
A Distributed Architecture Meta-Model for Self-Managed
Middleware

Paul Grace, Geoff Coulson, Gordon S. Blair, Barry Porter
Computing Department

Lancaster University
Lancaster, UK

{gracep, geoff, gordon, porterbf}@comp.lancs.ac.uk

ABSTRACT
Openness and adaptation are the fundamental properties of
reflective middleware platforms. Self-managed or autonomic
systems require this behaviour, and therefore, reflective
middleware platforms are ideally suited to the support of such
systems. However, new classes of self-managed applications
increasingly require support for co-coordinated, distributed
reconfiguration, and there is limited provision for this in current
reflective middleware approaches. In this paper, we document a
general, flexible architecture meta-model for the safe and valid
adaptation of components that make up the implementation of co-
ordinating middleware nodes distributed across peer devices. We
also investigate the flexibility of this approach in supporting
different reconfiguration types in different environmental
conditions.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures -
Patterns (Reflection).

General Terms
Management, Design.

Keywords
Reflection, middleware, self-managing systems.

1. INTRODUCTION
There is growing interest in the distributed systems

community in the general area of self-repairing, self-healing or
self-organizing software systems [12] (often referred to as self*
systems). Our contention is that a major prerequisite for self-
management is the openness of systems [2]. In other words, to
support self-management, it is necessary to have access to various
aspects of the system infrastructure and to be able to reconfigure
such aspects at run-time. It is also important that such changes do
not endanger the overall integrity of the (running) system. Hence,

reflective middleware is ideally suited to support self-managed
systems. Here, we investigate improvements in reflective
middleware approaches to better support new classes of self-
managed applications.

Reflective middleware solutions now follow a well-
established design approach that typically combines components,
component frameworks, and reflection [1,11]. Software
components are third-party deployable units of composition that
form the building blocks of middleware implementations.
Component frameworks (CFs) then manage a set of components
related to a particular domain of middleware operation; and
reflection supports introspection and adaptation of the software
architecture. So far reflective middleware solutions have
generally focused on node-local adaptation; i.e., where each node
makes local decisions to adapt based upon environmental context
inputs and locally maintained policies. However, these
approaches do not fully support next generation self-managing
applications: e.g., autonomic computing, peer-to-peer computing,
ubiquitous computing and ad-hoc mobile computing, all
fundamentally require the co-ordinated adaptation of middleware
behaviour across distributed nodes. To meet this requirement,
reflective middleware solutions must support the following:
− Open access. Required to inspect the structure and behaviour

of co-ordinating distributed nodes. The information about the
current structure of distributed nodes can help make
decisions about the appropriate adaptation to employ.

− Consensus. Coordinating middleware nodes require
mechanisms to make decisions about what actions to take;
particularly what reconfigurations are required.

− Safe, valid, distributed reconfiguration. Adaptations must be
made to distributed topologies of components. These
adaptations must be made when the distributed system is in a
safe state, and changes must be validated once the update is
complete.

− Flexibility. Coordinated adaptation implementations must be
tailored to the deployment domain. For example, some
consensus and reconfiguration protocols may be too
resource-intensive for sensor networks. Similarly, centralized
management of reconfiguration is not suited to p2p
applications.
In this paper we investigate a flexible, distributed meta-

architecture protocol that supports open access to distributed
middleware component topologies, and provides mechanisms for
safe, valid, distributed adaptation. This work is an extension of
the OpenORB/OpenCOM [1] approach to reflective middleware.
Furthermore, we demonstrate the flexibility of the approach in
diverse application types and environmental conditions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ARM’06, November 27-December 1, 2006, Melbourne, Australia.
Copyright 2006 ACM 1-59593-419-7/06/11... $5.00.

