

Augmenting Reflective Middleware with an Aspect
Orientation Support Layer

Bholanathsingh Surajbali, Geoff Coulson, Phil Greenwood and Paul Grace

Computing Department,

Lancaster University

Lancaster, UK

{b.surajbali, geoff, greenwop, p.grace} @comp.lancs.ac.uk

ABSTRACT

Reflective middleware provides an effective way to support
adaptation in distributed systems. However, as distributed systems
become increasingly complex, certain drawbacks of the reflective
middleware approach are becoming evident. In particular,
reflective APIs are found to impose a steep learning curve, and to
place too much expressive power in the hands of developers.
Recently, researchers in the field of Aspect-Oriented
Programming (AOP) have argued that ‘dynamic aspects’ show
promise in alleviating these drawbacks. In this paper, we report on
work that attempts to combine the reflective middleware and AOP
approaches. We build an AOP support layer on top of an
underlying reflective middleware substrate in such a way that it
can be dynamically deployed/undeployed where and when
required, and imposes no overhead when it is not used. Our AOP
approach involves aspects that can be dynamically (un)weaved
across a distributed system on the basis of pointcut expressions
that are inherently distributed in nature, and it supports the
composition of advice that is remote from the advised joinpoint.
An overall goal of the work is to effectively combine reflective
middleware and AOP in a way that maximises the benefits and
minimises the drawbacks of each.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures –
Patterns (Reflection).

General Terms
Design.

Keywords

Reflective Middleware, Dynamic Adaptation, Complexity,
Components, Aspect-Oriented Programming.

1. INTRODUCTION
The environments in which distributed applications must operate
are becoming increasingly heterogeneous and dynamic, requiring
the supporting middleware to adapt its behaviour dynamically to
maintain required levels of service to applications [12].

Significant research work has focused on how to make
middleware more adaptive; and a commonly-adopted approach to
this is the reflective middleware approach [18, 27].

Reflective middleware solutions follow a now well-
established pattern that typically combines components [31] and
reflection [28]. A component-based approach offers modularity,
late composition, and good reusability. Reflection then provides
the capability for middleware to reason about itself and to act on
this reasoning in service of adaptation [23, 28]. To do so,
reflective middleware maintains a representation of itself through
meta-objects (meta-level) that are causally connected to the
underlying system that they describe (base level). Changes made
at the meta-level are reflected in the underlying base-level, and
vice versa.

However, the reflective middleware approach has two main
drawbacks [30]. First, reflective APIs are typically complex and
hence impose a steep learning curve on developers [4, 6]. Second,
the introduction of unconstrained openness places too much
expressive power in the hands of developers. To address these
drawbacks, the application of Aspect-Oriented Programming
(AOP) techniques to middleware has been proposed [20]. The
AOP1 approach [8, 17] differs from the reflection approach in
managing complexity in that it separates cross-cutting concerns
(such as distribution, security, persistence etc.), and inherently
constrains expressive power by adopting a declarative (as opposed
to procedural) emphasis. However, AOP middleware also has its
drawbacks. In particular, its declarative approach can restrict the
scope of adaptation to relative coarse-grained dimensions, thus
losing expressive power. Furthermore, few if any current
platforms support the coordinated runtime composition of aspects
in a distributed system in a distribution transparent manner.

In this paper, we report on work that combines the reflective
and AOP approaches to adaptive middleware in a way that
attempts to maximise the benefits and minimise the drawbacks of
each. More specifically, our approach is to build an AOP support

layer on top of an underlying component-based reflective
middleware substrate. This enables us to hide the complexity of
the underlying reflection layer from programmers. Our AOP
support layer can be dynamically deployed when required, and
undeployed when further adaptation is not required in the
foreseeable future (thus avoiding any overhead when not in use).
Another key benefit of our approach accrues from the uniform use
of components throughout the architecture (the AOP support layer
is constructed from components like the rest of the system). This

1 In this paper we assume that the reader is already familiar with basic AOP concepts

such as aspects, advice, weaving, joinpoints and pointcuts. Please refer to the
literature for more information (e.g. [8, 16]).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
XXXXX.
Copyright 2007 ACM X-XXXXX-XXX-X/XX/XXXX…$5.00.

means that we can advise not only distributed applications, but
also the underlying middleware services and the AOP support
layer itself, which enables considerable flexibility. A final key
contribution of our work is the provision of support for distributed
dynamic aspects. This means that aspects can be straightforwardly
dynamically deployed across a distributed system on the basis of
pointcut expressions that are inherently distributed in nature. In
addition, we support the composition of advice that is remote
from the advised joinpoint.

