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Abstract

The application of methods drawn from nonlinear and stochastic dynamics to the
analysis of cardiovascular time series is reviewed, with particular reference to the
identification of changes associated with aging. The natural variability of the heart
rate (HRV) is considered in detail, including the respiratory sinus arrhythmia (RSA)
corresponding to modulation of the instantaneous cardiac frequency by the rhythm
of respiration. HRV has been intensively studied using traditional spectral analyses
e.g. by Fourier transform or autoregressive methods and, because of its complexity,
has been used as a paradigm for testing several proposed new methods of com-
plexity analysis. These methods are reviewed. The application of time-frequency
methods to HRV is considered, including especially the wavelet transform which
can resolve the time-dependent spectral content of HRV. Attention is focussed on
the cardio-respiratory interaction by introduction of the respiratory frequency vari-
ability signal (RFV), which can be acquired simultaneously with HRV by use of
a respiratory effort transducer. Current methods for the analysis of interacting os-
cillators are reviewed and applied to cardio-respiratory data, including those for
the quantification of synchronization and direction of coupling. These reveal the
effect of ageing on the cardio-respiratory interaction through changes in the mutual
modulation of the instantaneous cardiac and respiratory frequencies. Analyses of
blood flow signals recorded with laser Doppler flowmetry are reviewed and related
to the current understanding of how endothelial-dependent oscillations evolve with
age: the inner lining of the vessels (the endothelium) is shown to be of crucial im-
portance to the emerging picture. It is concluded that analyses of the complex and
nonlinear dynamics of the cardiovascular system can illuminate the mechanisms of
blood circulation, and that the heart, the lungs and the vascular system function as
a single entity in dynamical terms. Clear evidence is found for dynamical ageing.
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1 Introduction

In this paper, we review the effects of aging on the cardiovascular system,
based on ideas drawn from nonlinear dynamics. We aim to cover the major
achievements in this field, including results recently obtained in Ljubljana and
Lancaster.

We start by outlining the motivation, structure and content of the review. It
has long been known that cardiovascular signals contain a number of oscil-
latory components that are not exactly periodic. To put it differently, their
periods (frequencies) fluctuate with time. For example, heart rate variability
(HRV) has in itself provided a major topic of discussion. We introduce one of
the statistical approaches to HRV in Sec. 3. However, in order to understand
the variability of the cardiovascular system, discussion of a single source is
insufficient because the cardiovascular system is composed of many different
physiological components (subsystems) and it is the effects of their mutual
interaction that combine to produce HRV. This is demonstrated in Sec. 4,
revealed by results obtained using the wavelet transform. In Sec. 5, we dis-
cuss the cardio-respiratory interaction in terms of phase synchronization. To
set the scene for these later discussions, we summarise the basic principles of
phase dynamics in Sec. 2. For readers who are unfamiliar with the physiolog-
ical aspects of the research, we provide appendices A on the cardiovascular
system and B on how measurements of cardiovascular signals are conducted.
Appendix C provides details of the statistical methods used in the group data
analyses.

Before embarking on the central topics, however, we first summarise their
historical background in order to set the review in context.

1.1 Cardiovascular signals in context

Cardiovascular signals carry information that reflects ongoing processes that
normally occur unseen, within the interior of the body. They can be used
to characterise the state of the system, including the diagnosis of incipient
pathophysiological conditions before symptoms become obvious. A well-known
example is the electrocardiogram (ECG) signal, representing the electrical ac-
tivity of the heart. ECG measurements have been used for diagnostic purposes
for almost a century. For the first several decades of such measurements, atten-
tion was focussed mainly on the detailed shape of the approximately periodic
pulses seen in the signal. The physiological relationships that could be drawn
from the data were restricted to static values because only chart recorders
were available.
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With the advent of computers, starting in the 1960s, it became possible to
sample physiological variables in real time and to store data for analysis. The
resultant time series (signals) immediately introduced a need for tools for
studying the dynamical properties of the underlying physiological processes.
Because of the complexity of the time series, the tools developed for spectral
analysis were applied mainly with the aim of filtering out the noise, thereby
reducing the complexity. Various methods of linear filtering were introduced,
as was also a fast algorithm for calculation of the Fourier transform (now
well known as the fast Fourier transform, or FFT). Application of the FFT
to the most studied cardiovascular signal, the ECG, quickly showed that it
possesses oscillatory components [1]. In their pioneering work Hyndman, Kit-
ney and Sayers [2] pointed to the generally oscillatory nature of physiological
control systems. These two studies initiated a large area of research into the
oscillatory nature of cardiovascular functions based on frequency and time-
frequency methods including FFT [3] parametric spectral estimation [4] and
wavelet spectra [5–7].

The investigation of deterministic chaotic dynamics and, in particular, the in-
troduction of measures to quantify fractal dynamics triggered an avalanche of
new studies of cardiovascular dynamics. The pioneering algorithm by Grass-
berger and Proccacia [8] motivated a large number of applications, and chaotic
behaviour was proposed as a possible scenario [9, 10]. Several methods based
on statistical physics were proposed. Scaling properties [11–15], multifractal
properties [16,17], and the 1/f spectra [18–20] of heart rate variability (HRV),
were all discussed.

The approach based on coupled nonlinear oscillators was to some extent de-
veloped separately. It was marked by two major milestones: introduction of
the concept of entrainment within an ensemble of oscillators by Winfree [21];
and its analysis by Kuramoto [22] using a phase model. After Winfree had
gone further into the theory of the geometry of biological time [23], Kuramoto
generalized the phase dynamics approach [24] by reducing the degrees of free-
dom of the original dynamical system. For this to work, the original dynamics
should be perturbed weakly by noise, by an external force, or by coupling to
dynamics with a limit-cycle orbit. The latter describes dissipative systems and
the form of the phase dynamics is not dependent on the form of the original
model. Numerous researchers contributed to the development of the theory,
and the model was further generalized by Strogatz [25]. Because of its univer-
sality and simplicity, phase dynamics can be applied quite generally to oscil-
latory phenomena in dissipative systems. It was this body of work that sub-
sequently motivated the introduction of the theory of phase synchronization,
facilitating studies of the interactions between coupled nonlinear and chaotic
oscillators [26]. Coupled oscillators were proposed as a possible description of
the dynamics of the cardiovascular system [5] and synchronization between
cardiac and respiratory oscillations, and their mutual modulation, were exam-
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ined with particular care [7,27–33]. The emerging picture motivated additional
studies, and several methods for analysis of the direction of coupling among
interacting oscillatory processes have recently been proposed [34–37].

The mystery of ageing has continued to intrigue, giving rise to studies in all
areas of physiology. The relationship between HRV and ageing was soon appre-
ciated [38–40]. Goldberger and coworkers were the first to study the dynamics
of cardiovascular ageing, using measures drawn from statistical physics to show
that the complexity of cardiovascular dynamics decreases with aging [41–44].
Furthermore, randomness in the heartbeat time series [45], and loss of time
irreversibility [46], were shown to occur with ageing. Ageing has also been
characterized by a decrease in endothelial-related vasodilation [47, 48] and,
very recently, by an insufficiency of the sympathetic nervous system to cope
dynamically with various environmental stimuli [49].

1.2 Coupled nonlinear oscillators and the cardiovascular system

Coupled oscillators have been investigated by many physicists, in part because
the emergence of synchronization has similarities to phase transition phenom-
ena, which had been studied earlier in many contexts. The synchronization
transition was analyzed by the application of mean field theory to globally-
coupled ensembles of oscillators, in which each oscillator is coupled to all the
other oscillators equally under a sine coupling function (the Kuramoto model).
The stability of the macroscopic oscillation (synchronized solution) was ad-
dressed by Croford and Strogatz [50], [51] and [52], and the coupled function
was extended by Sakaguchi [53]. Not only global coupling, but also local cou-
pling in which a given oscillator couples only to its nearest neighbors, and
which is equivalent to the diffusion coupling in a continuous system, have been
studied extensively, e.g. in the form of the Ginzburg-Landau equation [24]. Ku-
ramoto also suggested another form of coupling, intermediate between local
and global, known as nonlocal coupling [54, 55]. It has a finite coupling dis-
tance so that an oscillator can interact, not only with its nearest neighbors,
but also with other nearby oscillators. It is more realistic than global coupling
because a given oscillator cannot in reality interact with all the others because
of the finite coupling distance. Compared to local and global coupling, which
have been studied widely, nonlocal coupling has not been studied very much to
date. But this model is expected to be useful because its coupling length is ad-
justable to match reality. It is expected to encompass interesting phenomena
that are as yet undiscovered. Studies of nonlocal coupling include [56–60].

In the human cardiovascular system, there are many phenomena to which the
concept of entrainment, or synchronization, of coupled oscillators can be ap-
plied. One of them is the emergence of macroscopic oscillations through the
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entrainment of the individual microscopic oscillations of individual cells which,
in the uncoupled state, would have slightly different frequencies. For example,
it is well known that the heart has pacemaker cells to which other cells are
entrained. It is also reported that the initiation of vasomotion requires the syn-
chronization of Ca2+ release from the sarcoplasmic reticulum [61]. Entrainment
can also arise through the interaction of macroscopic oscillators of different
physiological origin. In the latter case, coupled oscillators were proposed as
a possible description of the dynamics of the cardiovascular system [5]: syn-
chronization between cardiac and respiratory oscillations, and their mutual
modulation, have been examined with particular care [7,27–33]. The emerging
picture motivated additional studies, and several methods have recently been
proposed for analysis of the direction of coupling among interacting oscilla-
tory processes [34–37]. Interactions between the cardiovascular oscillations and
brain waves have been also studied by using the concepts of coupled oscillators
and directionality [62,63]. The notion of phase dynamics can be useful in terms
not only of phase synchronization but also of phase-resetting [21]. For exam-
ple, the annihilation of pacemaker activity in cardiac tissues was observed [64]
via phase-resetting. The authors used a current pulse to stimulate SA nodal
pacemaker cells (see A.3.2), and observed phase-resetting phenomena. If the
timing and amplitude were appropriate, the autonomous oscillatory activity
stopped. Spiral waves during cardiac fibrillation can be terminated by shock-
induced phase-resetting [65]: such spiral waves, rotating around singularities
in the heart, known as ventricular fibrillation, can lead to death because the
heart cannot then pump the blood properly. The latter represents a successful
application of phase dynamics to clinical medicine.

1.3 Time-invariant complexity analysis of heart rate variability (HRV)

The investigation of deterministic chaotic dynamics, and in particular the
introduction of measures to quantify the complexity of fractal dynamics, trig-
gered an avalanche of new work, including cardiovascular studies. Hurst intro-
duced what is now known as the Hurst exponent to quantify a scaling property
when he investigated problems related to water storage in the Nile [66, 67].
Mandelbrot and Wallis examined and elaborated the method further [68–74].
Feder gives an excellent overview of the history, theory and applications, and
adds some more statistical experiments in [75]. Although estimation of the
Hurst exponent was originally developed in hydrology, modern techniques for
estimating the Hurst exponent come from fractal mathematics. The mathe-
matics and images derived from fractal geometry exploded during the 1970s
and 1980s. A fractal object is composed of sub-units and sub-sub-units on
multiple levels that resemble the structure of the whole object (self-similarity)
and it has a fractional dimension. Chaotic dynamics is often associated with
a strange attractor that can be characterized by its fractal dimensionality
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D [76]. This dimension of a chaotic system is one of the ways to measure
complexity. The pioneering algorithm introduced by Grassberger and Proc-
cacia enabled the ‘strangeness’ of an attractor to be calculated in an easier
way [8] and motivated a large number of applications. Another method for
the measurement of complexity based on an entropy, was also proposed by
Grassberger and Proccacia [77]. Ways to compute the approximate dimen-
sion and approximate entropy were suggested by Kaplan et al [41]. Chaotic
behavior was proposed as a possible scenario [9, 10]. Several methods, based
on statistical physics were introduced. Scaling properties [11–15], multifractal
properties [16,17], and the 1/f spectra [18–20] of heart rate variability (HRV),
were also discussed in considerable detail.

On the other hand, the heart rate is known to have characteristics that differ
between healthy people and people with heart disease [44]. The heart rate of
healthy people is far from being a homeostatic constant state and has visually
apparent non-stationarity, whereas the heart rate in heart disease is associated
with the emergence of excessive regularity or uncorrelated randomness. A
constant heart rate was observed in the case of a coma [78], demonstrating
again that some measure of irregularity is needed for health. These features
are thought to be related to fractal and nonlinear properties. To quantify the
complexity of healthy heart rate, and to detect its alterations with disease and
with aging represent major challenges in physiology.

New methods have been developed to replace the traditional approaches used
for stationary signals, such as power-spectral and autocorrelation analysis.
They can quantify accurately the ‘long-range’ correlation (see definitions in
Sec. 3.3) in non-stationary signals: these include detrended fluctuation analy-
sis (DFA) [79,80] and the detrended moving average method (DMA) [81–83].
They too are based on the idea of a fractal in nonlinear theory. The fractal
concept is extended to time series so that we can see the self-similar prop-
erties on different timescales. DFA is a method to quantify the fractal cor-
relation in time series by filtering out polynomial trends as discussed below
in Sec. 3. To avoid the assumption that the trend is necessarily polynomial,
the DMA method was introduced. It estimates the correlation properties of
non-stationary signals, the probability distribution, and other characteristic of
stochastic processes, without any assumption of trends. These methods have
been applied to financial [82], physiological [84–86] and biological signals [87].

It has been suggested that the HRV of healthy subjects shows self-similar
(scale-invariant) fluctuations over a wide range of timescales, and that disease
or aging make HRV less complex (with higher regularity and predictability).
Based on DFA analysis, it was reported that complexity decreases with in-
creasing age [49, 88]. The physiological background to the loss of complexity
with age has been studied extensively. It has not been fully elucidated, but
changes in the balance between two branches (sympathetic and vagal) of the
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autonomic nervous system are thought to contribute to changes in the com-
plexity of heart rate [89].

1.4 Spectral analysis of heart rate variability (HRV) and aging

Following the pioneering work of Penaz et al. [1] and Hyndman et al. [2] on
oscillatory processes in the ECG, Sayers [90] and Luczak and Lauring [91]
studied rhythms in beat-to-beat heart rate signals. Akselrod et al. in 1981 [3]
introduced spectral analysis of heart rate variability (HRV) as a noninvasive
means of evaluating beat-to-beat cardiovascular control. In addition to the
respiratory oscillations in HRV around 0.3 Hz at what were called high fre-
quencies (HF), spectral peaks were reported at low frequencies (LF) around
0.1 Hz, and at very low frequencies (VLF) below 0.05 Hz [2,3]; this work was
based on relatively short-term recordings. Ultra-low frequency (UFL) com-
ponents were later observed in 24-h long-term recordings [92]. Many studies
have investigated how sympathetic and parasympathetic activities affect these
components. HF is considered to represent vagal control of heart rate and LF
contains contributions from both the vagal and sympathetic nervous systems.
The ratio LF/HF is regarded by many researchers as a measure of sympatho-
vagal balance [93].

However, the majority of these studies were done by FFT and autoregressive
(AR) spectral estimation [92]. By these methods, frequencies below 0.05 Hz
could not be studied (see above). To overcome this deficiency, Lotrič et al [94]
used the wavelet transform for spectral analysis, enabling them to study age-
related spectral changes in the range 0.0095–0.6 Hz. In what follows, we discuss
an additional frequency interval, 0.005-0.0095 Hz, and we also consider gender
differences, which were not mentioned by Lotrič et al, as well as aging.

1.5 Structural and functional changes in the cardiovascular system with age

Cardiovascular structure and function change with age, affecting the function
of the heart and other organs, and perhaps causing diseases.

One of the major changes with aging is the remodeling of large arteries, when
there is an increase in wall thickness and enlargement of the lumen. Arterial
stiffening is another hallmark of arterial aging [95]. The geometry and diastolic
function of the left ventriculum alters substantially with age [96].

Also associated with aging, there are alterations in the function of the en-
dothelium, the layer of cells between the blood and vascular smooth muscle
cells in blood vessels. Endothelial control of vasomotor tone changes with age
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and the alteration impairs vascular adaptation to variations in flow, especially
those induced by exercise and ischemia. The endothelium normally releases
vasoactive substances, such as nitric oxide (NO), but its ability to do so also
changes with age. An impairment of endothelial-dependent relaxation, which is
mediated especially by NO, is observed in aged subjects. Most studies indicate
that aging is associated with a decrease in NO production and release [97].

1.6 Blood flow with iontophoresis and aging

The endothelium was once thought to serve just as passive lining for the blood
vessels. However Furchgott and Zawadzki 1980 [98] found that the relaxation
evoked by acetylcholine in the rabbit aorta is mediated only in the presence of
endothelium, and numerous later studies have confirmed that the endothelium
plays an important role in regulating local vascular tone. It does so by releasing
vasodilating and vasoconstricting substances.

Iontophoresis is a technique that allows for transdermal delivery of polar drugs
though the skin by passing a small current. Here, we are especially interested in
delivering the vasoactive endothelial-dependent and endothelial-independent
substances acetylcholine (ACh) and sodium nitroprusside (SNP) respectively.
Details are provided in Appendix B.2.3. Iontophoresis has been widely used
to assess how endothelial vasodilation changes with essential hypertension,
heart failure, arteriosclerosis and exercise, as well as aging. Blood flow was
measured by using laser Doppler flowmetry (LDF) at the sites into which
ACh and SNP were delivered by iontophoresis and then the blood flow signals
were analyzed by wavelet transform according to [99]. This is a non-invasive
measurement that enables one to acquire the data to assess the state of the
human cardiovascular system in vivo. It has been especially useful in identi-
fying the physiological origins of the several spectral peaks revealed in earlier
studies [99–104], such as the endothelial, neurogenic and myogenic, as well the
respiratory and cardiac components [105]. The combination of ionotphoresis
and wavelet analysis allows endothelial function to be compared between sub-
jects of different ages by focussing on the frequency interval(s) corresponding
to endothelial activity.

Earlier aging studies of blood flow based on iontophoresis have in some cases
reported that endothelial-dependent vasodilation decreased with increasing
age [47,48]. There are also some studies in which gender difference in endothelial-
dependent vasodilation were observed [106,107]. But wavelet analysis was not
used, and neither were the relevant oscillatory components examined individ-
ually. Here we review LDF measurement of blood flow combined with both
iontophoresis and wavelet analysis and we show that this combination is very
revealing.
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2 Instantaneous frequency and phase

2.1 Description of phase dynamics

In this section, we review briefly the phase dynamics approach to coupled
oscillatory systems, following Kuramoto [24]. Phase dynamics provides a way
of describing a system with only one variable, the phase. We first explain how
the phase is defined and how its dynamics is obtained by use of one of the
reduction methods that will be explained below in more detail.