The remainder of this paper is structured as follows. Section
2 illustrates examples of different reconfigurations from a set of
self-managed application domains. Section 3 investigates how
local reconfiguration is currently managed. Section 4 then
examines the proposed flexible meta-architecture protocol, and
how it extends the node-local approach to better support
distributed middleware adaptation. Finally, in section 5 we
describe related research in the field of distributed
reconfiguration, and draw conclusions in section 6.

2. RECONFIGURATION SCENARIOS
2.1 Mobile Ad-hoc Computing

A large class of mobile applications involve collaboration
between groups of mobile users. Examples include peer-to-peer
data sharing, shared workspaces and multimedia conference
applications. Here are two concrete examples of distributed
reconfigurations that are applicable to such applications:
− A multimedia conferencing application. The application

employs ad-hoc devices receiving a shared multicast video
stream. A change in the current network bandwidth requires
a change in how the data is encoded. Therefore, a change in
the common media filter needs to be agreed and then applied
so all members of the multicast can receive and view video
frames when the sender changes the filter.

− A p2p messaging application. A set of mobile nodes are
participating in a group messaging application based upon a
group multicast service. If a message sender changes from
sending text messages, to picture messages, or video
messages, then the members of the group must change to be
able to receive streaming data. That is, the interaction type
has changed from message based to streaming based. A local
change at the sender only would affect the remainder of the
multicast group who would be unable to receive the new
messages.

The first is a fine-grained reconfiguration within a middleware
service. The second is a more coarse-grained change of the
properties of the middleware service itself.

2.2 Overlay networks
Overlay networks are virtual communications structures that

are logically ‘laid over’ an underlying physical network such as
the Internet. They are typically implemented by deploying
appropriate application-level routing functionality at strategic
places in the network (in principle both the core and edges). They
basically consist of two parts: one part builds and maintains some
kind of virtual network topology, and the other part routes
messages over this virtual topology.

We have investigated the development of reconfigurable
overlay networks and have also explored different types of
reconfiguration, the possibility of which have emerged from the
implementation concept of splitting each overlay’s per node
implementation into three software components [8]: i) a control
component that maintains the virtual topology, ii) a forwarding
component that handles the message routing algorithm, and iii) a
separated state component that stores data for the other two
(allowing them to be reconfigured without state transfer). We now
discuss three types of overlay reconfiguration. All involve the
replacement of either the control component, or forwarder
component (typically on every member of the overlay).
− Topology reconfiguration: changing the control component

on every node to create a different network topology. This

may optimize a network’s performance as the available
resources increase or decrease.

− Dependability reconfiguration. The control component can
also be reconfigured on selected nodes of the overlay
network to increase dependability; this can take the form of
replacing the repair algorithms to better cope with increasing
network node failure.

− Routing reconfiguration. The routing algorithm of the
network can be updated by replacing every forwarder
component instance in the network. For example, adapting
the forwarding element of an overlay network for ad-hoc
routing for changing mobility models.

2.3 Summary of Requirements
Applications in different domains such as those discussed

above require coordinated adaptation of middleware level
implementations in order to provide consistent performance levels
to members of multi-party applications. Typically, these take the
form of reconfiguring software components that reside on
distributed nodes. Therefore, we require a principled, generally
applicable approach to support adaptation of component-based
middleware in a distributed environment. We now investigate if
the general, well-understood methods within reflective
middleware can be extended to better support the development of
self* middleware behaviour.

3. LOCAL RECONFIGURATION
3.1 Background on Reflection

In middleware platforms, two (complementary) styles of
reflection have emerged, namely structural and behavioural
reflection.
− Structural reflection is concerned with the underlying

structure of objects or components, e.g., in terms of
interfaces supported. Some systems provide architectural
reflection, whereby the software architecture of the system
can be reified and altered [1, 4], e.g. in terms of components
and connectors.

− Behavioural reflection is concerned with activity in the
underlying system, e.g. in terms of the arrival and
dispatching of invocations. Typical mechanisms provided
include the use of interceptors that support the reification of
the process of invocation and the subsequent insertion of pre-
or post- actions. Other systems provide similar capabilities
through dynamic proxies [14].