The rest of this paper is organised as follows. Section 2
provides necessary background on the OpenCOM and GridKit
technologies that form the basis of our underlying reflective
middleware layer; and section 3 introduces our AOP support
layer. Then, section 4 provides an evaluation of our approach, and
section 5 discusses open issues and related work. Finally, we offer
our conclusions in section 6.

2. BACKGROUND
In this section we provide necessary background on the
OpenCOM component model which forms the basis of our work,
and on the GridKit reflective middleware platform which is built
using OpenCOM. More detail is available in the literature [7, 11].

2.1 OpenCOM
OpenCOM is a lightweight component-based programming
technology that is programming-language independent, intended
to support the development of low-level systems software (e.g.,
middleware) as well as applications, and to support runtime
configuration and reconfiguration. It employs a minimal runtime
kernel that supports the loading and unloading of software
components. The elements of the OpenCOM programming model
are as follows:

• Capsules are non-distributed containing entities for
components that provide a runtime API for component life-
cycle management. In particular, the API allows components
to be deployed, instantiated, and connected together.

• Components are language-independent encapsulated units of
functionality that are deployed into capsules during run-time.
They interact with each other through interfaces and
receptacles. Components may support multiple interfaces
and receptacles. We generally use the term ‘component’ to
denote an instance of a component as opposed to a type.

• Interfaces are units of service provision offered by
components. To enable programming language
independence, they are defined using OMG IDL [16].

• Receptacles are ‘required interfaces’ that make explicit the
dependencies of a component on other components.
Receptacles enable a third-party mode of component
composition.

• Connectors are components that reify the connection of a
receptacle and a (type compatible) interface. A receptacle
can be connected to only one interface; but an interface may
be connected to multiple receptacles. As they are
components, connectors may themselves support receptacles
and interfaces, thus enabling reflective control over
component compositions.

OpenCOM also employs an extensible set of so-called reflective

meta-models that enables inspection, adaptation and extension of
the component composition within a capsule (e.g., of a component
composition that represents a middleware platform instance).
These can be optionally (and dynamically) deployed whenever

required, and undeployed when no longer required. We rely
mainly on the following three meta-models:
� The interface meta-model supports dynamic discovery of the

interfaces supported by a component, and also supports
dynamic invocation of operations defined on these interfaces
without the necessity for a connector to be in place.

� The architecture meta-model represents the current
component-compositional topology within a capsule as a
‘component graph’ that supports operations to insert, update
and remove meta-data within the graph, and to alter the
composition by manipulating the graph topology.

� The interception meta-model supports behavioural reflection
[3] by allowing the dynamic insertion of new behaviour (i.e.,
‘interceptors’) at a connector. This relies on a special type of
connector called an interceptor-connector that supports an
interface with operations to manage pluggable interceptors
(which are themselves implemented as components).

Figure 1 illustrates the main OpenCOM programming model
concepts and the reflective meta-models.

Figure 1: OpenCOM and its reflective meta-models

2.2 The GridKit Middleware Platform
GridKit is a highly configurable reflective middleware platform
that is built as a composed set of reconfigurable component
frameworks. These are used to extend the basic OpenCOM
programming model to support distribution. The distribution
machinery is itself built as a component framework, with the
underlying networking layer being encapsulated within one or
more components. The GridKit approach thus separates the roles
of component composition and distribution, OpenCOM providing
the former in an exclusively intra-capsule context, while GridKit’s
frameworks provide inter-capsule communication.

GridKit also provides an additional reflective meta-model to
the three fundamental ones described above. This is a distributed
architecture meta-model [11] that extends the same basic services
offered by the per-capsule architecture meta-model to the multi-
capsule, distributed, case. Each per-capsule instance of the
distributed architecture meta-model maintains a meta-data view of
the rest of the system. Consistency between the different instances
is maintained using a range of pluggable protocols [9]. More
detail on GridKit is available in the literature [13].