2.1.1 Small perturbations in general

Suppose that X(t) develops its dynamics according to dX/dt = F(X) and
that there is a linearly stable T -periodic solution X0 which satisfies

dX0

dt
= F(X0), X0(t + T ) = X0(t). (1)

Let C denote a closed orbit corresponding to X0. Clearly the phase φ can be
defined on C as a variable linearly increasing with time, as follows,

dφ(X)

dt
= ω, ω =

2π

T
, X ∈ C. (2)

Now let us add a small perturbation p(t) to the dynamics. At this stage,
p(t) can be anything. It may depend on the variable X or on the variables of
other oscillators. The dynamics of X can then be expressed in the following
equation,

dX

dt
= F(X) + p(t). (3)

Once the perturbation has been added, the orbit does not correspond exactly
to C, but is expected to be a bit away from C. Consequently, the phase needs
to be defined, not only on C, but also throughout the region close to C: the
definition can be extended to the region G containing the neighborhood of C
in the case of the dynamical system dX/dt = F(X). All paths starting from
I(φ) approach the point starting from X0(φ) on C, the crossing point of C
and I(φ) (shown in Fig. 1 as t → ∞). It means that the phase of the same
isochrone remains the same. The following equation then leads to

(gradXφ,F(X)) = ω, (4)
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where (a,b) represents the inner product of vectors a and b.

l i m i t - c y c l e  o r b i t  C

i s o c h r o n e  I

X 0 (   )

I (   )

Fig. 1. Explanation of the isochrone. The closed curve represents the limit cycle
orbit C. Curves on which all the points have the same phase are called isochrones,
I(φ). A crossing point of C and I(φ) is written as X0(φ). The centre of the limit
cycle C, where all the isochrones meet, is a singular point where the phase cannot
be defined.

Note that the definition of phase is made for the perturbation-free system, but
it can also be applied to the system in the presences of the perturbation.

By introducing this phase variable, the dynamics in the region G is finally
described as

dφ(X)

dt
= (gradXφ,F(X) + p(t)) = ω + (gradXφ,p(t)). (5)

It should be noted that gradXφ on the right-hand side is a function of position
X, and that Eq. (5) is not a closed equation for the phase φ. However, if the
perturbation is small, the value can be calculated approximately on the value
on C as

U∗(φ) ≡ gradXφ|X0(φ). (6)

By use of this U∗, the phase equation under perturbation p(t) can be obtained
as

dφ

dt
= ω + (U∗(φ),p(t)). (7)

If the perturbation is given and it is a function of φ, Eq. (7) can be closed in
terms of φ. We now consider a few examples.
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2.1.2 Small deviation from the original dynamical system

In this subsection, we discuss the case where the dynamical equation deviates
from F(X) to F(X)+ δF(X). In this case, p(t) = δF(X) and Eq. (7) becomes

dφ

dt
= ω + (U∗(φ), δF(X)). (8)

In the first approximation, δF(X) can be replaced by δF(X0(φ)). Then Eq.
(8) becomes

dφ

dt
= ω + (U∗(φ), δF(X0(φ))). (9)

This is closed for φ. An important operation called averaging is implemented
in the next step by introduction of a new variable ψ as

φ = ωt + ψ. (10)

Without the perturbation, ψ is a variable independent of time and it represents
the initial phase, but under small perturbation it is a variable that changes
slowly with time. The dynamics of ψ becomes

dψ

dt
= (U∗(ωt + ψ), δF(X0(ωt + ψ))). (11)

Because its dynamics is very slow, ψ can be considered as approximately
constant during one period 2π/T . In fact, ψ is so slow compared to ωt that it
is expected that the averaging of the right hand side occurs on the time scale
of ψ. The dynamics of ψ can thus be expressed as

dψ

dt
= δω, (12)

δω≡ 1

2π

2π∫

0

dθ(U∗(θ + ψ), δF(X0(θ + ψ))). (13)

It should be noted that δω is not dependent on ψ, but constant, since the inte-
grated function in the right hand side is a 2π-periodic function. The equation

dφ

dt
= ω + δω (14)

indicates that the deviation of the original dynamical system leads to a devi-
ation of the frequency in the phase dynamics, i.e. frequency modulation.
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2.2 Analytic methods to detect instantaneous phase

In analysing cardiovascular (and many other) signals, the first thing that we
have to do is to define their phases quantitatively. There are three methods for
defining instantaneous phase. They are based respectively on peak-detection,
the Hilbert transform, and the wavelet transform. The first method can be
used to study entrainment directly [108] or to obtain instantaneous phase [109].
The second method was originally introduced by Gabor [110] and brought into
the context of synchronization by Rosenblum et al. [111]. The third wavelet-
based method was introduced by Lachaux et al [112] and independently by
Bandrivskyy et al. [113]. Wavelet analysis is explained in Sec. 4.1.4. Phase
synchronization between EEG signals from the right and left hemispheres of a
rat’s brain was investigated by use of both the Hilbert and wavelet transforms
by Quiroga et al [114] who found that they obtained similar results by the two
methods.

2.2.1 Marked events

If each cycle of a signal contains distinctive events that can be marked to
characterize the oscillator, the phase can be defined by using the times of
these events,

φ(t) = 2π
t− tk

tk+1 − tk
+ 2πk, tk < t < tk+1, (15)

where tk and tk+1 are the time of the k-th and (k + 1)-th marked events.
By this definition, the phase increases linearly with time. It should be noted
that this method corresponds to phase definition via Poincaré section [109]. In
some cases, we can find a projection of an orbit on a plane (x, y) that rotates
around a point (x0, y0). We can choose a Poincaré section, and tk is then the
time of the k-th crossing of the Poincaré surface. In our case, the Poincaré
Sec. will be defined by the plane of y = max.

2.2.2 Hilbert transform

When a signal g(t) is obtained, there is a way to establish its amplitude and
phase by constructing the so-called analytic signal ζ(t) from the original signal
g(t), according to the equation

ζ(t) = g(t) + ıgH(t) = A(t)eıφ(t), (16)
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where gH(t) is the Hilbert transform of g(t) written as

gH(t) = π−1PV

∞∫

−∞

g(τ)

t− τ
dτ. (17)

Here PV means evaluation of the integral in the sense of the Cauchy principal
value. The instantaneous amplitude A(t) and phase φ(t) are determined by
Eq. (16). Then the phase can be calculated as

φ(t) = arctan
gH(t)

g(t)
. (18)

Note that the phase obtained by this method ranges from −π to π.

From Eq. (17), it can be seen that the Hilbert transform is the convolution
of the functions g(t) and 1/πt. According to a property of convolution, the
Fourier transform ĝH of gH(t) is the product of the Fourier transform of g(t)
and 1/πt. For physically relevant Fourier frequencies f > 0, ĝH(f) = −ıĝ(f),
which means that the Hilbert transform can be seen as a filter whose amplitude
response is unity and whose phase response is a π/2 lag at all frequencies.

It should be remarked that this method is reasonable only when the original
signal g(t) is a narrow-band one. Real signals usually contain a wide range
of frequencies because of noise or other factors, and some filtering may be
necessary in order to use this method.

2.3 Application to cardiovascular signals

2.3.1 Heart rate variability (HRV) and respiratory frequency variability (RFV)

The instantaneous frequencies can be introduced by using phase information
obtained according to the methods described above. If the phase reaches 2π
for the k-th and (k + 1)-th time at tk and tk+1 respectively, the instantaneous
frequency fi is defined as

fi(tk,k+1) =
1

(tk+1 − tk)
where tk,k+1 =

(tk + tk+1)

2
. (19)

The instantaneous frequency between tk,k+1 and tk+1,k+2 is defined by linear
interpolation as

fi(t) =
f(tk+1,k+2)− f(tk,k+1)

tk+1,k+2 − tk,k+1

(t− tk,k+1) + fi(tk,k+1), tk,k+1 < t < tk+1,k+2.(20)
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This method is applied to an individual signal, e.g. to either or both of the
ECG and respiratory signals. The first part of the analysis is to determine
the heart rate (HR) and the respiratory frequency (RF). Their instantaneous
frequencies as functions of time are then heart rate variability (HRV) and res-
piratory frequency variability (RFV), respectively. HR and RF are normally
used to represent time-averaged values or values at one instant, rather than as
functions of time. HRV is a well-established indicator for cardiac regulation.
The existence of fluctuations in heart rate was noticed as early as 1733 by
Hales [115], related to the respiratory oscillation. This modulation is known
as respiratory sinus arrhythmia (RSA). RSA has sometimes been assessed re-
gardless of any distinction of frequency interval within HRV, for example by
using RSA curves [116, 117], and sometimes assessed by the spectral power
corresponding to the frequency interval of respiration [118]. In our work, we
use the latter method for assessing RSA. Actual examples of HRV and RFV
signals are shown in Fig. 2, where the RSA can be seen. These values relate
to single periods during which the phase starts from zero and resets to 2π. As
explained in subsection 2.1.2, the variation of the frequency of HRV and RFV
can be considered to come from the term of (U∗(φ),p(t)) in Eq. (7), where the
perturbation p(t) can be the parameter change described in subsection 2.1.2
and the coupling to other oscillators such as the respiratory oscillation as we
discuss below in section 5.1. The respiratory oscillation evidently has an espe-
cially important role in modulating the heart rate, given that HRV contains
an oscillatory component corresponding to respiration [5]. The spectral analy-
sis of HRV will be discussed in subsection 4.3.1, where the origin of the other
oscillatory processes modulating the heart rate will also be discussed.

2.3.2 Effects of ageing on heart rate (HR) and respiration frequency (RF)

It is well known that the standard deviation of (instantaneous) HR decreases
significantly with age [38, 39, 41, 120]. In Fig. 3, we present the results of 30-
min recordings conducted according to the procedures of Appendix B. The
method used for calculating the average and standard deviations of HR and
RF is described in the caption of Fig. 2: we calculated Spearman’s rank corre-
lation coefficients and their statistical significance using the method described
in Appendix C.2.2, implemented using MatLab (MatWork). Since Spearman’s
rank correlation coefficient does not suppose a particular relationship between
two variables, we do not plot any fitting curve but only the correlation co-
efficients. We denote the Spearman’s rank correlation coefficient by ρ, the
linear correlation coefficient by r and the significance probability for each
by p. There is significant correlation with age in the standard deviation of
(instantaneous) HR both for males (ρ = −0.33, p = 0.01) and for females
(ρ = −0.33, p = 0.01), where by a significant correlation we mean p <= 0.05.
The other values, average (instantaneous) HR, average (instantaneous) RF
and the standard deviation of (instantaneous) RF do not show significant cor-
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Fig. 2. Cardiovascular signals. (a) ECG signal during a time segment where R–
peaks are marked at times tc(j+k) for k = 0, ..., 9. (b) the instantaneous frequency
1/(tc(j+k+1)−tc(j+k)) marked at times (tc(j+k)+tc(j+k+1))/2 for k = 0, ..., 9 forms the
HRV signal (a time series of instantaneous HR). (c) The respiratory signal during the
same time segment where maxima are marked at times tr(i+l) for l = 0, 1, 2. (d) The
instantaneous frequency 1/(tc(i+l+1)− tc(i+l)) marked at times (tc(i+l) + tr(i+l+1))/2
for k = 0, 1, 2 forms the RFV signal (a time series of instantaneous RF) during
the time segment. (e) The HRV signal and (f) the RFV signal during the whole
measurement period. The averages of (instantaneous) HR and (instantaneous) RF
are time-averaged HRV and RFV over the whole time series, and the standard de-
viations of (instantaneous) HR and (instantaneous) RF are the standard deviations
of the HRV and RFV time series, respectively.

relation with age for either males or females. Next, we compared the differences
between males and females in each age group by using the Wilcoxon rank sum
test, which is discussed in Appendix C.1.2. Note that this test considers only
the ranks of the two groups, and not their absolute values, which means that
the significance test is not much affected if outliers raise the standard devia-
tions. The average (instantaneous) RF of females is significantly higher than
that of males in the aged population above 55 years (p = 0.05, male 0.22±0.08,
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Fig. 3. The effect of aging on (a) average (instantaneous) HR, (b) average RF, (c)
the standard deviation of (instantaneous) HR and (d) the standard deviation of
(instantaneous) RF. The values of ρm and pm represent correlation with age and
the probability for males, and the values of ρf and pf represent those for females.
The filled circles represent males, and the crosses represent females.

female 0.27 ± 0.04), whereas the other values do not show significant gender
differences. Throughout this review, all correlations with age were quantified
by the Spearman’s rank correlation coefficients and all comparisons between
two groups based on our data were conducted by the Wilcoxon rank sum test.

The significant decrease in the standard deviation of (instantaneous) HR men-
tioned above was reported, not only for 30-min recordings, but also for 24-hour
ones, enabled by a recent development in measurement technology, the Holter
monitor. Even for these longer recordings, the trend still holds, as shown in
Fig. 4 by Umetani et al [119].

There are, however, some differences in the results reported by different au-
thors. For example, Stein et al. [120] reported that there is a significant de-
crease in average heart rate for male, whereas Umetani et al. [119] reported
that the significant decrease in heart rate is only for females. Ryan et al. [38]
reported that average heart rate did not change between young and aged
groups, as we observed. Umetani et al. [119] observed that the standard devi-
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Fig. 4. Relationships between age
and HRV determined by the stan-
dard deviation of all normal si-
nus RR intervals over 24 hours
(SDNN) in (A) and standard de-
viation of the averaged normal si-
nus RR intervals for all 5-minute
segments (SDANN) in (B) for
healthy male (open squares) and
female (solid circles) subjects.
The fitted regression line and up-
per and lower 95% confidence
limits are shown by the full lines
for male subjects and the dashed
ones for females. The figure is
taken from the paper by Umetani
et at [119] reporting measure-
ments on 112 males and 148 fe-
males ranging in age from 10 to
99 years.

ation was lower in female than male subjects, which we did not observe. The
difference probably comes from the difference of recording time, the number
of subjects and life style of the subjects. Note also that 24-hour recordings
contain the effects and artifacts resulting from the subjects day-to-day lives,
whereas 30-min recordings are made for subjects that are relaxed and lying
on a bed. There is a report by Dietrich et al. that life style factors such as
exercise, alcohol and smoking affect HRV. Nonetheless, the decrease of HRV
(the decrease of the standard deviation of HR) with age seems to be robust.

3 Complexity analysis

3.1 Overview of existing results

In this section, we overview results obtained before the introduction of de-
trended fluctuation analysis (DFA) and detrended moving analysis (DMA).
The history of development in these latter areas has already been described
above in Sec. 1.3

The complexity is independent of the mean and variance of a signal, and
special techniques are required for its determination. Note e.g. that two sine
waves of different amplitude can be thought to have the same complexity,
although they have different variances.
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Chaos theory provides meaningful ways of quantifying complexity. One is the
dimension, which is interpreted as the number of variables in the difference
or differential equations needed to construct a dynamical system that will
reproduce the measured signals. Another is the entropy, which is related to
the amount of information needed to predict the future state of the system.
A larger dimension or a larger entropy imply greater complexity. When the
approximate dimension and entropy ApEn were calculated in the signals of the
blood pressure and heart rate [41], it was observed that younger subjects have
higher complexity than older people in all cases: for both blood pressure and
HRV, and for the both measures. Ryan et al. calculated ApEn and reported
that the complexity of heart rate dynamics is higher in women than in men
[38]. Higuchi suggested quantification of the complexity based on the fractal
dimension [121,122]. By this method, fractal changes in heart rate with aging
and heart failure were studied [123]. The relationship between complexity and
aging has been reviewed by Lipsitz et. al. [42].

Most of the signals or time series measured from physical, biological, phys-
iological and economic systems are non-stationary in character and exhibit
complex self-similar fluctuations over a broad range of space or time scales.
To see the scaling property, a time series is expected to grow with the window
size in a power-law way, and to be unbounded. But a real signal is inevitably
bounded. The trick for solving this paradox is to integrate the signals. The
integration of a signal is the critical first step common to all the methods
used to calculate the complexity. Starting with an original signal g(i), where
i = 1, . . . , N , and N is the length of the signal, the first step of the Hurst ex-
ponent, DFA, and DMA methods is to integrate g(i) and obtain the integrated
signal y(i) as

y(i) =
i∑

j=1

[g(j)− ḡ], (21)

where

ḡ ≡ 1

N

N∑

j=1

g(j). (22)

To calculate the Hurst exponent, we have to calculate the standard deviation,

S(N) = [
1

N

N∑

t=1

{g(i)− ḡ}2]1/2, (23)

and the range,

R(N) = max
1≤i≤N

y(i)− min
1≤i≤N

y(i). (24)
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The Hurst exponent H is then defined as

R/S = (cN)H , (25)

where the coefficient c was taken as 0.5 by Hurst. He found that the ratio R/S
is very well described for a large number of natural phenomena by the above
empirical relation. The relation between the Hurst exponent and the fractal
dimension is simply D = 2−H.

A Hurst exponent of 0.5 < H < 1 represents persistent behavior. Persistence
means that if the curve has been increasing for a period, it is expected to
continue for another period. A Hurst exponent of 0 < H < 0.5 shows anti-
persistent behavior. After a period of decreases, a period of increases tends to
occur.

3.2 Analytical methods: Detrended Moving Analysis (DMA) and Detrended
Fluctuation Analysis (DFA)

The DFA method is a modified root-mean-square (rms) analysis of a random
walk. Both the DMA and DFA methods are based on the fractal property.
Following [79,80], we summarize below the procedures for implementation.

A time series is self-similar if it satisfies

y(i) ≡ aαy(
i

a
), (26)

where y(i) is the integrated original signal g(i), and ≡ means that the statis-
tical properties of both sides of the equation are identical (both sides have the
identical probability distribution as a properly rescaled process). The x-axis
is rescaled as t → t/a and the y-axis as y → aαy.

Suppose that the original signal length is n2, and that a window of length
n1 < n2 is taken to test for self-similarity compared to the original signal.
Then the magnification factor of the x-axis, a, is n2/n1. Suppose that the
probability distribution is s2 for the original signal and s1 after magnification.
Then the magnification factor of the y-axis aα is s2/s1. The self-similarity
parameter α is expressed as

α =
ln Mx

ln My

=
ln s2 − ln s1

ln n2 − ln n1

. (27)

To calculate s, the DFA method uses filtering by polynomial functions. At
first, the integrated signal y(i) is divided into boxes of equal length n. In each
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box, we fit y(i) using a polynomial function yn(i), which represents the local
trend in that box. When an lth-order polynomial function is used for filtering,
we call the method DFA-l.

Next, the integrated profile y(i) is detrended by subtracting the local trend
yn(i) in each box of length n and we can get Yn as

Yn(i) ≡ y(i)− yn(i). (28)

By this procedure, non-stationarity in the form of polynomial trends is elimi-
nated.

Finally, for each box, the rms fluctuation of the integrated and detrended
signal is defined as

F (n) ≡
√√√√ 1

N

N∑

i=1

[Yn(i)]2 (29)

and F (n) is then considered as s in the above discussion.