Figure 1: The meta-space structure of Open ORB

The Lancaster meta-space model [1] (illustrated in figure 1)
is inspired by these styles. This model is made available to
middleware developers through the OpenCOM runtime [5]. Three
distinct meta-models represent the meta-space: interface,
architecture, and interception. The interface and architecture
meta-models provide structural reflection in terms of inspecting
the interfaces of components, and the topology of components in
terms of connected elements; the interception meta-model
supports behavioural reflection by enabling the dynamic insertion
of interceptors, which support the insertion of pre- and post-
behaviour on to interfaces.

3.2 Local OpenCOM component frameworks
3.2.1 Overview

The local CF model (illustrated in figure 2) is based upon the
concept of composite components as proposed by OpenORB [1].
Each CF is an OpenCOM component that has internal
architecture. Additionally, each framework supports the following
dimensions for performing safe, valid reconfigurations in the local
address space: i) an architecture meta-object protocol, ii)
validated reconfigurations, iii) quiescence management, and iv)
policy configurators. Each of these dimensions is now examined
in turn.
3.2.2 Architecture MOP

The architecture meta-model is fundamental when
developing dynamic middleware solutions. To be subject to
introspection and dynamic reconfiguration, each CF maintains a
local ‘graph’ representing its internal structure. To reduce data
duplication, this is simply a view of the information held in the
OpenCOM system graph. Therefore, each CF maintains a vector
of component identifiers that point to their corresponding position
in the system graph. A set of operations that make up the
architecture meta-model are provided through the
ICFMetaInterface seen in figure 2.
3.2.3 Validation of reconfigurations

Providing open access to the structure of a system, and the
ability to make run-time changes, increases the likelihood of
system failure and opens it to third party attack. To guard against
this, each framework exports a ‘health check’ mechanism
(illustrated in figure 2 as the required interface called IAccept);
components encapsulating knowledge about valid dynamic
reconfigurations for this particular framework are then plugged
into this interface. Each reconfiguration is applied as a local
transaction; hence once committed initially a reconfiguration is
validated such that invalid attempts are rolled back to the previous
safe state. The previous meta-architecture state is stored before
reconfiguration commences to support this.
3.2.4 Quiescence Management

Reconfiguration operations must only be carried when a
framework is in a safe quiescent state. If a change to the
configuration is made while one or more service calls on the CF
are executing, then the results of these invocations could be
compromised or lost. Therefore, each CF provides a
readers/writers lock for access to the local CF graph. Each service
call through any of the interfaces other than ICFMetaInterface
accesses the lock as a reader (there can be n readers using the lock
at any time). Any call to change the configuration of the CF,
accesses the lock as a writer (a single writer can access the lock
when there are no readers). The algorithm to implement this

property is a standard readers/writers solution with priority for
readers.

Figure 2: Local Component Frameworks

Interceptors are used to ensure that all exposed

configurations access the lock as a reader before a service call is
executed. Each interface exposed by a CF automatically has an
interceptor attached with pre- and post- method behaviour to
implement the reader role of a readers/writers solution. That is,
the pre method accesses the lock and increments the reader count,
while the post method decrements the count and if it is the last
reader the lock is released for writers.
3.2.5 Configurators

The final aspect of the local framework model is the use of
the configurator pattern [10] as illustrated in figure 2. A
configurator is assigned to each framework instance, and acts as a
unit of autonomy for making decisions about when and how to
change the framework. Each configurator maintains a set of local
policies for its framework; it is connected with a context engine to
receive relevant environmental events; it communicates only with
its own framework through the meta-interface. This separation of
the configurator allows different configurators and policies to be
used for different framework types; for example, a protocol
framework may require stacking policies, as opposed to arbitrary
component connections. Typical configurator policies use the
Event-Condition-Action style. When an event is detected, it
applies the action (reconfiguration script) – which is of the form
of a set of component insert, delete, disconnect, connect, or
replace operations.

