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ABSTRACT 

Reflective middleware provides an effective way to support 
adaptation in distributed systems. However, as distributed systems 
become increasingly complex, certain drawbacks of the reflective 
middleware approach are becoming evident. In particular, 
reflective APIs are found to impose a steep learning curve, and to 
place too much expressive power in the hands of developers. 
Recently, researchers in the field of Aspect-Oriented 
Programming (AOP) have argued that ‘dynamic aspects’ show 
promise in alleviating these drawbacks. In this paper, we report on 
work that attempts to combine the reflective middleware and AOP 
approaches. We build an AOP support layer on top of an 
underlying reflective middleware substrate in such a way that it 
can be dynamically deployed/undeployed where and when 
required, and imposes no overhead when it is not used. Our AOP 
approach involves aspects that can be dynamically (un)weaved 
across a distributed system on the basis of pointcut expressions 
that are inherently distributed in nature, and it supports the 
composition of advice that is remote from the advised joinpoint. 
An overall goal of the work is to effectively combine reflective 
middleware and AOP in a way that maximises the benefits and 
minimises the drawbacks of each.  

Categories and Subject Descriptors 

D.2.11 [Software Engineering]: Software Architectures –
Patterns (Reflection). 

General Terms  
Design. 

Keywords 

Reflective Middleware, Dynamic Adaptation, Complexity, 
Components, Aspect-Oriented Programming. 

1. INTRODUCTION 
The environments in which distributed applications must operate 
are becoming increasingly heterogeneous and dynamic, requiring 
the supporting middleware to adapt its behaviour dynamically to 
maintain required levels of service to applications [12]. 

Significant research work has focused on how to make 
middleware more adaptive; and a commonly-adopted approach to 
this is the reflective middleware approach [18, 27]. 

Reflective middleware solutions follow a now well-
established pattern that typically combines components [31] and 
reflection [28]. A component-based approach offers modularity, 
late composition, and good reusability. Reflection then provides 
the capability for middleware to reason about itself and to act on 
this reasoning in service of adaptation [23, 28]. To do so, 
reflective middleware maintains a representation of itself through 
meta-objects (meta-level) that are causally connected to the 
underlying system that they describe (base level). Changes made 
at the meta-level are reflected in the underlying base-level, and 
vice versa.  

However, the reflective middleware approach has two main 
drawbacks [30]. First, reflective APIs are typically complex and 
hence impose a steep learning curve on developers [4, 6]. Second, 
the introduction of unconstrained openness places too much 
expressive power in the hands of developers. To address these 
drawbacks, the application of Aspect-Oriented Programming 
(AOP) techniques to middleware has been proposed [20]. The 
AOP1 approach [8, 17] differs from the reflection approach in 
managing complexity in that it separates cross-cutting concerns 
(such as distribution, security, persistence etc.), and inherently 
constrains expressive power by adopting a declarative (as opposed 
to procedural) emphasis. However, AOP middleware also has its 
drawbacks. In particular, its declarative approach can restrict the 
scope of adaptation to relative coarse-grained dimensions, thus 
losing expressive power. Furthermore, few if any current 
platforms support the coordinated runtime composition of aspects 
in a distributed system in a distribution transparent manner. 

In this paper, we report on work that combines the reflective 
and AOP approaches to adaptive middleware in a way that 
attempts to maximise the benefits and minimise the drawbacks of 
each. More specifically, our approach is to build an AOP support 

layer on top of an underlying component-based reflective 
middleware substrate. This enables us to hide the complexity of 
the underlying reflection layer from programmers. Our AOP 
support layer can be dynamically deployed when required, and 
undeployed when further adaptation is not required in the 
foreseeable future (thus avoiding any overhead when not in use). 
Another key benefit of our approach accrues from the uniform use 
of components throughout the architecture (the AOP support layer 
is constructed from components like the rest of the system). This 
                                                                    
1  In this paper we assume that the reader is already familiar with basic AOP concepts 

such as aspects, advice, weaving, joinpoints and pointcuts. Please refer to the 
literature for more information (e.g. [8, 16]). 
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means that we can advise not only distributed applications, but 
also the underlying middleware services and the AOP support 
layer itself, which enables considerable flexibility. A final key 
contribution of our work is the provision of support for distributed 
dynamic aspects. This means that aspects can be straightforwardly 
dynamically deployed across a distributed system on the basis of 
pointcut expressions that are inherently distributed in nature. In 
addition, we support the composition of advice that is remote 
from the advised joinpoint. 