The DMA method uses a moving average method to get yn. For example, the
simple backward moving average is

yn(i) ≡ 1

n

n−1∑

k=0

y(i− k). (30)

For further details, see [124]. Then we subtract the trend yn from the original
signal as in Eq. (28). We can calculate F (n) in the same way.

The calculation of F (n) is made for varied box lengths n to obtain a power-law
relationship between the rms fluctuation function F (n) and the scale n in the
form of

F (n) ∼ nα. (31)

A linear relationship between log(F (n)) and log(n) indicates the presence of
scaling (self-similarity). The fluctuations in the small boxes are related to those
in the larger boxes in a power-law fashion. The slope of the graph between
log(F (n)) and log(n) determines the self-similarity parameter α, which quan-
tifies the presence or absence of fractal correlation properties in the signals.
For example, 1/f noise with long-range correlation returns α ' 1.0, white
noise with uncorrelated randomness returns α ' 0.5 and Brown noise returns
α ' 1.5.
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Because power laws are scale-invariant, F (n) is also called the scaling function
and the parameter α is the scaling exponent.

These two methods are both suitable for non-stationary signals such as the
physiological signals described before. Which method is better, DMA or DFA?
There is a comparative study about the performance of DFA and DMA meth-
ods [124]. It investigated how accurately these methods reproduce the expo-
nent α, and the limitations of the methods when applied to signals with small
or large values of α. It was shown [124] that DMA tends to underestimate
the exponent, if it is larger than unity whereas the DFA, especially DFA-1,
shows relatively good correspondence to the true values over a wide range of
α. In our study, the exponents went beyond unity and therefore we adopted
the DFA-1 approach.

Fig. 5. Illustration of how the
DFA algorithm is used to test
for scale-invariance and long range
correlations. (A) Interbeat inter-
val (IBI) time series (RR inter-
vals, in seconds) from a healthy
young adult. (B) The full black
curve is the integrated time se-
ries, y(k). The vertical dotted lines
indicate boxes of size n - 100
beats. The straight-line segments
represent the trends estimated in
boxes of size n = 100 and 200
beats by linear least-square fits.
(C) The rms deviations, F (n), in
B are plotted against the box size
n, in a double logarithmic plot.
The two filled circles are the data
points for F (100) and F (200). The
straight line graph indicates pow-
er-low scaling. The figure is taken
from [44].

3.3 Relationship between the exponents obtained by DFA and from the auto-
correlation function

Many simple systems have an auto-correlation function that decays exponen-
tially with time. However it was discovered that in a system composed of
many interacting subsystems, it decays not exponentially but in a power-law
form [19, 125]. This implies that there is no single characteristic time in a
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complex system. If correlations decay in a power-law manner, the system is
called scale-free because there is no characteristic scale associated with a power
law. Because at large time-scales a decreasing power law gives larger values
than a decaying exponential function, correlations described by power laws
are termed “long range correlations” in the sense that they are of larger range
than an exponentially decaying function. The DFA method can detect such
long range correlations and here we will discuss the relationship between the
exponent and the correlation function.

The exponent α (self-similarity parameter) which is calculated from an in-
tegrated time series is related to the more familiar auto-correlation function,
C(τ), or the Fourier spectrum, S(f), of the original (non-integrated) signal. (It
is well known that C(τ) and S(f) are related through the Fourier transform
as S(f) =

∫∞
−∞ C(τ) exp(ı2πfτ)dτ .)

White noise, whose value at each moment is completely uncorrelated with
any previous value, has an auto-correlation function, C(τ), which is 0 for any
non-zero τ (time-lag). The exponent α of white noise is 0.5 [75].

An α greater than 0.5, and less than or equal to 1.0, indicates persistent
long-range power-law correlations, i.e., C(τ) ∼ τ−γ. The relationship between
α and γ is γ = 2 − 2α . It should also be noted that the power spectrum,
S(f), of the original (non-integrated) signal is also of a power-law form, i.e.,
S(f) ∼ 1/fβ. Since the power spectral density is simply the Fourier transform
of the autocorrelation function, β = 1 − γ = 2α − 1. The case of α = 1
corresponds to 1/f noise (β = 1).

When α < 0.5, power-law anti-correlations are present such that large values
are more likely to be followed by small values [126].

When α > 1, correlations exist but cease to be of power-law form; α = 1.5
indicates Brown noise, which is created by the integration of white noise.
Unlike white noise, Brown noise is correlated because its instantaneous value
depends on previous fluctuations and cannot stray too far from them in a
short time. Brown noise has a spectral density proportional to 1/f 2 and has
stronger modulation in slow time scales.

The exponent α can also be viewed as an indicator of the roughness of the
original time series: the larger the value of α, the smoother the time series.
In this context, 1/f noise can be interpreted as a compromise between the
complete unpredictability of white noise (a very rough form of noise) and the
much smoother form of Brown noise [127].
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3.4 Application to cardiovascular signals

3.4.1 Application to HRV signals

As shown in Sec. 2.3.2, HRV exhibits a significant negative correlation with
age. HRV has also been considered in terms of complexity analysis, yielding
results that we review in this subsection.

We first discuss the results of Goldberger et al. [44]. They analyzed interbeat
intervals (the reciprocal of HRV), and reported that the result for a healthy
subject is consistent with long-range correlations (1/f noise). This was con-
firmed by an analysis of surrogate data, which revealed a loss of correlation
properties as shown in Fig. 6. Further, it was reported by Peng et al [128] that
subjects with heart failure, and elderly subjects, show alterations in both short
and long range correlation properties compared with healthy young subjects,
as shown in Fig. 7. For example, the fluctuations of elderly subjects resembled
Brown noise (α ' 1.5) over a short range, whereas those of the heart failure
patients resembled white noise (α ' 0.5).

Fig. 6. Fractal scaling analysis
for 24-hr interbeat interval time
analysis. The filled circles repre-
sent data from a healthy sub-
ject, whereas the open circles are
for an artificial time series (sur-
rogate data) created by random-
izing the sequential order of data
points in the original time series.
(A) Plot of log F (n) as a func-
tion of log(n) from DFA analy-
sis. (B) Fourier spectral analysis.
The spectra have been smoothed
(binned) to reduce scatter. The
observed α ' 1.0, β ' 1.0 for a
healthy subject is consistent with
1/f noise. After randomization,
α ' 0.5, β ' 0.0 is consistent with
white noise. The figure is taken
from [44].
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Fig. 7. Scaling analyses of heart-
beat time series in health, aging
and disease. Log F (n) is plotted as
a function of log(n) for a healthy
young subject, a healthy elderly
subject, and a subject with con-
gestive heart failure. To facilitate
assessment of these scaling differ-
ences, the plots are vertically off-
set from each other. The figure is
taken from [128].

In order to check the robustness of our conclusions about the effect of aging
on complexity, we calculated the exponent α of signals analysed by use of the
DFA method. Original HRV signals of a young and an old female, recorded by
ourselves, are shown in Fig. 8, together with white and Brown noise signals
for comparison. The HRV signals were determined from the intervals between
R-peaks as explained in section 2.3.1. The interval between successive R-peaks
is usually around 1 second. According to Eq. (19), the sampling frequency of
HRV signal is by construction around 1 Hz although we made their effective
sampling frequency 10 Hz by linear interpolation. To compare HRV signals
to white noise and Brown noise, we generated and recorded white noise with
a sampling frequency 1 Hz and extended its sampling frequency to 10 Hz by
linear interpolation, just as we did to the HRV signals. Then the Brown noise
with sampling frequency 1 Hz was integrated from the band-limited white
noise that we had generated, and its sampling frequency was also extended to
10 Hz by linear interpolation.

We take the number of points n between 20 and 2000, corresponding to 2–
200 sec. DFA results for white noise, Brown noise and the HRV signals from
a young and an old female are shown in Fig. 9. When n is small, the slope be-
tween log(n) and log(F ) deviates from 0.5 for white noise, as shown in Fig. 9a;
this deviation is thought to be attributable to a too-small sampling frequency.
Fig. 10 shows the time series of the white noise with sampling frequency of
10 Hz without linear interpolation, and its DFA analysis, to compare with the
band-limited white noise generated with a sampling frequency of 1 Hz and
then converted to an effective sampling frequency of 10 Hz by linear inter-
polation. In Fig. 10, an exponent of ∼0.5 is obtained within the region from
n = 20 to n = 200, and the information below n = 100 does not have to be
discarded as we did in the case of the band-limited white noise converted to an
effective sampling frequency of 10 Hz by linear interpolation. For this reason,
we relied on the result only when n is above 100, for all the other results, since
they have the same sampling frequency as the band-limited white noise.
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Fig. 8. Time series of (a) white noise band-limited at 1 Hz, (b) its integrated time
series (Brown noise), (c) HRV from a young female and (d) HRV from an aged
female.

The exponent of the band-limited white noise is 0.51, which is close to the
expected value of 0.5, as shown in Fig. 9a. We calculated the linear correlation
coefficient and conducted a runs test as explained in Appendix C, in order to
validate the linear regression. The coefficient r is 0.99 and the probability p is
0.0. The result of the runs test is that h = 0 and p = 1.0, which means that
the null hypothesis that the distribution around the regression line is random
cannot be rejected. The exponent of the Brown noise is 1.46, which is also
close to the expected value of 1.50, as shown in Fig. 9b (the linear correlation:
r = 1.00 and p = 0.0, the runs test h = 0 and p = 1.0). The exponents of
human HRV signals cannot be determined uniquely, as in the case of white or
Brown noise, because the slope between log(F ) and log(n) changes depending
on the size of n, as shown at the bottom of Fig. 9. We divided the n into two
intervals so that the slope of HRV could be determined more reliably. The
exponent αi of intermediate time scale is defined by n within 100–500 (10–
50 sec) and the exponent αl of long time scale is defined by 500 < n < 2000
(50–200 sec). The physiological meaning of each interval will be described
below in section 4.3.1. For the HRV of a young female, αi is 0.85 (the linear
correlation: r = 1.0 and p = 0.0, the runs test h = 0 and p = 1.0) and αl is
0.53 (the linear correlation: r = 0.98 and p = 0.0, the runs test h = 0 and
p = 1.0). For the HRV of an aged female, the αi is 1.09 (the linear correlation:
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r = 0.99 and p = 0.0, the runs test h = 0 and p = 1.0) and αl is 0.80 (the
linear correlation: r = 0.99 and p = 0.0, the runs test h = 0 and p = 1.0).

The results for all subjects are plotted separately for males and females in
Fig. 11. The exponent αi has significant correlation with age for both males
(ρ = 0.27, p = 0.02) and females (ρ = 0.42, p = 0.00). There is no statistically
significant gender difference in the younger age group below 40 years (p =
0.19); for the older age group above 55 years there is a difference (p = 0.06),
but not one that is statistically significant.

In the long range (50-200 sec), there is no significant correlation related to age
for either males (ρ = 0.01, p = 0.96) or females (ρ = 0.01, p = 0.96). There is
no significant gender difference, either: neither in the younger age group below
40 years (p = 0.35), nor in the older age group above 55 years (p = 0.80).
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Fig. 9. Log-log plots of F (n) for (a) white noise, (b) Brown noise, (c) the HRV of a
young female, and (d) the HRV of an aged female. In (a) and (b), the exponent α was
calculated on the right side of the line, n = 100. In (c) and (d), the exponent of the
intermediate time scale αi was calculated between the two lines (the intermediate
range), n = 100 and n = 500, whereas the exponent of the long time scale αl

was calculated on the right side of the line n = 500 (the long range). The fitted
regression is shown by the solid line, and the upper and lower thinner lines represent
95% confidence intervals.
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Fig. 10. (a) Band-limited white noise whose effective sampling frequency has been
increased to 10 Hz, and (b) the corresponding log-log plot of F as a function of
n. The exponent can be defined uniquely from n = 20 to n = 2000 since we now
have a sufficiently high sampling frequency: cf. Fig. 9a where two slopes are needed
to obtain a satifactory fit. The fitted regression is shown by the solid line, and the
upper and lower thin lines represent 95 % confidence intervals.
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Fig. 11. DFA correlation with age for (a) the exponent of intermediate range αi,
and (b) the exponent of long range αl. The filled circles represent males, whereas
the crosses represent females.

3.5 Discussion

There are several studies of aging based on the use of DFA [44, 49]. It was
found that the DFA exponents increase with age, implying that complexity
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Fig. 12. Singularity spectra of heart rate signals in health and disease. The function
D(h) measures the fractal dimension of the subset that is characterized by a local
Hurst exponent of value h. (The local Hurst exponent h is related to the exponent α
of the DFA method by the relationship α = 1+h.) Note the broad range in values of
h with non-zero fractal dimension for the healthy heart beat, indicating multifractal
dynamics. In contrast, data from a representative subject with severe heart failure
shows a much narrower range of h with non-zero fractal dimension, indicating a
loss of multifractal complexity with a life threatening disease. The figure is taken
from [16].

decreases with age. The exponents depend on the time window within which
one performs the calculation. These authors took a size of 4 to 11 seconds for
the short-term exponent and a size more than 11 seconds for the intermediate-
term exponent. In our case, it was found out that the result below 10 seconds
is not correct because of the lack of information in the original heart rate
signals and we therefore discarded information below 10 seconds. And for
reasons which we describe below in section 4.3.1, we divided the window size
into 10-50 seconds and 50-200 seconds. It should be noted that the choice of
window size is of critical importance for getting correct results. Our results are
consistent with the earlier result that the exponent increases with age when
calculated on a time scale from 10 to 50 seconds. The HRV signals of younger
subjects are relatively close to white noise, whereas those of aged subjects are
relatively close to Brown noise in the intermediate time scale. That means
that the HRV signals of aged subjects are less complex than those of young
subjects. These results support the hypothesis that aging has an associated
loss of complexity [44]. The physiological origins of this decrease in complexity
will be discussed in detail below, in section 4.3.1 in relation to the detailed
spectral analysis of HRV signals.

Although DFA is a good way to quantify the complexity, it has to be noted
that it is intended only for mono-fractal signals, to measure only one exponent
characterizing a given signal. It is reported that the heart rate data of healthy
subjects are not mono-fractal but multi-fractal [44]. Different parts of the
signal may have different scaling properties. Multi-fractal signals show self-
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similar (scale-invariant) fluctuation over a wide range of time scales, require a
large number of indices to characterize their scaling properties, and are more
complex than mono-fractal signals as shown in Fig. 12. For example, the slope
between log(F (n)) and log(n) often changes dramatically around n = 50 as
it can be seen in Fig. 9. It means that DFA is insufficient to identify fractal
correlation, and may in fact indicate the multi-fractal property.

In practice, it is not always clear how to choose the optimal window size within
which to conduct the linear fitting, such that the size suits all subjects, whose
signals may have significantly different characteristics. The more we divide a
signal, the less information we obtain, because the number of points for the
linear fitting decreases. However if we take too long a window, the assumption
of a linear relationship between log(F (n)) and log(n) no longer holds. This is
an inherent limitation of this method.

Beckers et al. [129] reported that, during day-time hours, other nonlinear
indices such as fractal dimension (FD) [130], correlation dimension (CD) [131],
approximate entropy (ApEn) [132] and the Lyapnov exponent decrease with
age for both males and females. Their FD results are shown in Fig. 13 as
an example. They found in addition that the correlation with age in some
indices disappeared during the night, especially for male subjects, i.e. there
is day-night variation in the indices. It was also reported [129] that there is a
tendency for higher nonlinearity during the night. The authors attribute the
changes to vagal modulation of the heart rate.

Although more studies are needed to identify unambiguously the physiological
reasons for the changes, it is noted that complexity is a useful measure of aging
or disease; it has yet to be established whether or not it can discriminate
between different diseases.

4 Detection of time-varying oscillatory components

In this section, we discuss the methods used to detect oscillatory components
in the measured signals.

There are two major difficulties in the frequency analysis of cardiovascular
signals. The first is the time-varying nature of the characteristic frequencies.
As seen in the HRV and RFV of Fig. 2, the signals do not have a constant
period, but their inherent cycles always fluctuate. The second problem is the
broad frequency band within which the characteristic peaks are expected.
There is always a problem of resolution in time and frequency, for whatever
method used.
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Fig. 13. (A) Decrease of the
fractal dimension (FD) of
HRV with age in male sub-
jects, r = −0.56 (p < 0.001),
and (B) in female subjects,
r = −0.56 (p < 0.001). The upper
and lower lines represent the
90% confidence intervals. There
is no significant difference in FD
between male and female sub-
jects, but the significant decrease
with age persists regardless of
whether the measurements were
made during day or night. A
more detailed analysis using age
intervals of 10 years showed a
stabilization in the age decline
of the FD at the age of 40 or
more. The FD has correlation
with other nonlinear indices such
as ApEn, DFA exponents, and
Lyapvnov exponent. The figure is
taken from [129].

The FFT constitutes the basic method of frequency analysis, and it is still
commonly used. But it has shortcomings when applied to the analysis of finite
or non-stationary data. First of all, the FFT cannot follow a time-varying
frequency. It produces only one picture of the frequency domain from a whole
signal. If the signal has a time-varying frequency, the corresponding frequency
peak is broadened. Furthermore, an abrupt change at any given instant affects
the whole result. To overcome these drawbacks of the FFT, the short-time
Fourier transform was introduced by Gabor [110] in which a relatively narrow
window is shifted along the signal to obtain information about the evolution
with time, the FFT being performed within the window to obtain the current
frequency components (see section 4.1.1). But time and frequency resolution
are dependent on the window length and the detection of low frequencies
demands a wide window. Wavelet analysis is more suitable for signals with
time-variable frequencies than Fourier analysis because a sudden change has
a less global effect. It is a big merit, because a single movement of the body
during measurement could easily destroy the entire analysis in the case of
FFT. Moreover, it is more accurate with low frequencies because it is a scale-
independent method in terms of frequency (see section 4.1.4 below).
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4.1 Analytical methods

4.1.1 Fourier analysis

The Fourier transform is a method which detects the frequency components
in a time-domain signal g(u) by use of the following equation,

ĝ(f) =

∞∫

−∞
g(u)e−2πıtdu. (32)

The original signal can be recovered by an inverse Fourier transform,

g(u) =

∞∫

−∞
ĝ(f)e2πıtdf. (33)

The energy of the signal is defined as

Etot =‖ g ‖2=

∞∫

−∞
|g(u)|2du. (34)

The total energy in the frequency domain is defined as

‖ ĝ ‖2=

∞∫

−∞
|ĝ(f)|2df. (35)

Plancherel’s theorem, which is equivalent to Parseval’s theorem for Fourier
analysis, states that

‖ g ‖2=‖ ĝ ‖2 . (36)

4.1.2 Short time Fourier transform

The Fourier transform cannot deal with properties that are local in time. To
overcome this problem, the short-time Fourier transform (STFT) was intro-
duced. A window w(u) of fixed length is shifted along in time t to obtain the
local information around t. Information about the original signal g(u) in the
time-frequency domain ĝ(f, t) is then obtained from

ĝ(f, t) =

∞∫

−∞
w(u− t)g(u)e−2πıtdu. (37)
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The original signal is reconstructed as

g(u) =
1

2π ‖ w2 ‖
∞∫

−∞
dt

∞∫

−∞
ĝ(f, t)w(u− t)e2πıtdf. (38)

In analogy to Plancherel’s theorem, the energy is expressed as

‖ g ‖2=

∞∫

−∞
|g(u)|2du =

1

‖ w2 ‖
∞∫

−∞

∞∫

−∞
|ĝ(f, t)|2dfdt, (39)

where ‖ w2 ‖= ∫∞
−∞ |w(t)|2dt.

