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Abstract

In this paper we study a Lie-theoretic analogue of a generalisa-
tion of the prefrattini subgroups introduced by W. Gaschütz. The ap-
proach follows that of P. Hauck and H. Kurtzweil for groups, by first
considering complements in subalgebra intervals. Conjugacy of these
subalgebras is established for a large class of solvable lie algebras.
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1 Complements of subalgebra intervals

Throughout, L will denote a solvable Lie algebra over a field F . For a
subalgebra U of L we denote by [U : L] the set of all subalgebras S of L
with U ⊆ S ⊆ L. We say that [U : L] is complemented if, for any S ∈ [U : L]
there is a T ∈ [U : L] such that S ∩T = U and < S, T >= L. Our objective
is to study the set

Ω(U, L) = {S ∈ [U : L] : [S : L] is complemented};

1



in particular, to show that, for a large class of solvable Lie algebras L, the
minimal elements of this set, Ω(U, L)min, are conjugate in L. The develop-
ment initially follows closely that of [3].

We denote by [U : L]max the set of maximal subalgebras in [U : L]; that
is, the set of maximal subalgebras of L containing U . If L = A + B where
A and B are subalgebras of L and A ∩ B = 0 we will write L = A ⊕ B.

Lemma 1.1 If S ∈ Ω(U, L), S 6= L then S =
⋂

{M : M ∈ [S : L]max}.

Proof. Put T =
⋂

{M : M ∈ [S : L]max}. Then [S : L] is complemented,
since S ∈ Ω(U, L), and so T has a complement C in [S : L]. If C 6= L then
C ⊆ M for some M ∈ [S : L]max. But then < T, C >= M , contradicting
the fact that C is a complement of T in [S : L]. Hence C = L and S =
T ∩ C = T ∩ L = T , as required. �

The Frattini subalgebra of L, φ(L), is the intersection of the maximal
subalgebras of L. When L is solvable this is always an ideal of L, by [1,
Lemma 3.4]. Extending this notion slightly we put φ(S, L) =

⋂

{M : M ∈
[S : L]max}; clearly, φ(0, L) = φ(L). The above lemma shows that φ(U, L) ⊆
S for all S ∈ Ω(U, L).

Lemma 1.2 If I is an ideal of L and S ∈ Ω(U, L), then S + I ∈ Ω(U, L).

Proof. Let B ∈ [S + I : L] ⊆ [S : L]. Since S ∈ Ω(U, L), B has a
complement D in [S : L]; that is B ∩ D = S and < B, D >= L. Put
C = D+I. Then < B, C >= L and B∩C = B∩(D+I) = B∩D+I = S+I,
whence C is a complement for B in [S + I : L] and S + I ∈ Ω(U, L). �

Lemma 1.3 Let A be a minimal ideal of L and let M be a complement of A
in L containing U . Then Ω(U, M) = {S ∈ Ω(U, L) : S ⊆ M}. In particular
Ω(U, M)min = {S ∈ Ω(U, L)min : S ⊆ M}.

Proof. Note that since L is solvable, M is a maximal subalgebra of L
and L = A ⊕ M . Suppose first that S ∈ Ω(U, L) with S ⊆ M . Then
S + A ∈ Ω(U, L) by Lemma 1.2. The interval [S : M ] is lattice isomorphic
to [S + I : L] and so is complemented. Hence S ∈ Ω(U, M).

Conversely, let S ∈ Ω(U, M). Then [S : M ] is complemented. We need
to show that S ∈ Ω(U, L); that is, that [S : L] is complemented. Let
B ∈ [S : L]. Then B ∩ M ∈ [S : M ], so there is a subalgebra D ∈ [S : M ]
such that < B ∩ M, D >= M and B ∩ D = B ∩ M ∩ D = S.
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If B 6⊆ M then M is a proper subalgebra of < B, D >. But M is a
maximal subalgebra of L, and so < B, D >= L and D is a complement of
B in [S : L]. Hence [S : L] is complemented.

If B ⊆ M , put C = D + A. Then

L = A ⊕ M ⊆ < B, A > + < B, D > ⊆ < B, D + A > = < B, C >,

so < B, D + A >= L. Also

B ∩C = B ∩ (D +A) = B ∩M ∩ (D +A) = B ∩ (D +M ∩A) = B ∩D = S,

yielding that C is a complement of B in [S : L] and [S : L] is complemented.
�

Lemma 1.4 Let A be a minimal ideal of L and let S ∈ Ω(U, L)min with
A 6⊆ S. Then there is an M ∈ [S : L]max such that A 6⊆ M .

