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ABSTRACT 
Openness and adaptation are the fundamental properties of 
reflective middleware platforms. Self-managed or autonomic 
systems require this behaviour, and therefore, reflective 
middleware platforms are ideally suited to the support of such 
systems. However, new classes of self-managed applications 
increasingly require support for co-coordinated, distributed 
reconfiguration, and there is limited provision for this in current 
reflective middleware approaches. In this paper, we document a 
general, flexible architecture meta-model for the safe and valid 
adaptation of components that make up the implementation of co-
ordinating middleware nodes distributed across peer devices. We 
also investigate the flexibility of this approach in supporting 
different reconfiguration types in different environmental 
conditions. 

Categories and Subject Descriptors 
D.2.11 [Software Engineering]: Software Architectures - 
Patterns (Reflection). 

General Terms 
Management, Design. 

Keywords 
Reflection, middleware, self-managing systems. 

1. INTRODUCTION 
There is growing interest in the distributed systems 

community in the general area of self-repairing, self-healing or 
self-organizing software systems [12] (often referred to as self* 
systems).  Our contention is that a major prerequisite for self-
management is the openness of systems [2]. In other words, to 
support self-management, it is necessary to have access to various 
aspects of the system infrastructure and to be able to reconfigure 
such aspects at run-time. It is also important that such changes do 
not endanger the overall integrity of the (running) system. Hence, 

reflective middleware is ideally suited to support self-managed 
systems. Here, we investigate improvements in reflective 
middleware approaches to better support new classes of self-
managed applications. 

Reflective middleware solutions now follow a well-
established design approach that typically combines components, 
component frameworks, and reflection [1,11]. Software 
components are third-party deployable units of composition that 
form the building blocks of middleware implementations. 
Component frameworks (CFs) then manage a set of components 
related to a particular domain of middleware operation; and 
reflection supports introspection and adaptation of the software 
architecture. So far reflective middleware solutions have 
generally focused on node-local adaptation; i.e., where each node 
makes local decisions to adapt based upon environmental context 
inputs and locally maintained policies. However, these 
approaches do not fully support next generation self-managing 
applications: e.g., autonomic computing, peer-to-peer computing, 
ubiquitous computing and ad-hoc mobile computing, all 
fundamentally require the co-ordinated adaptation of middleware 
behaviour across distributed nodes. To meet this requirement, 
reflective middleware solutions must support the following: 
− Open access. Required to inspect the structure and behaviour 

of co-ordinating distributed nodes. The information about the 
current structure of distributed nodes can help make 
decisions about the appropriate adaptation to employ. 

− Consensus. Coordinating middleware nodes require 
mechanisms to make decisions about what actions to take; 
particularly what reconfigurations are required. 

− Safe, valid, distributed reconfiguration. Adaptations must be 
made to distributed topologies of components. These 
adaptations must be made when the distributed system is in a 
safe state, and changes must be validated once the update is 
complete. 

− Flexibility. Coordinated adaptation implementations must be 
tailored to the deployment domain. For example, some 
consensus and reconfiguration protocols may be too 
resource-intensive for sensor networks. Similarly, centralized 
management of reconfiguration is not suited to p2p 
applications. 
In this paper we investigate a flexible, distributed meta-

architecture protocol that supports open access to distributed 
middleware component topologies, and provides mechanisms for 
safe, valid, distributed adaptation. This work is an extension of 
the OpenORB/OpenCOM [1] approach to reflective middleware. 
Furthermore, we demonstrate the flexibility of the approach in 
diverse application types and environmental conditions. 
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The remainder of this paper is structured as follows. Section 
2 illustrates examples of different reconfigurations from a set of 
self-managed application domains. Section 3 investigates how 
local reconfiguration is currently managed. Section 4 then 
examines the proposed flexible meta-architecture protocol, and 
how it extends the node-local approach to better support 
distributed middleware adaptation. Finally, in section 5 we 
describe related research in the field of distributed 
reconfiguration, and draw conclusions in section 6. 