The rest of this paper is organised as follows. Section 2 
provides necessary background on the OpenCOM and GridKit 
technologies that form the basis of our underlying reflective 
middleware layer; and section 3 introduces our AOP support 
layer. Then, section 4 provides an evaluation of our approach, and 
section 5 discusses open issues and related work. Finally, we offer 
our conclusions in section 6.  

2. BACKGROUND 
In this section we provide necessary background on the 
OpenCOM component model which forms the basis of our work, 
and on the GridKit reflective middleware platform which is built 
using OpenCOM. More detail is available in the literature [7, 11].  

2.1 OpenCOM 
OpenCOM is a lightweight component-based programming 
technology that is programming-language independent, intended 
to support the development of low-level systems software (e.g., 
middleware) as well as applications, and to support runtime 
configuration and reconfiguration. It employs a minimal runtime 
kernel that supports the loading and unloading of software 
components. The elements of the OpenCOM programming model 
are as follows: 

• Capsules are non-distributed containing entities for 
components that provide a runtime API for component life-
cycle management.  In particular, the API allows components 
to be deployed, instantiated, and connected together. 

• Components are language-independent encapsulated units of 
functionality that are deployed into capsules during run-time. 
They interact with each other through interfaces and 
receptacles. Components may support multiple interfaces 
and receptacles. We generally use the term ‘component’ to 
denote an instance of a component as opposed to a type. 

• Interfaces are units of service provision offered by 
components. To enable programming language 
independence, they are defined using OMG IDL [16].  

• Receptacles are ‘required interfaces’ that make explicit the 
dependencies of a component on other components. 
Receptacles enable a third-party mode of component 
composition.  

• Connectors are components that reify the connection of a 
receptacle and a (type compatible) interface. A receptacle 
can be connected to only one interface; but an interface may 
be connected to multiple receptacles. As they are 
components, connectors may themselves support receptacles 
and interfaces, thus enabling reflective control over 
component compositions. 

OpenCOM also employs an extensible set of so-called reflective 

meta-models that enables inspection, adaptation and extension of 
the component composition within a capsule (e.g., of a component 
composition that represents a middleware platform instance). 
These can be optionally (and dynamically) deployed whenever 

required, and undeployed when no longer required. We rely 
mainly on the following three meta-models: 
� The interface meta-model supports dynamic discovery of the 

interfaces supported by a component, and also supports 
dynamic invocation of operations defined on these interfaces 
without the necessity for a connector to be in place.  

� The architecture meta-model represents the current 
component-compositional topology within a capsule as a 
‘component graph’ that supports operations to insert, update 
and remove meta-data within the graph, and to alter the 
composition by manipulating the graph topology.  

� The interception meta-model supports behavioural reflection 
[3] by allowing the dynamic insertion of new behaviour (i.e., 
‘interceptors’) at a connector. This relies on a special type of 
connector called an interceptor-connector that supports an 
interface with operations to manage pluggable interceptors 
(which are themselves implemented as components).  

Figure 1 illustrates the main OpenCOM programming model 
concepts and the reflective meta-models.  

 
 

 

 

Figure 1: OpenCOM and its reflective meta-models 

2.2 The GridKit Middleware Platform 
GridKit is a highly configurable reflective middleware platform 
that is built as a composed set of reconfigurable component 
frameworks. These are used to extend the basic OpenCOM 
programming model to support distribution. The distribution 
machinery is itself built as a component framework, with the 
underlying networking layer being encapsulated within one or 
more components. The GridKit approach thus separates the roles 
of component composition and distribution, OpenCOM providing 
the former in an exclusively intra-capsule context, while GridKit’s 
frameworks provide inter-capsule communication.  

GridKit also provides an additional reflective meta-model to 
the three fundamental ones described above. This is a distributed 
architecture meta-model [11] that extends the same basic services 
offered by the per-capsule architecture meta-model to the multi-
capsule, distributed, case. Each per-capsule instance of the 
distributed architecture meta-model maintains a meta-data view of 
the rest of the system. Consistency between the different instances 
is maintained using a range of pluggable protocols [9]. More 
detail on GridKit is available in the literature [13].  

