMoC component, seen
in figure 3, performs reconfiguration management and provides a generic API to
develop mobile applications upon (see section 5.3).

4.2 The Binding Component Framework

The primary function of the binding framework is to interoperate with hetero-
geneous mobile services. Therefore, over time it may be configured as an IIOP
client configuration and make a number of IIOP requests, or change to a sub-
scribe configuration and wait to receive events of interest. Different middleware
paradigms, synchronous or asynchronous (e.g. tuple spaces, media streams, RPC,



ReMMoC: A Reflective Middleware to support Mobile Client Interoperability 7

 

1.1.1.1.1.1  1.1.1.1.1.2  

ReMMoC 

Mapping 
Component 

Accept 
DiscoverDiscovery

Protocol 

IReMMoC 

IServiceCall 

ILifeCycle 

IConnections 

IMetaInterface 

IServiceLookup 

ILifeCycle 
IConnections 
IMetaInterface 

ICFMetaArchitecture 

ILifeCycle 
IConnections 
IMetaInterface 

ILifeCycle 
IConnections 
IMetaInterface 

ILifeCycle 
IConnections 
IMetaInterface 

ICFMetaArchitecture 

Binding CF 

Service Discovery protocols 

Service Discovery CF 

Binding protocols  
ILifeCycle 
IConnections 
IMetaInterface 

Fig. 3. Overview of the ReMMoC platform.

publish-subscribe or messaging), can be plugged into the binding framework if
they have been implemented using OpenCOM components.

Within the binding framework changes are made at two distinct levels. Firstly,
each binding type implementation can be replaced; e.g. a SOAP client is re-
placed by a publish-subscribe subscriber (illustrated in figure 4). This dynamic
reconfiguration is performed by receiving information from the service discovery
framework describing the type of binding; an XML description of the compo-
nent configuration for this binding is then parsed to create the new configuration.
Hence, new binding protocols can be dynamically added to the framework at a
future date. Multiple personalities can also be created, e.g. a publish-subscribe
publisher and SOAP client together; their implementation is simply a configu-
ration of components, but more than one interface is exposed by the framework.
Secondly, fine-grained changes to each configuration can be made in light of envi-
ronmental context changes, such as those involving quality of service, or changes
in the applications requirements. For example, an application may require IIOP
server side functionality, in addition to the existing client side; therefore com-
ponents implementing server side functionality are added. In order to test and
evaluate the binding framework, we have implemented IIOP client and server,
SOAP client and Publish-Subscribe personalities.

4.3 The Service Discovery Framework

The Service Discovery framework allows services that have been advertised by
different service discovery protocols to be found. The framework is configured
to discover protocols currently in use in the environment. For example, if SLP is
in use, the framework configures itself to an SLP Lookup personality. However,
if SLP and UPnP are found then the frameworks configuration will include



8 Paul Grace, Gordon S. Blair, and Sam Samuel

 

ISOAP 

SOAPtoHTTP 

HTTP 

TCP 

SOAP RPC 
ISOAPTransport 

Socket 

ISOAPMarshalling 

ISocket 

IHTTP 

SOAP 
Marshalling 

ITPProtocol 

Subscribe 

SOAP 
Messaging Filter 

SOAPtoMulticast 

Multicast 

IFilter 

IMulticast 

ISOAPMessaging 

ISubscribe 

ISOAPTransport 

ILifeCycle 
IConnections 
IMetaInterface 

Fig. 4. A dynamic reconfiguration from a SOAP client to a subscriber implementation.

component implementations to discover both. Like the Binding CF, fine-grained
component changes can be made. For example, in SLP you may wish to perform
lookup using just the multicast protocol if no directory agent is present, but at
a later stage if a directory agent is discovered the configuration can be changed
to direct requests to it.