2. RECONFIGURATION SCENARIOS 
2.1 Mobile Ad-hoc Computing 

A large class of mobile applications involve collaboration 
between groups of mobile users. Examples include peer-to-peer 
data sharing, shared workspaces and multimedia conference 
applications. Here are two concrete examples of distributed 
reconfigurations that are applicable to such applications:  
− A multimedia conferencing application. The application 

employs ad-hoc devices receiving a shared multicast video 
stream. A change in the current network bandwidth requires 
a change in how the data is encoded. Therefore, a change in 
the common media filter needs to be agreed and then applied 
so all members of the multicast can receive and view video 
frames when the sender changes the filter. 

− A p2p messaging application. A set of mobile nodes are 
participating in a group messaging application based upon a 
group multicast service. If a message sender changes from 
sending text messages, to picture messages, or video 
messages, then the members of the group must change to be 
able to receive streaming data. That is, the interaction type 
has changed from message based to streaming based. A local 
change at the sender only would affect the remainder of the 
multicast group who would be unable to receive the new 
messages. 

The first is a fine-grained reconfiguration within a middleware 
service. The second is a more coarse-grained change of the 
properties of the middleware service itself. 

2.2  Overlay networks 
Overlay networks are virtual communications structures that 

are logically ‘laid over’ an underlying physical network such as 
the Internet. They are typically implemented by deploying 
appropriate application-level routing functionality at strategic 
places in the network (in principle both the core and edges). They 
basically consist of two parts: one part builds and maintains some 
kind of virtual network topology, and the other part routes 
messages over this virtual topology. 

We have investigated the development of reconfigurable 
overlay networks and have also explored different types of 
reconfiguration, the possibility of which have emerged from the 
implementation concept of splitting each overlay’s per node 
implementation into three software components [8]: i) a control 
component that maintains the virtual topology, ii) a forwarding 
component that handles the message routing algorithm, and iii) a 
separated state component that stores data for the other two 
(allowing them to be reconfigured without state transfer). We now 
discuss three types of overlay reconfiguration. All involve the 
replacement of either the control component, or forwarder 
component (typically on every member of the overlay). 
− Topology reconfiguration: changing the control component 

on every node to create a different network topology. This 

may optimize a network’s performance as the available 
resources increase or decrease.  

− Dependability reconfiguration. The control component can 
also be reconfigured on selected nodes of the overlay 
network to increase dependability; this can take the form of 
replacing the repair algorithms to better cope with increasing 
network node failure. 

− Routing reconfiguration. The routing algorithm of the 
network can be updated by replacing every forwarder 
component instance in the network. For example, adapting 
the forwarding element of an overlay network for ad-hoc 
routing for changing mobility models.   

2.3  Summary of Requirements 
Applications in different domains such as those discussed 

above require coordinated adaptation of middleware level 
implementations in order to provide consistent performance levels 
to members of multi-party applications. Typically, these take the 
form of reconfiguring software components that reside on 
distributed nodes. Therefore, we require a principled, generally 
applicable approach to support adaptation of component-based 
middleware in a distributed environment. We now investigate if 
the general, well-understood methods within reflective 
middleware can be extended to better support the development of 
self* middleware behaviour. 

3. LOCAL RECONFIGURATION 
3.1  Background on Reflection 

In middleware platforms, two (complementary) styles of 
reflection have emerged, namely structural and behavioural 
reflection. 
− Structural reflection is concerned with the underlying 

structure of objects or components, e.g., in terms of 
interfaces supported. Some systems provide architectural 
reflection, whereby the software architecture of the system 
can be reified and altered [1, 4], e.g. in terms of components 
and connectors.  

− Behavioural reflection is concerned with activity in the 
underlying system, e.g. in terms of the arrival and 
dispatching of invocations. Typical mechanisms provided 
include the use of interceptors that support the reification of 
the process of invocation and the subsequent insertion of pre- 
or post- actions. Other systems provide similar capabilities 
through dynamic proxies [14]. 