3. The AO Support Layer 

3.1 Approach and Design Principles 
Our basic approach is to structure the AO support layer as a set of 
components and to layer these over the underlying reflective layer 
provided by OpenCOM. And where distribution is involved, the 
AO services are layered over the GridKit frameworks. Before 
describing the set of components that comprise our AO support 
layer, we first outline the principles we have applied in our 
design, and discuss how these map to underlying OpenCOM 
concepts: 



 

Aspects. To foster conceptual minimality, we realise aspects as 
regular OpenCOM components: components and aspects are 
distinguished only by the role they play, not by any fundamental 
distinction. However, for clarity, we often refer to a component 
playing an ‘aspect’ role as an aspect-component. It is possible to 
employ ‘legacy’ components as aspect-components in cases 
where the ‘non-generic’ advice convention is used (see below). 
Aspect composition. Aspects are composed with the underlying 
component composition using the OpenCOM connector concept 
described above (see section 2.1). In more detail, we use the 
interceptor-connector employed by the interception meta-model as 
the basis of aspect composition. A key implication of this is that 
aspect composition is non-invasive – i.e., the encapsulation of an 
advised component is maintained: it is only possible to advise 
components at the level of their externally-facing connections. 
Advice. As aspects are simply components, advice is realised as 
operations supported by those components. By using different 
interceptor-connector variants we are able to support two styles of 
advice. In the first, ‘non-generic’, style the advice signature is 
identical to that of the receptacle and interface being connected by 
the interceptor-connector. In the second style, a standard Invoke() 
signature is used and arguments are packaged in a generic 
structure. The first style has less performance overhead, but is less 
generic than the second style. 
Joinpoint model. Because of the simple non-invasive nature of 
aspect composition, the joinpoint model is correspondingly 
straightforward. Firstly, we support either call or execution 
joinpoints; this distinction is meaningful where multiple 
receptacles are connected to a single interface – in such a case a 
call joinpoint picks out the individual receptacles, whereas an 
execution joinpoint picks out the single interface (in actuality, 
advices is to be attached to connectors, not receptacles or 
interfaces; therefore, advising an execution joinpoint where there 
are multiple connectors attached to an interface means that the 
advice is attached to all of the connectors concerned). Secondly, 
three types of advice execution are supported: ‘before’, ‘after’ and 
‘around’ the call or execution of a joinpoint. Thirdly, when an 
aspect is to be composed with an underlying component 
composition, the following types of advice scope are supported:  

• Per-instance – this associates a single aspect-component with 
each instance of the receptacle or interface specified in a 
pointcut (this is the default advice scope). 

• Per-type – this associates a single aspect-component with all 
instances of the specified receptacle or interface type. 

• Per-capsule – this associates a single aspect-component with 
all specified joinpoints within a given capsule (akin to a 
singleton class per capsule). 

Pointcuts. We employ a proprietary programming-language 
independent pointcut language2 which is based on work carried 
out in a collaborative research project [21]. The language is XML 
based and supports quantification over operation signatures, 
interface and receptacle signatures, component types and 
instances, and capsules. In addition, it can quantify over dynamic 
context properties associated with any of the above. The inclusion 
of capsules in the list of quantifiable entities means that 
distribution is inherently supported in a network-independent 
manner (this is sometimes referred to as ‘remote pointcuts’ [22]). 
Pointcuts are used only to identify a set of target joinpoints; to aid 
reusability, the aspects/advice to be associated with these 

                                                                    
2 http://www.comp.lancs.ac.uk/~surajbal/pointcut.html 

joinpoints is specified independently using a separate XML-based 
language. 
Distributed AO and Coordination. With the aid of the 
inherently distribution-aware pointcut language discussed above, 
distribution is built directly on top of the GridKit distributed 
architecture meta-model discussed above. Therefore distribution 
is an integral part of our design. Moreover, a coordination service 
is used to provide distributed weaving and unweaving of aspects 
similar to the GridKit [11]. 

