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Abstract

In this paper we study a Lie-theoretic analogue of a generalisa-
tion of the prefrattini subgroups introduced by W. Gaschiitz. The ap-
proach follows that of P. Hauck and H. Kurtzweil for groups, by first
considering complements in subalgebra intervals. Conjugacy of these
subalgebras is established for a large class of solvable lie algebras.
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1 Complements of subalgebra intervals

Throughout, L will denote a solvable Lie algebra over a field F. For a
subalgebra U of L we denote by [U : L] the set of all subalgebras S of L
with U C S C L. We say that [U : L] is complemented if, for any S € [U : L]
thereis a T' € [U : L] such that SNT = U and < S,T >= L. Our objective
is to study the set

QU,L)={Se[U:L]:[S:L]is complemented};



in particular, to show that, for a large class of solvable Lie algebras L, the
minimal elements of this set, Q(U, L)min, are conjugate in L. The develop-
ment initially follows closely that of [3].

We denote by [U : L]mqz the set of maximal subalgebras in [U : L]; that
is, the set of maximal subalgebras of L containing U. If L = A 4+ B where
A and B are subalgebras of L and AN B =0 we will write L= A ® B.

Lemma 1.1 If S € Q(U,L), S # L then S =(\{{M : M €[S : Limaz}-

Proof. Put T'=(\{M : M € [S : L]z} Then [S : L] is complemented,
since S € Q(U, L), and so T has a complement C in [S : L]. If C' # L then
C C M for some M € [S : L]jnar- But then < T,C >= M, contradicting
the fact that C' is a complement of T in [S : L]. Hence C = L and S =
TNC=TNL=T, as required. [

The Frattini subalgebra of L, ¢(L), is the intersection of the maximal
subalgebras of L. When L is solvable this is always an ideal of L, by [1,
Lemma 3.4]. Extending this notion slightly we put ¢(S,L) = (\{M : M €
[S ¢ Llmaz }; clearly, ¢(0, L) = ¢(L). The above lemma shows that ¢(U, L) C
S for all S € Q(U, L).

Lemma 1.2 If I is an ideal of L and S € Q(U, L), then S+ 1 € Q(U, L).

Proof. Let B € [S+ 1 : L] C [S : L]. Since S € QU,L), B has a
complement D in [S : L]; that is BN D = S and < B,D >= L. Put
C = D+I. Then < B,C >= L and BNC = BA(D+1) = BAD+1 = S+1,
whence C'is a complement for Bin [S+1: L] and S+ 1€ Q(U,L). O

Lemma 1.3 Let A be a minimal ideal of L and let M be a complement of A
in L containing U. Then Q(U, M) ={S € QU,L): S C M}. In particular

Proof. Note that since L is solvable, M is a maximal subalgebra of L
and L = A@® M. Suppose first that S € Q(U,L) with S C M. Then
S+ AeQU,L) by Lemma 1.2. The interval [S : M] is lattice isomorphic
to [S+ I : L] and so is complemented. Hence S € Q(U, M).

Conversely, let S € Q(U, M). Then [S : M] is complemented. We need
to show that S € Q(U,L); that is, that [S : L] is complemented. Let
B e [S:L]. Then BNM € [S: M], so there is a subalgebra D € [S : M]
such that < BNM,D >=M and BND=BNnMnND=25.



If BZ M then M is a proper subalgebra of < B, D >. But M is a
maximal subalgebra of L, and so < B,D >= L and D is a complement of
B in [S: L]. Hence [S : L] is complemented.

If BC M,put C =D+ A. Then

L=AdMC<BA>+<B,D>C<B,D+A>=<B,C>,
so < B,D+ A>=L. Also
BNnC=Bn(D+A) =BnMn(D+A)=BN(D+MnA)=BnND =25,

yielding that C' is a complement of B in [S : L] and [S : L] is complemented.
g

Lemma 1.4 Let A be a minimal ideal of L and let S € Q(U, L)min with
AL S. Then there is an M €[S : L|pmasx such that A L M.

Proof. This follows easily from Lemma 1.1. [J

Lemma 1.5 Let A be a minimal ideal of L. Then the following are equiv-
alent:

(i) AL S for some S € Q(U, L)min;
(ii)) AL M for some M € [U : L|maz; and

(iii) for every S € Q(U, L)min there is a complement of A in L containing
S.

Proof. (i) = (i): This follows from Lemma 1.4.
(1) = (i4i): Suppose that A & M for some M € [U : L]nge. Then L =
Ad M. Let S € QU, L) min.