 

 
Figure 1: The meta-space structure of Open ORB 

 



The Lancaster meta-space model [1] (illustrated in figure 1) 
is inspired by these styles. This model is made available to 
middleware developers through the OpenCOM runtime [5]. Three 
distinct meta-models represent the meta-space: interface, 
architecture, and interception. The interface and architecture 
meta-models provide structural reflection in terms of inspecting 
the interfaces of components, and the topology of components in 
terms of connected elements; the interception meta-model 
supports behavioural reflection by enabling the dynamic insertion 
of interceptors, which support the insertion of pre- and post- 
behaviour on to interfaces.   

3.2  Local OpenCOM component frameworks 
3.2.1  Overview 

The local CF model (illustrated in figure 2) is based upon the 
concept of composite components as proposed by OpenORB [1]. 
Each CF is an OpenCOM component that has internal 
architecture. Additionally, each framework supports the following 
dimensions for performing safe, valid reconfigurations in the local 
address space: i) an architecture meta-object protocol, ii) 
validated reconfigurations, iii) quiescence management, and iv) 
policy configurators. Each of these dimensions is now examined 
in turn. 
3.2.2  Architecture MOP  

The architecture meta-model is fundamental when 
developing dynamic middleware solutions. To be subject to 
introspection and dynamic reconfiguration, each CF maintains a 
local ‘graph’ representing its internal structure. To reduce data 
duplication, this is simply a view of the information held in the 
OpenCOM system graph. Therefore, each CF maintains a vector 
of component identifiers that point to their corresponding position 
in the system graph. A set of operations that make up the 
architecture meta-model are provided through the 
ICFMetaInterface seen in figure 2. 
3.2.3  Validation of reconfigurations 

Providing open access to the structure of a system, and the 
ability to make run-time changes, increases the likelihood of 
system failure and opens it to third party attack. To guard against 
this, each framework exports a ‘health check’ mechanism 
(illustrated in figure 2 as the required interface called IAccept); 
components encapsulating knowledge about valid dynamic 
reconfigurations for this particular framework are then plugged 
into this interface. Each reconfiguration is applied as a local 
transaction; hence once committed initially a reconfiguration is 
validated such that invalid attempts are rolled back to the previous 
safe state. The previous meta-architecture state is stored before 
reconfiguration commences to support this. 
3.2.4  Quiescence Management 

Reconfiguration operations must only be carried when a 
framework is in a safe quiescent state. If a change to the 
configuration is made while one or more service calls on the CF 
are executing, then the results of these invocations could be 
compromised or lost. Therefore, each CF provides a 
readers/writers lock for access to the local CF graph. Each service 
call through any of the interfaces other than ICFMetaInterface 
accesses the lock as a reader (there can be n readers using the lock 
at any time). Any call to change the configuration of the CF, 
accesses the lock as a writer (a single writer can access the lock 
when there are no readers). The algorithm to implement this 

property is a standard readers/writers solution with priority for 
readers.  

 

 
Figure 2: Local Component Frameworks 

 
Interceptors are used to ensure that all exposed 

configurations access the lock as a reader before a service call is 
executed. Each interface exposed by a CF automatically has an 
interceptor attached with pre- and post- method behaviour to 
implement the reader role of a readers/writers solution. That is, 
the pre method accesses the lock and increments the reader count, 
while the post method decrements the count and if it is the last 
reader the lock is released for writers. 
3.2.5  Configurators 

The final aspect of the local framework model is the use of 
the configurator pattern [10] as illustrated in figure 2. A 
configurator is assigned to each framework instance, and acts as a 
unit of autonomy for making decisions about when and how to 
change the framework.  Each configurator maintains a set of local 
policies for its framework; it is connected with a context engine to 
receive relevant environmental events; it communicates only with 
its own framework through the meta-interface. This separation of 
the configurator allows different configurators and policies to be 
used for different framework types; for example, a protocol 
framework may require stacking policies, as opposed to arbitrary 
component connections. Typical configurator policies use the 
Event-Condition-Action style. When an event is detected, it 
applies the action (reconfiguration script) – which is of the form 
of a set of component insert, delete, disconnect, connect, or 
replace operations. 

