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COMPLEMENTS OF INTERVALS

AND PREFRATTINI SUBALGEBRAS

OF SOLVABLE LIE ALGEBRAS

DAVID A. TOWERS

(Communicated by Kailash C. Misra)

Abstract. In this paper we study a Lie-theoretic analogue of a generalisation
of the prefrattini subgroups introduced by W. Gaschütz. The approach follows
that of P. Hauck and H. Kurzweil for groups by first considering complements
in subalgebra intervals. Conjugacy of these subalgebras is established for a
large class of solvable Lie algebras.

1. Complements of subalgebra intervals

Throughout, L will denote a finite-dimensional solvable Lie algebra over a field
F . For a subalgebra U of L we denote by [U : L] the set of all subalgebras S of
L with U ⊆ S ⊆ L. We say that [U : L] is complemented if, for any S ∈ [U : L],
there is a T ∈ [U : L] such that S ∩ T = U and 〈S, T 〉 = L, where 〈S, T 〉 denotes
the subalgebra of L generated by S and T . Our objective is to study the set

Ω(U,L) = {S ∈ [U : L] : [S : L] is complemented},
in particular, to show that for a large class of solvable Lie algebras L, the minimal
elements of this set, Ω(U,L)min, are conjugate in L. The development initially
follows closely that of [3], but later the theory diverges from that for groups. For
example, when L2 is nilpotent, Ω(U,L)min contains just one element. When L2 is
not nilpotent Ω(U,L)min can contain more than one element but, unlike the group-
theoretic case, these elements may not be conjugate. In the second section these
ideas are used to introduce the concept of prefrattini subalgebras of L; these were
employed in [5] to study complemented solvable Lie algebras.

We denote by [U : L]max the set of maximal subalgebras in [U : L], that is, the
set of maximal subalgebras of L containing U . If L = A + B where A and B are
subalgebras of L and A ∩B = 0, we will write L = A⊕B.

Lemma 1.1. If S ∈ Ω(U,L), S �= L, then S =
⋂
{M : M ∈ [S : L]max}.

Proof. Put T =
⋂
{M : M ∈ [S : L]max}. Then [S : L] is complemented, since

S ∈ Ω(U,L), and so T has a complement C in [S : L]. If C �= L, then C ⊆ M
for some M ∈ [S : L]max. But then 〈T,C〉 ⊆ M , contradicting the fact that C is
a complement of T in [S : L]. Hence C = L and S = T ∩ C = T ∩ L = T , as
required. �
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The Frattini subalgebra of L, φ(L), is the intersection of the maximal subalgebras
of L. When L is solvable this is always an ideal of L, by [1, Lemma 3.4]. Extending
this notion slightly we put φ(S,L) =

⋂
{M : M ∈ [S : L]max}; clearly, φ(0, L) =

φ(L). The above lemma shows that φ(U,L) ⊆ S for all S ∈ Ω(U,L).

Lemma 1.2. If I is an ideal of L and S ∈ Ω(U,L), then S + I ∈ Ω(U,L).

Proof. Let B ∈ [S + I : L] ⊆ [S : L]. Since S ∈ Ω(U,L), B has a complement D in
[S : L]; that is, B ∩D = S and 〈B,D〉 = L. Put C = D+ I. Then 〈B,C〉 = L and
B ∩ C = B ∩ (D + I) = B ∩ D + I = S + I, whence C is a complement for B in
[S + I : L] and S + I ∈ Ω(U,L). �
Lemma 1.3. Let A be a minimal ideal of L and let M be a complement of A
in L containing U . Then Ω(U,M) = {S ∈ Ω(U,L) : S ⊆ M}. In particular
Ω(U,M)min = {S ∈ Ω(U,L)min : S ⊆ M}.
Proof. Note that since L is solvable, M is a maximal subalgebra of L and L =
A ⊕ M . Suppose first that S ∈ Ω(U,L) with S ⊆ M . Then S + A ∈ Ω(U,L) by
Lemma 1.2. The interval [S : M ] is lattice isomorphic to [S + I : L] and so is
complemented. Hence S ∈ Ω(U,M).

Conversely, let S ∈ Ω(U,M). Then [S : M ] is complemented. We need to show
that S ∈ Ω(U,L), that is, that [S : L] is complemented. Let B ∈ [S : L]. Then
B ∩M ∈ [S : M ], so there is a subalgebra D ∈ [S : M ] such that 〈B ∩M,D〉 = M
and B ∩D = B ∩M ∩D = S.