4. DISTRIBUTED RECONFIGURATION
4.1 Overview

We contend that the model for local reconfiguration is
equally applicable to distributed component topologies. However,
tools such as OpenCOM lack the support to realise this. Hence,
we discuss how the same basic CF model that has been
established to support local reconfigurations is extended to
provide developer support for principled, co-ordinated
reconfiguration of component-based middleware behaviours
across nodes. For this purpose, we introduce the concept of a
distributed component framework, each distributed framework
contains a set of local frameworks of the same type. They can be
composed of hierarchical local component frameworks, and more
than one distributed framework type can be created per self-
managed system. The design of the distributed framework model
follows the same basic themes as for local frameworks—i.e.
architecture MOP, validation, quiescence and policy-driven

configurators. However, these are extended with additional
capabilities to increase the flexibility of the approach for
operation in a distributed environment.

Figure 3: Distributed Frameworks

4.2 Architecture MOP & Reification
4.2.1 Lightweight Base Protocol

Each distributed framework maintains a basic architecture
MOP that reifies information about the contents of the framework
in terms of the node members only i.e., it identifies the instances
of the local CF on each host, but does not store additional local
topology information. Hence, this minimises the amount of meta-
data maintained per framework.

For the implementation of this meta-object protocol we use a
lightweight group membership service as the base mechanism for
distributing meta-data (illustrated in figure 3); this data then
builds the view of the system wide architecture. This group
protocol is customizable in its implementation: typically different
group membership overlays will suit different domains e.g. a p2p
network in the fixed Internet can use a different group
membership protocol from a sensor network application. So far,
we have implemented the scalable membership protocol SCAMP
[7] to maintain framework meta-data between members of a
distributed framework.

IDistributedMetaInterface is exported from the component
runtime (seen in figure 3) in the same fashion as
IMetaArchitecture is available from the OpenCOM kernel [5];
this interface allows developers to create, and interact with
instances of distributed framework architectures. A set of meta-
operations allows the insertion and deletion of local framework
elements into/from a given distributed framework, and the
enumeration of all members of the framework. Hence, distributed
frameworks are essentially dynamic, virtual architectures that are
composed at run-time after local elements are inserted into them.
4.2.2 Flexibility

We also contend that to support fluctuating resource
requirements of diverse environments, developers must be able to
select from a set of strategies for the reification of the meta-
architecture data. That is: i) flexibility in the richness of meta-
data, and ii) flexibility in the locations where the meta-data is
stored.

The basic meta-information maintained for each framework
is shown in figure 4(a); this is essentially just the local framework

members of the distributed framework. However, this is enough
to subsequently discover all relevant information about the
framework architecture as the meta-data contains references to the
local frameworks’ reflective interfaces (ICFMetaInterface), which
can then be used to reflect all the component information in the
distributed framework. However, a ‘push’-based reification model
with richer meta-data may also be employed. This will utilize
more resources, but in some cases may potentially reduce the
network traffic and time to make reconfiguration decisions, as the
data can be stored locally. A richer meta-data model (built atop
the base) is shown in figure 4(b); this adds individual component
and connection information in the same format as provided in a
local framework. To distribute the data in a ‘push’ fashion the
local meta-data is gossiped to all other members using the
lightweight group membership service. The selected storage
points use the information (component, connections, etc.) to build
a distributed view of the network wide framework. Hence,
alternative, richer meta-data models can be created by third-party
developers atop the basic mechanism.

Figure 4: Alternative architecture meta-data approaches

Every member of the framework need not store the meta-data
(especially, for example, in resource-constrained sensor
networks); but enough nodes must store it for the data to be
resilient for the lifetime of the distributed framework. Therefore,
depending on the precise requirements, the meta-information
could be stored at a central node, or at a subset of the nodes, or at
all of them. This depends on a flexible reification strategy
employed by the meta-protocol; i.e. the placement of components
to collect and manage meta-data; this is shown as the “Reified
Meta Data” component in figure 3. For when there is more than
one instance of this component in the framework, consistency
protocols are utilized to ensure that the same view is maintained
across nodes.