The service discovery framework offers a set of generic service discovery meth-
ods through the IServiceLookup Interface. This includes a generic service lookup
operation that returns the information from different service discovery protocol
searches in a generic format. For example, a lookup of a weather service across
two discovery configurations, e.g. UPnP and SLP, returns a list of matched
services from both types. It is this information (the description of the service
returned by the lookup protocol) that is used to configure the binding framework.

Initially, the discovery protocol(s) that are currently in use at a location must
be determined. The DiscoverDiscoveryProtocol component, which is plugged into
the framework, tests if individual service discovery protocols are in use, either
upon a synchronous request or by continuously monitoring the environment and
generating an event on detection. Continuous monitoring will quickly use up re-
sources (e.g. battery power); therefore in some cases synchronous checking may
be appropriate. The service discovery framework utilises this behaviour to auto-
matically reconfigure itself. Other methods for discovering discovery protocols,
not currently included in the implementation, may utilise the devices context
information, e.g. if the device is currently using a Bluetooth connection then
an SDP personality is configured. Furthermore, the middleware may use prior
knowledge to select an appropriate protocol, i.e. the platform stores context in-
formation per location that details which service discovery protocols were used
at that point previously.



ReMMoC: A Reflective Middleware to support Mobile Client Interoperability 9

We have implemented the service discovery framework with two service lookup
protocol implementations: SLP and UPnP, allowing us to demonstrate how to
overcome the problems of the availability of multiple service discovery proto-
cols. However, as with the binding framework, it is feasible for new discovery
protocols to be dynamically integrated into the framework at a later date. This
requires a new version of the DiscoverDiscoveryProtocol component, which can
detect the new protocol, to be plugged into the framework.

5 The ReMMoC Programming Model

5.1 Background on Web Services

The web services architecture [13] consists of three key roles: a service provider,
a service requestor and the discovery agency, which the requestor uses to find
the service description. Each service is described in WSDL [14]; this is an XML
format for documenting the exchange of messages (containing typed data items)
between the service requestor and service provider. The key property of WSDL
is that it separates the abstract description of service functionality from the
concrete details of the service implementation. Hence, the aim of Web Services is
to allow different service providers to implement an abstract service description
upon their chosen concrete middleware binding. For example, a news service
may be implemented using SOAP by one vendor while another may use publish-
subscribe.

In our context, WSDL offers the ability to develop mobile clients, based upon
agreed abstract service descriptions, thus hiding the developer from the problem
of middleware heterogeneity encountered across different locations. Hence this
offers an attractive solution to ReMMoC, with the added benefit that WSDL is
a recognised international standard. However, the approach does not offer any
support to the dynamic adaptation of the underlying concrete implementations
as required by our platform. We return to this in section 5.3. Firstly, we illustrate
in the next section the mapping of abstract WSDL descriptions to different
bindings e.g. RMI and publish-subscribe. This shows that WSDL can be mapped
to the diverse paradigms that are encountered within mobile environments.

5.2 Mapping Abstract Services to Concrete Binding Types

In this section we demonstrate how the abstract operations of WSDL can be
mapped to two contrasting binding types exposed by a reflective middleware
(RMI and publish-subscribe). The following four abstract operations can be
described in WSDL. (1) Request-Response (input, output), a service receives
a request of its functionality and responds to it. (2) Solicit-Response (output,
input), a service provider acts as a service requestor. (3) One-Way (input), a ser-
vice receives a notification message. (4) Notification (output), a service outputs
a notification message.



10 Paul Grace, Gordon S. Blair, and Sam Samuel

 

Request-Response Solicit-Response One-Way Notification 

SR 

SP SP 
RMI 

SP 

Content 
& 
Subject 
Filter 

Content 
&  
Subject 
Fi lter 

SR 

Publish-
Subscribe 

SP Subject 
Filter 

SR 

Subject 
Filter 

Input 

Output 

Output 

Output 

Output 

Output 

Output 

Output Input 

Input 

Input 

Input 

Input 

Concrete message 
Abstract message 

SR – Service Requestor 

SP – Service Provider 

SR SP 

SR SP 

SR 

SR 
SP 

SR 

SP 

Fig. 5. Mapping WSDL operations to different middleware paradigms.