The uncertainty principle can be used here to emphasize that accuracy of
localization in time, and frequency resolution, cannot be optimized simulta-
neously,

t∗≡ 1

‖ w ‖
∞∫

−∞
|w(t)|2tdt, (40)

f∗≡ 1

‖ ŵ ‖
∞∫

−∞
|ŵ(f)|2f df, (41)

where ‖ ŵ2 ‖= ∫∞
−∞ |ŵ(t)|2df . The ∆t and ∆f is determined by

∆t
2≡ 1

‖ w ‖
∞∫

−∞
|w(t)|2(t− t∗)2dt, (42)

∆f
2≡ 1

‖ ŵ ‖
∞∫

−∞
|ŵ(f)|2(f − f∗)2df. (43)

The uncertainty principle states

∆t∆f ≥ 1

4π
. (44)

This means that in order to gain good time resolution, a narrow window should
be used but that, on the other hand, good frequency resolution and detection
of low frequencies demands wide windows.
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4.1.3 Discrete Fourier transform (DFT)

In order to apply the Fourier transform to real signals, we have to use the
discrete Fourier transform. Suppose that the original signal has a finite window
of length T = Nts and is sampled at discrete points jts, where j = 0, . . . , N−1.
The discrete Fourier transform of the signal

G(fk) =
N−1∑

j=0

g(jts)e
−2πıjk/N (45)

is defined only for discrete frequencies, fk = k/T where k = 0, . . . , N − 1. The
frequency resolution is determined by the length of the signal as 4f = 1/T
and the upper frequency limit fmax equals ts/2 .

4.1.4 Wavelet Analysis

4.2 Methods

Wavelet analysis is a scale-independent method in terms of frequency. It uses
a mother wavelet which is based on functions of various scales. In the present
case, we use the Morlet mother wavelet because of the ease with which scale
can be converted to frequency. Within the uncertainty principle, it gives op-
timal time resolution for high frequencies, and optimal frequency resolution
among the low frequency components. It can be written as

ψ(u) =
1√
π

e−iue−u2/2. (46)

By use of a scaling factor s and a centered time t, a family of nonorthogonal
basis functions is obtained as

Ψs,t(u) = |s|−1/2ψ(
u− t

s
). (47)

The continuous wavelet transform of a signal g(u) is then defined as

g̃(s, t) =

∞∫

−∞
Ψ̄s,t(u)g(u)du, (48)

where Ψ̄ represents the complex conjugate of Ψ. Thus any specific scale is
avoided and the analysis becomes scale-independent in terms of frequency.
The spectral function g̃(s, t) is complex and can be expressed in terms of
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its amplitude and phase as g̃(s, t) = r(s, t) exp(ıθ(s, t)). The phase θ(s, t) is
considered as an instantaneous phase of the oscillation of frequency scale s at
time t [113].

The energy density of the signal in the time-scale domain is expressed as

ρ(s, t) = C−1s−2|g̃(s, t)|2 (49)

according to Kaiser [133]. The total energy of the signal g(u) is

Etot =‖ g ‖= C−1
∫ ∫ 1

s2
|g̃(s, t)|2dsdt. (50)

Then energy in a frequency interval from fi2 to fi1, as introduced in subsec-
tion 4.3.1, is expressed as

Ei(fi1, fi2) =
1

(fi2 − fi1)(t2 − t1)

1/fi2∫

1/fi1

t2∫

t1

1

s2
|g̃(s, t)|2dsdt. (51)

If we use the relationship s = 1/f and ds = −df/f 2, we can easily derive the
following equation,

Ei(fi1, fi2) =
1

(t2 − t1)

fi1∫

fi2

t2∫

t1

|g̃(f, t)|2dfdt =‖ g̃ ‖2 . (52)

We can recover ‖ g ‖=‖ g̃ ‖2 in analogy to Plancherel’s theorem.

The time and frequency-averaged amplitude, or wavelet amplitude, in a fre-
quency interval from fi2 to fi1 is expressed as

Ai(fi1, fi2) =
1

(fi2 − fi1)(t2 − t1)

fi1∫

fi2

t2∫

t1

|g̃(f, t)|dfdt. (53)

If we use the relationship s = 1/f and ds = −df/f 2, we quickly arrive at the
following equation,

Ai(fi1, fi2) =
1

(fi2 − fi1)(t2 − t1)

1/fi2∫

1/fi1

t2∫

t1

1

s2
|g̃(s, t)|dsdt. (54)

Bračič and Stefanovska denoted the averaged amplitude as the absolute am-
plitude [134].
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The relative amplitude and energy are defined as the ratio of each of those
quantities within a given frequency interval to that within the total frequency
interval, in the following way,

ai(fi1, fi2) =
Ai(fi1, fi2)

Atot

, (55)

ei(fi1, fi2) =
Ei(fi1, fi2)

Etot

. (56)

4.2.1 Frequency resolution

Suppose that the mother wavelet has its centre of gravity at t0, f0, in time and
frequency and that the corresponding deviation is 4t0 and 4f0 . The scaled
mother wavelet Ψs,t has its centre at st0 and a deviation s4t0 according to
Eq. 47. The centre of Ψs,t in the frequency domain is expressed as

f(s) =
1

s
f0(s), (57)

and the corresponding standard deviation as

4f(s) =
1

s
4f0(s). (58)

Then the local information around f is given in the frequency interval

[f0/s−4f0(s)/2s, f0/s +4f0(s)/2s]. (59)

The ratio between the centre frequency f(s) and bandwidth 4f(s)

4f(s)

f(s)
=
4f0(s)

f0(s)
(60)

is independent of the scaling s. This property can be seen if the time averages of
wavelets of simple sine waves, sin(2πt), sin(0.2πt) and sin(0.02πt) are plotted
on linear and semi-log scales as shown in Fig. 14. On the semi-log scale, the
width of the peak appears to be the same although on the linear scale it looks
quite different.

Fig. 15 compares the frequency resolution achieved when an HRV signal is
analysed either by FFT or by wavelet transform. As described in 1.4, the
frequency bands of HF (0.15-0.40 Hz), LF (0.04-0.15 Hz) and VLF (0.003-
0.04 Hz) have been identified mainly by use of the FFT. The wavelet transform
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Fig. 14. Time-averaged wavelet amplitude for simple sine waves (see text) plotted
(a) on a linear scale and (b) on a semi-log scale.
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Fig. 15. FFT power spectra for simple sine waves (see text) plotted (a) on a linear
scale and (b) as the time-averaged wavelet amplitude plotted on a semi-log scale,
from the same HRV signal.

enables some additional peaks to be distinguished, which will be discussed in
4.3.1.

4.2.2 Energy and amplitude

Let us see what are the energy and amplitude of the wavelet. As described
below, our frequency interval of interest is from 0.005 to 2.0 Hz (see the Ta-
ble 1). According to these divisions of frequency intervals, we calculated the
energy and amplitude of the sine waves, sin(2πt), sin(0.2πt) and sin(0.02πt)
by wavelet analysis. For all the three cases, the total energy is same. It reflects
the fact that the total energy equals

∫ |g(u)|2du. The absolute energy within
a certain interval depends on the square of the amplitude of oscillation and
does not depend on the frequency. In the case of B sin(ωt), the total energy
of the wavelet depends only on B2, but not on ω. Then the relative energy in
the ith interval is proportional to |Bi|2/ ∑6

j=1 |Bj|2.

On the other hand, the amplitude of the wavelet is affected not only by the
amplitude B but also by the frequency ω. To illustrate this, we use three sine
functions whose total amplitudes differ. The higher the frequency, the higher
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becomes the total amplitude. However, if we calculate the absolute amplitude
in each interval, a higher frequency produces a lower amplitude. In the case
of sin(2πt), the total amplitude is 2.7 and A1, which is averaged from 0.6 to
2.0 Hz, is 3.9, whereas in the case of sin(0.2πt), the total amplitude is 0.9 and
A3, which is averaged from 0.052 to 0.145 Hz, is 18. It is because the wavelet
has the property that 4f/f is constant, as seen in Fig. 14b. If two frequencies,
ω1 and ω2, lie in different intervals i1 and i2, and if the two oscillations have
the same amplitude, the wavelet amplitude of the lower frequency Ai1 is higher
than that of the higher frequency Ai2 . If the two frequencies lie in the same
interval such that sin(2πt) and sin(2.4πt), the relative amplitude returns the
same value in both cases, which is of course obvious from its definition. But
if there are several peaks in different intervals, the interpretation of relative
amplitude is much more complicated because the information about amplitude
and frequency in the several intervals is combined.

4.3 Application to cardiovascular signals

4.3.1 Components that modulate HRV

It is interesting to compare the Fourier transform and evolutive autoregressive
(AR) spectral analyses, which are frequently used with HRV signals, with the
wavelet transform. For the Fourier transform, the frequency resolution ∆f is
determined by the window length and is constant for all frequencies. For that
reason, it was concluded that Fourier methods are inadequate for the location
of peaks in the low frequency interval. In contrast to the Fourier transform,
∆f/f for the wavelet transform is constant. Therefore the relative frequency
resolution remains the same over all frequency intervals. The absolute fre-
quency resolution ∆f for wavelet transform is actually much better in the low
frequency interval than in the high frequency interval, as shown in Fig. 15.
Because of the wide frequency range of the intervals in Table 1, the wavelet
transform is more suitable than the Fourier transform.

Autoregressive spectral estimation avoids the problem of frequency discretiza-
tion. In this method, a model of the time series is first built, and the spectrum
of the model is considered as an estimate of the spectrum of the original time
series. Linear models of different order are used to represent measured signals.
An advantage of the wavelet transform compared to AR estimation is that it
is calculated directly from data, and does not need modeling. The limitations
of linear modeling, and the choice of model order, are thus avoided.

Lotrič et al. [94] discussed the relative resolution at low frequencies provided by
the AR, FFT and wavelet methods as applied to HRV signals. They concluded
that the wavelet transform yields the best low-frequency resolution.
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Interval Frequency (Hz) Physiological origin

I 0.6-2.0 cardiac activity

II 0.145-0.6 respiration

III 0.052-0.145 myogenic activity

IV 0.021-0.052 neurogenic actibity

V 0.0095-0.021 endothelial metabolic activity

VI 0.005-0.0095 endothelial activity
Table 1
The frequency intervals seen in blood flow oscillations, and their physiological ori-
gins.

Fig. 16. The time-frequency domain of the
wavelet transform of HRV.
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Fig. 17. The time-averaged ampli-
tude of HRV.

In what follows, we will be interested in the frequency intervals listed in Table 1
together with the physiological processes that are believed to give rise to them.
Note that these oscillatory components not only modulate the heart rate, but
also manifest directly in blood flow signals measured by LDF. It is the latter
with which we will be especially concerned.

Blood flow oscillations within frequency intervals I–V were investigated by
Stefanovska and co-authors [5, 99, 134]. The present study also considers a
lower frequency interval VI that was identified more recently [101]. The am-
plitude of the wavelet in the time-frequency domain, and the time-averaged
wavelet spectrum are presented in Figs. 16 and 17, respectively. The physiolog-
ical origins of these spectral peaks have been thoroughly investigated through
several different studies [5, 78, 99–105]. A brief summary of these studies and
conclusions drawn from them will be found in a recent status paper by Ste-
fanovska [62]. The existence of the spectral peaks has also been confirmed in
a number of independent LDF blood flow studies [135–141]. We now review
the intervals briefly. They are –
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I Around 1 Hz, corresponding to cardiac activity. The basic frequency near
1 Hz in the ECG signal, which dominates in the blood pressure, corresponds
to the heart rate. At rest, it varies from 0.6 in sportsmen to 1.6 Hz in subjects
with impaired cardiovascular systems. The effect of the heart pumping is
manifested in the vessels.

II Around 0.2 Hz, corresponding to respiratory activity. Following Hales’ dis-
covery of RSA, it has been the subject of many subsequent investigations
[142–145]. Modulation in this frequency interval corresponds closely to the
respiratory signal as shown in the Fig. 2, and the instantaneous respiratory
frequency corresponds well to the peak in the frequency domain of HRV
wavelet analysis.

III Around 0.1 Hz, corresponding to myogenic activity. The heart and respi-
ratory activity serve as pumps that drive blood through the vessels. The
latter are themselves also able to help control blood flow via a mechanism
known as myogenic autoregulation. The vascular smooth muscles contract
in response to an increase of intravascular pressure, and relax in response
to a decrease of pressure [146, 147]. Spontaneous activity recorded in mi-
crovascular smooth muscle cells was shown to lie in the range 4-10 events
per minute (0.07-0.1 Hz) [148]. It was suggested that these waves originate
locally from intrinsic myogenic activity of smooth muscle cells in resistance
vessels [102, 149–155]. Wavelet analysis has shown that the amplitude of
myogenic oscillations is increased by exercise [102, 156] and decreased by
local cooling [113].

IV Around 0.04 Hz, corresponding to neurogenic activity. The autonomous ner-
vous system innervates the heart, lungs and blood vessels, except capillaries.
The continuous activity of the autonomous nervous system serves to main-
tain the basal level of contraction of the vessels. The nerves cause the release
of substances that affect the activities of smooth muscles, leading in turn
to the changes in the vessels’ radii and resistance. Thus the nervous system
takes part in vasoconstriction [157]. The peak around 0.03 Hz has been ob-
served in blood pressure, blood flow and HRV signals. It was hypothesized
to originate either from metabolic [158] or from neurogenic activity [159].
Kastrup et al. [153] found out that the oscillation around 0.03 Hz disap-
peared following local and ganglionic nerve blockade in chronically sym-
pathectomized tissue in human. They suggested that this oscillation is a
vascular reaction of neurogenic origins. In an LDF study [160] of rabbit
skeletal muscle tissues, the oscillations of frequency of 1-3 per minute were
suggested as being under neurogenic control. By use of wavelet analysis,
it was confirmed that this frequency range is associated with sympathetic
nerve activity [104, 161]. It was found that there were significantly lower
oscillation amplitudes on flaps of transplanted skin, as compared to those
for intact skin, in this frequency interval [105]. Bajrović et al. also observed
a significant change before and after denervation in rats [162]. An indepen-
dent study has confirmed these findings by simultaneous measurements of
LDF signals on the surfaces of a free latissimus dorsi myocutaneous flap
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and on the adjacent intact skin of a healthy limb [139]. Recent studies of
the effects of local anæsthesia by Landsverk et al [161] have confirmed the
connection between sympathetic activity and the spectral peak in interval
IV.

V Around 0.01 Hz, corresponding to NO-related endothelial activity. The
blood supplies the cells with nutrients and removes the waste products of
their metabolism while circulating around the circuit of vessels. The sub-
stances related to metabolism such as O2 or CO2 have a direct effect on
the state of contraction of the vascular musculature. The control of the
blood flow based on the concentrations of metabolites is termed metabolic
regulation. By simultaneous ionotophoretic application (see Appendix Secs.
B.2.3(b) and B.4.2) of acetylcholine (ACh, an endothelial-dependent va-
sodilator) and sodium nitroprusside (SNP, endothelial-independent), Ste-
fanovska and Kvernmo and co-authors have shown that the oscillations
around 0.01 Hz apparently originate from endothelial activity [99, 100,103,
161,163]. The layer of endothelial cells serves as a barrier between the blood
and the tissues of vessels, and controls the contraction and relaxation of
smooth muscle by releasing various substances. It seems that metabolic
regulation of the blood flow is mediated by the activity of endothelial cells
through adjustment of the concentrations of various substances. Nitric oxide
(NO) is one of the most important vasoactive substances. It was reported
that the interval V was modulated by the inhibition of NO synthesis of
endothelium [100], suggesting that this interval is related to NO from en-
dothelium. An independent study has confirmed that the oscillations in this
interval are NO-dependent. [136].

VI Around 0.007 Hz, apparently corresponding to NO-independent (probably
prostaglandin-dependent) endothelial activity. This interval was not iden-
tified in some of the earlier studies, probably because 20-min recordings
provided insufficient low frequency resolution and these oscillations were
filtered out during data pre-processing. However, a strong peak was later
observed around 0.007 Hz [101, 113] and is clearly evident in the present
work. It was found that the wavelet amplitude at the corresponding fre-
quencies differs between healthy subjects and cardiac heart failure patients
when ACh is iontophoretically introduced [163].

Note that interval I is not shown in Fig. 17. The HRV signals are determined
according to R-peaks as explained in section 2.3.1. The interval between se-
quential R-peaks is usually around 1 s. According to Eq. (19), the sampling
frequency of the HRV signal is also around 1 Hz. It means that the HRV sig-
nals do not have enough sampling points to enable the frequency of interval I
to be resolved.

For the calculations in this section, the scaling s is used from 0.5 to 200 with
a factor 1.05.
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Based on the use of the FFT [164], it was reported that the powers of HF (0.15-
0.4 Hz) and LF (0.04-0.15 Hz) are significantly lower in elderly subjects than
in young subjects. Lotrič et al. [94] studied the effects of aging on activity by
using wavelet transform within the frequency intervals from I to V in Table 1.
In the latter investigation, a decrease with age was observed in all the intervals.
There were several differences between the earlier study [94] and our present
one: (i) the present measurements allow spectral calculations in intervals II-VI,
compared to intervals II-V earlier; (ii) the healthy subject group here is larger
(iii) the larger numbers now allow us to separate the effect of gender; (iv)
the subjects in [94] were all Slovenian, whereas here they are mostly British.
We note that Vigo et al. [165] reported a decrease of wavelet power with age,
albeit using a different definition of intervals within 0.003–0.4 Hz.

We now present new data and their analyses. The effects of aging on the
absolute energy within each interval except I, are shown in Fig. 18, and those
on relative energy in Fig. 19.

Here, and in what follows, we take p < 0.05 as indicating statistical significance
(see Appendix B).