Suppose first that A C S. Then S = A M NS and M NS = S/A,
so the interval [S : L] is lattice isomorphic to [M NS : M]. It follows
that M NS € Q(U, M). But Lemma 1.3 now gives that M NS € Q(U, L),
contradicting the minimality of .S.

Hence A € S and Lemma 1.4 gives a complement of A containing .S.
(19) = (¢): This is trivial. O

Lemma 1.6 If A is an ideal of L and S € Q(U, L)y then S+ A € QU +
A, L)in -



Proof. It suffices to show that (S + A)/A € Q((U + A)/A, L/A)min and so
we may suppose that A is a minimal ideal of L. The result is clear if A C S,
since then U + A C S. So suppose that A € S.

Then there is a complement M of A in L containing S, by Lemma 1.5,
and L = A®M. Moreover, S+A € Q(U+A, L). Choose C € QU+A, L)min
such that C € S+ A. Then U C M NC C S C M and the interval
[MNC : M] is lattice isomorphic to [C : L]. It follows that M NC € Q(U, M)
and so M NC € QU, L), by Lemma 1.3. But S € Q(U, L)min, which yields
that M NC = S; that is, C =S+ A. O

At this point the theory starts to diverge from that for groups. We say
that L is completely solvable if L? is nilpotent. For these algebras Q(U, L) min
takes on a particularly simple form.

Theorem 1.7 Let L be completely solvable and let U be a subalgebra of L.
Then QU, L)min, = {¢(U,L)}. In particular, if U = 0 then Q(U, L)min =
{o(L)}.

Proof. Put B = Q(U, L)min, C = ¢(U,L). Then ¢(U,L) C B and so
C C B, by Lemma 1.1. We now use induction on the dimension of L.
Suppose first that there is a minimal ideal A of L with A C C. Then B/A €
QU + A)/A,L/A)pin, by Lemma 1.6, and so B/A = ¢((U + A)/A,L/A),
by the inductive hypothesis. From this it is clear that B = C.

So suppose now that no such minimal ideal exists. Then L is ¢-free
and so L is complemented, by [4, Theorem 1|. Thus there is a subalgebra
V such that (C,V) = L and C NV = 0. It follows that (C,U+ V) = L
and CNU+V)=U+CnNV =U, whence C € [U : L] and [C : L]
is complemented. Thus C' € Q(U, L) and the minimality of B yields that
B=C. 0O

If L is not completely solvable then Q(U, L),in can contain more than
one element as we shall see in the next section. However, we do have a con-
jugacy result in some cases. First we need to consider inner automorphisms
of L. Let z € L and let adx be the corresponding inner derivation of L.
If F' has characteristic zero, suppose that (adx)" = 0 for some n; if F' has
characteristic p, suppose that x € I where [ is a nilpotent ideal of L of class
less than p. Put

— 1
exp(adz) = Z ﬁ(ad x)".
r=0 "~

Then exp(ad x) is an automorphism of L.



If B is a subalgebra of L, the centraliser of B in L is C(B) ={x € L:
[z, B] = 0}. We define the nilpotent residual to be L> = ()32, L*, where L'
are the terms of the lower central series for L. Then we have conjugacy for
the following metanilpotent Lie algebras.

Theorem 1.8 Suppose that L is a solvable Lie algebra over a field F of
characteristic p, and suppose further that L> has nilpotency class less than
p. Let U be a subalgebra of L. Then the elements of Q(U, L)y are conjugate
under Z(L : L*).

Proof. We use induction on the dimension of L. It is clearly true if L has
dimension one, so suppose it holds for such algebras with dimension smaller
than that of L. We can assume that L> # 0. Let S1,S2 € Q(U, L)min and
let A be a minimal ideal of L with A C L. Then (S1+A)/A, (S2+A)/A €
QU + A)/A, L/A)min, by Lemma 1.6, and so (S1 + A)/A and (S2 + A)/A
are conjugate under Z(L/A : L*°/A), by the inductive hypothesis.

If A C S; then A C So, by Lemma 1.5, and there is an x € L* such
that S; exp(adz) = Sa; that is, S1 and Sy are conjugate under Z(L : L>°).

So suppose that A Z S;. Then there are complements M; and Ms of
Ain L with S; € M; and So C My, by Lemma 1.5. Put C = Cy, (A),
which is an ideal of L. If C = 0 then Cr(A) = A and there is a € A such
that My exp(ada) = Mj, by [2, Theorem 1.1], whence Sy exp(ada) C M
exp(ada) = Mj.