If B �⊆ M , then M is a proper subalgebra of 〈B,D〉. But M is a maximal
subalgebra of L, and so 〈B,D〉 = L and D is a complement of B in [S : L]. Hence
[S : L] is complemented.

If B ⊆ M , put C = D +A. Then

L = A⊕M ⊆ 〈B,A〉+ 〈B,D〉 ⊆ 〈B,D + A〉 = 〈B,C〉,
so 〈B,D +A〉 = L. Also

B ∩ C = B ∩ (D +A) = B ∩M ∩ (D +A) = B ∩ (D +M ∩ A) = B ∩D = S,

yielding that C is a complement of B in [S : L] and [S : L] is complemented. �
Lemma 1.4. Let A be a minimal ideal of L and let S ∈ Ω(U,L)min with A �⊆ S.
Then there is an M ∈ [S : L]max such that A �⊆ M .

Proof. This follows easily from Lemma 1.1. �
Lemma 1.5. Let A be a minimal ideal of L. Then the following are equivalent:

(i) A �⊆ S for some S ∈ Ω(U,L)min;
(ii) A �⊆ M for some M ∈ [U : L]max; and
(iii) for every S ∈ Ω(U,L)min there is a complement of A in L containing S.

Proof. (i) ⇒ (ii): This follows from Lemma 1.4.
(ii) ⇒ (iii): Suppose that A �⊆ M for some M ∈ [U : L]max. Then L = A⊕M .

Let S ∈ Ω(U,L)min.
Suppose first that A ⊆ S. Then S = A⊕M∩S and M∩S ∼= S/A, so the interval

[S : L] is lattice isomorphic to [M ∩ S : M ]. It follows that M ∩ S ∈ Ω(U,M). But
Lemma 1.3 now gives that M ∩ S ∈ Ω(U,L), contradicting the minimality of S.

Hence A �⊆ S and Lemma 1.4 gives a complement of A containing S.
(iii) ⇒ (i): This is trivial. �
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COMPLEMENTS OF INTERVALS AND PREFRATTINI SUBALGEBRAS 1895

Lemma 1.6. If A is an ideal of L and S ∈ Ω(U,L)min, then

S +A ∈ Ω(U +A,L)min.

Proof. It suffices to show that (S +A)/A ∈ Ω((U +A)/A,L/A)min and so we may
suppose that A is a minimal ideal of L. The result is clear if A ⊆ S, since then
U +A ⊆ S. So suppose that A �⊆ S.

Then there is a complement M of A in L containing S, by Lemma 1.5, and
L = A ⊕M . Moreover, S + A ∈ Ω(U + A,L). Choose C ∈ Ω(U + A,L)min such
that C ⊆ S+A. Then U ⊆ M ∩C ⊆ S ⊆ M and the interval [M ∩C : M ] is lattice
isomorphic to [C : L]. It follows that M ∩ C ∈ Ω(U,M) and so M ∩ C ∈ Ω(U,L),
by Lemma 1.3. But S ∈ Ω(U,L)min, which yields that M ∩ C = S; that is,
C = S +A. �

At this point the theory starts to diverge from that for groups. We say that L
is completely solvable if L2 is nilpotent. For these algebras Ω(U,L)min takes on a
particularly simple form.

Theorem 1.7. Let L be completely solvable and let U be a subalgebra of L. Then
Ω(U,L)min = {φ(U,L)}. In particular, if U = 0, then Ω(U,L)min = {φ(L)}.

Proof. Let B ∈ Ω(U,L)min, C = φ(U,L). Then φ(U,L) ⊆ B and so C ⊆ B, by
Lemma 1.1. We now use induction on the dimension of L. Suppose first that there
is a minimal ideal A of L with A ⊆ C. Then B/A ∈ Ω((U + A)/A,L/A)min, by
Lemma 1.6, and so B/A = φ((U +A)/A,L/A), by the inductive hypothesis. From
this it is clear that B = C.