4.3 Validation
Validation of a distributed framework is important to ensure

that the collaborating nodes maintain a correct implementation of
the middleware across nodes. Hence, in a similar manner to local
validation i.e. the IAccept plug-in, after a distributed adaptation
has taken place this update is checked through inspection of the
meta-data. Designated nodes in the framework have a set of plug-
in rules that are used to validate the integrity of component
updates across multiple nodes. An invalid reconfiguration can
thereby be detected and repaired.

4.4 Quiescence
4.4.1 Centralised Quiescence

For safe dynamic reconfiguration it is important to ensure
that updates do not impact the integrity of the system. Hence, the

distributed framework must be made safe to adapt, i.e. placing it
in a quiescent state. Here we examine a single approach we have
developed within the component runtime; we then describe the
need for flexible solutions.

We have so far developed a single, centralised
implementation for deriving a safe state in the distributed
framework that is based upon the local host approach described in
section 3.2.4. A request to reconfigure the distributed framework
from a central node generates a request message asking each local
framework instance to be placed in a quiescent state; this message
is propagated via gossiping through the meta-group service. Once
a local framework is in a quiescent state it returns a notification to
the configurator node. Upon the condition that all members are in
a quiescent state the reconfiguration can take place.
4.4.2 Flexibility

The disadvantage of the centralised approach is that it may
be too resource intensive, and may not scale suitably for large
numbers of nodes. Additionally, it may not be necessary to place
all nodes in a safe-state at the same time, or have a single node
managing the transition to a safe state. Hence, the frameworks
should support selectable approaches to safe-state management
that can be tailored to the particular style of reconfiguration to be
performed and the environment that the framework is deployed.
Therefore, we are investigating replaceable, and decentralised
strategies for safely updating components.

4.5 Policy-based Configurators
Distributed configurators (as seen in figure 3) again follow

the same pattern as in local frameworks (see section 3.2.5). They
receive events about changing environmental conditions, select
policies, and then perform distributed reconfigurations. However,
individual frameworks may have more than one configurator (e.g.
there could be one on every node). Therefore, consensus protocols
must be used to ensure that all members of the framework agree
on the action to perform. Our development of the reconfiguration
mechanisms has so far concentrated on centralised configurators;
however, we are also investigating the introduction of selectable
and replaceable consensus algorithms into the distributed
frameworks.

5. RELATED WORK
There are a number of related areas of research to this work.

These consist of reflective component models, reflective
middleware, and alternative approaches to distributed adaptation
of network protocols and middleware. We now analyse these in
turn, examining how they differ from our approach.

Fractal [3] is a component model for the development of
open, adaptive applications and systems software. Like
OpenCOM, a key capability of Fractal is the use of meta-
protocols to inspect and adapt frameworks of related components.
These frameworks can be composed locally, or be composed from
distributed Fractal components. Notably, the meta-protocols are
inherently flexible; as they can be plugged into frameworks on
demand, i.e. only the required meta-protocols are tailored for each
framework. At present, the currently available Fractal tools
provide only limited support for co-ordinated, distributed
dynamic reconfigurations. However, the Fractal specification is
sufficiently flexible and straightforward to introduce these as
pluggable meta-protocol ‘controllers’. Hence, we believe many of
the aspects introduced in this paper are equally applicable in the

Fractal component model. A potential avenue of future research is
to investigate if this is the case.

There are now a number of established reflective
middlewares e.g. OpenORB [1] and DynamicTAO [11].
Generally, these adapt their behaviour locally according to a local
policy. Although potentially suitable for supporting some classes
of self-managed systems, the dimensions of co-ordinated,
distributed adaptations have not been addressed; therefore, we
believe utilization of the approaches described in this paper will
allow reflective middleware to better support more decentralized
classes of self-managed systems. We have so far demonstrated
this to be the case for Open ORB.