Figure 5 illustrates how abstract messages (input and output) that consti-
tute each WSDL operation map to the RMI and publish-subscribe communi-
cation paradigms. The service requestor is the mobile client. We assume that
each paradigm understands the set of types used by the abstract definition.
In RMI, the input/output messages of Request-Response and Solicit-Response
operations can be mapped directly to the corresponding synchronous RMI mes-
sages of SOAP and IIOP. The operation name maps to the method name, the
input message to the input parameter list and the output message to the output
parameter list. Similarly, Notification and One-Way operations can be mapped
as one-way messages e.g. one-way IIOP invocations and asynchronous SOAP
messages.

Publish-Subscribe however is an alternative communication paradigm whereby
there is no direct message exchange between service requestor and provider. The
service provider publishes events and a service requestor must filter to receive
appropriate events. Therefore unlike RMI, the mapping of WSDL to publish-
subscribe is not a direct correlation. The request-response operation is a request
of a service based upon the input message. The input message can be used to fil-
ter published messages and receive the correct event, whose content maps to the
output message. The operation name maps to the event subject, while the input
message maps to the content filter attributes. Similarly, for Solicit-response the
service filters to receive events from other services. For One-way operations and
Notifications, services subscribe and publish events based upon subject filtering
only, with the content of the concrete message mapping to the abstract message.

5.3 The ReMMoC API

The ReMMoC programming model is based upon the concept of WSDL de-
scribed abstract services. Application developers must utilise these WSDL defi-



ReMMoC: A Reflective Middleware to support Mobile Client Interoperability 11

nitions in the style of IDL programming. To maintain a consistent information
flow to the application an event-based programming model, that overrides the
different computational models of each paradigm, is offered. Each abstract ser-
vice operation is carried out and its result is returned as an event. For example,
if that operation is executed by an RMI invocation or an event subscription
the result is always an event. Similarly, service lookup operations return results
as events. Figure 6 documents the API of ReMMoC, which consists of opera-
tions to: lookup services, lookup then invoke abstract WSDL operations, invoke
operations on known services, or create and host service provider operations.

interface ReMMoC_ICF : IUnknown { 
HRESULT WSDLGet (WSDLService* ServiceDescription, char* XML); 
 
HRESULT FindandInvokeOperation (WSDLService ServiceDescription, char*     
                                  OperationName, int Iterations, ReMMoCOPHandler Handler); 
 
HRESULT InvokeOperation (WSDLService ServiceDescription, ServiceReturnEvent  
     ReturnedLookupEvent, char* OperationName, int Iterations, ReMMoCOPHandler   Handler); 
 
HRESULT CreateOperation (WSDLService ServiceDescription, ServiceReturnEvent           
   ReturnedLookupEvent, char* OperationName, int Iterations, ReMMoCOPHandler Handler); 
 
HRESULT AddMessageValue(WSDLService *ServiceDescription, char* OperationName,  
  char* ElementName, ReMMoC_TYPE type, char* direction,  VARIANT value); 
 
HRESULT GetMessageValue(WSDLService *ServiceDescription, char* OperationName,  
  char* ElementName, ReMMoC_TYPE type, char* direction,  VARIANT value); 

} 
 

Fig. 6. Interface definition for the ReMMoC API.

ReMMoC maps these API calls to the binding framework through the use
of a reconfigurable mapping component, illustrated in figure 3. For example,
an IIOP mapping component maps abstract WSDL operation calls to IIOP
invocations through the interface exposed by the binding framework; it can be
replaced by a subscribe mapping component that maps to subscribe requests.
These components carry out the mapping of abstract to concrete operations
described in section 5.2.