4.  DISTRIBUTED RECONFIGURATION 
4.1  Overview 

We contend that the model for local reconfiguration is 
equally applicable to distributed component topologies. However, 
tools such as OpenCOM lack the support to realise this. Hence, 
we discuss how the same basic CF model that has been 
established to support local reconfigurations is extended to 
provide developer support for principled, co-ordinated 
reconfiguration of component-based middleware behaviours 
across nodes. For this purpose, we introduce the concept of a 
distributed component framework, each distributed framework 
contains a set of local frameworks of the same type. They can be 
composed of hierarchical local component frameworks, and more 
than one distributed framework type can be created per self-
managed system. The design of the distributed framework model 
follows the same basic themes as for local frameworks—i.e. 
architecture MOP, validation, quiescence and policy-driven 



configurators. However, these are extended with additional 
capabilities to increase the flexibility of the approach for 
operation in a distributed environment. 

 

 
 

Figure 3: Distributed Frameworks 

4.2   Architecture MOP & Reification 
4.2.1  Lightweight Base Protocol 

Each distributed framework maintains a basic architecture 
MOP that reifies information about the contents of the framework 
in terms of the node members only i.e., it identifies the instances 
of the local CF on each host, but does not store additional local 
topology information. Hence, this minimises the amount of meta-
data maintained per framework.  

For the implementation of this meta-object protocol we use a 
lightweight group membership service as the base mechanism for 
distributing meta-data (illustrated in figure 3); this data then 
builds the view of the system wide architecture. This group 
protocol is customizable in its implementation: typically different 
group membership overlays will suit different domains e.g. a p2p 
network in the fixed Internet can use a different group 
membership protocol from a sensor network application. So far, 
we have implemented the scalable membership protocol SCAMP 
[7] to maintain framework meta-data between members of a 
distributed framework. 

IDistributedMetaInterface is exported from the component 
runtime (seen in figure 3) in the same fashion as 
IMetaArchitecture is available from the OpenCOM kernel [5]; 
this interface allows developers to create, and interact with 
instances of distributed framework architectures. A set of meta-
operations allows the insertion and deletion of local framework 
elements into/from a given distributed framework, and the 
enumeration of all members of the framework. Hence, distributed 
frameworks are essentially dynamic, virtual architectures that are 
composed at run-time after local elements are inserted into them.  
4.2.2  Flexibility 

We also contend that to support fluctuating resource 
requirements of diverse environments, developers must be able to 
select from a set of strategies for the reification of the meta-
architecture data. That is: i) flexibility in the richness of meta-
data, and ii) flexibility in the locations where the meta-data is 
stored.  

The basic meta-information maintained for each framework 
is shown in figure 4(a); this is essentially just the local framework 

members of the distributed framework. However, this is enough 
to subsequently discover all relevant information about the 
framework architecture as the meta-data contains references to the 
local frameworks’ reflective interfaces (ICFMetaInterface), which 
can then be used to reflect all the component information in the 
distributed framework. However, a ‘push’-based reification model 
with richer meta-data may also be employed. This will utilize 
more resources, but in some cases may potentially reduce the 
network traffic and time to make reconfiguration decisions, as the 
data can be stored locally. A richer meta-data model (built atop 
the base) is shown in figure 4(b); this adds individual component 
and connection information in the same format as provided in a 
local framework. To distribute the data in a ‘push’ fashion the 
local meta-data is gossiped to all other members using the 
lightweight group membership service. The selected storage 
points use the information (component, connections, etc.) to build 
a distributed view of the network wide framework. Hence, 
alternative, richer meta-data models can be created by third-party 
developers atop the basic mechanism. 