It can be seen that total energy decreases significantly with age both for males
(ρ = −0.29, p = 0.02) and females (ρ = −0.40, p = 0.01), corresponding to
significant decreases with age in the standard deviation of HRV as shown in
Fig. 3. These decreases of total energy come from the significant decreases in
absolute energy in intervals II and III both for males and for females. Absolute
energy in interval II decreases significantly with age for both males (ρ = −0.48,
p = 0.00) and females (ρ = −0.53, p = 0.00); absolute energy in interval III
also decreases significantly with age for both males (ρ = −0.38, p = 0.00) and
females (ρ = −0.43, p = 0.00). Absolute amplitudes in intervals IV, V and VI
do not show significant age-related changes.

The relative energy in interval VI and V (endothelial) increases significantly
for males (VI: ρ = −0.24, p = 0.04 and V: ρ = −0.31, p = 0.01) and for
females (VI: ρ = −0.32, p = 0.03 and V: ρ = −0.43, p = 0.00). In interval III
(myogenic), it decreases significantly for males (ρ = −0.23, p = 0.05). Relative
amplitudes decrease in interval II both for males (ρ = −0.25, p = 0.04) and
for females (ρ = −0.43, p = 0.00).

Gender differences were observed in interval II for HRV, and these are summa-
rized in Table 2. In the younger population below 40 years (p = 0.01) females
are higher than males in terms of absolute energy, but the two groups are the
same in the older population above 55 years (p = 0.02). In the case of relative
amplitude, there are significant differences in interval II in the younger pop-
ulation (p = 0.05). It means that RSA is relatively (and absolutely) stronger
for females than for males. Physiological reasons why these gender effects ex-
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Fig. 18. Energy in HRV as a function of age. (a) Total energy. Absolute energy in
intervals (b) VI, (c) V, (d) IV, (e) III, and (f) II. The filled circles represent males,
and crosses represent females.
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ist are a matter for discussion. But the results indicate that the gender is an
important factor to take into account in studies of HRV.

Note that there are some differences between these results and those of [94].
In particular, we see some evidence for increases with age of the relative en-
ergy in intervals IV,V,VI with corresponding decreases in intervals II, III –
although all trends are not statistically significant. The differences are proba-
bly attributable to the differences between the studies themselves (see above).
We note that Choi et al. [166] reported that ethnicity can affect the power
of HF and LF. These results indicate that characteristics of subjects such as
their gender, nationality and age should be carefully considered in conducting
measurements and in drawing conclusions from the results.

Gender difference (HRV)

Absolute energy Relative energy

below 40 years above 55 years below 40 years above 55 years

II p = 0.01 (f) p = 0.02 (f) p = 0.05 (f) p = 0.39

average (male) 0.07± 0.06 0.02± 0.02 0.29± 0.14 0.25± 0.20

average (female) 0.13± 0.08 0.06± 0.06 0.37± 0.15 0.26± 0.10
Table 2
Significance of gender differences in interval II of the blood flow wavelet analysis.
Cases where females have significantly higher energy than males are indicated with
an (f). The first row shows p-values calculated by the Wilcoxon rank sum test, the
second row gives the average and standard deviation for males, and the third row
gives the average and standard deviation for females.

4.3.2 Oscillatory components in the blood flow signal

In this section, we discuss the oscillatory components in blood flow signals,
measured according to the procedure in Sec. B.

As outlined in Appendix A.2, the blood circulates around the closed loop pro-
vided by the vascular system. The cardiac output, determined by the product
of the heart rate and the stroke volume, amounts to about 5 liters per minute.
The oscillations in blood flow propagate from the heart into the microcircula-
tion. Basal blood flow was recorded on the right wrist and inner right ankle;
the iontophoresis chambers for ACh and SNP were positioned a few cm apart
on the volar side of the left arm. One of the blood flow signals is shown in Fig.
B.4.

It is known that ACh induces vasodilation through enhancement of the ac-
tivity of endothelial cells, but the exact mechanisms are still not fully under-
stood. The involvement of endothelium in ACh-induced vasodilation is the
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Fig. 20. Full time-frequency wavelet trans-
form of blood flow with ACh.
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Fig. 21. Time-averaged amplitude
of blood flow with ACh.

main difference compared to SNP-induced vasodilation. It was suggested that
impaired ACh-induced vasodilation by comparison with SNP-induced vasodi-
lation could be taken as a demonstration of endothelial dysfunction [167].
See more details about the drugs and iontophoresis in Appendix. A.6 and
Appendix.B.

4.3.3 Absolute energy

All the blood flow signals were resampled from 400 Hz to 10 Hz by aver-
aging 40 points and their lower frequency oscillations below 0.005 Hz were
detrended. Then the wavelet analysis was applied to them. The wavelet trans-
form calculated from the signal measured with ACh shown in Fig. B.4a (see
Appendix. B) is shown in Fig. 20, and its time-average is shown in Fig. 21.
The wavelet transform calculated from the signal measured with SNP shown
in Fig. B.4b (see Appendix. B) is shown in Fig. 22, and its time-average is
shown in Fig. 23. These microvascular blood flow signals stimulated by ACh
and SNP are from the same subject. The six peaks, the physiological origins
of which have already been discussed in section 4.3.1, were observed. As we
explain in Appendix. B, the two vasodilators, ACh and SNP, were applied to
assess the change in endothelial function with age. The six peaks still exist in
both cases, but their strength differs between endothelial-dependent ACh and
endothelial-independent SNP in several intervals, as shown in these wavelet
results. For example, in this case, the peak at the lowest frequency for ACh
is higher than that for SNP. We again emphasize that we measure the signals
with ACh and SNP in close proximity (2-5 cm apart), over similar vascula-
ture, on the same person, simultaneously. Thus the differences come from the
different actions of the two substances. As discussed above, their influence on
the individual oscillatory components has been investigated in many different
studies.
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Fig. 22. Full time-frequency wavelet trans-
form of blood flow with SNP.

10
−2

10
0

0

400

800
VI V IV III II I

Frequency (Hz)

T
im

e 
av

er
ag

ed
 W

T

SNP

Fig. 23. Time-averaged amplitude
of blood flow with SNP.

The degree of endothelial activity can be assessed from the wavelet energy in
endothelial-associated intervals. Age-related changes in average flow and total
energy are shown in Fig. 24, and the absolute energy of endothelial-related
intervals in Fig. 25. In fact, average flow does not change with age with either
ACh or SNP. The total amplitude with ACh decreases significantly with age
for females. It is because the absolute energy in intervals VI and V decreases
significantly with age only for females. In fact there are significant gender
differences for ACh in intervals VI and V as shown in Table 4. Young females
have higher energy in the endothelial related intervals than young males.

The differences of absolute energy in intervals VI and V between ACh and
SNP-influenced signals are summarized in Table 3. For females, the absolute
energy with ACh is higher than that with SNP in interval VI in both the
younger and aged populations, and the absolute energy with ACh is higher
than that with SNP in interval V in the younger population. For males, the
absolute energy with ACh is higher than that with SNP in intervals VI and
V in the younger population.

We can conclude that, as they age, humans tend to lose the differences in
response to ACh and SNP in intervals V or VI.

4.3.4 Relative energy

When we measured blood flow signals, we tried to choose measurement sites
such that the density of vessels would be same for all the subjects. However,
it was impossible to get exactly the same density because we could not see
the microvasculature under the skin, and because every subject has a differ-
ent condition of their skin. For this reason, relative energy was calculated to
provide a normalized value in each interval by dividing the absolute energy by
the total energy. Relative energy has an important meaning related to DFA
as explained in subsection 4.4.2.

47



20 40 60 80
0

1

2

3

4

5
x 10

4

ρ
m
=0.01, p

m
=0.94

ρ
f
=−0.31, p

f
=0.03

T
ot

al
 e

ne
rg

y 
(A

U2 )

Age (years)

c d

20 40 60 80
0

1

2

3

4

5
x 10

4

ρ
m
=0.18, p

m
=0.14

ρ
f
=0.22, p

f
=0.14

Age (years)

20 40 60 80
0

100

200

300 ρ
m
=0.02, p

m
=0.89

ρ
f
=−0.13, p

f
=0.39

A
ve

ra
ge

 fl
ow

 (
A

U
)

ACh

20 40 60 80
0

100

200

300 ρ
m
=0.06, p

m
=0.62

ρ
f
=0.01, p

f
=0.93

SNPa b

Fig. 24. Age-related changes in average flow and total energy. Correlations between
age and (a) average flow with ACh, (b) average flow with SNP, (c) total energy
with ACh and (d) total energy with SNP. The filled circles represent males, and the
crosses represent females.

Differences in absolute oscillation energy between ACh and SNP

Males Females

below 40 years above 55 years below 40 years above 55 years

Interval VI p = 0.00 (A) p = 0.24 p = 0.00 (A) p = 0.00 (A)

average (ACh) ∗103 3.13± 3.16 3.36± 5.08 7.67± 6.07 2.65± 2.11

average (SNP) ∗103 1.99± 4.31 0.78± 0.70 1.50± 3.24 0.52± 0.50

Interval V p = 0.04 (A) p = 0.92intervals p = 0.00 (A) p = 0.09

average (ACh) ∗103 1.23± 1.14 1.37± 1.83 2.45± 1.82 0.88± 0.53

average (SNP) ∗103 0.64± 0.43 0.94± 0.84 0.88± 0.77 0.62± 0.56
Table 3
Significance of the differences in absolute oscillation energy in intervals VI and V,
between ACh and SNP-influenced blood flow signals. Cases where the energy in
ACh-influenced is significantly the higher are indicated with an (A).
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Fig. 25. Correlations of absolute HRV energy with age for ACh in intervals (a) VI,
(c) V and for SNP in intervals (b) VI, (d) V. The filled circles represent males, and
the crosses represent females.

Gender difference for absolute energy

ACh SNP

below 40 years above 55 years below 40 years above 55 years

Interval VI p = 0.00 (f) p = 0.20 p = 0.53 p = 0.23

Interval V p = 0.01 (f) p = 0.39 p = 0.79 p = 0.19
Table 4
Significance of gender differences for the absolute energy in intervals VI and V for
ACh (left-hand side) and SNP (right-hand side). Cases where females exhibited
significantly higher energy than males are indicated with an (f). The averages and
standard deviations are shown in Table. 3.

The age-related changes in relative energy in interval VI and V with ACh
and SNP are shown in Figs. 26. There is a trend that the relative contri-
bution decreases in intervals VI and V. The differences between ACh and
SNP-influenced results for relative energy are summarized in Table 5, and the
gender difference in Table 6. With regard to the two substances, the rela-
tive contribution of interval VI (endothelial) is higher for ACh than for SNP.
With regard to gender differences, females are higher in interval VI in the
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younger population. However these gender differences disappear in the aged
population.
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Fig. 26. Correlations of relative energy with age for ACh in intervals (a) VI, (c) V
and for SNP in intervals (b) VI, (d) V. The filled circles represent males, and the
crosses represent females.

These differences between ACh and SNP may imply that the vessels of females
and young males vasodilate more readily at low frequency through endothelial
mechanisms rather than through smooth muscles directly. An important result
from wavelet analysis is thus that there are the differences related to age and
gender in how the vasculature reacts to these vasodilators.

4.4 Discussion

The observation that the vessel of females tend to react to ACh more than
to SNP is interesting. It may indicate that, for females, the activities of en-
dothelium dominate in causing vasodilation. Are these differences related to
the fact that females have fewer cardiovascular problems than males? If so,
how?
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The difference between ACh and SNP for relative energy

Males Females

below 40 years above 55 years below 40 years above 55 years

Interval VI p = 0.00 (A) p = 0.00 (A) p = 0.00 (A) p = 0.00 (A)

average (ACh) 0.41± 0.21 0.27± 0.20 0.57± 0.18 0.31± 0.16

average (SNP) 0.13± 0.10 0.09± 0.07 0.17± 0.13 0.07± 0.05

Interval V p = 0.94 p = 0.25 p = 0.90 p = 0.27

average (ACh) 0.15± 0.05 0.12± 0.06 0.17± 0.04 0.12± 0.07

average (SNP) 0.16± 0.07 0.10± 0.06 0.18± 0.07 0.10± 0.06
Table 5
The differences between the relative energies for ACh and SNP-influenced blood
flow oscillations in frequency intervals VI and V. Cases where the relative energy is
significantly higher with ACh are indicated with an (A).

4.4.1 Age-related changes in oscillatory components

A difference between the spectral energies with ACh and SNP was observed
in intervals VI and V, especially for younger females. It is thought that higher
energies in these intervals were produced by the endothelial activities and that
young females have higher endothelial function than younger males and aged
subjects. It is well known that younger females have less cardiovascular risk
than males and aged females. Our results support the idea that the higher
endothelial activity which generates the oscillations in interval V and VI leads
to the healthier cardiovascular function. It may be assumed that the vessels
tend to lose their elasticity and ability to dilate spontaneously, through the
endothelial response decreasing with age.

The results in the other intervals from I to IV are also important in under-
standing how aging affects the blood circulation, but we omit them on account

Gender difference for relative energy

ACh SNP

below 40 years above 55 years below 40 years above 55 years

Interval VI p = 0.01 (f) p = 0.51 p = 0.19 p = 0.70

Interval V p = 0.13 p = 0.73 p = 0.54 p = 0.95
Table 6
Gender difference between the relative energies in intervals VI and V for ACh (left-
hand side) and SNP-influenced signals (right-hand side). The case where females
exhibit significantly higher energy than males is marked with an (f). The averages
and standard deviations are shown in Table. 5.
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Fig. 27. The time-averaged wavelet
amplitude of white noise (black,
dashed line), Brown noise (grey, full),
the HRV of a young female (grey,
dashed), and the HRV of an aged fe-
male (black, full). The corresponding
time series are shown in Fig. 8. The
HRV of a young female is closer to
white noise than that of an aged fe-
male because of stronger fluctuations
in the higher frequency intervals.

of their complexity. Rather our present aim is to show how we can make use
of the wavelet transform, especially for revealing low frequency intervals.

In summary, aging brings a decrease of endothelial oscillatory activity in blood
flow.

4.4.2 Relationship with complexity analysis

It can be seen that HRV signals decrease in amplitude as people get older. The
reason lies in the decreases in RSA and myogenic effects with increasing age.
The decrease in RSA is well known, and our result is in agreement with that
of the previous study [94]. The ways in which the couplings between cardiac
and respiratory, and cardiac and myogenic, systems change with age remain
unknown, however, and further studies are needed.

Now we discuss the relationship between the results of wavelet analysis of
HRV, and those of the complexity analysis in the previous section. As we have
already discussed, the HRV signals of younger people are more complex than
those of aged people. It is to be expected that the signals of young people
are closer in shape to white noise, whereas those of aged people are closer to
Brown noise in the time scale from 10 to 50 seconds. To display the differences
between the signals – white noise, Brown noise, and the HRV of a young and
an aged person are shown in Fig. 27. In each case the wavelet spectrum was
calculated from a 100-second segment and time-averaged. The result for Brown
noise looks smoother than for white noise because Brown noise has a higher
ratio of slow oscillations to fast oscillations than white noise. The HRV of the
aged female also looks smoother than that of a young female, for the same
reason.

The range from 10 to 50 seconds, where the exponent αi increases significantly
with age, corresponds to intervals III and IV. It can be assumed that these
aging effects in αi are attributable to the significant increase with age in
the ratio of the wavelet energy in the slower oscillations in interval IV to
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the wavelet energy in the faster oscillations in interval III: for males (ρ =
0.38, p = 0.00), and for females (ρ = 0.50, p = 0.00), as shown in Fig. 28a.
The age-related changes in αl cannot be seen in the longer time scales from 50
to 300 seconds, which correspond to interval V and VI. This could be because
the ratio of the wavelet energy of the slower oscillations in interval VI to that
of the faster oscillations in interval V does not change significantly with age
for either males (ρ = 0.02, p = 0.85) or for females (ρ = −0.01, p = 0.97), as
shown in Fig. 28b.
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Fig. 28. Energy ratios of HRV as functions of age: (a) interval IV over III and (b)
VI over V. The filled circles represent males and the crosses represent females.

5 The cardio-respiratory interaction

The cardiac and respiratory systems are known to be coupled in a number
of different ways [168]. These include e.g. neurological [169] and mechani-
cal [170] mechanisms. In the previous section, we discussed one consequence
of the cardio-respiratory interaction, the modulation of heart rate by the res-
piratory system, as well as the modulation by other physiological processes.
In this section, we will discuss another result of the interaction between the
cardiac and respiratory systems, cardio-respiratory synchronization. The phe-
nomenon has been reported in the study of anæsthetized rats [29], young
healthy athletes [27, 28], infants [171], healthy adults [32, 172–174] and heart
transplant patients [32]. As discussed in [173, 175], modulation and synchro-
nization are competing process. In this section, we study the effect of aging
on cardiovascular synchronization and compare it with the results of the other
sections.

As we saw in section 2.1, in the case that oscillators have weak coupling,
or there is a weak external force, the perturbation influences only phase. It
means that the oscillation can be described by only one variable, the phase.
We now discuss phase synchronization under the assumption that the cardio-
respiratory interaction is weak enough to be described by phase dynamics.
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5.1 Theory of a pair of coupled oscillators

In this section, we discuss the case where two almost identical oscillators in-
teract with each others weakly. Their dynamics is given by

dX1

dt
=F(X1) + δF1(X1) + V12(X1,X2), (61)

dX2

dt
=F(X2) + δF2(X2) + V21(X2,X1). (62)

We suppose the dynamics of two oscillators to be closed. Then F(X) is the
common structure for both oscillators and δF(Xi) is the deviation from F(Xi).
V21(X1,X2) and V21(X2,X1) represent the interacting term. By this expres-
sion, the phases of oscillators 1 and 2 can be defined in the same way, based on
the dynamics of F(X). As shown in previous subsections 2.1.1, the dynamics
of the oscillators is

dφ1

dt
= ω + (U∗, δF1(φ1) + V12(φ1, φ2)), (63)

dφ2

dt
= ω + (U∗, δF2(φ2) + V21(φ2, φ1)). (64)

We introduce new variables as φ1,2 = ωt+ψ1,2 and, by averaging, the equations
of ψ are expressed as

dψ1

dt
= δω1 + Γ12(ψ1 − ψ2), (65)

dψ2

dt
= δω2 + Γ21(ψ2 − ψ1), (66)

where

δω1 =
1

2π

2π∫

0

dθ(U∗(θ + ψ1), δF1(θ + ψ1)), (67)

Γ12(ψ1 − ψ2) =
1

2π

2π∫

0

dθ(U∗(θ + ψ1),V12(θ + ψ1, θ + ψ2)). (68)

When the interaction is symmetric as V12(X2,X1) = V21(X2,X1) = V(X1,X2),
it is clear that Γ12(ψ) = Γ21(ψ) = Γ(ψ). In that case, the dynamics of the dif-
ference of the two phases ψ = ψ1 − ψ2 is written as

dψ

dt
= δω + Γa(ψ), (69)
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an unstable fixed point.

where δω = δω1−δω2 and Γa(ψ) = Γ(ψ)−Γ(−ψ). Note that Γa(0) = Γa(π) =
Γa(−π) = 0. If ψ is constant, it means that the two oscillators are synchro-
nized. This synchronization solution ψ = constant corresponds to dψ/dt = 0
in the Eq. (69). Therefore whether synchronization occurs depends on whether
the right hand side of Eq. (69) has a zero solution and whether the zero so-
lution is stable or not. From this, it is concluded that synchronization occurs
if δω is within a range shown as Fig. 29. For example, if the coupling func-
tion is a simple sine function like Γ(ψ) = −K sin(ψ), the condition which the
frequency difference has to satisfy is |δω/K| < 1.