6 Evaluation

6.1 The Cost of Reflection

At present mobile devices have a limited amount of system memory, which can
quickly be consumed by users applications; therefore it is important to minimise
the amount of memory needed to store a middleware implementation. Utilis-
ing reflection to change between protocols allows only the minimum required
number of components to be stored on the device, rather than store complete



12 Paul Grace, Gordon S. Blair, and Sam Samuel

multi-middleware implementations. In the future, storing components on the de-
vice is likely to be less of a problem as mobile devices with much higher memory
capacity become available. However, components will still need to be transmitted
across the network (for example, when the platform discovers it needs compo-
nents not currently on the device). Therefore, the implementation of middleware
personalities still needs to be minimised. We have implemented the components
used to build the ReMMoC platform with the aim of reducing the storage space
they occupy. Figure 7 documents the static memory footprint sizes of the sep-
arate parts of the platform i.e. configurations for the two frameworks (IIOP
client, SOAP client etc.). Four measurements were taken for each personality:
the ARM and x86 implementations for reflective and non-reflective personalities.
The non-reflective personality is the basic component implementation, whereas
a reflective personality maintains meta-information about the structure of each
component and supports the subsequent introspection of this data.

 

  Reflective   Non-Reflective   

Function ARM (Bytes) x86 (Bytes) ARM (Bytes) x86 (Bytes) 

Platform Core 

OpenCOM 28160 18432 n/a n/a 

Binding CF 16896 11776 n/a n/a 

Service Discovery CF 19968 16384 n/a n/a 

Binding Configurations 

IIOP Client 96768 79872 56320 38912 

IIOP Server 99840 82432 58880 40960 

IIOP Client & Server 140288 114688 82944 56832 

SOAP client 97792 80896 64512 47104 

Publish 92160 74752 65024 49152 

Subscribe 85504 71168 58368 46080 

Publish & Subscribe 105984 86016 74752 56320 

Service Discovery Configurations 

SLP Lookup 85504 68608 53248 36352 

SLP Register 80896 65536 48128 33792 

SLP Lookup & Register 103936 83456 65024 45056 

UPnP Lookup 80384 64724 56320 39424 

Fig. 7. Size of component configurations in ReMMoC.

The results in figure 7 illustrate that the configurations are suited to mo-
bile devices, as minimum configurations of the binding framework and service
discovery framework are less than 100Kbytes. For example, the reflective ARM
measurements of IIOP client, SOAP client, subscribe, UPnP lookup and SLP
lookup are each individually less than 100Kbytes. These are comparable to re-
lated systems; for example, the non-reflective ARM IIOP client implementation
(55K) compares with the 29K SH3 CORBA client personality of the Universal



ReMMoC: A Reflective Middleware to support Mobile Client Interoperability 13

Interoperable Core (UIC) implementation [7] and the 48K non-pluggable GIOP
client Zen implementation [15], which have similar capabilities. The difference
between the ReMMoC and the UIC value can be attributed to a different pro-
cessor, as illustrated by ARM personalities being larger than x86 (RISC versus
CISC) and using a COM based implementation.

The table also illustrates the cost in terms of extra memory requirements of
the reflective personalities as opposed to their non-reflective counterparts. For
the implemented configurations (ARM) this ranges between an extra 23.5K and
56K. The storage of a type library and an additional 20 lines of C++ code for
each component in the configuration, accounts for the extra memory cost. The
size of each type library is dependent on the complexity of interface descriptions
used on that component; hence, the cost per component varies. Our results show
that configurations can be created that fit on devices with limited capacity and
still retain the dynamic inspection and reconfiguration properties described in
the previous sections.