An alternative component approach that has investigated the
coordinated reconfiguration of decentralized, self-managed
systems is k-Components [6]. Here, a k-Component is a
component with local architecture and a reflective meta protocol
to inspect and adapt this architecture. Each k-Component is then
related to a management agent; this is responsible for monitoring
the environment and making decisions about when to adapt the
component structure. In the co-ordination dimension, distributed
agents can communicate with one another, although decisions to
adapt are made locally. Hence, the approach is suited to only
decentralized reconfigurations, with no guarantee that behaviour
is changed across a system. Our approach, is in general more
flexible allowing the mechanism for co-ordinated adaptation to be
tailored to the requirements e.g. centralized or decentralized.

NecoMan [9] offers an alternative approach to dynamic
reconfiguration, whose capabilities have inspired many of the
features of our approach. It supports safe, co-ordinated updates of
distributed services, typically related to network protocols.
However, it has not yet been applied in diverse application
environments to illustrate its full flexibility; however, we believe
it presents many interesting mechanisms that could be applied
within our frameworks; especially our points of flexibility in
terms of consensus and quiescence.

Finally, Silva et al. [13] present a framework to support the
automatic self-adaptation of distributed application components.
Our approach follows some of their key ideas: monitoring the
current system state, supporting flexible algorithms for diverse
conditions, and using the configurator pattern. However, the
approaches differ in that our approach is targeted at a more fine-
grained level. We specifically target frameworks of self-managing
middleware elements, as opposed to application components. In
addition, our approach is novel in that it considers an architectural
view of distributed frameworks, with principled reflection
mechanisms to further support adaptation decisions. Hence, self-
adaptation can be applied on demand at different levels of the
distributed system, from the network protocols, to the
communication middleware, to the applications themselves.

6. CONCLUSIONS & FUTURE WORK
In this paper we have demonstrated the need to consider

distributed dynamic reconfigurations to better support new classes
of self-managing middleware. We have illustrated how the
approach to local address space reconfiguration proposed in the
Open ORB philosophy is equally applicable to co-ordinated
distributed reconfigurations. Finally, we have shown that our
approach is flexible to support many styles of distributed dynamic
adaptation, to allow it to be applied in diverse application
domains and environmental conditions.

There are a number of interesting future areas of research
inspired by this work. Firstly, the creation of higher-level
declarative languages that can be used by both middleware and
application developers to describe dynamic reconfigurations both
locally and globally. This may hide the developers from the
inherent complexity of learning and using reflective protocols.
However, such open policies may potentially cause conflicts, as
multiple reconfigurations may be defined that cause the system to
never stabilise (i.e. thrash from one configuration to another), or
disagree with one another. Hence, mechanisms to detect and
resolve such issues must be provided. Secondly, the introduction
of security measures to the distributed framework is required to
ensure only authentic nodes can join a framework, and only
members of the framework can make reconfigurations. Again, this
security measures must be lightweight and flexible in order to
reduce the resource and performance cost of distributed
frameworks.

7. REFERENCES
[1] Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M.,

Costa, F., Duran-Limon, H., Fitzpatrick, T., Johnston, L.,
Moreira, R., Parlavantzas, N., Saikoski, K., “The Design and
Implementation of OpenORB v2”, IEEE DS Online, Special
Issue on Reflective Middleware, Vol. 2, No. 6, 2001.

[2] Blair, G.S., Coulson, G., Blair, L., Duran-Limon, H., Grace,
P., Moreira, R., Parlavantzas, N., “Reflection, Self-
Awareness and Self-Healing”, Proc. First ACM Workshop
on Self-healing Systems (WOSS'02Charleston, South
Carolina, USA, November 2002.