So suppose now that no such minimal ideal exists. Then φ(L) = 0 and so
L is complemented, by [4, Theorem 1]. Thus there is a subalgebra V such that
〈C, V 〉 = L and C ∩ V = 0. It follows that 〈C,U + V 〉 = L and C ∩ (U + V ) =
U+C∩V = U , whence C ∈ [U : L] and [C : L] is complemented. Thus C ∈ Ω(U,L)
and the minimality of B yields that B = C. �

If L is not completely solvable, then Ω(U,L)min can contain more than one
element as we shall see in the next section. However, we do have a conjugacy result
in some cases. First we need to consider inner automorphisms of L. Let x ∈ L and
let adx be the corresponding inner derivation of L. If F has characteristic zero,
suppose that (adx)n = 0 for some n; if F has characteristic p, suppose that x ∈ I,
where I is a nilpotent ideal of L of class less than p. Put

exp(adx) =

∞∑
r=0

1

r!
(adx)r.

Then exp(adx) is an automorphism of L. We shall call the group I(L) generated
by all such automorphisms the group of inner automorphisms of L. More generally,
if B is a subalgebra of L we denote by I(L : B) the group of automorphisms of L
generated by the exp(adx) with x ∈ B.

If B is a subalgebra of L, the centraliser of B in L is CL(B) = {x ∈ L :
[x,B] = 0}. We define the nilpotent residual to be L∞ =

⋂∞
i=1 L

i, where the Li

are the terms of the lower central series for L. Then we have conjugacy for the
following metanilpotent Lie algebras.
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Theorem 1.8. Suppose that L is a solvable Lie algebra over a field F of charac-
teristic p, and suppose further that L∞ has nilpotency class less than p. Let U be a
subalgebra of L. Then the elements of Ω(U,L)min are conjugate under I(L : L∞).

Proof. We use induction on the dimension of L. It is clearly true if L has dimension
one, so suppose it holds for such algebras with dimension smaller than that of L.
We can assume that L∞ �= 0. Let S1, S2 ∈ Ω(U,L)min and let A be a minimal ideal
of L with A ⊆ L∞. Then (S1 + A)/A, (S2 + A)/A ∈ Ω((U + A)/A,L/A)min, by
Lemma 1.6, and so (S1+A)/A and (S2+A)/A are conjugate under I(L/A : L∞/A),
by the inductive hypothesis.

If A ⊆ S1, then A ⊆ S2, by Lemma 1.5, and there is an x ∈ L∞ such that
S1 exp(adx) = S2; that is, S1 and S2 are conjugate under I(L : L∞).

So suppose that A �⊆ S1. Then there are complements M1 and M2 of A in L
with S1 ⊆ M1 and S2 ⊆ M2, by Lemma 1.5. Put C = CM1

(A), which is an ideal
of L. If C = 0, then CL(A) = A and there is a ∈ A such that M2 exp(ad a) = M1,
by [2, Theorem 1.1], whence S2 exp(ad a) ⊆ M2 exp(ad a) = M1.

If C �= 0, then (S1 + C)/C and (S2 + C)/C are conjugate under I(L/C :
(L∞+C)/C), by the inductive hypothesis. It follows that there is an x ∈ L∞ such
that S2 exp(adx + C) ⊆ S1 + C exp(ad a) ⊆ M1, which gives S2 exp(adx) ⊆ M1.
Now L = A⊕M1, so L∞ ⊆ A⊕M∞

1 . Moreover, [A,L∞] = 0 since L∞ is nilpotent,
so M∞

1 is an ideal of L. Put x = a + b, where a ∈ A, b ∈ M∞
1 . Then, for each

s2 ∈ S2, we have s2+s2 adx+ . . .+s2 (adx)n ∈ M1, which gives s2+s2 ad a ∈ M1.
Thus, again we have that S2 exp(ad a) ⊆ M1 for some a ∈ A.

So S1, S2 exp(ad a) ⊆ M1 for some a ∈ A. Now U ⊆ S1 ⊆ M1 and
U exp(ad a) ⊆ S2 exp(ad a) ⊆ M1, so, for each u ∈ U , u + [a, u] ∈ M1, which
gives [a, u] ∈ A ∩M1 = 0; that is, a ∈ CL(U) and U exp(ad a) = U . Thus

S2 exp(ad a) ∈ Ω(U exp(ad a), L)min = Ω(U,L)min.

But now Lemma 1.3 yields that S1, S2 exp(ad a) ∈ Ω(U,M1)min, and the required
conjugacy of S1 and S2 follows from the inductive hypothesis. �

2. U-prefrattini subalgebras

Let

(1) 0 = A0 ⊂ A1 ⊂ . . . ⊂ An = L

be a fixed chief series for L. We say that Ai/Ai−1 is a Frattini chief factor if
Ai/Ai−1 ⊆ φ(L/Ai−1); it is complemented if there is a maximal subalgebra M of L
such that L = Ai +M and Ai ∩M = Ai−1. When L is solvable it is easy to see
that a chief factor is Frattini if and only if it is not complemented. This can be
generalised as follows.