3. The AO Support Layer

3.1 Approach and Design Principles
Our basic approach is to structure the AO support layer as a set of
components and to layer these over the underlying reflective layer
provided by OpenCOM. And where distribution is involved, the
AO services are layered over the GridKit frameworks. Before
describing the set of components that comprise our AO support
layer, we first outline the principles we have applied in our
design, and discuss how these map to underlying OpenCOM
concepts:

Aspects. To foster conceptual minimality, we realise aspects as
regular OpenCOM components: components and aspects are
distinguished only by the role they play, not by any fundamental
distinction. However, for clarity, we often refer to a component
playing an ‘aspect’ role as an aspect-component. It is possible to
employ ‘legacy’ components as aspect-components in cases
where the ‘non-generic’ advice convention is used (see below).
Aspect composition. Aspects are composed with the underlying
component composition using the OpenCOM connector concept
described above (see section 2.1). In more detail, we use the
interceptor-connector employed by the interception meta-model as
the basis of aspect composition. A key implication of this is that
aspect composition is non-invasive – i.e., the encapsulation of an
advised component is maintained: it is only possible to advise
components at the level of their externally-facing connections.
Advice. As aspects are simply components, advice is realised as
operations supported by those components. By using different
interceptor-connector variants we are able to support two styles of
advice. In the first, ‘non-generic’, style the advice signature is
identical to that of the receptacle and interface being connected by
the interceptor-connector. In the second style, a standard Invoke()
signature is used and arguments are packaged in a generic
structure. The first style has less performance overhead, but is less
generic than the second style.
Joinpoint model. Because of the simple non-invasive nature of
aspect composition, the joinpoint model is correspondingly
straightforward. Firstly, we support either call or execution
joinpoints; this distinction is meaningful where multiple
receptacles are connected to a single interface – in such a case a
call joinpoint picks out the individual receptacles, whereas an
execution joinpoint picks out the single interface (in actuality,
advices is to be attached to connectors, not receptacles or
interfaces; therefore, advising an execution joinpoint where there
are multiple connectors attached to an interface means that the
advice is attached to all of the connectors concerned). Secondly,
three types of advice execution are supported: ‘before’, ‘after’ and
‘around’ the call or execution of a joinpoint. Thirdly, when an
aspect is to be composed with an underlying component
composition, the following types of advice scope are supported:

• Per-instance – this associates a single aspect-component with
each instance of the receptacle or interface specified in a
pointcut (this is the default advice scope).

• Per-type – this associates a single aspect-component with all
instances of the specified receptacle or interface type.

• Per-capsule – this associates a single aspect-component with
all specified joinpoints within a given capsule (akin to a
singleton class per capsule).

Pointcuts. We employ a proprietary programming-language
independent pointcut language2 which is based on work carried
out in a collaborative research project [21]. The language is XML
based and supports quantification over operation signatures,
interface and receptacle signatures, component types and
instances, and capsules. In addition, it can quantify over dynamic
context properties associated with any of the above. The inclusion
of capsules in the list of quantifiable entities means that
distribution is inherently supported in a network-independent
manner (this is sometimes referred to as ‘remote pointcuts’ [22]).
Pointcuts are used only to identify a set of target joinpoints; to aid
reusability, the aspects/advice to be associated with these

2 http://www.comp.lancs.ac.uk/~surajbal/pointcut.html

joinpoints is specified independently using a separate XML-based
language.
Distributed AO and Coordination. With the aid of the
inherently distribution-aware pointcut language discussed above,
distribution is built directly on top of the GridKit distributed
architecture meta-model discussed above. Therefore distribution
is an integral part of our design. Moreover, a coordination service
is used to provide distributed weaving and unweaving of aspects
similar to the GridKit [11].

3.2 Architectural Elements
We now describe the architectural elements that comprise our AO
support layer (these are also illustrated in Figure 2):
Aspect Manager. The Aspect Manager is the top-level
architectural entity and is responsible for dynamically loading,
instantiating and removing aspects. It accepts pointcut
specifications and associated advice specifications, and interacts
with the Pointcut Evaluator and Advice Handler to get the job
done. It also caches joinpoint information it receives from the
Pointcut Evaluator in case similar pointcuts are submitted in the
future. To avoid inconsistency, the Aspect Manager listens to
changes in the distributed topology that are notified by the
distributed architecture meta-model.
Pointcut Evaluator. The Pointcut Evaluator analyses pointcut
specifications forwarded to it by the Aspect Manager, and to looks
for matching joinpoint(s) in the specified capsules. To do so, it
employs the distributed architecture and the interface meta-
models to locate the appropriate joinpoints. Once the list of
joinpoints is found it returns these to the Aspect Manager.
Advice Handler. There is an instance of the Advice Handler in
each capsule in the distributed system. Its role is to act on
instructions from the Aspect Manager to weave advice (using
interceptor-connectors) at joinpoints in its capsule. The Advice
Handler may additionally need to obtain the specified aspect-
components from the Advice Repository (see below).
Aspect Repository. The Aspect Repository (or repositories; the
functionality may be distributed) holds a set of instantiable aspect-
components.
Interceptor-connector. The basic OpenCOM interceptor-
connector mentioned in section 2.1 has been extended so that it
can use GridKit endpoints as well as local receptacle and interface
pointers. This enables the interceptor-connector to support the
invocation of aspect-component instances that are resident in
remote capsules.