[3] Bruneton, E., Coupaye, T., and Stefani, J., “ Recursive and
dynamic software composition with sharing”. In Proc. of the
7th ECOOP International Workshop on Component-Oriented
Programming (WCOP'02), Malaga (Spain), June 2002

[4] Cazzola, W., Savigni, W., Sosio, A., Tisato, F., “Rule-based
Strategic Reflection: Observing and Modifying Behaviour at
the Architectural Level”, Proc. of the 14th IEEE
International Conference on Automated Software
Engineering (ASE’99), pp.287-290, Cocoa Beach, Florida,
USA, October 1999.

[5] Coulson, G., Blair, G., Grace, P., Joolia, A., Lee, K., and
Ueyama, J., “A Component Model for Building Systems

Software”. In Proc. of the Software Engineering and
Applications (SEA’04), Cambridge, MA, USA, Nov 04.

[6] Dowling, J., “The Decentralised Coordination of Self-
Adaptive Components for Autonomic Distributed Systems”.
PhD Thesis. Trinity College, Dublin, 2004.

[7] Ganesh, A., Kermarrec, A., Massoulie, L.” SCAMP: Peer-to-
peer lightweight membership service for large-scale group
communication”. In Proc. of the 3rd Int.Workshop on
Networked Group Communication, London, UK (2001).

[8] Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung, W.K.,
Cai, W, Duce, D., Cooper, C., “GRIDKIT: Pluggable
Overlay Networks for Grid Computing”, Proc. International
Symposium of Distributed Objects and Applications
(DOA’04), Larnaca, Cyprus, October 2004.

[9] Janssens, N., Michiels, S., Holvoet, T. and Verbaeten, P.
”NeCoMan: Middleware for Safe Distributed Service
Deployment in Programmable Networks”. In Proc. of
Middleware 2004, Toronto, Canada, 2004

[10] Kon. F., “Automatic Configuration of Component-Based
Distributed Systems”. PhD Thesis. University of Illinois at
Urbana-Champaign, May, 2000.

[11] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T.,
Magalhaes, L. and Campbell, R., “Monitoring, Security, and
Dynamic Configuration with the dynamicTAO Reflective
ORB”, Proc. of Middleware 2000, ACM/IFIP, April 2000.

[12] Schmerl, B., Garlan, D., “Exploiting Architectural Design
Knowledge to Support Self-repairing Systems”, Proc. 14th
International Conference on Software Engineering and
Knowledge Engineering, Ischia, Italy, July 2002.

[13] Silva, J., Endler, M., and Kon. F., “Developing Adaptive
Distributed Applications: a Framework Overview and
Experimental Results”, Proceedings of the International
Symposium on Distributed Objects and Applications (DOA).
LNCS 2888, pp.1275-1291. Catania, Sicily, Italy, November,
2003.

[14] Sun Microsystems, “Java Reflection API”, 2002,
http://java.sun.com/j2se/1.3/docs/guide/reflection/index.htm

	1. INTRODUCTION
	2. RECONFIGURATION SCENARIOS
	2.1 Mobile Ad-hoc Computing
	2.2 Overlay networks
	2.3 Summary of Requirements
	3. LOCAL RECONFIGURATION
	3.1 Background on Reflection
	3.2 Local OpenCOM component frameworks
	3.2.1 Overview
	3.2.2 Architecture MOP
	3.2.3 Validation of reconfigurations
	3.2.4 Quiescence Management
	3.2.5 Configurators

	4. DISTRIBUTED RECONFIGURATION
	4.1 Overview
	4.2 Architecture MOP & Reification
	4.2.1 Lightweight Base Protocol
	4.2.2 Flexibility

	4.3 Validation
	4.4 Quiescence
	4.4.1 Centralised Quiescence
	4.4.2 Flexibility

	4.5 Policy-based Configurators

	5. RELATED WORK
	6. CONCLUSIONS & FUTURE WORK
	7. REFERENCES