6.2 Operating in a Mobile Scenario

To illustrate that ReMMoC performs its primary function of discovering and
interoperating with heterogeneous services, we evaluated the platform using the
scenario in section 2. The test environment included Compaq iPaq h3870 Pocket
PCs running the Windows CE 3.0 operating system and fitted with wireless
LAN cards. With the exception of the chat services, the remainder executed on
desktop machines; SOAP services were developed upon the Apache SOAP 2.0
implementation and the IIOP services were developed using ORBacus 4.05. We
successfully created three applications that operated in both locations, irrespec-
tive of the underlying middleware implementations. These examples proved it
was possible to discover services across different discovery platforms and inter-
operate with them through the appropriate binding. We briefly describe how
ReMMoC dynamically changes to support the sport news application.

In the first location, the sport news service was implemented using a pub-
lish channel and advertised using SLP, in the second location the service was
implemented as a SOAP service and registered with UPnP. In location one, the
service discovery framework detects SLP and configures itself to an SLP lookup
personality. When a lookup of the sport news service is executed a single result is
returned. The returned information is used by ReMMoC to configure the binding
framework to a subscribe personality. The subscribe mapping component is con-
nected to the binding framework, which then creates a filter to receive requested
events. In the same lifecycle of the application, the user moves to the second
location and UPnP is detected; therefore the discovery framework changes from
SLP to UPnP. This time the discovery operation detects the service is imple-
mented by a SOAP binding. Therefore, the binding framework changes from
subscribe to a SOAP client. The SOAP mapping component is connected and
the abstract operations are communicated as SOAP invocations.



14 Paul Grace, Gordon S. Blair, and Sam Samuel

7 Related Work

7.1 Asynchronous Mobile Middleware

The properties of wireless networks means that mobile devices may become dis-
connected involuntarily, or otherwise choose to become disconnected to save
resources such as battery power. Furthermore, error rates are high and packets
are lost. These characteristics have proven a driving factor in the initial develop-
ment of middleware platforms for this domain. For example, the Rover platform
[16] was one of the very first to address this issue; the toolkit provides queued
remote procedure calls that allows an application to continue making invocations
asynchronously while disconnected from the network. Other asynchronous styles
include publish-subscribe systems and tuple spaces. Within a publish-subscribe
system, interaction takes the form of event notification; namely, consumers reg-
ister for the events they are interested in and are informed when they occur.
Logically, the two parties do not have to be connected simultaneously to in-
teract. Examples of these are Elvin [17], Siena [18] and the Cambridge Event
Architecture [19]. However, these platforms were designed for fixed networks
and do not take into account the dynamic connection of mobile hosts. This has
enforced the emergence of some preliminary solutions. For example, Elvin has
been extended to incorporate proxy servers to support the persistency of events,
so that clients who disconnect repeatedly do not lose events; but it requires that
clients connect to the same proxy, which cannot be guaranteed in mobile net-
works. An alternative is JEDI [20], which includes a dynamic tree of dispatchers
(the client can reconnect to any) for ensuring publish-subscribe information is
retained as members connect and reconnect. Nevertheless, both of these rely
on centralised entities holding event information, which cannot be guaranteed
within ad-hoc wireless networks. Consequently, STEAM [5] is a scalable, publish-
subscribe system designed to operate in ad-hoc networks; the platform is based
upon the concepts of group communication with publishers and subscribers be-
longing to the same group. The communication is scaled by the proximity of
publisher to subscriber; any subscribers out of range do not receive the events.

The tuple space is an alternative asynchronous communication model that
is effectively a shared distributed memory spread across all participating hosts
that processes can concurrently access; hence communication is decoupled in
time and space. The L2imbo platform [21] is based upon the classic tuple space
architecture but includes a number of extensions for operation within a mobile
environment. Multiple tuple spaces can be created and used, removing the need
for all operations to go through a central global tuple; this is an important factor
in an environment where communication links are unreliable. Furthermore, QoS
attributes can be added to a tuple, including delivery deadline allowing the
system to re-order to make the best use of network connectivity. Alternative
technologies are JavaSpaces [22] and Lime [6], however, none of these adapt
their behaviour like L2imbo, to support context changes.