Proof. This follows easily from Lemma 1.1. �

Lemma 1.5 Let A be a minimal ideal of L. Then the following are equiv-
alent:

(i) A 6⊆ S for some S ∈ Ω(U, L)min;

(ii) A 6⊆ M for some M ∈ [U : L]max; and

(iii) for every S ∈ Ω(U, L)min there is a complement of A in L containing
S.

Proof. (i) ⇒ (ii): This follows from Lemma 1.4.
(ii) ⇒ (iii): Suppose that A 6⊆ M for some M ∈ [U : L]max. Then L =
A ⊕ M . Let S ∈ Ω(U, L)min.

Suppose first that A ⊆ S. Then S = A ⊕ M ∩ S and M ∩ S ∼= S/A,
so the interval [S : L] is lattice isomorphic to [M ∩ S : M ]. It follows
that M ∩ S ∈ Ω(U, M). But Lemma 1.3 now gives that M ∩ S ∈ Ω(U, L),
contradicting the minimality of S.

Hence A 6⊆ S and Lemma 1.4 gives a complement of A containing S.
(iii) ⇒ (i): This is trivial. �

Lemma 1.6 If A is an ideal of L and S ∈ Ω(U, L)min then S + A ∈ Ω(U +
A, L)min.
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Proof. It suffices to show that (S + A)/A ∈ Ω((U + A)/A, L/A)min and so
we may suppose that A is a minimal ideal of L. The result is clear if A ⊆ S,
since then U + A ⊆ S. So suppose that A 6⊆ S.

Then there is a complement M of A in L containing S, by Lemma 1.5,
and L = A⊕M . Moreover, S+A ∈ Ω(U+A, L). Choose C ∈ Ω(U+A, L)min

such that C ⊆ S + A. Then U ⊆ M ∩ C ⊆ S ⊆ M and the interval
[M∩C : M ] is lattice isomorphic to [C : L]. It follows that M∩C ∈ Ω(U, M)
and so M ∩ C ∈ Ω(U, L), by Lemma 1.3. But S ∈ Ω(U, L)min, which yields
that M ∩ C = S; that is, C = S + A. �

At this point the theory starts to diverge from that for groups. We say
that L is completely solvable if L2 is nilpotent. For these algebras Ω(U, L)min

takes on a particularly simple form.

Theorem 1.7 Let L be completely solvable and let U be a subalgebra of L.
Then Ω(U, L)min = {φ(U, L)}. In particular, if U = 0 then Ω(U, L)min =
{φ(L)}.

Proof. Put B = Ω(U, L)min, C = φ(U, L). Then φ(U, L) ⊆ B and so
C ⊆ B, by Lemma 1.1. We now use induction on the dimension of L.
Suppose first that there is a minimal ideal A of L with A ⊆ C. Then B/A ∈
Ω((U + A)/A, L/A)min, by Lemma 1.6, and so B/A = φ((U + A)/A, L/A),
by the inductive hypothesis. From this it is clear that B = C.

So suppose now that no such minimal ideal exists. Then L is φ-free
and so L is complemented, by [4, Theorem 1]. Thus there is a subalgebra
V such that 〈C, V 〉 = L and C ∩ V = 0. It follows that 〈C, U + V 〉 = L
and C ∩ (U + V ) = U + C ∩ V = U , whence C ∈ [U : L] and [C : L]
is complemented. Thus C ∈ Ω(U, L) and the minimality of B yields that
B = C. �

If L is not completely solvable then Ω(U, L)min can contain more than
one element as we shall see in the next section. However, we do have a con-
jugacy result in some cases. First we need to consider inner automorphisms
of L. Let x ∈ L and let adx be the corresponding inner derivation of L.
If F has characteristic zero, suppose that (ad x)n = 0 for some n; if F has
characteristic p, suppose that x ∈ I where I is a nilpotent ideal of L of class
less than p. Put

exp(adx) =

∞
∑

r=0

1

r!
(ad x)r.