If C # 0, then (514 C)/C and (S2+C)/C are conjugate under Z(L/C :
(L>* 4 C)/C), by the inductive hypothesis. It follows that there is an = €
L such that Sy exp(adz + C) C S; + C exp(ada) C M;, which gives
Sy exp(adz) € M. Now L = A& My, so L* C A& M7°. Moreover,
[A, L] = 0 since L is nilpotent, so M7 is an ideal of L. Put x = a + b,
where a € A, b € M7®. Then, for each sy € S, we have so+sg adz+...+ 52
(adz)™ € Mj, which gives so 4+ so ada € M;. Thus, again we have that Sy
exp(ada) C M; for some a € A.

So 51,52 exp(ada) C M; for some a € A. Now U C S; C M; and U
exp(ada) C Sy exp(ada) C My, so, for each u € U, u + [a,u] € M; which
gives [a,u] € ANM; = 0; that is, a € CL(U) and U exp(ada) = U. Thus S
exp(ada) € QU exp(ada), L)min = U, L)min. But now Lemma 1.3 yields
that Sy, 52 exp(ada) € Q(U, M1)min and the required conjugacy of S; and
Sy follows from the inductive hypothesis. [J



2 U-prefrattini subalgebras

Let
0=ACcA C...CA, =L (1)

be a fixed chief series for L. We say that A;/A;_; is a Frattini chief factor if
Ai/Ai—1 € ¢(L/A;—1); it is complemented if there is a maximal subalgebra
M of L such that L = A; + M and A;N M = A;_1. When L is solvable it is
easy to see that a chief factor is Frattini if and only if it is not complemented.
This can be generalised as follows.

The factor algebra A;/A;_; is called a U-Frattini chief factor if

A; C (Z)(U + Ai_l,L) orif U+ A;,_1=0L.

If A;/A;_1 is not a U-Frattini chief factor there is an M € [U + A;_; :
L]imae for which A; € M; that is, M is a complement of the chief factor
A;/Ai_1. We have a sharpened form of the Jordan-Hélder Theorem in which
U-Frattini chief factors correspond. First we need a lemma.

Lemma 2.1 Let A1, Ay be distinct minimal ideals of the solvable Lie algebra
L. Then there is a bijection

0: {A1, (A1 + A2)/A1} — {Az, (A1 + Ag)/Az}

such that corresponding chief factors have the same dimension and U -Frattini
chief factors correspond to one another.

Proof. Clearly we can assume that U # L. Put A = A; & As. Suppose
first that A; is a U-Frattini chief factor. Then A; C ¢(U,L). Thus A C
¢(U + A2,L) and A/As is a U-Frattini chief factor. If A/A; is also a U-
Frattini chief factor, then A C ¢(U + Ay, L), which yields that A C ¢(U, L),
and all four factors are U-Frattini. In this case we can choose 6 so that
0(A1) = AJ/Ay and 0(A/A;1) = Ay. If A/A; is not a U-Frattini chief factor,
then nor is Ay, by the same argument as above, and so the same choice of
0 suffices; likewise if none of the factors are U-Frattini chief factors.

The remaining case is where A; and As are not U-Frattini chief factors
but A/As is. Then Ay  ¢(U, L), Az Z ¢(U, L) and either A C ¢(U + Az, L)
or U+ Ay = L. Thus there exists M € [U, L]qar such that Ay € M,
giving L = Ay ® M. Put A3 = M NA. Then As®@ A1 =MNAD A =
(M-I—Al)ﬂA:A, and so Ag gA/Al > Ay If A3 =As then U+ Ay C M
which gives A C M: a contradiction. Hence A3 # Ao, A = A3 @ A and



As =2 AJAs = A;. Tt follows that all of the chief factors have the same
dimension.

If U+ A) = L, then A/A; is a U-Frattini chief factor, so we can choose
6 so that (A1) = Az and 0(A/A1) = AJAy. f U+ A1 # L, let N €
[U+ A1, Llmaz- If Ao & N then L = Ao ® N and NN A = A;. But
A C ¢(U+Ag, L) implies that A C ¢(U, L)+ Aa, whence A+As+¢(U, L)NA.
It follows that ¢(U, L)NA C NNA = Ay, giving ¢(U, L)NA = A;. But now
A1 C ¢(U,L): a contradiction. We must, therefore, have Ay C N and so
A CN. Thus A C ¢(U + A1, L); that is, A/A; is a U-Frattini chief factor.
In this case we can again choose 6 so that §(A;) = As and 0(A/A;) = A/As.
Il

Theorem 2.2 Let
0<Ai<...<A,=L (1)

0<Bi<...<B,=1L (2)

be chief series for the solvable Lie algebra L. Then there is a bijection
between the chief factors of these two series such that corresponding factors
have the same dimension and such that the U-Frattini chief factors in the
two series correspond.