Figure 2: The AO support layer

Figure 5: Inserted encryption aspect

3.3 Detailed Operation
We now illustrate the operation of the AO support layer. To do so
we first introduce a simple ‘group messaging’ application scenario
in which each of the involved nodes (capsules) has Messaging
Service and Communication Service components as illustrated in
Figure 3.

Figure 3: Group messaging scenario

If a message sender needs to encrypt messages before sending
them to other nodes, then an encryption aspect is placed between
the Messaging and Communication services. To specify such an
adaptation, the developer passes the following pointcut and advice
specifications to the Advice Manager (figures 4a and 4b). The
pointcut specification in Figure 4 specifies two capsules on which
the encryption aspect will be applied.

Figure 4a: Encryption pointcut specification

Figure 4b: Encryption advice specification

The Aspect Manager sends the pointcut specification to the
Pointcut Evaluator so that the latter can look for the set of
connectors that correspond to the joinpoints specified by the
pointcut. This is achieved using the distributed architecture meta-
model. The Pointcut Evaluator also queries the interface meta-
model to obtain the signatures of the joinpoints. Next, the Aspect
Manager checks the availability of the specified set of aspect-
components in the Aspect Repository and finally passes all the
relevant information (including connector IDs, signatures and
aspect-component type IDs) to each concerned Advice Handler.

Next, the Advice Handler obtains the relevant aspect-
components from a suitable Aspect Repository, instantiates these,
and uses interceptor-connectors to insert them at the identified
joinpoints. In case a default connector is currently in use at the
joinpoint, the Advice Handler replaces this with a new
interceptor-connector3.

Subsequently, each time a joinpoint condition occurs, the
corresponding advice is invoked by the interceptor-connector.
Figure 5 illustrates a per-capsule instance of the group messaging
example after the encryption aspect has been woven.

3 To avoid inconsistencies, atomic replacement of the default connector to

interceptor is performed.

The whole process is summarised in Figure 6. The figure assumes
that advice is placed in the same capsule as the associated
joinpoint—i.e., it does not exploit the extended interceptor-
connector’s ability to invoke remote advice.

J
o
in
p
o
in
t

L
o
o
k
u
p

A
s
p
e
c
t

w
e
a
v
in
g

A
s
p
e
c
t

a
v
a
il
a
b
il
it
y

Figure 6: Steps involved in applying new advice

4. EVALUATION
To evaluate our proposal we first show how AO reduces the
programmatic complexity seen by the developer. We then
evaluate the overheads of the proposal. These are examined in
terms of both set-up overhead (i.e., the time taken to dynamically
weave a distributed advices) and execution overhead (i.e., the
overhead in dispatching aspects when they are encountered at a
joinpoint). For set-up overhead we examine the messaging
overhead incurred in weaving the encryption aspect in the simple
application scenario outlined above. Our benchmark tests are
performed on a Pentium IV 3.4 GHZ PC with 1GB memory and
running Windows and our AO support layer is implemented using
a Java-based version of OpenCOM.

4.1 Programmatic Complexity
To evaluate the programmatic complexity of our AOP approach
with respect to the complexity of the underlying reflective layer,
we compare the number of lines of developer code required to
specify the composition of encryption functionality in the
application scenario of Section 3.3. We assume a configuration
involving 2 capsules and in which the aspect weaving request is
initiated from one of these (the one in which the Aspect Manager
is also situated). In such a case, as illustrated in Figure 7, the
application developer needs to use only 1 line of code.