Then exp(adx) is an automorphism of L.
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If B is a subalgebra of L, the centraliser of B in L is CL(B) = {x ∈ L :
[x, B] = 0}. We define the nilpotent residual to be L∞ =

⋂∞
i=1 Li, where Li

are the terms of the lower central series for L. Then we have conjugacy for
the following metanilpotent Lie algebras.

Theorem 1.8 Suppose that L is a solvable Lie algebra over a field F of
characteristic p, and suppose further that L∞ has nilpotency class less than
p. Let U be a subalgebra of L. Then the elements of Ω(U, L)min are conjugate
under I(L : L∞).

Proof. We use induction on the dimension of L. It is clearly true if L has
dimension one, so suppose it holds for such algebras with dimension smaller
than that of L. We can assume that L∞ 6= 0. Let S1, S2 ∈ Ω(U, L)min and
let A be a minimal ideal of L with A ⊆ L∞. Then (S1 +A)/A, (S2 +A)/A ∈
Ω((U + A)/A, L/A)min, by Lemma 1.6, and so (S1 + A)/A and (S2 + A)/A
are conjugate under I(L/A : L∞/A), by the inductive hypothesis.

If A ⊆ S1 then A ⊆ S2, by Lemma 1.5, and there is an x ∈ L∞ such
that S1 exp(adx) = S2; that is, S1 and S2 are conjugate under I(L : L∞).

So suppose that A 6⊆ S1. Then there are complements M1 and M2 of
A in L with S1 ⊆ M1 and S2 ⊆ M2, by Lemma 1.5. Put C = CM1

(A),
which is an ideal of L. If C = 0 then CL(A) = A and there is a ∈ A such
that M2 exp(ad a) = M1, by [2, Theorem 1.1], whence S2 exp(ad a) ⊆ M2

exp(ad a) = M1.
If C 6= 0, then (S1 +C)/C and (S2 +C)/C are conjugate under I(L/C :

(L∞ + C)/C), by the inductive hypothesis. It follows that there is an x ∈
L∞ such that S2 exp(adx + C) ⊆ S1 + C exp(ad a) ⊆ M1, which gives
S2 exp(adx) ⊆ M1. Now L = A ⊕ M1, so L∞ ⊆ A ⊕ M∞

1 . Moreover,
[A, L∞] = 0 since L∞ is nilpotent, so M∞

1 is an ideal of L. Put x = a + b,
where a ∈ A, b ∈ M∞

1 . Then, for each s2 ∈ S2, we have s2+s2 adx+ . . .+s2

(adx)n ∈ M1, which gives s2 + s2 ad a ∈ M1. Thus, again we have that S2

exp(ad a) ⊆ M1 for some a ∈ A.
So S1, S2 exp(ad a) ⊆ M1 for some a ∈ A. Now U ⊆ S1 ⊆ M1 and U

exp(ad a) ⊆ S2 exp(ad a) ⊆ M1, so, for each u ∈ U , u + [a, u] ∈ M1 which
gives [a, u] ∈ A∩M1 = 0; that is, a ∈ CL(U) and U exp(ad a) = U . Thus S2

exp(ad a) ∈ Ω(U exp(ad a), L)min = Ω(U, L)min. But now Lemma 1.3 yields
that S1, S2 exp(ad a) ∈ Ω(U, M1)min and the required conjugacy of S1 and
S2 follows from the inductive hypothesis. �
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2 U-prefrattini subalgebras

Let
0 = A0 ⊂ A1 ⊂ . . . ⊂ An = L (1)

be a fixed chief series for L. We say that Ai/Ai−1 is a Frattini chief factor if
Ai/Ai−1 ⊆ φ(L/Ai−1); it is complemented if there is a maximal subalgebra
M of L such that L = Ai + M and Ai ∩M = Ai−1. When L is solvable it is
easy to see that a chief factor is Frattini if and only if it is not complemented.
This can be generalised as follows.

The factor algebra Ai/Ai−1 is called a U -Frattini chief factor if

Ai ⊆ φ(U + Ai−1, L) or if U + Ai−1 = L.

If Ai/Ai−1 is not a U -Frattini chief factor there is an M ∈ [U + Ai−1 :
L]max for which Ai 6⊆ M ; that is, M is a complement of the chief factor
Ai/Ai−1. We have a sharpened form of the Jordan-Hölder Theorem in which
U -Frattini chief factors correspond. First we need a lemma.