The factor algebra Ai/Ai−1 is called a U-Frattini chief factor if

Ai ⊆ φ(U + Ai−1, L) or if U +Ai−1 = L,

that is, if every maximal subalgebra of L which contains U and Ai−1 also contains
Ai. If Ai/Ai−1 is not a U -Frattini chief factor there is an M ∈ [U + Ai−1 : L]max

for which Ai �⊆ M ; that is, M is a complement of the chief factor Ai/Ai−1. We
have a sharpened form of the Jordan-Hölder Theorem in which the U -Frattini chief
factors correspond. First we need a lemma.
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Lemma 2.1. Let A1, A2 be distinct minimal ideals of the solvable Lie algebra L.
Then there is a bijection

θ : {A1, (A1 +A2)/A1} → {A2, (A1 +A2)/A2}
such that corresponding chief factors are isomorphic as L-modules and U-Frattini
chief factors correspond to one another.

Proof. Clearly we can assume that U �= L. Put A = A1 ⊕ A2. Suppose first that
A1 is a U -Frattini chief factor. Then A1 ⊆ φ(U,L). Thus A ⊆ φ(U + A2, L) and
A/A2 is a U -Frattini chief factor. If A/A1 is also a U -Frattini chief factor, then
A ⊆ φ(U+A1, L), which yields that A ⊆ φ(U,L), and all four factors are U -Frattini.
In this case we can choose θ so that θ(A1) = A/A2 and θ(A/A1) = A2. If A/A1 is
not a U -Frattini chief factor, then neither is A2, by the same argument as above,
and so the same choice of θ suffices and likewise if none of the factors are U -Frattini
chief factors.

The remaining case is where A1 and A2 are not U -Frattini chief factors but
A/A2 is. The fact that A/A2 is a U -Frattini chief factor means that every maximal
subalgebra containing U and A2 also contains A, and so contains A1. But, since
A1 is not a U -Frattini chief factor, there is a maximal subalgebra M containing
U but not containing A1. It follows that A2 �⊆ M . Thus M complements both
A1 and A2 in L. Put C = A ∩ M . Then L/Ai

∼= M and this isomorphism maps
the set of maximal subalgebras of L/Ai which contain (U + Ai)/Ai onto the set
of maximal subalgebras of M which contain U . Since A/A2 is a U -Frattini chief
factor, every maximal subalgebra of L containing U + A2 contains A, so every
maximal subalgebra of M which contains U also contains C. It follows that every
maximal subalgebra of L which contains U + A1 also contains C + A1; that is,
A/A1 is a U -Frattini chief factor of L. So we can choose θ so that θ(A1) = A2 and
θ(A/A1) = A/A2. �

Theorem 2.2. Let

0 < A1 < . . . < An = L,(2)

0 < B1 < . . . < Bn = L(3)

be chief series for the solvable Lie algebra L. Then there is a bijection between the
chief factors of these two series such that corresponding factors are isomorphic as
L-modules and such that the U-Frattini chief factors in the two series correspond.

Proof. These two series have the same length by a version of the Jordan–Hölder
Theorem. We use induction on n. The result is clearly true if n = 1. So let n > 1
and suppose that the result holds for all solvable Lie algebras with chief series of
length ≤ n− 1. If A1 = B1, then applying the inductive hypothesis to L/A1 gives
a suitable bijection between the factors above A1, and then we can map A1 to B1

and we have the result.
So suppose that A1 and B1 are distinct and put A = A1 ⊕B1. Then A/A1 and

A/B1 are chief factors of L and there are chief series of the form

0 < A1 < A < C3 < . . . < Cn = L,(4)

0 < B1 < A < C3 < . . . < Cn = L.(5)

Define an equivalence relation on the chief series of L by saying that two such
series are equivalent if there is a bijection between their chief factors satisfying
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the requirements of the theorem. Since series (2) and (4) have a minimal ideal in
common, they are equivalent. Similarly, series (3) and (5) are equivalent. Moreover,
since series (4) and (5) coincide above A they are also equivalent, by Lemma 2.1.
Hence the series (2) and (3) are equivalent, as required. �

We define the set I by i ∈ I if and only if Ai/Ai−1 is not a U -Frattini chief
factor of L. For each i ∈ I put

Mi = {M ∈ [U +Ai−1, L]max : Ai �⊆ M}.