ReMMoC: A Reflective Middleware to support Mobile Client Interoperability 15

7.2 Adaptive Middleware

Established middleware technologies and those described in the previous section
offer a fixed black-box implementation whose underlying structure and behaviour
is hidden from the programmer and cannot be altered at run-time to cope with
changes that occur in the mobile environment. Therefore, future middleware
platforms, for domains such as multimedia and mobile computing, should be
configurable to match the requirements of a given application domain and dy-
namically reconfigurable to enable the platform to respond to changes in its
environment [11].

Recently, a group of reflective middleware technologies have emerged to meet
these requirements: OpenORB [11], DynamicTAO [23], Multe-ORB [24] and
OpenCORBA [25]. A reflective system is one that provides a representation
of its own behaviour that is amenable to inspection and adaptation, and is
causally connected to the underlying behaviour it describes. The key to the ap-
proach is to offer a meta-interface supporting the inspection and adaptation of
the underlying structure. However, these existing systems are built for applica-
tion domains, such as multimedia and real-time; they do not address the issue
of middleware heterogeneity in mobile computing. Consequently, [7] identifies
that the key property in supporting mobile computing is the ability to seam-
lessly interoperate with the range of ubiquitous devices that are encountered by
the mobile device as it changes location. Therefore, the Universal Interoperable
Core [7] has been developed; this reflective middleware is loosely based on the
reconfiguration techniques of DynamicTAO. The platform can change between
different middleware personalities e.g. a SOAP client, a CORBA server and a
SOAP server. The implementation of UIC concentrates on synchronous middle-
ware styles and does not implement all paradigm types that could be encountered
in a ubiquitous environment, i.e. it is likely that asynchronous platforms would
be as prominent given their suitability to the environment, nor does it address
the issue of heterogeneous discovery protocols.

Furthermore, middleware and applications need to be aware of context infor-
mation to support adaptation. Work at University College London [4] examines
the use of reflection in managing a repository of application meta-data that stores
each application’s requirements for adaptation. They then use reflection to in-
spect and adapt this so that behaviour can be altered dynamically. They also
look at managing the conflicting requests for adaptation based on the amount
of differing context information available [26].

7.3 Others

Alternatively, other projects have extended traditional platforms to make them
effective over wireless networks. For example, ALICE [27] presents a layered ar-
chitecture for managing the movement of mobile hosts and ensures that CORBA
connections remain established transparently. Alternatively, DOLMEN [3] of-
fers a special Light-Weight Inter-ORB Protocol for object communication over a
wireless link. RAPP [2] allows proxies to be inserted between distributed CORBA



16 Paul Grace, Gordon S. Blair, and Sam Samuel

objects to manage poor levels of network service and disconnection. Finally, [1]
implements a session layer that allows CORBA invocations to be made over the
Wireless Application Protocol.

The memory footprint size of a middleware implementation is often large, es-
pecially that of traditional types like CORBA, RMI and DCOM. This becomes
a critical problem in the domain of mobile computing where mobile and embed-
ded devices have a small, fixed amount of ROM and RAM available. Therefore,
middleware platforms designed for mobile devices must ensure they minimise
the amount of memory they utilise. OrbacusE and e*ORB are examples of com-
mercially available CORBA ORBs optimised for memory size and performance.
Nevertheless, these remain static over time and cannot alter their behaviour
and performance when the available resources change. Consequently, Zen [15] is
a real-time CORBA ORB that reduces the memory footprint by allowing the
selection of a minimal subset of ORB capabilities used by an application, this
can then be altered dynamically when the applications requirements change.
However, due to middleware heterogeneity in the mobile environment, utilising
multiple minimum footprint platforms is unsuitable. An improved solution is the
Universal Interoperable Core [7], which is an example of a platform whose con-
figuration can be dynamically altered over time to offer different functionality,
while minimising the memory resources used.