3.2 Architectural Elements 
We now describe the architectural elements that comprise our AO 
support layer (these are also illustrated in Figure 2): 
Aspect Manager. The Aspect Manager is the top-level 
architectural entity and is responsible for dynamically loading, 
instantiating and removing aspects. It accepts pointcut 
specifications and associated advice specifications, and interacts 
with the Pointcut Evaluator and Advice Handler to get the job 
done. It also caches joinpoint information it receives from the 
Pointcut Evaluator in case similar pointcuts are submitted in the 
future. To avoid inconsistency, the Aspect Manager listens to 
changes in the distributed topology that are notified by the 
distributed architecture meta-model.  
Pointcut Evaluator. The Pointcut Evaluator analyses pointcut 
specifications forwarded to it by the Aspect Manager, and to looks 
for matching joinpoint(s) in the specified capsules.  To do so, it 
employs the distributed architecture and the interface meta-
models to locate the appropriate joinpoints. Once the list of 
joinpoints is found it returns these to the Aspect Manager. 
Advice Handler. There is an instance of the Advice Handler in 
each capsule in the distributed system. Its role is to act on 
instructions from the Aspect Manager to weave advice (using 
interceptor-connectors) at joinpoints in its capsule. The Advice 
Handler may additionally need to obtain the specified aspect-
components from the Advice Repository (see below).  
Aspect Repository.  The Aspect Repository (or repositories; the 
functionality may be distributed) holds a set of instantiable aspect-
components.  
Interceptor-connector. The basic OpenCOM interceptor-
connector mentioned in section 2.1 has been extended so that it 
can use GridKit endpoints as well as local receptacle and interface 
pointers. This enables the interceptor-connector to support the 
invocation of aspect-component instances that are resident in 
remote capsules.  

 

 

   

 

 

 

Figure 2: The AO support layer 



 

Figure 5:  Inserted encryption aspect 

3.3 Detailed Operation 
We now illustrate the operation of the AO support layer. To do so 
we first introduce a simple ‘group messaging’ application scenario 
in which each of the involved nodes (capsules) has Messaging 
Service and Communication Service components as illustrated in 
Figure 3.  

 

 
Figure 3: Group messaging scenario 

If a message sender needs to encrypt messages before sending 
them to other nodes, then an encryption aspect is placed between 
the Messaging and Communication services. To specify such an 
adaptation, the developer passes the following pointcut and advice 
specifications to the Advice Manager (figures 4a and 4b). The 
pointcut specification in Figure 4 specifies two capsules on which 
the encryption aspect will be applied. 

 
Figure 4a: Encryption pointcut specification 

 
Figure 4b: Encryption advice specification 

The Aspect Manager sends the pointcut specification to the 
Pointcut Evaluator so that the latter can look for the set of 
connectors that correspond to the joinpoints specified by the 
pointcut. This is achieved using the distributed architecture meta-
model. The Pointcut Evaluator also queries the interface meta-
model to obtain the signatures of the joinpoints. Next, the Aspect 
Manager checks the availability of the specified set of aspect-
components in the Aspect Repository and finally passes all the 
relevant information (including connector IDs, signatures and 
aspect-component type IDs) to each concerned Advice Handler. 

Next, the Advice Handler obtains the relevant aspect-
components from a suitable Aspect Repository, instantiates these, 
and uses interceptor-connectors to insert them at the identified 
joinpoints. In case a default connector is currently in use at the 
joinpoint, the Advice Handler replaces this with a new 
interceptor-connector3.  

Subsequently, each time a joinpoint condition occurs, the 
corresponding advice is invoked by the interceptor-connector. 
Figure 5 illustrates a per-capsule instance of the group messaging 
example after the encryption aspect has been woven. 

 

 

 
                                                                    
3  To avoid inconsistencies, atomic replacement of the default connector to 

interceptor is performed. 

The whole process is summarised in Figure 6. The figure assumes 
that advice is placed in the same capsule as the associated 
joinpoint—i.e., it does not exploit the extended interceptor-
connector’s ability to invoke remote advice.   
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Figure 6: Steps involved in applying new advice 

4. EVALUATION 
To evaluate our proposal we first show how AO reduces the 
programmatic complexity seen by the developer. We then 
evaluate the overheads of the proposal. These are examined in 
terms of both set-up overhead (i.e., the time taken to dynamically 
weave a distributed advices) and execution overhead (i.e., the 
overhead in dispatching aspects when they are encountered at a 
joinpoint). For set-up overhead we examine the messaging 
overhead incurred in weaving the encryption aspect in the simple 
application scenario outlined above. Our benchmark tests are 
performed on a Pentium IV 3.4 GHZ PC with 1GB memory and 
running Windows and our AO support layer is implemented using 
a Java-based version of OpenCOM.  

4.1 Programmatic Complexity  
To evaluate the programmatic complexity of our AOP approach 
with respect to the complexity of the underlying reflective layer, 
we compare the number of lines of developer code required to 
specify the composition of encryption functionality in the 
application scenario of Section 3.3. We assume a configuration 
involving 2 capsules and in which the aspect weaving request is 
initiated from one of these (the one in which the Aspect Manager 
is also situated). In such a case, as illustrated in Figure 7, the 
application developer needs to use only 1 line of code.  