Proof. These two series have the same length by a version of the Jordan
Holder Theorem. We induction on n. The result is clearly true if n = 1.
So let n > 1 and suppose that the result holds for all solvable Lie algebras
with chief series of length < n — 1. If A; = By, then applying the inductive
hypothesis to L/A; gives a suitable bijection between the factors above A,
and then we can map A; to By and we have the result.

So suppose that A; and B; are distinct and put A = Ay ® B;. Then
A/A; and A/ B are chief factors of L and there are chief series of the form

0<AI<A<(C3<...<C,=1L (3)

0<Bi<A<(C3<...<Cp=1L (4)

Define an equivalence relation on the chief series of L by saying that two
such series are equivalent if there is a bijection between their chief factors
satisfying the requirements of the theorem. Since series (1) and (3) have a
minimal ideal in common, they are equivalent. Similarly, sereis (2) and (4)
are equivalent. Moreover, since series (3) and (4) coincide above A they are
also equivalent, by Lemma 2.1. Hence the series (1) and (2) are equivalent,
as required. [



We define the set Z by i € 7 if and only if A;/A;_1 is not a U-Frattini
chief factor of L. For each ¢ € Z put

Mi = {M € [U + Aifl,L]maxi Ai Z M}
Then B is a U-prefrattini subalgebra of L if

B = m M; for some M; € M;.
i€l
If U = 0 we will refer to B simply as a prefrattini subalgebra of L.
The subalgebra B avoids A;/A;—1 if BN A; = BN A;_1; likewise, B
covers A;j/A;—1 it B+ A; = B+ A;_1. Then we have the following important
property of U-prefrattini subalgebras of L.

Lemma 2.3 If B is a U-prefrattini subalgebra of L then it covers all U-
Frattini chief factors of L in (1) and avoids the rest.

Proof. Let B be a U-prefrattini subalgebra of L and let A;/A;_1 be a chief
factor of L. If it is a U-Frattini chief factor then either A; C ¢(U + A;-1, L)
orelse U+ A;_1 = L. In the former case, every maximal subalgebra of L that
contains U + A;_1 also contains A;, and so A; C B. In either case, therefore,
B covers A;/A;_1. If it is not a U-Frattini chief factor we have B C M;
where L = A; + M; and A; " M; = A;_1. Hence BNA; =BNM,NA; =
BnNA;—1C BnNA;, and so B avoids A;/A4;,_;. O

The next four results are dedicated to showing how the U-prefrattini
subalgebras relate to the material in the previous section. The first lemma
is helpful when trying to calculate U-prefrattini subalgebras.

Lemma 2.4 Let B be a U-prefrattini subalgebra of L. Then
dim B = Z(dim A; —dim A;1);
¢ T
in particular, all U-prefrattini subalgebras of L have the same dimension.

Proof. We use induction on dim L. The result is clear if L is abelian, so
suppose it holds for Lie algebras of smaller dimension than L. It is easy to
check that (B + A;1)/A; is a (U + Ay)/A1)-prefrattini subalgebra of L/A;
and so

dim (B+A1> = E (lelAZ —dimAi_l),
Ar L=
1€l,i#1

8



by the inductive hypothesis. If A;/Ag is a U-Frattini chief factor of L, then
B covers Aj/Ap, whence B = B + A; and

B+A1>
1

dim B = dim A; + dim < = Z(dim A; —dim A;_4).

el
If A;/Ap is not a U-Frattini chief factor of L, then B avoids A;/Ap, whence
BNA; =0and

dim B = dim (B+A1>

A1 = Z(dlm Al — dim Ai—l)-

el

Let II(U, L) be the set of U-prefrattini subalgebras of L.
Lemma 2.5 II(U,L) C Q(U, L).

Proof. (i) We use induction on dim L. The result is clear if L is abelian,
so suppose it holds for Lie algebras of dimension less than that of L. Let
B eII(U, L). Then

B+ Ay U+ A, L U+ A, L
11 — 1 CQ —
Ay < < Ay ’A1> - < Ay ’A1>’

whence B+ A4; € Q(U,L). If Ay C B we have B € Q(U, L). So suppose that
A1 € B. Then B does not cover A;j/Ap, so Aj/Ap is not a U-Frattini chief
factor of L. It follows that 1 € Z, and so there is a maximal subalgebra M
of L with B C M and A1 € M. But now L = A; & M and the intervals
[B+ Ay : L] and [B : M] are lattice isomorphic, which yields that [B : M]
is complemented. It follows from Lemma 1.3 that B € Q(U, L) again. [

Lemma 2.6 Q(U, L), CII(U,L).