 
Figure 4: Alternative architecture meta-data approaches 

 
Every member of the framework need not store the meta-data 
(especially, for example, in resource-constrained sensor 
networks); but enough nodes must store it for the data to be 
resilient for the lifetime of the distributed framework. Therefore, 
depending on the precise requirements, the meta-information 
could be stored at a central node, or at a subset of the nodes, or at 
all of them. This depends on a flexible reification strategy 
employed by the meta-protocol; i.e. the placement of components 
to collect and manage meta-data; this is shown as the “Reified 
Meta Data” component in figure 3. For when there is more than 
one instance of this component in the framework, consistency 
protocols are utilized to ensure that the same view is maintained 
across nodes. 

4.3  Validation 
Validation of a distributed framework is important to ensure 

that the collaborating nodes maintain a correct implementation of 
the middleware across nodes. Hence, in a similar manner to local 
validation i.e. the IAccept plug-in, after a distributed adaptation 
has taken place this update is checked through inspection of the 
meta-data. Designated nodes in the framework have a set of plug-
in rules that are used to validate the integrity of component 
updates across multiple nodes. An invalid reconfiguration can 
thereby be detected and repaired. 

4.4  Quiescence 
4.4.1  Centralised Quiescence 

For safe dynamic reconfiguration it is important to ensure 
that updates do not impact the integrity of the system. Hence, the 



distributed framework must be made safe to adapt, i.e. placing it 
in a quiescent state. Here we examine a single approach we have 
developed within the component runtime; we then describe the 
need for flexible solutions. 

We have so far developed a single, centralised 
implementation for deriving a safe state in the distributed 
framework that is based upon the local host approach described in 
section 3.2.4. A request to reconfigure the distributed framework 
from a central node generates a request message asking each local 
framework instance to be placed in a quiescent state; this message 
is propagated via gossiping through the meta-group service. Once 
a local framework is in a quiescent state it returns a notification to 
the configurator node. Upon the condition that all members are in 
a quiescent state the reconfiguration can take place. 
4.4.2  Flexibility 

The disadvantage of the centralised approach is that it may 
be too resource intensive, and may not scale suitably for large 
numbers of nodes. Additionally, it may not be necessary to place 
all nodes in a safe-state at the same time, or have a single node 
managing the transition to a safe state. Hence, the frameworks 
should support selectable approaches to safe-state management 
that can be tailored to the particular style of reconfiguration to be 
performed and the environment that the framework is deployed. 
Therefore, we are investigating replaceable, and decentralised 
strategies for safely updating components.  

4.5   Policy-based Configurators 
Distributed configurators (as seen in figure 3) again follow 

the same pattern as in local frameworks (see section 3.2.5). They 
receive events about changing environmental conditions, select 
policies, and then perform distributed reconfigurations. However, 
individual frameworks may have more than one configurator (e.g. 
there could be one on every node). Therefore, consensus protocols 
must be used to ensure that all members of the framework agree 
on the action to perform. Our development of the reconfiguration 
mechanisms has so far concentrated on centralised configurators; 
however, we are also investigating the introduction of selectable 
and replaceable consensus algorithms into the distributed 
frameworks. 

5.  RELATED WORK 
There are a number of related areas of research to this work. 

These consist of reflective component models, reflective 
middleware, and alternative approaches to distributed adaptation 
of network protocols and middleware. We now analyse these in 
turn, examining how they differ from our approach. 

Fractal [3] is a component model for the development of 
open, adaptive applications and systems software. Like 
OpenCOM, a key capability of Fractal is the use of meta-
protocols to inspect and adapt frameworks of related components. 
These frameworks can be composed locally, or be composed from 
distributed Fractal components. Notably, the meta-protocols are 
inherently flexible; as they can be plugged into frameworks on 
demand, i.e. only the required meta-protocols are tailored for each 
framework. At present, the currently available Fractal tools 
provide only limited support for co-ordinated, distributed 
dynamic reconfigurations. However, the Fractal specification is 
sufficiently flexible and straightforward to introduce these as 
pluggable meta-protocol ‘controllers’. Hence, we believe many of 
the aspects introduced in this paper are equally applicable in the 

Fractal component model. A potential avenue of future research is 
to investigate if this is the case.  