8 Concluding Remarks and Future Work

Research into mobile middleware has addressed specific concerns such as poor
network QoS, weak connection and limited device resources. We argue however
that the crucial problem of cascading levels of heterogeneity has been largely ig-
nored. We have proposed that a middleware for mobile computing must provide
support to applications for discovering and interoperating with heterogeneous
services in the mobile environment. We identify that a marriage of web services
with reflective middleware offers a solution to mobile client interoperability. This
paper presents ReMMoC, a configurable and dynamically reconfigurable mid-
dleware platform that supports interoperation in heterogeneous mobile environ-
ments. The use of component frameworks within this design offers a technique
to ensure that only valid component implementations are utilised in the plat-
form’s operation. The functionality of this platform has been illustrated in a real
world mobile scenario. Finally, a middleware platform for mobile and embedded
devices must minimise its memory size, so memory resources are not exhausted
and its components can be passed easily across networks.

ReMMoC was designed specifically for the mobile environment and has been
fully developed and tested using simple applications e.g. chat, news and stock
quote clients across IIOP, SOAP and Publish-Subscribe bindings. We also recog-
nise that the properties of our platform are usable in domains other than mobile
computing, hence ongoing work includes an evaluation of this method on larger,
complex applications (e.g. Grid computing, ubiquitous computing and intelligent



ReMMoC: A Reflective Middleware to support Mobile Client Interoperability 17

home environments) and across a range of further middleware bindings including
data sharing and tuple spaces.

The evaluation of memory use has illustrated that single middleware per-
sonalities can exist on mobile devices. However, each device cannot store every
possible middleware component that may be needed. Therefore, a method for
dynamically downloading components when needed is required. Furthermore,
techniques to ensure the component is available to start-up before it needs to
be used, e.g. predictive caching based upon context information is an interesting
option.

Finally, the work does not address a number of key issues in distributed sys-
tems development that are important within this application domain. Firstly,
security needs to be added to the system in order to deal with access control
of services. Furthermore, resource management to control use of memory, CPU
and battery power is important. Also, the use of context information for driv-
ing underlying adaptation needs to be considered, i.e. how best to integrate
this information with the middleware and how to deal with conflicting requests.
We envisage that these orthogonal aspects will be integrated into the platform
through the development of additional component frameworks.

References

1. Reinstorf, T., Ruggaber, R., Seitz, J., Zitterbart, M.: A WAP-Based Session Layer
Supporting Distributed Application in Nomadic Environments. In Proceedings of
Middleware 2001, Heidelberg, Germany, November 2001.

2. Seitz, J., Davies, N., Ebner, M., Friday, A.: A CORBA-based Proxy Architecture
for Mobile Multimedia Applications. In Proceedings of the 2nd International Con-
ference on Management of Multimedia Networks and Services, Versailles, France,
November 1998.

3. Liljeberg, M., Raatikainen, K., et al.: Using CORBA to Support Terminal Mobility.
In Proceedings of TINA 1997.

4. Capra, L., Emmerich, W., Mascolo, C.: Reflective Middleware Solutions for
Context-Aware Applications. In Proceedings of REFLECTION 2001, Kyoto,
Japan, September 2001.

5. Meier, R., Cahill, V.: STEAM: Event-Based Middleware for Wireless Ad Hoc Net-
works. In Proceedings of the International Workshop on Distributed Event-Based
Systems, Vienna, Austria, 2002.

6. Murphy, A., Picco, G., Roman, G.: LIME: A Middleware for logical and Physi-
cal Mobility. In Proceedings of the 21st International Conference on Distributed
Computing Systems, Arizona, USA, May 2001.

7. Roman, M., Kon, F., Campbell, R. H.: Reflective Middleware: From Your Desk to
Your Hand. IEEE Distributed Systems Online, 2(5), 2001.