If phase-locking occurs and ψ = ψ0 (in other words, if ψ0 is a stable fixed
point), the frequency of both oscillators via entrainment becomes ω + δω1 +
Γ(ψ0), which is equal to ω + δω2 + Γ(−ψ0).

For each coupling strength K, there is a range of δω where phase-locking
occurs. We can calculate the boundaries of this region in the K − δω plane,
which is called the Arnold tongue.

In the case of n:m synchronization, we can carry through a similar discussion
by thinking in terms of nψ1 and mψ2.

If an oscillator is coupled with many oscillators according to

dXi

dt
= F(Xi) + δFi(Xi) +

N∑

j=1

Vij(Xi,Xj), (i = 1, 2, · · · , N), (70)
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Fig. 30. The synchronous region in the K − δω plane. The region b is where
phase-locking occurs, and is called the Arnold tongue, whereas in regions a and
c phase-locking does not occur.

the same method as for a pair of coupled oscillators can be applied, and the
dynamics of ψi ≡ φi − ωt (i = 1, 2, · · · , N) is

dψi

dt
= δωi +

N∑

j=1

Γij(ψi − ψj). (71)

In terms of φi,

dφi

dt
= ωi +

N∑

j=1

Γij(φi − φj). (72)

If the equation is of form

dφi

dt
= ωi − K

N

N∑

j=1

sin(φi − φj), (73)

it is known as the Kuramoto model.

5.2 Analytical methods

5.2.1 Synchrogram

One way to detect m:n synchronization between respiration and heartbeat is
to make a synchrogram. It is constructed by plotting the normalized relative
phase of heartbeats within m respiratory cycles according to the following
equation,

ψm(tk) =
1

2π
φr(tk) (mod 2πm), (74)
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where tk is the time of the k-th marked event in the heartbeat and φr(tk) is
the instantaneous phase of respiration at the time tk. In perfect m:n phase
locking, ψm constructs n horizontal strips in the synchrogram. However, in
reality these strips are broadened because of noise. One synchrogram can
detect synchronization for only one value of m. For example if we choose
m = 2, the synchrogram detects only 2:n synchronization. In order to cover
all possible synchronization states, we would have to plot synchrograms for all
values of m although it would not be practical in reality.

5.2.2 Synchronization index

A synchrogram is one of the ways to see synchronization visually but it is
not adequate to quantify the synchronization in the presence of noise. It is
especially difficult to judge which ratio of synchronization occurs just by in-
specting a set of synchrograms with different m. To overcome this weakness,
Tass et al. introduced synchronization indices in 1998 [176]. There are two
ways to define the synchronization index.

One is based on the conditional probability. We have two phases φ1(tj) and
φ2(tj) defined on the intervals [0 2πm] and [0 2πn] respectively, where j is
an index of time. Each interval is divided into N bins. We take a particular
centered time tc1 and decide a certain window length around tc1 and call this
time interval ‘interval-1’. We take all j such that tj is within the interval-1.
Then, for each bin l, 1 ≤ l ≤ N , we calculate

rl(tc) =
1

Ml

∑
eıφ2(tj)/n (75)

for all j, such that φ1(tj) belongs to the bin l and Ml is the number of points
in this bin. If there is a complete n:m dependence between two phases, then
|rl(tc1)| = 1, whereas it is zero if there is no dependence. Finally we calculate
the average over all bins by application of the following equation,

γnm(tc) =
1

N

N∑

l=1

|rl(tc)|. (76)

Thus γnm measures the conditional probability for φ2 to have a given value
provided that φ1 is in a certain bin at the time tc. Then we move the centered
time tc to t′c and recalculate the index in the same way. In order to find out
m and n, we need to try different sets of values and select the set that gives
the largest index.
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The other approach is based on entropy. It is defined by

ρnm =
Smax − S

Smax

, (77)

where S is the entropy of the distribution of Ψm,n = nφ1−mφ2 (mod 2π) and
defined as

S = −
N∑

k=1

pk ln pk, (78)

where pk is the probability that Ψm,n is in the bin k. Note that Smax = ln N ,
where N is the number of bins. It is normalized in such a way that 0 ≤ ρnm ≤ 1,
where ρnm = 0 corresponds to an uniform distribution (no synchronization)
and ρnm = 1 corresponds to a Dirac delta-like distribution (perfect synchro-
nization).

5.3 Application to cardiovascular signals

5.3.1 Synchronization duration of real data

In this section, we determine the synchronization duration of the data that
we measured according to the procedures described in Appendix B. We first
introduce a method for evaluating the degree of synchronization in order to be
able to discuss the age-related changes in synchronization. We calculate the
synchronization index of 1:n and 2:n for cardio-respiratory synchronization
for each subject with the window length 5T for 1:n synchronization and 10T
for 2:n synchronization where T is the average respiratory period. The reason
for this choice of window length is to see the synchronization during the same
periods for all subjects, rather than using a fixed time for them all. If the index
exceeds 0.95 for a duration longer than 5T for 1:n synchronization, and for
10T for 2:n synchronization, we judge that synchronization occurred during
the interval.

When the signal of one subject is exchanged with the signal of another sub-
ject, or when a signal is randomized, the synchronization index can occasion-
ally reach high values without real cardiovascular coupling. To be sure that
the synchronization comes from a genuine cardiovascular interaction, we set
these minimum thresholds for synchronization index and duration. The syn-
chrogram and synchronization index is discussed in Fig. 31 together with a
demonstration of how to construct a synchrogram. It can be seen that the
state of synchronization changes with time and that the synchronization ratio
changes spontaneously from 1:3 to 2:7. This kind of synchronization transition
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is quite common and is seen for all subjects. It is evident that noise disturbs the
synchronization and that the synchronization makes frequent transitions from
one state to another. Finally we calculate the total duration of synchroniza-
tion during which the index was beyond 0.95. The synchronization duration
is proportional to the ratio of synchronization time to the whole measurement
time of 1800 seconds, which was fixed for all subjects. We therefore consider
the synchronization duration as equivalent to the percentage of respiratory
periods which are in the state of synchronization during the whole measure-
ment period. With this interpretation, differences in the average respiratory
period do not affect the result.

The results are shown in Fig. 32. The synchronization duration increases sig-
nificantly with age for females (ρ = 0.42, p = 0.00), whereas it does not have
any correlation with age for males (ρ = −0.14, p = 0.25). Females have a
longer synchronization duration than males in the elderly population above
55 years (p = 0.00), whereas there is no significant gender difference in the
younger population (p = 0.86). These results indicate that beyond the age of
55 there is a large, significant increase in the mean extent of synchronization
compared to the males at all ages and the younger female group.

5.3.2 The correlation of synchronization duration with HRV and RFV

We first examine possible correlation between the synchronization duration
and the heart and respiratory rates. The results are shown in Fig. 33. The
logarithm of the synchronization duration has a significant positive correlation
with the average respiratory rate, both for males (ρ = 0.61, p = 0.00) and
females (ρ = 0.54, p = 0.00), and a significant negative correlation with total
wavelet energy in RFV both for males (ρ = −0.41, p = 0.00) and females
(ρ = −0.34, p = 0.03). There are no gender-specific differences between the
extent of the correlation between these variables. In contrast to the respiratory
frequency, the duration of synchronization is independent of the average HR
or HRV in both males and females. This reinforces the inference that the
duration of synchronization is strongly linked to the respiratory oscillator.

The correlation with average respiratory and synchronization duration could
be thought attributable to the algorithm, because the synchronization thresh-
old is proportional to the average respiratory rate and it is more difficult to
maintain the synchronization state over the longer duration criterion. It is dif-
ficult to compare synchronization for people who have significantly different
respiratory rates. If we chose a fixed threshold of e.g. 30 seconds, the average
respiratory rate will not affect the results, but it would be doubtful whether
we could identify the 2:n synchronization reliably for a person whose average
respiratory period is more than 7.5 seconds. We need a longer time to judge
the synchronization state for the people who have longer average respiratory
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Fig. 31. Construction of a cardio-respiratory synchrogram. (a) An ECG signal during
a short time segment with its R-peaks marked by small filled circles. (b) The phases
(mod 2π) of the respiration signal shown in (d) at the marked R-peaks times in (a)
during the time segment. (c) The phases (mod 4π) of the respiration signal shown in
(d) at the marked R-peaks times in (a) during the time segment. (d) The respiratory
signal during the time segment, with its maxima marked. (e) A synchrogram for 1:n
synchronization during the whole measurement period. (f) A synchrogram for 2:n
synchronization during the whole measurement period. (g) Synchronization indices
γ above 0.95 during the whole measurement period, where the black line represents
1:3 and the grey line represents 2:7 synchronization. (h) The ratio between HRV
and RFV during the whole measurement period, where the two lines lie at the ratios
3.0 and 3.5, corresponding to 1:3 and 2:7 synchronization. All are calculated from
the same of data, as shown in Fig. 2.
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Fig. 32. The total synchronization duration of the original data plotted as a function
of age for (a) males and (b) females.

rates to compare their degrees of synchronization. Indeed for the body it may
be more difficult to maintain the stationary state for a longer time. However,
these results at least show that a larger standard deviation of respiration (for
both genders) leads to increased synchronization duration in the resting state
for healthy subjects.

The observation that a bigger standard deviation leads to shorter synchroniza-
tion epochs corresponds well with our picture that, if the frequency fluctuates
dramatically, the parameters easily move outside the Arnold tongue, thus de-
stroying the synchronization. The point has also been discussed in the recent
study by Kenwright et al [174].

Although we could not see any significant correlation between age and duration
of synchronization for males, the duration has a significant correlation with
the wavelet total energy of respiration, which is not significantly correlated
with age. The total energy of heart rate, which decreases significantly with
age, does not have significant correlation with synchronization duration. For
females, it is certain that respiration has a significant effect in causing the
synchronization. There is a trend for the average RF to increase with age for
females although the correlation is not statistically significant (p = 0.09). This
means that increases in average respiratory rate are matched by corresponding
increases in the variability of that RF. There is no correlation between these
variables in the male population. Thus the slight trend for increased RF with
age in the female population, along with stronger relationships between RF
and RFV in the female population, together with the strong effects of RF
and RFV on the duration of synchronization, manifest in a highly significant
lengthening in the epochs of synchronization in older females.
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Fig. 33. Correlations between the logarithm of the synchronization duration and (a)
the average heart rate, (b) the average respiratory rate, (c) the total wavelet energy
of heart rate, and (d) the total wavelet energy of the respiratory rate. The filled
circles represent males and the crosses represent females.

5.3.3 Surrogate data

The first point to be settled is whether the synchronization reflects the true
cardiovascular interaction, or whether it is just noise, i.e. a random fluctua-
tional phenomenon. This problem was investigated by Toledo et. al. [32] by
using surrogate date. In the present study, we created surrogate data from the
original signals and used them to calculate the duration of “synchronization”.
Surrogate data are artificially generated data that mimic some of the statis-
tical properties of the data under study, but not the particular property that
is being tested.

Surrogate data was methodologically introduced into time series analysis as a
method of testing for nonlinearity [177]. The basic idea is to compute a non-
linear statistic for the data under study and to do the same for an ensemble of
realizations of surrogates that mimic the linear properties of the studied data.
If the computed statistics for the original data is significantly different from
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that obtained from surrogates, one can infer that the data was not generated
by a linear process. Otherwise, the null hypothesis that a linear model fully
explains the data must be accepted.

There are several ways of making surrogate data to meet the needs of studies.
For bivariate data, four types were proposed by Paluš [178]:

• IID1 surrogates are realizations of mutually independent IID (indepen-
dent identically distributed) stochastic processes (white noise) with the
same mean, variance and histogram as the series under study. The IID sur-
rogates are constructed by scrambling the original signal, i.e. the elements
of the original series are randomly permutated in temporal order and differ-
ent random permutation are used for the two components of the bivariate
series.

• IID2 surrogates are realizations of IID stochastic processes (white noises),
which take account of possible cross dependences between the two compo-
nents of the bivariate series. In each realization, the same random permuta-
tion is used for both components of the bivariate series. The IID surrogates
present the null hypothesis of mutually dependent white noise, i.e. the two
series are synchronized in a sense of mutual dependence given, e.g., by cross
correlations; but the specific phenomenon as well as other temporal struc-
tures are absent.

• FT1 surrogates are independently generated for each of the two com-
ponents in the bivariate data as realizations of linear stochastic processes
with the same power spectra as those under study. The FT1 surrogates
are obtained by computing the Fourier transform (FT) of the series; it is
then returned to the time domain with unchanged magnitude but with the
phases randomized. The FT1 surrogates realize the null hypothesis of two
linear stochastic processes which asynchronously oscillate with the same
frequencies as the original series under study.

• FT2 surrogates are realization of a bivariate linear stochastic process that
mimics individual spectra of the two components of the original bivariate
series as well as their cross-spectrum. When constructing the FT2 surro-
gates, not only the spectra but also the differences between phases of the
Fourier coefficients of the two series for particular frequency bins must be
kept unchanged. In this case, the same random number must be added to
the phases of both coefficients of corresponding frequency bins. The FT2
surrogates preserve some of the synchronization, if present in the original
series, which can be explained by a bivariate linear stochastic process.

In our study, we derived IID1 surrogates from the original cardiac and respira-
tory signals. The phases of the original signals were determined by the time of
marked events according to the Eq. (15). The periods between marked events
were permuted randomly. For example, if the time of marked events of an
original signal is [1, 2.5, 3.7, 5], the periods of original signals are [1.5, 1.2, 1.3].
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Then these periods are randomly permuted like e.g. [1.2, 1.3, 1.5] and the time
of marker events of surrogate is then [1, 2.2, 3.5, 5] and the phases are calcu-
lated according to Eq. (15). Different ways of randomization were used for
the cardiac and respiratory signals. Finally, the index and duration of syn-
chronization of surrogates were calculated using the same algorithm as for the
original data.

The results are shown in the Fig. 34. Surrogate data still have the same ap-
parent synchronization durations even after being randomized. However, the
duration does not increase significantly with age (males p = 0.51; females
p = 0.20) and the correlation with age is lower than the results of the original
time series for both genders. This implies that the results of original data does
not come only from noise.
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Fig. 34. The correlation between the total synchronization duration and age for the
surrogate data for (a) males and (b) females.

We compared the epochs of synchronization of the original time series and the
apparent epochs of synchronization in the surrogate time series for each gen-
der. The original time series have significantly longer synchronization epochs
than the surrogate time series (males p = 0.00; females p = 0.00). This means
that the obtained synchronization is real, and not just because of coincidence.

5.4 The directionality of cardio-respiratory coupling

5.4.1 Methods

The detection of coupling direction has been treated by making use of the
amplitudes of the observables and evaluating their mutual predictability [179,
180] or mutual nearest neighbours in reconstructed state spaces [181, 182],
or by information theoretic approaches [37, 183, 184]. In order to determine
the predominant direction of any coupling between the heart rate and the
respiratory rate of the data which we measured, we based our analysis on the
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permutation information approach described by Bahraminasab et al. [184] and
by Paluš and Stefanovska [37].

We first define and discuss briefly the permutation entropy (PE) of a time
series. We take X1(ti+1), . . . , X1(ti+n), and then sort n points into an in-
creasing order. If X(tj1) > X(tj2) > . . . > X(tjn), j1j2 . . . jn is the or-
dered type which we get. The possible j1j2 . . . jn is one of n! permutations
(j1, j2, . . . , jn ∈ 1, . . . , n). We map each n consecutive data points of the
time series starting from a different time index i to one of the ordered types
out of the n! permutations. We represent all the possible ordered types by
π1, π2, . . . , πn!. The PE of the time series is then defined as the Shanon en-
tropy

H(X) = −
n!∑

x=1

p(πx) ln(p(πx)), (79)

where p(πx) is the probability distribution of πx. The PE shows the same
behaviour for different values of n. Next, we introduce the directionality of
coupling using information-theoretic tools. Consider two time series X1(t) and
X2(t) representing the observations from two possibly coupled systems. The
average amount of information, contained in the variables X2 about the process
X1, in its future τ time units ahead is quantified by the mutual information
I(X2, X1τ ) = H(X2)+H(X1τ )−H(X2, X1τ ), where the entropy H is calculated
in the PE sense. H(X2, X1τ ) is called the joint entropy and is expressed as

H(X2, X1τ ) = −
n!∑

x2=1

n!∑

x1τ=1

p(πx2 , πx1τ ) ln(p(πx2 , πx1τ )). (80)

If I(X2, X1) > 0, the processes X1 and X2 are not independent. In order to
infer the directionality of coupling between the processes X1 and X2 such as
the driving influence from X2 and X1, we need to estimate the net informa-
tion about the τ future time of the process X1 contained within the process
X2. We increment vectors of n points of X1 as X1(ti) − X1(ti+τ ), X1(ti+1) −
X1(ti+1+τ ), . . . , X1(ti+n)−X1(ti+n+τ ), write these vectors ∆X1, and map them
to ordered types π∆x1 out of n! permutations for every possible time in-
dex i. How much system 2 drives the system 1 is measured by the con-
ditional mutual information I21 = I(X2, ∆X1|X1) of the variables X2 and
∆X1 given the variable X1 which is expressed as I21 = I(X2, ∆X1|X1) =
H(X2|X1) + H(∆X1|X1) − H(X2, ∆X1|X1), where the conditional entropy
H(X2|X1) is expressed as

H(X2|X1) = −
n!∑

x2=1

n!∑

x1=1

p(πx2 , πx1) ln(p(πx2|πx1)), (81)
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and

H(X2, ∆X1|X1) =−
n!∑

x1=1

n!∑

∆x1=1

n!∑

x2=1

p(πx1 , π∆x1 , πx2)

× ln(p(πx2 , π∆x1|πx1)). (82)

If I21 = 0, there is no information in X2 about the τ future time of the
process X1, but if I21 > 0, there is some information in X2. In the same way,
I21 = I(X1, ∆X2|X2) is calculated. Directionality of coupling from 1 to 2 can
be written as

D12 =
I12 − I21

I12 + I21

. (83)

There is also another way to calculate the conditional mutual information I21

according to Paluš and Stefanovska [37]. We define ∆τX1,2 as

∆τX1,2 = X1,2(t + τ)−X1,2(t). (84)

The conditional mutual information is written in the same way as above, I21 =
I(X2, ∆τX1|X1) = H(X2|X1) + H(∆τX1|X1) − H(X2, ∆τX1|X1), which is
obtained by a simple box counting algorithm based on equiprobable marginal
bins (marginal equiquantization [185]).