Proof. Let B € Q(U, L)min and let A;/A;—1 be a chief factor of L. By

Lemma 1.6,
B+ A; 4 U+A;_1 L
_ Q .
( Ai ) © ( Aiy Az‘—l)mm

We now apply Lemma 1.5 to the minimal ideal A;/A;—1 of L/A;—;. If
A;/Ai_1 is a U-Frattini chief factor then it doesn’t have a complement in
L/A;_y and Lemma 1.5 gives that A; C B+ A;_1, whence A;+B = A,_1+B
and B covers A;/A;_1.




If A;/A;—1 is not a U-Frattini chief factor then it has a complement
M;/A;—1 in L/A;—1 and Lemma 1.5 gives that it has such a complement
containing (B + A;_1)/Ai_1; that is L = M; + A;, M; N A, = A1 and
B+ A;,_1 C M, Butnow BNA; CBNA, +A4,_1 = (B—i—Ai_l)ﬂAi -
M, NA; = A;_1. It follows that BN A; = BN A;_1 and B avoids Ai/Ai_l.
Clearly M; € M; and B C C = ;.7 M; € II(U, L). But B covers or avoids
the same chief factors of (1) as C, so the proof of Lemma 2.4 shows that
dim B =dim C. It follows that B=C e II(U, L). O

Putting the previous three Lemmas together yields the following result.

Theorem 2.7 Q(U, L)in = II(U, L).

Notice that, in particular, the above result shows that the definition of
U-prefrattini subalgebras does not depend on the choice of chief series.

Corollary 2.8 If A is an ideal of L and S € II(U,L) then (S + A)/A €
II((U+ A)/A, L/A).

Proof. This follows from Theorem 2.7 and Lemma 1.6. [J

Corollary 2.9 For every solvable Lie algebra L,

¢U,L)= () B

Bell(U,L)

Proof. Put P = (\gcpy,)B- Then ¢(U,L) C P, by Theorem 2.7 and
Lemma 1.1. Let M € [U, L]jnqz- There is an i such that A;_1 C M but
A; € M (1 <i<mn). Then A;/A;_; is not a U-Frattini chief factor of L, so
i €Z and M € M;. Thus there is B € II(U, L) such that B C M, whence
P C M. Hence P C ¢(U,L). O

Corollary 2.10 Let L be completely solvable and let U be a subalgebra of
L. ThenII(U, L) = {¢(U, L)}. In particular, I1(0, L) = {¢(L)}.

Proof. This follows from Theorem 2.7 and Theorem 1.7. [J

Corollary 2.11 Suppose that L is a solvable Lie algebra over a field F of
characteristic p, and suppose further that L> has nilpotency class less than
p. Let U be a subalgebra of L. Then the elements of II(U, L) are conjugate
under (L : L*).

10



Proof. This follows from Theorem 2.7 and Theorem 1.8. [J

If L? is not nilpotent then II(U, L) can contain more than one element,
as the following example shows.

EXAMPLE 2.1 Let F be a field of characteristic p (perfect if p=2), and L =
(EBf:_OIFei) ®Fcd Fs® Fx with [e;, c] = e;, e, 8] = ejp1 fori=0,...,p—2,
lep—1,8] =0, [ej,z] =ie;—q1 fori=0,...,p—1ande_1 =0, [s,z] = ¢, and
all other products zero.

Put Ag = 0, Ay = @' Fe;, Ay = Ay ® Fe, A3 = Ay ® Fs, Ay = L.
Then
OZAoCAlCAQCAgCA4:L

is a chief series for L in which As/A; is the only Frattini chief factor. It
is, therefore, straightforward to see that the prefrattini subalgebras of L are
the one-dimensional subalgebras F'(ac+ a) where a € A1 = L™, a € F.

Note that these are all conjugate under inner automorphisms of the
form 1+ ada. This is not always the case, however. For, if B is a faithful
completely reducible L-module and we form X = B®L, where B? = 0 and L
acts on B under the given L-module action, then the prefrattini subalgebras
are still of the form F(ac + a) where a € A;. However, B is the unique
minimal ideal of L and these subalgebras are not conjugate under inner
automorphisms of the form 14 adb, b € B. Since B is the nilradical of X,
defining other inner automorphisms is problematic. Note that X*>° = B+ A,
which is not nilpotent.
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