Lemma 2.1 Let A1, A2 be distinct minimal ideals of the solvable Lie algebra
L. Then there is a bijection

θ : {A1, (A1 + A2)/A1} → {A2, (A1 + A2)/A2}

such that corresponding chief factors have the same dimension and U -Frattini
chief factors correspond to one another.

Proof. Clearly we can assume that U 6= L. Put A = A1 ⊕ A2. Suppose
first that A1 is a U -Frattini chief factor. Then A1 ⊆ φ(U, L). Thus A ⊆
φ(U + A2, L) and A/A2 is a U -Frattini chief factor. If A/A1 is also a U -
Frattini chief factor, then A ⊆ φ(U +A1, L), which yields that A ⊆ φ(U, L),
and all four factors are U -Frattini. In this case we can choose θ so that
θ(A1) = A/A2 and θ(A/A1) = A2. If A/A1 is not a U -Frattini chief factor,
then nor is A2, by the same argument as above, and so the same choice of
θ suffices; likewise if none of the factors are U -Frattini chief factors.

The remaining case is where A1 and A2 are not U -Frattini chief factors
but A/A2 is. Then A1 6⊆ φ(U, L), A2 6⊆ φ(U, L) and either A ⊆ φ(U +A2, L)
or U + A2 = L. Thus there exists M ∈ [U, L]max such that A1 6⊆ M ,
giving L = A1 ⊕ M . Put A3 = M ∩ A. Then A3 ⊕ A1 = M ∩ A ⊕ A1 =
(M + A1) ∩A = A, and so A3

∼= A/A1
∼= A2. If A3 = A2 then U + A2 ⊆ M

which gives A ⊆ M : a contradiction. Hence A3 6= A2, A = A3 ⊕ A2 and
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A3
∼= A/A2

∼= A1. It follows that all of the chief factors have the same
dimension.

If U + A1 = L, then A/A1 is a U -Frattini chief factor, so we can choose
θ so that θ(A1) = A2 and θ(A/A1) = A/A2. If U + A1 6= L, let N ∈
[U + A1, L]max. If A2 6⊆ N then L = A2 ⊕ N and N ∩ A = A1. But
A ⊆ φ(U+A2, L) implies that A ⊆ φ(U, L)+A2, whence A+A2+φ(U, L)∩A.
It follows that φ(U, L)∩A ⊆ N ∩A = A1, giving φ(U, L)∩A = A1. But now
A1 ⊆ φ(U, L): a contradiction. We must, therefore, have A2 ⊆ N and so
A ⊆ N . Thus A ⊆ φ(U + A1, L); that is, A/A1 is a U -Frattini chief factor.
In this case we can again choose θ so that θ(A1) = A2 and θ(A/A1) = A/A2.
�

Theorem 2.2 Let

0 < A1 < . . . < An = L (1)

0 < B1 < . . . < Bn = L (2)

be chief series for the solvable Lie algebra L. Then there is a bijection
between the chief factors of these two series such that corresponding factors
have the same dimension and such that the U -Frattini chief factors in the
two series correspond.

Proof. These two series have the same length by a version of the Jordan
Hölder Theorem. We induction on n. The result is clearly true if n = 1.
So let n > 1 and suppose that the result holds for all solvable Lie algebras
with chief series of length ≤ n− 1. If A1 = B1, then applying the inductive
hypothesis to L/A1 gives a suitable bijection between the factors above A1,
and then we can map A1 to B1 and we have the result.

So suppose that A1 and B1 are distinct and put A = A1 ⊕ B1. Then
A/A1 and A/B1 are chief factors of L and there are chief series of the form

0 < A1 < A < C3 < . . . < Cn = L (3)

0 < B1 < A < C3 < . . . < Cn = L (4)

Define an equivalence relation on the chief series of L by saying that two
such series are equivalent if there is a bijection between their chief factors
satisfying the requirements of the theorem. Since series (1) and (3) have a
minimal ideal in common, they are equivalent. Similarly, sereis (2) and (4)
are equivalent. Moreover, since series (3) and (4) coincide above A they are
also equivalent, by Lemma 2.1. Hence the series (1) and (2) are equivalent,
as required. �

7



We define the set I by i ∈ I if and only if Ai/Ai−1 is not a U -Frattini
chief factor of L. For each i ∈ I put

Mi = {M ∈ [U + Ai−1, L]max : Ai 6⊆ M}.