In our study, X1(t) represents the phase of the heart and X2(t) represents the
phase of the respiration which was reconstructed with a sampling frequency of
10 Hz. We took τ = 5, 6, . . . , 50 for both PE and equiquantal methods, which
means the delay was from 0.5 to 5 seconds. For each τ , we express mutual
information as I12(τ). After getting 46 values of I12(τ) and I21(τ) under the
parameter of n = 4 for the PE method and 8 bins for the equiquantal method,
we took the averages over the values and obtained the final values of I12 and
I21 for each subject for each method as

i(X2 → X1) =
1

N

τmax∑
τ=τmin

I12(τ), (85)

where N = 46, τmin = 5 and τmax = 50 in our case. We refer to this i as
the intensity of influence. For the results presented below in the next section,
we write the intensity calculated by the PE method as iPerm and intensity
calculated by the equiquantal method as iEqq.

100 sets of randomized surrogate data sets were analysed in the same way
by each method, and the average of 100 surrogate data was taken for each
subject.
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5.4.2 Results

The evidence discussed above shows that the RF exerts a strong influence on
the extent of synchronisation. This would suggest that the respiratory system
is the driving force in the coupling between these two oscillators. Confirmation
of this inference was achieved using the permutation information approach to
obtain information about the directionality of the coupling.

The intensity of influence is much stronger from respiration to heart than in
the opposite direction, for both genders, and from both methods as shown in
Figs. 35 and 36.

An age-related decline in the effect of respiration on cardiac activity for males
is found by both methods (Figs. 35a and 36a), whereas there are no age-related
changes in the effect of cardiac activity on respiration (Fig. 35c and Fig. 36c).
For females, there is a trend towards a decline with age for the intensities in
both directions, as found by both methods, but there is a difference between
the two methods in the calculated significance (cf. Figs. 35b and 36b, and cf.
Figs. 35d and 36d). But since the p-value of the effect of respiration on cardiac
activity by the equiquantal method is close to the borderline (Fig. 36b), it
could be claimed that there is a decline with age for female as well.

The intensity of influence in both directions is significantly larger for females,
as compared to males, when calculated by the PE method (p < 0.01 from
respiration to heart and p = 0.01 from heart to respiration), whereas these
gender differences were not found to be statistically significant by the equi-
quantal method.

The decline with age of the intensity of influence from respiration to heart
calculated by the PE method is much more pronounced in males than in
females (Fig. 35a and b). Thus in females the respiratory system has much
more influence on the cardiac system, compared to males and the effects of
aging compound this difference as the i values in females decline at a slower
rate compared to the male population. Since this effect was not observed by the
equiquantal method, it requires confirmation (or refutation) through further,
more detailed, studies of the numerical properties of the two methods.

This possible strong influence of the respiratory system, linked with the trends
in respiratory rate and respiratory rate variability in the female population, to-
gether lead to significant age-related increases in the extent of synchronization
between these two oscillators in the female population. There is no age-related
change in the extent of synchronization in the male population.

Since these time series are non-stationary, it is to be expected that the in-
tensities of influence will fluctuate with time. We also calculated the time-
dependent intensity by dividing each signal into ten 3-min windows, which
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was the minimum length required to obtain reliable results. Then we counted
the length of time when the intensity of influence from the real data was
larger than that from the surrogate data for each subject, and plotted these
time lengths as a function of age. The results were quite similar to those of
intensity calculated from whole signals (Fig. 35 and Fig. 36).
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Fig. 35. Changes of intensity of the inter-oscillator influence with age calculated
by the permutation entropy (PE) method: (a) from respiration to heart for males;
(b) from respiration to heart for female; (c) from heart to respiration for males;
(d) from heart to respiration for females. Circles are for real data with correlation
coefficients ρ and p, and crosses represent surrogate data.

5.5 Discussion

There can be no doubt that the cardiac and respiratory systems behave as
two oscillators forming a coupled system. Their coupling arises through both
mechanical interactions and also through co-ordinated neurological control
mechanisms as part of the overall homeostasis of the whole organism. The
physical manifestations of this coupling have been extensively studied in the
context of frequency modulation (respiratory sinus arrhythmia -RSA) between
the two systems and, more recently, synchronization (frequency and phase co-
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Fig. 36. Changes of intensity of the inter-oscillator influence with age calculated by
the equiquantal method (a) from respiration to heart for males; (b) from respira-
tion to heart for females (c) from heart to respiration for males (d) from heart to
respiration for females. Circles are for real data with correlation coefficients ρ and
p, and crosses represent surrogate data.

ordination) [26–28, 32, 63, 115, 142–145, 171, 173, 186]. The evolution of new
methodologies in nonlinear dynamics has facilitated the detection of phase
synchronization between the two biological oscillators, and these methods have
been used to study synchronization in the examples already mentioned above
– in athletes, in adult and infant sleep patterns and in anæsthesia [27, 28, 63,
171,186].

We noted that the synchronization ratio is not constant but changes with
time. This is because the ratio of HR and RF fluctuates with time as shown
in Fig. 31h. It seems to be non-stationary, like the heart rate and respiratory
rate. The synchronization ratio is not restricted to 1:n but may also be 2:n.
There is the possibility that the ratio is m:n where m is more than three.
However, it is usually difficult to detect synchronization with higher m because
it requires a longer window for calculation and the noise component become
more significant.

We now discuss these issues in more detail.
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5.5.1 Is cardio-respiratory synchronization dependent on respiratory rate and
its variability?

We have used nonlinear methods to assess the relative importance of the
two oscillatory systems in allowing synchronization to be achieved. Our data
demonstrate that the respiratory rate and variations are strongly related to
the duration of synchronization that is observed over the 30 min measurement
period. Further analysis of the directionality of coupling between the cardiac
and respiratory oscillators also demonstrates that the respiratory system is
the major influence with no detectable effect of the cardiac system. Our stud-
ies on synchronization link to studies of another interaction between the two
systems, namely RSA – the modulation of heart rate by the frequency of res-
piration. Models of RSA, including the idea of a ’respiratory gate’ point to the
importance of the respiratory rate in the modulation of cardiac rhythms [187].
In our case, looking at synchronization and coupling between the systems, the
respiratory rate is again identified as important. Added to this we have now
demonstrated that RF and the extent of the variability in RF are also impor-
tant factors.

5.5.2 Gender specific differences in age related changes in cardio-respiratory
synchronization.

There are strong gender-specific differences in the coupling of the respiratory
and cardiac oscillators. The duration of synchronization is independent of age
in males, but the extent of synchronization is significantly higher in older
females compared to younger females or males of any age. This effect is not
associated with noise, as assessment of the surrogate data set does not result
in any association between these two variables. Thus in healthy resting females
the extent of synchronization between the cardiac system and the respiratory
system increases as they get older and is particularly evident in the over 55
years.

5.5.3 Gender based differences in the aging process

Gender-specific effects of aging on the human body have been studied at many
levels, ranging from the assessment of the length of teleomeres at the end of
chromosomes through to whole system studies as described here. One inter-
esting feature arising from the teleomere studies is that for any ”biological
age’ the telomere lengths are shorter in males compared to females suggesting
that the aging process advances faster in the male population [188]. Demo-
graphic data (with the life expectancy of females being longer than males)
and studies of other aging processes including cardiovascular, renal and res-
piratory systems show the same phenomena [189]. We find that the extent
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of synchronization in males is independent of age across the whole age-span
so the changes observed in the female population are not merely a manifes-
tation of a general delay in the aging process compared to the males. Many
differences between the aging processes in males and females are linked to the
beneficial effects of estrogens. In post-menopausal women these benefits are
lost such that eventually the aging process in females in their ninth and tenth
decade, catches up with the aging process in their male counterparts. On this
basis we would expect that the synchronization patterns for females would
tend to converge to the male data. In fact the opposite is true; the gender dif-
ferences between the duration of synchronization are enhanced in later years,
not reduced.

5.5.4 Are the gender based differences linked to changes in the HR or HRV?

What are the origins of this increase in synchronization? In terms of the in-
dividual oscillators, the variability in both the heart rate and the respiratory
frequency are independent of age in both males and females (as shown in
Fig. 3). In agreement with previously published data, the spectral energy (a
measure which is proportional to the standard deviation) of the HRV is sig-
nificantly negatively-correlated with age [7, 39, 120, 190]. This effect can be
visualized by consideration of Fig. 18, although the actual average HR does
not change, the extent of variability on either side of the line denoting the av-
erage value is decreased. This manifestation of the aging process is probably
linked to a decrease in the plasticity of the heart with aging. This decline is
present in both the male and female populations and the extent of this de-
cline is not significantly different between the male and female subjects. This
suggests that the increase in the extent of synchronization in females is not
associated with alterations in HRV. Previous studies also revealed that the
standard deviation of the heart rate is negatively correlated with the time-
averaged synchronization index [6] but the gender of the subjects used in this
latter study was not identified.

5.5.5 Are the gender based differences linked to changes in RF or RFV?

In contrast to the results for HR and HRV in females, the origin of the alter-
ations in the extent of synchronization are to be found in the overriding rela-
tionship between the duration of synchronization, RF and RFV. There were
no significant relationships between aging and RF or RFV in either males or
females, but within the female population there was a trend towards increased
RFV with age. Also in females the average RF is significantly correlated with
its own variability. Another factor in the extent of synchronization observed
between these two oscillatory systems is the directionality of the coupling
between them. In both males and females the directionality is from the respi-
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ratory system to the cardiac system and this direction does not change with
age. What does change however is the extent of the influence (intensity) that
respiration has on HR. As subjects become older, the influence declines, but
the starting level is higher in females and the rate of decline is much lower
(as gauged by the PE method). Thus in females RF has more influence on
the HR than in males. Taken together, all of these effects result in stronger
synchronization in the cardio-respiratory systems of older females.

5.5.6 Synchronization in other physiological states

Alternative explanations for the increased duration of synchronization come
from other studies looking at duration of synchronization in different phys-
iological settings. In anæsthetized rats, longer synchronization duration was
observed (with the concomitant decrease in the standard deviation of respira-
tory frequency) [29]. Similarly, in non-REM sleep the extent of synchronization
was increased whilst in REM sleep the extent of synchronization was decreased
compared to wakefulness [186]. Longer synchronization times have also been
linked to the better physiological condition of athletes as compared to non-
athletes [27]. However, it has been shown that synchronization is reduced, or
almost destroyed during the exercise itself [174]. In general, the greater the
modulation of HRV, especially by the low frequency components, the less syn-
chronization occurs. Based on the anæsthesia and sleep studies it appears that
decreased input from neurological control mechanisms leads to enhanced syn-
chronization. In terms of the directionality of this coupling, our observation of
significant coupling from respiration to cardiac activity is in agreement with
several earlier studies [36, 37, 174, 184]. In babies the coupling is symmetri-
cal just after birth but, within six months, the influence from respiration to
the cardiac rhythm becomes dominant [191] as observed in our, and other,
adult-based studies.

5.6 Conclusion

We conclude that, in resting subjects, there are gender-based differences in the
extent to which the respiratory system is able to “drive” the cardiac system,
with females displaying much higher levels of coupling and directionality. The
increased synchronization seen in older females may result from the maintained
strength of coupling between these two systems compared to males, along with
the tendency for the RF of females to increase with age. In summary the data
provide definitive information about the central importance of the respiratory
oscillator in the synchronization between itself and the cardiac oscillator in
the resting state. The duration of the synchronization observed increases as
the average RF increases, and is inversely correlated with the variability in
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the respiratory rate. There are many studies of HRV, its links to autonomic
control and potential use as a diagnostic tool (see for example, [92, 192]). We
conclude, however, that RF and RFV are also critical indicators of the cardio-
respiratory interaction, and that future studies should consider them in more
detail.

There are significant gender-specific differences in how the extent of synchro-
nization varies with age. These differences are not significantly associated with
changes in the individual oscillators but alterations in the average RF and the
gender based differences in the extent of coupling are at least partially involved
in the increased synchronization observed in older females.

6 Conclusion

Some of the physiological processes associated with aging have been illumi-
nated by the application of methods drawn from statistical physics and non-
linear dynamics to the analysis of cardiovascular time series.

Two approaches to the analysis of cardiovascular signals have been presented,
based respectively on coupled oscillators and statistical mechanics. The obser-
vation of cardio-respiratory synchronization demonstrates a well-known prop-
erty of nonlinear coupled oscillators (Sec. 5). These results illustrate the fact
that the cardiovascular system may be represented by a set of coupled oscil-
lators of relatively few degrees of freedom. At the same time, however, the
system is always exposed to noise from unpredictable sources bringing many
additional degrees of freedom. In this sense, the statistical approach, reviewed
in Sec. 3, is useful: although DFA is usually regarded as a way of obtaining
a scaling for a system with many degrees of freedom, we showed that there
is a close connection between DFA results and the oscillatory components
detected by wavelet analysis. Scaling properties, and their connections with
coupled oscillator models with relatively few degrees of freedom (but in the
presence of noise), clearly deserve further investigation.

Our main conclusions are –

(1) The standard deviation of heart rate decreases significantly with age for
both males and females. The new results presented above are consistent
with previous studies [7, 38,39,41,120].

(2) The total energy of HRV decreases with age because the contributions to
variability attributable to respiratory activity (energy interval II) and to
myogenic activity (interval III), decrease with age. Significant decreases
with age in both the total energy, and the energy in intervals II and
III, were observed in [7]. We found no significant age-related change in
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the recently identified interval VI. Neither did we observe the significant
decreases in intervals III and IV that were reported in [7]; the difference
may be associated with the smaller number of subjects in the latter study.
It is reported for the first time that females have stronger RSA than males
in the younger population.

(3) The complexity of HRV within the range of 10 to 50 seconds decreases sig-
nificantly with age. The decrease arises because the ratio of the energy in
the slower oscillations of interval IV (neurogenic activities) over the faster
oscillations of interval III (myogenic activities) increases significantly with
age. It indicates that the neurogenic control of HR becomes more promi-
nent than myogenic control with increasing age. Decreases with age of
complexity in HRV were reported in earlier studies such as [44, 49]. The
difference between the present review and the latter work is the window
size used for the calculations. Our window size was determined by the
time scales selected by wavelet analysis. Thus we could identify for the
first time the physiological reasons underlying the decrease of complexity
with age.

(4) In this way, the connection was established between complexity analy-
sis and the analysis of oscillatory dynamics. The time-scales detected by
wavelet analysis help to determine the window size for complexity anal-
ysis, and enable us to interpret the results of the complexity analysis.

(5) The responses of young females to the endothelial-related vasodilator
ACh are significantly higher than those of young males and aged females,
whereas there is no significant gender or aging-related difference for SNP.
It was already known that there is a decrease in endothelial-dependent va-
sodilation with age and gender difference by using iontophoresis-stimulated
blood flow measurements [47,48,106,107]. Our application of the wavelet
transform to such signals has revealed age- and gender-related changes
in the oscillatory dynamics for the first time. It indicates that the en-
dothelial function of females is higher than that of males, which may
be connected with the well-known fact that young females have lower
cardiovascular risk compared with aged females and males.

(6) The duration of cardio-respiratory synchronization epochs increases sig-
nificantly with age for females. The logarithm of the synchronization
duration has a significant correlation with the average respiratory rate
and total energy of respiration for both males and females. In addi-
tion, respiratory rates affect the synchronization duration exponentially.
Earlier studies have reported synchronization under a range of different
conditions, e.g. anæsthetized rats [29], young healthy athletes [27,28], in-
fants [171], healthy adults [32,172–174] and heart transplant patients [32].
The present review is the first to draw attention to the effects of aging
on synchronization and to the strong correlation between the duration of
synchronization and the respiratory rate.

From all these results, we conclude that aging is a significant factor affecting
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cardiovascular dynamics in healthy individuals, and that gender sometimes
produces a significant difference as well. We note that, with use of a larger
subject cohort to improve the statistics, the approaches discussed here could in
principle be used to create a basis for quantifying a subject’s “cardiovascular
age”. This could be a useful parameter for clinical purposes, for planning and
for optimisation of quality of life, especially as the measurements concerned
are relatively brief, noninvasive and involve no discomfort.
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A A. Physiological background

In this appendix we provide a succinct summary of the relevant physiological
background needed by non-biological scientists to study the review.

A.1 Electrical activity in the cell

First, we describe briefly the electrical activity in a single cell, thus providing
the basic information for the subsequent sections.

The predominant solutes in the extracellular fluid are sodium and chloride
ions. The intracellular fluid also contains high concentrations of potassium ions
and ionized non-diffusible molecules, particularly proteins, with negatively
charged side chains and phosphate compounds. Electrical phenomena result
from the distribution of these charged particles and occur at the cell plasma
membrane.

All cells under resting conditions have a potential difference across their plasma
membranes. The inside is negatively charged with respect to the outside. This
potential difference is known as the membrane resting potential.

By convention, the extracellular fluid is assigned a voltage zero, and the po-
larity of the membrane potential is stated in terms of the sign of the excess
charge inside the cell. The magnitude of the resting potential lies in the range
between -5 and -100 mV, depending on the type of cell. The resting potential
is steady unless a movement of charged particles occurs between the inside
and the outside. The distribution of charged particles inside and outside the
cell is shown schematically in Fig. A.1.

Transient changes in the membrane potential from its resting level produce
electrical signals. These signals occur in two forms, graded potentials and
action potentials. Graded potentials are important in producing signals that
propagate over short distances whereas action potentials propagate over long
distances. Graded potentials arise in all cells, but action potential do not. The
latter needs some specific function in the membrane. Here we refer only to the
action potential because it bears on the following sections.

Before proceeding further, we note that the resting membrane potential also
fluctuates in all cells. However, these fluctuations are meaningful only in vivo
– when a cell is surrounded by other cells and the flow of ions is continuous
– whereas the present understanding of the electric properties of membranes
comes from in vitro studies. We can further hypothesize that the fluctuations in
question are most probably related to the fluctuations in endothelial activity,
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Fig. A.1. Schematic diagram showing the distribution of charged particles inside
and outside the cell membrane.

and may perhaps be involved in the endothelial-related oscillations discussed
earlier. This possible relationship remains to be explored and elaborated in
future research.

The terms depolarize, repolarize, and hyperpolarize are used to describe the
direction of changes in the membrane potential relative to the resting potential
(Fig. A.2). The membrane is said to be depolarized when its potential is less
negative than that of the resting state. Overshoot is a reversal of the membrane
potential polarity. When a membrane potential that has been depolarized
returns toward the resting value, it is said to be repolarizing. The membrane
is hyperpolarized when the inside potential is more negative than the resting
level.

r e s t i n g  p o t e n t i a l

m e m b r a n e
p o t e n t i a l
( m V ) 0

- 7 0
D e p o l a r i z i n g

O v e r s h o o t
R e p o l a r i z i n g

H y p e r d e p o l a r i z i n g

Fig. A.2. Schematic diagram to illustrate the terminology of membrane potential
changes.