Then B is a U-prefrattini subalgebra of L if

B =
⋂
i∈I

Mi for some Mi ∈ Mi.

If U = 0 we will refer to B simply as a prefrattini subalgebra of L.
The subalgebra B avoids Ai/Ai−1 if B ∩ Ai = B ∩ Ai−1; likewise, B covers

Ai/Ai−1 if B +Ai = B +Ai−1. Then we have the following important property of
U -prefrattini subalgebras of L.

Lemma 2.3. If B is a U-prefrattini subalgebra of L, then it covers all U-Frattini
chief factors of L in (1) and avoids the rest.

Proof. Let B be a U -prefrattini subalgebra of L and let Ai/Ai−1 be a chief factor
of L. If it is a U -Frattini chief factor, then either Ai ⊆ φ(U + Ai−1, L) or else
U + Ai−1 = L. In the former case, every maximal subalgebra of L that contains
U + Ai−1 also contains Ai, and so Ai ⊆ B. In either case, therefore, B covers
Ai/Ai−1. If it is not a U -Frattini chief factor we have B ⊆ Mi where L = Ai +Mi

and Ai ∩Mi = Ai−1. Hence B ∩ Ai = B ∩Mi ∩ Ai = B ∩ Ai−1 ⊆ B ∩ Ai, and so
B avoids Ai/Ai−1. �

The next four results are dedicated to showing how the U -prefrattini subalgebras
relate to the material in the previous section. The first lemma is helpful when trying
to calculate U -prefrattini subalgebras.

Lemma 2.4. Let B be a U-prefrattini subalgebra of L. Then

dimB =
∑
i/∈I

(dimAi − dimAi−1);

in particular, all U-prefrattini subalgebras of L have the same dimension.

Proof. We use induction on dimL. The result is clear if L is abelian, so suppose
it holds for Lie algebras of smaller dimension than L. It is easy to check that
(B +A1)/A1 is a ((U +A1)/A1)-prefrattini subalgebra of L/A1 and so

dim

(
B +A1

A1

)
=

∑
i∈I,i �=1

(dimAi − dimAi−1),

by the inductive hypothesis. If A1/A0 is a U -Frattini chief factor of L, then B
covers A1/A0, whence B = B +A1 and

dimB = dimA1 + dim

(
B +A1

A1

)
=

∑
i∈I

(dimAi − dimAi−1).
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If A1/A0 is not a U -Frattini chief factor of L, then B avoids A1/A0, whence B∩A1 =
0 and

dimB = dim

(
B +A1

A1

)
=

∑
i∈I

(dimAi − dimAi−1).

�

Let Π(U,L) be the set of U -prefrattini subalgebras of L.

Lemma 2.5. Π(U,L) ⊆ Ω(U,L).

Proof. (i) We use induction on dimL. The result is clear if L is abelian, so suppose
it holds for Lie algebras of dimension less than that of L. Let B ∈ Π(U,L). Then

B +A1

A1
∈ Π

(
U +A1

A1
,
L

A1

)
⊆ Ω

(
U +A1

A1
,
L

A1

)
,

whence B + A1 ∈ Ω(U,L). If A1 ⊆ B we have B ∈ Ω(U,L). So suppose that
A1 �⊆ B. Then B does not cover A1/A0, so A1/A0 is not a U -Frattini chief factor of
L. It follows that 1 ∈ I, and so there is a maximal subalgebra M of L with B ⊆ M
and A1 �⊆ M . But now L = A1 ⊕ M and the intervals [B + A1 : L] and [B : M ]
are lattice isomorphic, which yields that [B : M ] is complemented. It follows from
Lemma 1.3 that B ∈ Ω(U,L) again. �

Lemma 2.6. Ω(U,L)min ⊆ Π(U,L).

Proof. Let B ∈ Ω(U,L)min and let Ai/Ai−1 be a chief factor of L. By Lemma 1.6,(
B +Ai−1

Ai−1

)
∈ Ω

(
U +Ai−1

Ai−1
,

L

Ai−1

)
min

.

We now apply Lemma 1.5 to the minimal ideal Ai/Ai−1 of L/Ai−1. If Ai/Ai−1

is a U -Frattini chief factor, then it does not have a complement in L/Ai−1 and
Lemma 1.5 gives that Ai ⊆ B + Ai−1, whence Ai + B = Ai−1 + B and B covers
Ai/Ai−1.