There are now a number of established reflective 
middlewares e.g. OpenORB [1] and DynamicTAO [11]. 
Generally, these adapt their behaviour locally according to a local 
policy. Although potentially suitable for supporting some classes 
of self-managed systems, the dimensions of co-ordinated, 
distributed adaptations have not been addressed; therefore, we 
believe utilization of the approaches described in this paper will 
allow reflective middleware to better support more decentralized 
classes of self-managed systems. We have so far demonstrated 
this to be the case for Open ORB. 

An alternative component approach that has investigated the 
coordinated reconfiguration of decentralized, self-managed 
systems is k-Components [6]. Here, a k-Component is a 
component with local architecture and a reflective meta protocol 
to inspect and adapt this architecture. Each k-Component is then 
related to a management agent; this is responsible for monitoring 
the environment and making decisions about when to adapt the 
component structure. In the co-ordination dimension, distributed 
agents can communicate with one another, although decisions to 
adapt are made locally. Hence, the approach is suited to only 
decentralized reconfigurations, with no guarantee that behaviour 
is changed across a system. Our approach, is in general more 
flexible allowing the mechanism for co-ordinated adaptation to be 
tailored to the requirements e.g. centralized or decentralized. 

NecoMan [9] offers an alternative approach to dynamic 
reconfiguration, whose capabilities have inspired many of the 
features of our approach. It supports safe, co-ordinated updates of 
distributed services, typically related to network protocols. 
However, it has not yet been applied in diverse application 
environments to illustrate its full flexibility; however, we believe 
it presents many interesting mechanisms that could be applied 
within our frameworks; especially our points of flexibility in 
terms of consensus and quiescence.  

Finally, Silva et al. [13] present a framework to support the 
automatic self-adaptation of distributed application components. 
Our approach follows some of their key ideas: monitoring the 
current system state, supporting flexible algorithms for diverse 
conditions, and using the configurator pattern. However, the 
approaches differ in that our approach is targeted at a more fine-
grained level. We specifically target frameworks of self-managing 
middleware elements, as opposed to application components. In 
addition, our approach is novel in that it considers an architectural 
view of distributed frameworks, with principled reflection 
mechanisms to further support adaptation decisions. Hence, self-
adaptation can be applied on demand at different levels of the 
distributed system, from the network protocols, to the 
communication middleware, to the applications themselves. 

6.  CONCLUSIONS & FUTURE WORK 
In this paper we have demonstrated the need to consider 

distributed dynamic reconfigurations to better support new classes 
of self-managing middleware. We have illustrated how the 
approach to local address space reconfiguration proposed in the 
Open ORB philosophy is equally applicable to co-ordinated 
distributed reconfigurations. Finally, we have shown that our 
approach is flexible to support many styles of distributed dynamic 
adaptation, to allow it to be applied in diverse application 
domains and environmental conditions. 



There are a number of interesting future areas of research 
inspired by this work. Firstly, the creation of higher-level 
declarative languages that can be used by both middleware and 
application developers to describe dynamic reconfigurations both 
locally and globally. This may hide the developers from the 
inherent complexity of learning and using reflective protocols. 
However, such open policies may potentially cause conflicts, as 
multiple reconfigurations may be defined that cause the system to 
never stabilise (i.e. thrash from one configuration to another), or 
disagree with one another. Hence, mechanisms to detect and 
resolve such issues must be provided. Secondly, the introduction 
of security measures to the distributed framework is required to 
ensure only authentic nodes can join a framework, and only 
members of the framework can make reconfigurations. Again, this 
security measures must be lightweight and flexible in order to 
reduce the resource and performance cost of distributed 
frameworks.  
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