 
Figure 7: Deploying distributed advice 

Compared to reflective middleware call per capsule, the number 
of lines of code involved to perform such a reconfiguration is 14. 
The number of lines of code increases further if the default 
connector needs to be replaced by an interceptor-connector. 

4.2 Set-up Overhead  
In the following, we assume that all of the architectural entities at 
the top of Figure 6 are in separate capsules (with the exception of 
the distributed architecture and interface meta-models, and 
interceptor-connectors, which are present in all the capsules 
involved). We measure the number of inter-capsule messages 
involved in the same application set-up as that employed in 
Section 4.1. Given this set-up, 24 inter-capsule messages are 
involved. This is a significant number, but, crucially, the number 
increases only linearly for each additional application capsule 
involved (4 for each additional capsule). Therefore the design 



 

shows good scaling properties even with a maximally-distributed 
deployment of the AO support layer4.  

4.3 Execution Overhead  
We now analyse the execution overhead of our design in terms of 
the overheads attributable to invoking advice via our interceptor-
connectors. As a baseline, we measure the time taken to invoke an 
operation in a component C1 from another component C2 across a 
receptacle-interface connection using OpenCOM’s minimal 
‘default’ connector. The target operation body is empty and the 
operation signature takes no parameters. This baseline was 
measured as 797x10E-9 seconds per call.  

Next we measure a C1 → C2 call across an interceptor-
connector. The overhead is first measured with no advice 
installed; that is, the execution path is simply: C1 → interceptor-
connector → C2 → interceptor-connector → C1. The per-call 
overhead here is 817x10E-9 seconds. Thus the overhead incurred 
by using a minimally-configured interceptor-connector is a factor 
of 2.5%.  

Next we add a single ‘before’ advice to the above so that the 
execution path becomes C1 → interceptor-connector → advice 
body → interceptor-connector → C2 → interceptor-connector → 
C1. The advice has an empty body and takes and returns no 
parameters. The per-call overhead here is 834xE10-9 seconds. 
Thus the overhead incurred over the baseline is a still-low factor 
of 4.64%.  

Finally, we measure again the previous configuration but 
with varying numbers of advices installed and varying numbers of 
(int) parameters in the respective advice signatures. The results, 
shown in Figure 9, demonstrate that the system scales linearly 
with the numbers of advices and the number of arguments.  

Signatures (No of Parameters) [Time(microseconds)] 
Advices 

0 10 100 

0 0.817 0.975 1.203 

10 4.968 6.31 8.213 

100 50.84 63.087 82.084 

1000 508.433 631.083 821.992 

Figure 9: Performance results with advice 

A final point to note is that under normal circumstances the time 
needed to execute the actual code inside the body of an advice 
would dominate the overall computational effort, thereby 
rendering the overhead due to the interceptor-connector basically 
negligible.  

5. DISCUSSION AND RELATED WORK 

The essence of our approach is that it adds comprehensive AOP 
support as an independently-deployable service. This means that 
the AOP layer imposes no overhead when it not used, and can be 
dynamically deployed/undeployed where and when required. 

In addition, our AO support layer is built using the same 
programming language independent component-based principles 
as the underlying reflective middleware layer, and the overlying 

                                                                    
4  Note, however, that further, albeit linearly-scalable, messaging overhead is 

incurred by the underlying distributed architecture meta-model. This is difficult to 
quantify as it may involve different communication mechanisms depending on 
how it is configured. Note also that the distributed architecture meta-model is a 
generic service and may be used by a number of other sub-systems apart from the 
AO support layer. 

application. Key implications of this are that the AO support 
layer: 

• is naturally programming language independent (this is in 
conjunction with the XML-based pointcut language); 

• automatically benefits from generic services that come as part 
of the GridKit middleware – e.g.,  failure handling, 
coordination, remote deployment, etc. [11]; 

• itself can be advised in same way as the rest of the system.  
As illustrations of the third point, it is straightforward to 

apply aspect-based logging to our AO support layer, or to add 
transactional behaviour to serialise multiple weaving requests that 
impact common capsules. As another example, rather than relying 
on topology-change events from the distributed architecture meta-
model (see Section 3.2) we could weave a transaction aspect to 
avoid race conditions such as attempting to adapt a configuration 
that is already in flux. Depending on factors such as the scale and 
dynamicity of the environment, a range of alternative concurrency 
control mechanisms could be envisaged. 