Figure 7: Deploying distributed advice

Compared to reflective middleware call per capsule, the number
of lines of code involved to perform such a reconfiguration is 14.
The number of lines of code increases further if the default
connector needs to be replaced by an interceptor-connector.

4.2 Set-up Overhead
In the following, we assume that all of the architectural entities at
the top of Figure 6 are in separate capsules (with the exception of
the distributed architecture and interface meta-models, and
interceptor-connectors, which are present in all the capsules
involved). We measure the number of inter-capsule messages
involved in the same application set-up as that employed in
Section 4.1. Given this set-up, 24 inter-capsule messages are
involved. This is a significant number, but, crucially, the number
increases only linearly for each additional application capsule
involved (4 for each additional capsule). Therefore the design

shows good scaling properties even with a maximally-distributed
deployment of the AO support layer4.

4.3 Execution Overhead
We now analyse the execution overhead of our design in terms of
the overheads attributable to invoking advice via our interceptor-
connectors. As a baseline, we measure the time taken to invoke an
operation in a component C1 from another component C2 across a
receptacle-interface connection using OpenCOM’s minimal
‘default’ connector. The target operation body is empty and the
operation signature takes no parameters. This baseline was
measured as 797x10E-9 seconds per call.

Next we measure a C1 → C2 call across an interceptor-
connector. The overhead is first measured with no advice
installed; that is, the execution path is simply: C1 → interceptor-
connector → C2 → interceptor-connector → C1. The per-call
overhead here is 817x10E-9 seconds. Thus the overhead incurred
by using a minimally-configured interceptor-connector is a factor
of 2.5%.

Next we add a single ‘before’ advice to the above so that the
execution path becomes C1 → interceptor-connector → advice
body → interceptor-connector → C2 → interceptor-connector →
C1. The advice has an empty body and takes and returns no
parameters. The per-call overhead here is 834xE10-9 seconds.
Thus the overhead incurred over the baseline is a still-low factor
of 4.64%.

Finally, we measure again the previous configuration but
with varying numbers of advices installed and varying numbers of
(int) parameters in the respective advice signatures. The results,
shown in Figure 9, demonstrate that the system scales linearly
with the numbers of advices and the number of arguments.

Signatures (No of Parameters) [Time(microseconds)]
Advices

0 10 100

0 0.817 0.975 1.203

10 4.968 6.31 8.213

100 50.84 63.087 82.084

1000 508.433 631.083 821.992

Figure 9: Performance results with advice

A final point to note is that under normal circumstances the time
needed to execute the actual code inside the body of an advice
would dominate the overall computational effort, thereby
rendering the overhead due to the interceptor-connector basically
negligible.

5. DISCUSSION AND RELATED WORK

The essence of our approach is that it adds comprehensive AOP
support as an independently-deployable service. This means that
the AOP layer imposes no overhead when it not used, and can be
dynamically deployed/undeployed where and when required.

In addition, our AO support layer is built using the same
programming language independent component-based principles
as the underlying reflective middleware layer, and the overlying

4 Note, however, that further, albeit linearly-scalable, messaging overhead is

incurred by the underlying distributed architecture meta-model. This is difficult to
quantify as it may involve different communication mechanisms depending on
how it is configured. Note also that the distributed architecture meta-model is a
generic service and may be used by a number of other sub-systems apart from the
AO support layer.

application. Key implications of this are that the AO support
layer:

• is naturally programming language independent (this is in
conjunction with the XML-based pointcut language);

• automatically benefits from generic services that come as part
of the GridKit middleware – e.g., failure handling,
coordination, remote deployment, etc. [11];

• itself can be advised in same way as the rest of the system.
As illustrations of the third point, it is straightforward to

apply aspect-based logging to our AO support layer, or to add
transactional behaviour to serialise multiple weaving requests that
impact common capsules. As another example, rather than relying
on topology-change events from the distributed architecture meta-
model (see Section 3.2) we could weave a transaction aspect to
avoid race conditions such as attempting to adapt a configuration
that is already in flux. Depending on factors such as the scale and
dynamicity of the environment, a range of alternative concurrency
control mechanisms could be envisaged.

Our other main contribution is the development of a fully
distributed realisation of dynamic aspects. This is achieved by
layering our AO provision on top of GridKit’s distributed
architecture meta-model, and by providing a pointcut language
that is inherently distributed in nature (i.e., it supports
quantification over capsules). In addition, we support in a natural
way the composition of advice that is remote from the advised
joinpoint.