8. Preuss, S.: JESA Service Discovery Protocol. In Proceedings of Networking 2002,
pp 1196-1201, Pisa, Italy, May 2002.

9. Kagal, L., Korolev, V., Chen, H., et al.: Centaurus: A framework for intelligent
services in a mobile environment. In Proceedings of the International Workshop
on Smart Appliances and Wearable Computing (IWSAWC), April 2001.



18 Paul Grace, Gordon S. Blair, and Sam Samuel

10. Clarke, M., Blair, G., Coulson, G., Parlavantzas, N.: An Efficient Component
Model for the Construction of Adaptive Middleware. In Proceedings of Middle-
ware 2001, Heidelberg, Germany. November, 2001.

11. Blair, G. et al.: The design and implementation of Open ORB 2. IEEE Distributed
Systems Online, 2(6) , Sept 2001.

12. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Ad-
dison Wesley, 1998.

13. W3C.: Web Services Architecture. W3C Working Draft,
http://www.w3.org/TR/ws-arch/, November, 2002.

14. W3C.: Web Services Description Language (WSDL) Version 1.2. W3C Working
Draft, http://www.w3.org/TR/wsdl12/, March, 2003.

15. Klefstad, R., Rao, S., Schmidt, D.: Design and Performance of a Dynamically
Configurable, Messaging Protocols Framework for Real-time CORBA. In Proceed-
ings of Distributed Object and Component-based Software Systems, Big Island of
Hawaii, January, 2003.

16. Joseph, A., deLespinasse, A., Tauber, J., Gifford, D., Kaashoek, M.: Rover: A
Toolkit for Mobile Information Access. In Proceedings of the 15th Symposium on
Operating Systems Principles, Colorado, U.S., pp 156-171, December 1995.

17. Segall, B., Arnold, D.: Elvin has left the building: a publish/subscribe notification
service with quenching. In Proceedings of AUUG97, September 1997.

18. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and Evaluation of a Wide-Area
Event Notification Service. ACM Transactions on Computer Systems, 19(3), pp
332-383, 2001.

19. Bacon, J., Moody, K., Bates, J., et al.: Generic Support for Distributed Applica-
tions. IEEE Computer, pp 68-76, March 2000.

20. Cugola, G., Di Nitto, E., Fuggetta, A.: The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. IEEE Transactions on
Software Engineering, 9(27), pp827-850, September 2001.

21. Davies, N., Friday, A., Wade, S., Blair, G. S.: L2imbo: A Distributed Systems Plat-
form for Mobile Computing” ACM Mobile Networks and Applications (MONET),
3(2), pp 143156, August 1998.

22. Waldo, J.: Javaspaces specification 1.0. Sun Microsystems Technical report, March
1998.

23. Kon, F., Roman, M., Liu, P., et al.: Monitoring, Security, and Dynamic Configu-
ration with the dynamicTAO Reflective ORB. In Proceedings of Middleware 2000,
New York, USA, April 2000.

24. Kristensen, T., Plagemann, T.: Enabling Flexible QoS Support in the Object Re-
quest Broker COOL. Proceedings of International Workshop on Distributed Real-
Time Systems, April 2000.

25. Ledoux, T.: OpenCorba: a Reflective Open Broker. In 2nd International Conference
on Reflection and Meta-level Architectures, St. Malo, France, July 1999.

26. Capra, L., Emmerich, W., Mascolo, C.: A Micro-Economic Approach to Conflict
Resolution in Mobile Computing. In Proceedings of the 10th International Sympo-
sium on the Foundations of Software Engineering, South Carolina, USA, November,
2002.

27. Haahr, M., Cunningham, R., Cahill, V.: Towards a Generic Architecture for Mobile
Object-Oriented Applications. SerP 2000: Workshop on Service Portability, San
Francisco, December 2000.

28. Moreira, R., Blair, G., Carrapatoso, G.: Reflective Component-Based & Architec-
ture Aware Framework to Manage Architecture Composition. In 3rd International
Symposium on Distributed Objects & Applications. Rome, Italy, September, 2001.