Our other main contribution is the development of a fully 
distributed realisation of dynamic aspects. This is achieved by 
layering our AO provision on top of GridKit’s distributed 
architecture meta-model, and by providing a pointcut language 
that is inherently distributed in nature (i.e., it supports 
quantification over capsules). In addition, we support in a natural 
way the composition of advice that is remote from the advised 
joinpoint.  

We have also illustrated how our approach tends to 
maximise the respective benefits of reflective middleware and AO 
while minimising their drawbacks. In particular, we have 
demonstrated in Section 4.1 and 4.2 the significantly decreased 
complexity of deploying new functionality in a distributed 
environment as compared to the reflective middleware approach. 
Nevertheless, the lower-level reflective APIs are still available to 
the developer should they be required. Furthermore, the fact that 
both layers employ the same reflective meta-models means that 
conflicts between the two layers can be minimised. 

Turning now to related work, [10] contains general 
arguments for the benefits of combining reflection and AOP. With 
respect to this, our work can be seen as a case study or exemplar 
or evaluation of the more abstract perspective given in that paper. 

There are a number of systems that take a language-specific 
(usually Java-based), non-component-oriented, approach to AO-
based middleware. For example, AWED [2] is an aspect-oriented 
programming language that features explicit distribution. It is 
built on top of JAsCo [33], a system that provides dynamic 
aspects for Java. Aspects are represented as plain Java objects that 
can be dynamically deployed. Unlike our approach, AWED does 
not treat distribution with full orthogonality; distributed joinpoints 
are specified differently from intra-node joinpoints. ReflexD [32] 
also employs a Java-based approach, as does Modelware [34]. 
JBOSS AOP [5] and Spring AOP [15] are two commercial AOP 
platforms that have integrated the AOP approach to middleware. 
However, neither of the approaches provides dynamic distributed 
aspect composition.  

A number of other systems, like ours, take a component-
based approach to AO-based middleware. Fractal Aspect 

Components (FAC) [25], is an aspect-oriented extension of the 
Fractal Component Model [29]. However, FAC currently 
supports only local node reconfiguration as it is not layered over a 
distributed infrastructure. In addition, because FAC is based on 
Java and uses AOP-Alliance [1] interceptors, it employs an 
invasive style of aspect weaving, unlike our non-invasive 



 

approach. This adds greater expressive power but at the cost of 
programming language independence (and, arguably, excessive 
expressiveness). JAC [24], CAM/DAOP [26] and DyMac [19] are 
other component-based approaches that take a more principled 
approach to distribution. However, none of these systems 
straightforwardly supports distribution-transparent dynamic 
distributed (un)weaving.  Moreover, JAC does not offer remote 
advices, instead common advices are replicated across each host. 

One area in which a number of systems focus is distributed 
consistency, and ensuring consistency during distributed 
reconfiguration. For example, AWED provides a consistency 
protocol to ensure that whenever aspects are deployed on a host, 
the same aspects are also applied at the other involved hosts to 
preserve system-wide consistency. ReflexD is similar.  

CAM/DAOP also supports coordination. Although, this is 
currently fixed as a core part of the middleware, investigation on 
how to separate out the coordination aspect is underway. Our 
work is less developed in the coordination area, currently relying 
on the GridKit reconfiguration principle [11] but shows 
considerable potential because of the above-discussed fact that the 
AO support layer itself can be straightforwardly advised—in this 
case by a putative coordination aspect. Thus in our approach, 
coordination is potentially a configurable matter. 

6. CONCLUSION AND FUTURE WORK 

We have summarised the benefits of our approach in Section 5. 
Our AO support layer is implemented and we are currently testing 
it with a range of application scenarios.    

There are two main future research directions that we would 
like to pursue. First, as discussed above, we would like to 
experiment with different coordination styles for the AO support 
layer. A related issue is that of aspect conflicts, such that newly-
introduced aspect behaviour may conflict with other existing 
behaviour in the system and bring the system to an inconsistent 
state. A similar issue arises with respect to dependencies: a given 
aspect may require the presence of another aspect to be able to 
properly fulfill its role. Note, however, that this issue is relatively 
independent of the particularities of our design, and could benefit 
from approaches under investigation in other projects (e.g., see 
[14]). Second, we plan to use our AO reflective middleware to 
investigate the use of distributed AO-based adaptation in 
resource-scarce environments such as mobile ad-hoc networks 
and sensor networks. This will demand a notion of context-aware 
adaptation of aspects, such that aspects are applied according to 
the resources found in the distributed topology in which they are 
deployed.  
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