Then B is a U -prefrattini subalgebra of L if

B =
⋂

i∈I

Mi for some Mi ∈ Mi.

If U = 0 we will refer to B simply as a prefrattini subalgebra of L.
The subalgebra B avoids Ai/Ai−1 if B ∩ Ai = B ∩ Ai−1; likewise, B

covers Ai/Ai−1 if B+Ai = B+Ai−1. Then we have the following important
property of U -prefrattini subalgebras of L.

Lemma 2.3 If B is a U -prefrattini subalgebra of L then it covers all U -
Frattini chief factors of L in (1) and avoids the rest.

Proof. Let B be a U -prefrattini subalgebra of L and let Ai/Ai−1 be a chief
factor of L. If it is a U -Frattini chief factor then either Ai ⊆ φ(U +Ai−1, L)
or else U+Ai−1 = L. In the former case, every maximal subalgebra of L that
contains U +Ai−1 also contains Ai, and so Ai ⊆ B. In either case, therefore,
B covers Ai/Ai−1. If it is not a U -Frattini chief factor we have B ⊆ Mi

where L = Ai + Mi and Ai ∩ Mi = Ai−1. Hence B ∩ Ai = B ∩ Mi ∩ Ai =
B ∩ Ai − 1 ⊆ B ∩ Ai, and so B avoids Ai/Ai−1. �

The next four results are dedicated to showing how the U -prefrattini
subalgebras relate to the material in the previous section. The first lemma
is helpful when trying to calculate U -prefrattini subalgebras.

Lemma 2.4 Let B be a U -prefrattini subalgebra of L. Then

dimB =
∑

i/∈I

(dim Ai − dimAi−1);

in particular, all U -prefrattini subalgebras of L have the same dimension.

Proof. We use induction on dimL. The result is clear if L is abelian, so
suppose it holds for Lie algebras of smaller dimension than L. It is easy to
check that (B + A1)/A1 is a ((U + A1)/A1)-prefrattini subalgebra of L/A1

and so

dim

(

B + A1

A1

)

=
∑

i∈I,i6=1

(dim Ai − dimAi−1),
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by the inductive hypothesis. If A1/A0 is a U -Frattini chief factor of L, then
B covers A1/A0, whence B = B + A1 and

dimB = dimA1 + dim

(

B + A1

A1

)

=
∑

i∈I

(dimAi − dimAi−1).

If A1/A0 is not a U -Frattini chief factor of L, then B avoids A1/A0, whence
B ∩ A1 = 0 and

dimB = dim

(

B + A1

A1

)

=
∑

i∈I

(dimAi − dim Ai−1).

�

Let Π(U, L) be the set of U -prefrattini subalgebras of L.

Lemma 2.5 Π(U, L) ⊆ Ω(U, L).

Proof. (i) We use induction on dimL. The result is clear if L is abelian,
so suppose it holds for Lie algebras of dimension less than that of L. Let
B ∈ Π(U, L). Then

B + A1

A1
∈ Π

(

U + A1

A1
,

L

A1

)

⊆ Ω

(

U + A1

A1
,

L

A1

)

,

whence B +A1 ∈ Ω(U, L). If A1 ⊆ B we have B ∈ Ω(U, L). So suppose that
A1 6⊆ B. Then B does not cover A1/A0, so A1/A0 is not a U -Frattini chief
factor of L. It follows that 1 ∈ I, and so there is a maximal subalgebra M
of L with B ⊆ M and A1 6⊆ M . But now L = A1 ⊕ M and the intervals
[B + A1 : L] and [B : M ] are lattice isomorphic, which yields that [B : M ]
is complemented. It follows from Lemma 1.3 that B ∈ Ω(U, L) again. �

Lemma 2.6 Ω(U, L)min ⊆ Π(U, L).

Proof. Let B ∈ Ω(U, L)min and let Ai/Ai−1 be a chief factor of L. By
Lemma 1.6,

(

B + Ai−1

Ai−1

)

∈ Ω

(

U + Ai−1

Ai−1
,

L

Ai−1

)

min

.