We have also illustrated how our approach tends to
maximise the respective benefits of reflective middleware and AO
while minimising their drawbacks. In particular, we have
demonstrated in Section 4.1 and 4.2 the significantly decreased
complexity of deploying new functionality in a distributed
environment as compared to the reflective middleware approach.
Nevertheless, the lower-level reflective APIs are still available to
the developer should they be required. Furthermore, the fact that
both layers employ the same reflective meta-models means that
conflicts between the two layers can be minimised.

Turning now to related work, [10] contains general
arguments for the benefits of combining reflection and AOP. With
respect to this, our work can be seen as a case study or exemplar
or evaluation of the more abstract perspective given in that paper.

There are a number of systems that take a language-specific
(usually Java-based), non-component-oriented, approach to AO-
based middleware. For example, AWED [2] is an aspect-oriented
programming language that features explicit distribution. It is
built on top of JAsCo [33], a system that provides dynamic
aspects for Java. Aspects are represented as plain Java objects that
can be dynamically deployed. Unlike our approach, AWED does
not treat distribution with full orthogonality; distributed joinpoints
are specified differently from intra-node joinpoints. ReflexD [32]
also employs a Java-based approach, as does Modelware [34].
JBOSS AOP [5] and Spring AOP [15] are two commercial AOP
platforms that have integrated the AOP approach to middleware.
However, neither of the approaches provides dynamic distributed
aspect composition.

A number of other systems, like ours, take a component-
based approach to AO-based middleware. Fractal Aspect

Components (FAC) [25], is an aspect-oriented extension of the
Fractal Component Model [29]. However, FAC currently
supports only local node reconfiguration as it is not layered over a
distributed infrastructure. In addition, because FAC is based on
Java and uses AOP-Alliance [1] interceptors, it employs an
invasive style of aspect weaving, unlike our non-invasive

approach. This adds greater expressive power but at the cost of
programming language independence (and, arguably, excessive
expressiveness). JAC [24], CAM/DAOP [26] and DyMac [19] are
other component-based approaches that take a more principled
approach to distribution. However, none of these systems
straightforwardly supports distribution-transparent dynamic
distributed (un)weaving. Moreover, JAC does not offer remote
advices, instead common advices are replicated across each host.

One area in which a number of systems focus is distributed
consistency, and ensuring consistency during distributed
reconfiguration. For example, AWED provides a consistency
protocol to ensure that whenever aspects are deployed on a host,
the same aspects are also applied at the other involved hosts to
preserve system-wide consistency. ReflexD is similar.

CAM/DAOP also supports coordination. Although, this is
currently fixed as a core part of the middleware, investigation on
how to separate out the coordination aspect is underway. Our
work is less developed in the coordination area, currently relying
on the GridKit reconfiguration principle [11] but shows
considerable potential because of the above-discussed fact that the
AO support layer itself can be straightforwardly advised—in this
case by a putative coordination aspect. Thus in our approach,
coordination is potentially a configurable matter.

6. CONCLUSION AND FUTURE WORK

We have summarised the benefits of our approach in Section 5.
Our AO support layer is implemented and we are currently testing
it with a range of application scenarios.

There are two main future research directions that we would
like to pursue. First, as discussed above, we would like to
experiment with different coordination styles for the AO support
layer. A related issue is that of aspect conflicts, such that newly-
introduced aspect behaviour may conflict with other existing
behaviour in the system and bring the system to an inconsistent
state. A similar issue arises with respect to dependencies: a given
aspect may require the presence of another aspect to be able to
properly fulfill its role. Note, however, that this issue is relatively
independent of the particularities of our design, and could benefit
from approaches under investigation in other projects (e.g., see
[14]). Second, we plan to use our AO reflective middleware to
investigate the use of distributed AO-based adaptation in
resource-scarce environments such as mobile ad-hoc networks
and sensor networks. This will demand a notion of context-aware
adaptation of aspects, such that aspects are applied according to
the resources found in the distributed topology in which they are
deployed.