If Ai/Ai−1 is not a U -Frattini chief factor, then it has a complement Mi/Ai−1

in L/Ai−1 and Lemma 1.5 gives that it has such a complement containing
(B + Ai−1)/Ai−1; that is, L = Mi + Ai, Mi ∩ Ai = Ai−1 and B + Ai−1 ⊆ Mi.
But now B ∩ Ai ⊆ B ∩ Ai + Ai−1 = (B + Ai−1) ∩ Ai ⊆ Mi ∩ Ai = Ai−1. It
follows that B ∩ Ai = B ∩ Ai−1 and B avoids Ai/Ai−1. Clearly Mi ∈ Mi and
B ⊆ C =

⋂
i∈I Mi ∈ Π(U,L). But B covers or avoids the same chief factors of

(1) as C, so the proof of Lemma 2.4 shows that dimB = dimC. It follows that
B = C ∈ Π(U,L). �

Putting the previous three lemmas together yields the following result.

Theorem 2.7. Ω(U,L)min = Π(U,L).

Notice that, in particular, the above result shows that the definition of U -
prefrattini subalgebras does not depend on the choice of chief series.

Corollary 2.8. If A is an ideal of L and S ∈ Π(U,L), then

(S +A)/A ∈ Π((U +A)/A,L/A).

Proof. This follows from Theorem 2.7 and Lemma 1.6. �
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Corollary 2.9. For every solvable Lie algebra L,

φ(U,L) =
⋂

B∈Π(U,L)

B.

Proof. Put P =
⋂

B∈Π(U,L) B. Then φ(U,L) ⊆ P , by Theorem 2.7 and Lemma 1.1.

Let M ∈ [U,L]max. There is an i such that Ai−1 ⊆ M but Ai �⊆ M (1 ≤ i ≤ n).
Then Ai/Ai−1 is not a U -Frattini chief factor of L, so i ∈ I and M ∈ Mi. Thus
there is B ∈ Π(U,L) such that B ⊆ M , whence P ⊆ M . Hence P ⊆ φ(U,L). �

Corollary 2.10. Let L be completely solvable and let U be a subalgebra of L. Then
Π(U,L) = {φ(U,L)}. In particular, Π(0, L) = {φ(L)}.

Proof. This follows from Theorem 2.7 and Theorem 1.7. �

Corollary 2.11. Suppose that L is a solvable Lie algebra over a field F of charac-
teristic p, and suppose further that L∞ has nilpotency class less than p. Let U be
a subalgebra of L. Then the elements of Π(U,L) are conjugate under I(L : L∞).

Proof. This follows from Theorem 2.7 and Theorem 1.8. �

If L2 is not nilpotent, then Π(U,L) can contain more than one element, as the
following example shows.

Example 2.1. Let F be a field of characteristic p (perfect if p = 2), and L =

(
⊕p−1

i=0 Fei) ⊕ Fc ⊕ Fs ⊕ Fx with [ei, c] = ei, [ei, s] = ei+1 for i = 0, . . . , p − 2,
[ep−1, s] = 0, [ei, x] = iei−1 for i = 0, . . . , p−1 and e−1 = 0, [s, x] = c, and all other
products are zero.

Put A0 = 0, A1 =
⊕p−1

i=0 Fei, A2 = A1 ⊕ Fc, A3 = A2 ⊕ Fs, A4 = L. Then

0 = A0 ⊂ A1 ⊂ A2 ⊂ A3 ⊂ A4 = L

is a chief series for L in which A2/A1 is the only Frattini chief factor. It is, therefore,
straightforward to see that the prefrattini subalgebras of L are the one-dimensional
subalgebras F (αc+ a), where a ∈ A1 = L∞, α ∈ F .

Note that these are all conjugate under inner automorphisms of the form 1+
ad a. This is not always the case, however. For, if B is a faithful irreducible L-
module and we form X = B ⊕ L, where B2 = 0 and L acts on B under the given
L-module action, then the prefrattini subalgebras are still of the form F (αc + a)
where a ∈ A1. However, B is the unique minimal ideal of L and these subalgebras
are not conjugate under inner automorphisms of the form 1+ ad b, b ∈ B. Since
B is the nilradical of X, defining other inner automorphisms is problematic. Note
that X∞ = B +A1, which is not nilpotent.
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