We now apply Lemma 1.5 to the minimal ideal Ai/Ai−1 of L/Ai−1. If
Ai/Ai−1 is a U -Frattini chief factor then it doesn’t have a complement in
L/Ai−1 and Lemma 1.5 gives that Ai ⊆ B+Ai−1, whence Ai+B = Ai−1+B
and B covers Ai/Ai−1.
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If Ai/Ai−1 is not a U -Frattini chief factor then it has a complement
Mi/Ai−1 in L/Ai−1 and Lemma 1.5 gives that it has such a complement
containing (B + Ai−1)/Ai−1; that is L = Mi + Ai, Mi ∩ Ai = Ai−1 and
B + Ai−1 ⊆ Mi. But now B ∩ Ai ⊆ B ∩ Ai + Ai−1 = (B + Ai−1) ∩ Ai ⊆
Mi ∩ Ai = Ai−1. It follows that B ∩ Ai = B ∩ Ai−1 and B avoids Ai/Ai−1.
Clearly Mi ∈ Mi and B ⊆ C =

⋂

i∈I Mi ∈ Π(U, L). But B covers or avoids
the same chief factors of (1) as C, so the proof of Lemma 2.4 shows that
dimB = dimC. It follows that B = C ∈ Π(U, L). �

Putting the previous three Lemmas together yields the following result.

Theorem 2.7 Ω(U, L)min = Π(U, L).

Notice that, in particular, the above result shows that the definition of
U -prefrattini subalgebras does not depend on the choice of chief series.

Corollary 2.8 If A is an ideal of L and S ∈ Π(U, L) then (S + A)/A ∈
Π((U + A)/A, L/A).

Proof. This follows from Theorem 2.7 and Lemma 1.6. �

Corollary 2.9 For every solvable Lie algebra L,

φ(U, L) =
⋂

B∈Π(U,L)

B.

Proof. Put P =
⋂

B∈Π(U,L) B. Then φ(U, L) ⊆ P , by Theorem 2.7 and
Lemma 1.1. Let M ∈ [U, L]max. There is an i such that Ai−1 ⊆ M but
Ai 6⊆ M (1 ≤ i ≤ n). Then Ai/Ai−1 is not a U -Frattini chief factor of L, so
i ∈ I and M ∈ Mi. Thus there is B ∈ Π(U, L) such that B ⊆ M , whence
P ⊆ M . Hence P ⊆ φ(U, L). �

Corollary 2.10 Let L be completely solvable and let U be a subalgebra of
L. Then Π(U, L) = {φ(U, L)}. In particular, Π(0, L) = {φ(L)}.

Proof. This follows from Theorem 2.7 and Theorem 1.7. �

Corollary 2.11 Suppose that L is a solvable Lie algebra over a field F of
characteristic p, and suppose further that L∞ has nilpotency class less than
p. Let U be a subalgebra of L. Then the elements of Π(U, L) are conjugate
under I(L : L∞).
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Proof. This follows from Theorem 2.7 and Theorem 1.8. �

If L2 is not nilpotent then Π(U, L) can contain more than one element,
as the following example shows.

Example 2.1 Let F be a field of characteristic p (perfect if p = 2), and L =
(⊕p−1

i=0 Fei)⊕Fc⊕Fs⊕Fx with [ei, c] = ei, [ei, s] = ei+1 for i = 0, . . . , p−2,
[ep−1, s] = 0, [ei, x] = iei−1 for i = 0, . . . , p − 1 and e−1 = 0, [s, x] = c, and
all other products zero.

Put A0 = 0, A1 = ⊕p−1
i=0 Fei, A2 = A1 ⊕ Fc, A3 = A2 ⊕ Fs, A4 = L.

Then
0 = A0 ⊂ A1 ⊂ A2 ⊂ A3 ⊂ A4 = L

is a chief series for L in which A2/A1 is the only Frattini chief factor. It
is, therefore, straightforward to see that the prefrattini subalgebras of L are
the one-dimensional subalgebras F (αc + a) where a ∈ A1 = L∞, α ∈ F .

Note that these are all conjugate under inner automorphisms of the
form 1+ ad a. This is not always the case, however. For, if B is a faithful
completely reducible L-module and we form X = B⊕L, where B2 = 0 and L
acts on B under the given L-module action, then the prefrattini subalgebras
are still of the form F (αc + a) where a ∈ A1. However, B is the unique
minimal ideal of L and these subalgebras are not conjugate under inner
automorphisms of the form 1+ ad b, b ∈ B. Since B is the nilradical of X,
defining other inner automorphisms is problematic. Note that X∞ = B+A1

which is not nilpotent.
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