7. REFERENCES
[1] AOP-Alliance, http://sourceforge.net/projects/aopalliance,07.
[2] Benavides, L., Sudholt, M., et al., “Explicitly distributed

AOP using AWED”, 5thInt. ACM Conf. AOSD, March 2006.
[3] Blair, G., et al., “The Design and Implementation of

OpenORB v2”, IEEE DS Online Reflective Middleware, ‘01.
[4] Bouraqadi, N. and Ledoux T., Aspect-Oriented Software

Development, Chapter 12 -Supporting AOP using Reflection,

pages 261-282. Addison-Wesley, 2005.
[5] Burke, B., “JBoss AOP Tutorial”, 3rd International

Conference on AOSD, Lancaster UK, 2004.
[6] Colyer, A., et al., “Managing Complexity in Middleware”,

Patterns for Infrastructure Software, AOSD, 2004.
[7] Coulson, G., Blair, G, Grace et al., “A Component Model for

Building Systems Software”, Proc. IASTED SEA, USA, ‘04.

[8] Filman, R., Elrad, T., Clarke, S., and Aksit, M., Aspect

Oriented Software Development, Addison Wesley, 2004.
[9] Ganesh et al., “SCAMP: Peer-to-peer lightweight

membership service for large-scale group communication”.
Workshop on Networked Group Communication, UK, 2001.

[10] Grace, P., et al., “The Case for Aspect-Oriented Reflective
Middleware”, In Proc. of the 6th International Workshop on

Adaptive and Reflective Middleware, Nov 2007.
[11] Grace, P, Coulson, et al., “A Distributed Architecture Meta

Model for Self-Managed Middleware”, ARM 2006.
[12] Grace, P., Blair, G., “Reflective Middleware, In Handbook of

Mobile Middleware”, CRC Press, 2006.
[13] Grace, P., et al, “GridKit: Pluggable Overlay Networks for

Grid Computing”,.In Proceedings of DOA, October 2004.
[14] Greenwood, P., et al., “Interactions in AO Middleware”,

Proc. Workshop on ADI, ECOOP 2007.
[15] Harrop, P., Colyer, A., “AOP in Spring”, AOSD 2005.
[16] “IDL to Java Language Mapping Specification,” The Object

Management Group, www.omg.org, 2007.
[17] Kiczales, G., Lamping, J., et al., “Aspect Oriented

Programming”, Proceedings of ECOOP, 1997.
[18] Kon, F., Costa, et al, “The Case for Reflective Middleware:

Building middleware that is flexible, reconfigurable, and yet
simple to use”, CACM Vol 45, No 6, 2002.

[19] Lagaisse, B. and Joosen, W., “True and Transparent
Distributed Composition of Aspect-Component”,
Middleware Conference, 2006.

[20] Loughran, L., et al, “Survey of Aspect-Oriented

Middleware”, AOSD-Europe Deliverable D8, June 2005.
[21] Loughran, N., et al “Requirements and Definition of AO

Middleware”,AOSD-Europe, Project Deliverable, Aug 2005.
[22] Nishizawa, M., et al., “Remote Pointcut A Language

Construct for Distributed AOP”, AOSD Conference, 2004.
[23] Maes P., “Concepts and Experiments in Computational

Reflection”, Proceedings of OOPSLA ACM Press, 1987.
[24] Pawlak, R., Seinturier, L., “JAC: A Flexible Solution for

AOP in Java”. In Proc. Reflection 2001.
[25] Pessemier, N., Seinturier, et al., “Component-based and

Aspect-oriented Systems”, Conf. Software Composition, ‘06.
[26] Pinto, M., et al., “A Component And Aspect based Dynamic

Platform”. The Computer Journal, 2005.
[27] Sadjadi, M. and McKinley, P.K, “A survey of adaptive

middleware”. Technical Report MSU-CSE-03-35, 2003.
[28] Smith, B., “Reflection and Semantics in a Procedural

Programming Language”, PhD thesis, MIT, January 1982.
[29] Stefani, J.,et al., “Fractal Component Tutorial” ECOOP, ‘06.
[30] Sullivan, G., “Aspect-oriented programming using reflection

and meta-object protocols”. Comm. ACM Vol. 44, 2001.
[31] Szyperski, C., “Component Software: Beyond Object-

Oriented Programming”. Addison-Wesley, 1999.
[32] Tanter, E., “From Metaobject Protocols to Versatile Kernels

for Aspect-Oriented Programming”, PhD Thesis - University
of Nantes, November 2004.

[33] Vanderperren et al., “A visual component composition
environment with advanced aspect separation features”,
Conference on FASE Poland, 2003.

[34] Zhang, C., et al., “Generic Middleware Substrate through
Modelware”. 6th Middleware Conference, France 2005.