Action potentials are rapid and large alterations in the membrane potential
(Fig. A.3). They can occur at the rate of 1000 per second. Membranes that
are able to produce action potentials are called excitable membranes and the
ability to generate action potentials is called excitability. Action potentials
occur in response to stimuli. Only when the stimulus is strong enough to
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cause the membrane potential reach the threshold potential does it trigger an
action potential.

0
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A c t i o n  p o t e n t i a l

Fig. A.3. Changes in the membrane potential when an action potential is generated.

A.2 The circulatory system

The heart, the vascular system (blood vessels) and the blood are the three
principle components that make up the circulatory system. As reported by
the British physiologist William Harvey in 1628, the cardiovascular system
forms a closed loop, so that blood pumped out of the heart through one set
of vessels returns to the heart via a different set. The whole system can be
divided into two circuits, the pulmonary circulation and the systemic circula-
tion (Fig. A.4b). Each of them starts and ends in the heart. The right and left
sides of the heart each has two chambers: the upper chamber is the atrium and
the lower one is the ventricle. There is flow from the atrium to the ventricle
on each side of the heart but there is no direct flow between the two atria or
two ventricles.

The pulmonary circulation causes blood to be pumped from the right ventricle
through the lungs and thence to the left atrium. It is then pumped through
the systemic circulation from the left ventricle, through all the organs and
tissues of the body except the lungs, and thus to the right atrium. In both
circuits, the vessels which carry blood away from the heart are called arteries
and those which carry blood towards the heart are called veins.

In the systemic circuits, blood leaves the left ventricle via a single large artery,
the aorta (Fig. A.4a). The arteries of the systemic circulation branch off the
aorta, dividing into smaller vessels. The smallest arteries branch into arterioles,
which branch into a huge number of very small vessels, the capillaries. The
capillaries then unite to form vessels of larger diameter, the venules and then
veins. The flow in arterioles, capillaries and venules is termed microcirculation.

In the pulmonary system, blood leaves the right ventricle via a single large
artery, the pulmonary trunk, which divides into two pulmonary arteries, one
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supplying the right lung and the other the left. In the lungs, the arteries
continue to branch and form the capillaries that unite into venules and then
veins. The blood leaves the lungs via four pulmonary veins, which empty into
the left atrium.

As blood flows through the lung capillaries, it picks up oxygen supplied to
the lungs by breathing. So the blood in the pulmonary veins, the left side of
the heart, and the systemic arteries has a higher oxygen content. Correspond-
ingly, the blood in the other side of the circulatory system has a lower oxygen
content.

Because of the crucial role of the lungs in supplying the oxygen that is then
transported by the circulatory system, the lungs can be viewed as a fourth
component of the cardiovascular system. The pressure difference that they
provide is also important, especially for the venous return, and the lungs can
therefore be seen as a second pump, in addition to the heart, within the
cardiovascular system.

A.3 The heart

A.3.1 Anatomy

The heart is a muscular organ enclosed in a fibrous sac, the pericardium, and
located in the chest. The walls of the heart are composed primarily of cardiac
muscle cells and are termed the myocardium. The inner surfaces of the cardiac
chambers, as well as the inner walls of the blood vessels, are lined by a thin
layer of cells known as endothelium.

Located between the atrium and ventricle in each half of the heart are the atri-
oventricular (AV) valves, which permit blood to flow from atrium to ventricle,
but not from ventricle to atrium (Fig. A.4a).

The opening and closing of the AV valves is a passive process resulting from
pressure difference across the valves. When the blood pressure in an atrium
is greater than in the corresponding ventricle, the valve is pushed open and
blood flows from atrium to ventricle. In contrast, when a contracting ventricle
achieves an internal pressure greater than that in its connected atrium, the
AV valve between them is forced to close.

The openings of the right ventricle into the pulmonary trunk, and of the left
ventricle into the aorta, also contain valves, the pulmonary and aortic valves,
respectively (Fig. A.4a). These valves permit blood to flow into the arteries
during ventricular contraction but prevent blood from moving in the opposite
direction during ventricular relaxation. They also act in a passive way like
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the AV valves, and they are either open or closed depending on the pressure
differences across them.

A.3.2 Heartbeat coordination

The heart is a dual pump in that the left and right sides of the heart pump
blood separately but simultaneously. The atria contract first, followed almost
immediately by the ventricles. Contraction of cardiac muscle is triggered by
depolarization of the plasma membrane. The gap junctions that connect my-
ocardial cells allow the action potential to spread from one cell to another.
Thus, the excitation of one cardiac cell results in the excitation of all the
cardiac cells. This initial depolarization normally arises in a small group of
cells, the sinoatrial (SA) node, located in the right atrium near the entrance
of the superior vena cava (Fig. A.5). The action potential spreads from the SA
node throughout the atria and then throughout the ventricles. So the SA node
works as the pacemaker for the entire heart, and its discharge rate determines
the heart rate, the number of times the heart contracts per minute.

The action potential initiated in the SA node spreads throughout the right
atrium, and from the right atrium to the left atrium, so rapidly that the two
atria contract at the same time.

The spread of the action potential to the ventricles involves the rest of the
conducting system, a portion of which is called the atrioventricular (AV) node.
The AV node is located at the base of the right atrium (Fig. A.5). The action
potential spreading through the right atrium causes depolarization of the AV
node. Because the propagation of the action potential through the AV node
is relatively slow, atrial contraction is completed before ventricular excitation
occurs.

After leaving the AV node, the impulse enters the interventricular septum
between ventricles. This pathway has conducting-system fibres termed the
bundle of His (Fig. A.5). The AV node and the bundle of His constitute the
only electrical link between the atria and ventricles.

Within the interventricular septum the bundle of His divides into right and left
bundle branches, which leave the septum to enter the walls of both ventricles
(Fig. A.5). These fibres contact with Purkinje fibres, large conducting cells
that rapidly distribute the impulse throughout much of the ventricles. Finally
the Purkinje fibres make contact with ventricular myocardial cells, by which
the impulse spreads through the rest of the ventricles.
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Fig. A.5. Conducting system of the heart.

A.3.3 Mechanical event of the cardiac cycle

The cardiac cycle is divided into two major phases, both named to reflect
events that occur in the ventricles. The period of ventricular contraction and
blood ejection is called systole, and it alternates with a period of ventricular
relaxation and blood filling, diastole. On average, one cardiac cycle lasts ap-
proximately 1.0 second, with 0.4 seconds in ventricular systole and 0.6 seconds
in ventricular diastole.

Both systole and diastole can be subdivided into two periods. During the first
part of the systole, the ventricles are contracting but all the valves in the
heart are closed and no blood can be ejected. This period is termed isovolu-
metric ventricular contraction because the ventricular volume is constant. The
ventricular walls are developing tension and squeezing the blood they enclose.

Once the rising blood pressure in the ventricles exceeds that in the aorta and
pulmonary trunk, the aortic and pulmonary valves open, and the ventricular
ejection period, systole, occurs.

During the first part of diastole, the ventricles begin to relax and the aortic
and pulmonary valves close, as do the AV valves too. No blood is entering
and leaving the ventricles and the ventricular volume is not changing. This
period is therefore called isovolumetric ventricular relaxation. The AV valves
then open and ventricular filling occurs as blood flows in from the atria. Atrial
contraction occurs at the end of diastole after most of the ventricular filling
has taken place.
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A.3.4 Control of the heart rate

The isolated heart, disconnected from the nervous system beats approximately
at a rate of 100 beats/min. The heart rate in the body may be much lower
or higher than this; the SA node is usually under the influence of nerves and
hormones. A large number of parasympathetic and sympathetic fibres end on
the SA node. Activity of the parasympathetic nerves causes the heart rate to
decrease whereas that of sympathetic nerves causes the heart rate to increase.
In the resting state, there is considerably more parasympathetic activity to the
heart than sympathetic, so the normal resting heart rate of about 60 beats/min
is well below the inherent rate of 100 beats/min.

A.4 The vascular system

The functional and structural characteristics of the blood vessels change with
successive branching. But there is one structural component in common in the
entire cardiovascular system. It is a smooth single-celled layer of endothelial
cells or endothelium, which lines the inner surface of the vessels. Capillaries
consist only of endothelium, whereas all other vessels have additional layers
of connective tissue and smooth muscle.

A.4.1 Endothelium

The endothelium is located at the interface between the blood and the vessel
wall. The cells are in close contact and form a layer that prevents blood cell
interaction with the vessel wall as blood moves through the vessel lumen. The
endothelium consists of simple squamous epithelium that lines the lumen of
all blood vessels. It plays a critical role in the mechanics of blood flow, the
regulation of coagulation, leukocyte adhesion, and vascular smooth muscle cell
growth, and it also serves as a barrier to the transvascular diffusion of liquids
and solutes.

It was first reported by Furchgott and Zawadzki in 1980 that the intact en-
dothelium produces a factor which causes relaxation of vascular smooth mus-
cle. This was originally named endothelium-derived relaxing factor (EDRF); it
is now known to be nitric oxide (NO). Nitric oxide is released continuously by
endothelium in the arterioles and contributes to arteriolar vasodilation in the
basal state. The production of NO can be stimulated by a variety of endothelial
antagonists, including acetycholine, as well as by shear stress resulting from
an increase of blood flow or pressure. In addition to NO, the endothelium
releases other vasodilators such as prostacyclin (PGI2) and vasoconstrictors
such as endothelin-1 (ET-1) [193].
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Fig. A.6. Release of relaxing and contracting factors from endothelial cells and their
effects on vascular smooth muscles. AC = adenylyl cyclase; ACE = angiotensin
converting enzyme; ATP = adenosine triphosphate; A I = angiotensin I; A II =
angiotensin II; cAMP = cyclic adenosine monophosphate; cGMP = cyclic guano-
sine monophosphate; COX = cyclo-oxygenase; ECE = endothelin converting en-
zyme; EDHE = endothelium-derived hyperpolarising factor; eNOS = endothelial
nitric oxide synthase; ET-1 = endothelin-1; GTP = guanosine triphosphate; NO
= nitric oxide; O−•

2 = superoxide anions; PGH2 = prostaglandin H2; PGI2 =
prostacyclin; R = recepter; sGC = soluble guanylyl cyclase; SR = sarcoplasmic
reticulum; TAX2 = thromboxane A2. This figure is taken from [193].

A.4.2 Vascular smooth muscle

The smooth muscle cells are arranged in helical or circular layers around the
larger blood vessels and in a single layer around arterioles. Vascular muscle
cells provide active tension in the vessel wall and regulate the diameter of the
vessels.

In many vessels there are smooth muscles that undergo spontaneous depo-
larization. There cells act as pacemakers and excite neighboring cells, thus
providing background tension, the myogenic basal tone. Their activities are
independent of innervation. The property is similar to that of the heart, but
the contractile characteristics and the mechanisms that cause contraction of
vascular smooth muscle are very different from those for cardiac muscle. Vas-
cular smooth muscle undergoes slow, sustained, tonic contractions, whereas
cardiac muscle contractions are rapid and of relatively short duration (a few
hundred milliseconds).

Contraction in vascular smooth muscle can be initiated by mechanical, elec-
trical, or chemical stimuli. Passive stretching of vascular smooth muscle can
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cause contraction that originates from the smooth muscle itself and is therefore
termed a myogenic response. Electrical depolarization of the vascular muscle
cell membrane also elicits contraction, most likely by opening voltage depen-
dent calcium channels and causing an increase in the intracellular concentra-
tion of calcium. Finally, a number of chemical stimuli such as norepinephrine,
angiotensin II, vasopressin, endothelin-1 can cause contraction. Each of these
substances bind to specific receptors on the vascular smooth muscle cell (or
to receptors on the endothelium), which then leads to vascular smooth muscle
contraction.

A.5 The nervous system

A.5.1 Innervation of the heart

There are two divisions of the autonomic nervous system which affect the
heart’s activities, the parasympathetic nervous system and the sympathetic
nervous system.

Parasympathetic innervation is achieved by the two vagus systems. The right
vagus affects the SA node predominantly. This nerve has an ability to slow SA
nodal firing and even stop it for several seconds. The left vagus nerve mainly
inhibits AV conducting tissues. The sympathetic nerve supply is nearly uni-
formly distributed in the heart. Increased sympathetic activity produces an
increase in the heart rate and velocity and force of contraction. Parasympa-
thetic nerves predominate in healthy, resting individuals. After a parasympa-
thetic blockage, the heart rate increases substantially and after sympathetic
blockade, it decreases slightly. After a blockade of both divisions, the heart
rate is about 100 beats per minute for young adults.

A.5.2 Innervation of the vessels

Most of the arteries and veins are innervated by the sympathetic nervous
system. The fibres have a tonic contractile effect on the blood vessels.

A.6 Vasodilatory substances

In this section, details of the substances, ACh and SNP, are described.
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A.6.1 Acetylcholine

Acetylcholine (ACh) is a neurotransmitter that is released from the terminals
of parasympathetic and motor nerves. It serves as a transmitter of nervous
stimulation through synapses. Its chemical formula is CH3COOCH2CH2N

+(CH3)3.

When it binds to the acetylcholine receptors of striated muscle fibres, it stimu-
lates those fibres to contract. ACh is also released and used in the brain, where
it tends to cause excitatory actions. The glands that receive impulses from the
parasympathetic part of the autonomic nervous system are also stimulated in
the same way. This is why an increase in ACh causes a decreased heart rate
and increased production of saliva.

Acetylcholine was first identified in 1914 by Henry Hallett Dale, then confirmed
as a neurotransmitter by Otto Loewi in 1921. For their work, they received
the 1936 Nobel Prize in Physiology or Medicine.

Later it was found out in experiments on rabbits that the removal of endothe-
lium prevented ACh-induced vasodilation [98].

A.6.2 Sodium Nitroprusside

Sodium nitroprusside (SNP) breaks down in the blood and releases nitric
oxide (NO). The nitric oxide enters the muscle cells in the walls of the blood
vessels and causes them to relax. When the muscles relax, the blood vessels
become wider and the blood pressure decreases. The chemical formula of SNP
is Na2[Fe(CN)5NO]2.

SNP is used for the emergency treatment of high blood pressure (hypertensive
crisis). It is also used to produce controlled hypotension (low blood pressure)
in anæsthetized patients during surgery. It had been used in the emergency
treatment of severe heart failure to reduce heart workload. However, it has
side effects and is no longer used for clinical treatment of hypertension.

B Appendix B. Physiological measurements

B.1 Measurement time

In living systems, there are several rhythmic processes with different time
scales. For example, seasonal growth and involution has the time scale around
years, reproduction typically takes months in higher organisms, the sleep-
wakefulness cycle is about 24-hours, the smooth muscle tone around hours,
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blood distribution of order one minute, respiration and heart beat approxi-
mately seconds, and nervous action in tenths of seconds [194]. The measure-
ment time should be considerably longer than the timescale of the phenomenon
in which we are interested. In the work reviewed, interest centres on phenom-
ena which occur on the scale of the blood distribution time. Under steady
conditions in resting subjects, the volume of blood pumped by the heart in
one minute is on average equivalent to the whole amount of blood in the or-
ganism [195]. Thus, the dynamics of the blood distribution can be analyzed
on a time scale of minutes. We are especially interested in oscillations whose
frequencies lie in the range 0.005 to 2.0 Hz, i.e. of period 0.5–200 seconds.
Their physiological origins have been described in section 4.3.1.

If a signal is perfectly periodic, one period is enough to specify it. However,
signals from the human cardiovascular system are not periodic, but quasiperi-
odic, and their periods fluctuate constantly. Consequently, the measurement
should be long enough to contain at least several periods. On the other hand,
the longer a signal is, the more pronounced the effects of non-stationarity be-
come. For example, changes of physiological conditions, or physical movement,
can occur during measurements. In our own measurements we chose 30 min
as a compromise that would still allow us to study the slowest oscillations of
interest (interval VI), with a period of ∼200 s.

B.2 Measurement techniques

B.2.1 ECG

The electrocardiogram (ECG) is a tool for evaluating the electrical events in
the heart. ECG measurements have been used for diagnostic purposes for more
than a century. The action potentials of cardiac muscle cells can be viewed as
batteries that cause charge to move throughout the body fluids. These moving
charges are caused by all the action potentials occurring simultaneously in
many individual myocardial cells, and their result can be detected by recording
electrodes on the surface of the skin. The ECG does not provide a direct record
of the changes in membrane potential across individual muscle cells. Rather, it
is a measure of the currents generated in the extracellular fluid by the changes
occurring simultaneously in many cardiac cells.

A conventional 3-lead measurement of the ECG is performed by using three
leads, placed on the right and left shoulder bones for the first and second
leads, and on the left leg or lower left rib bone for the third lead.

The P-wave is the first deflection and represents the electrical impulse through
the atrial musculature (depolarization). The second deflection is the QRS com-
plex and represents the spread of the electrical impulse through the ventricular
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musculature, which triggers the ventricular contraction. The P-R interval is
measured from the beginning of the P wave to the beginning of the QRS com-
plex. It reflects the time taken by impulse to travel the entire distance from
the SA node to the ventricular muscle. The final deflection is the T wave and
represents the period of recovery for the ventricles (i.e. repolarization).
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Fig. B.1. Schematic diagram showing the structure of the ECG cycle and the timing
of the associated events occurring in the heart.

B.2.2 Respiration

Respiration results in a constant exchange of oxygen and carbon dioxide be-
tween the organism and its external environment. In humans, the respiratory
system includes the oral and nasal cavities, the lungs, the series of tubes lead-
ing to the lungs, and the chest structures which move the air into and out of
the lungs. In respiration, there are two movements: inspiration and expiration.
Inspiration is the movement of air from the external environment into lungs,
enlarging their volume. Expiration is movement in the opposite direction. One
cycle of respiration consists of an inspiration and an expiration. In our own
recordings, respiration was measured by a belt around the thorax to detect the
change of the volume of the lungs (Respiratory effort transducer TP-TSD201,
BIOPAC Systems, Inc. Goleta, CA, USA).

B.2.3 Blood flow

(a) Laser Doppler flowmetery

After the first laser was demonstrated by Maiman [196], Cummins et al. pro-
posed a way of measuring the velocity of particles in solution by using the
Doppler frequency-shift of back-scattered light [197]. After some years, Riva et
al. applied this technique to the measurement of the velocity of red blood cells
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in a glass-tube flow model [198] and Stern used the laser Doppler technique
for blood perfusion measurement in the undisturbed microcirculation [199].

The laser Doppler technique measures blood flow in the very small blood
vessels of the microvasculature, such as the low-speed flows associated with
nutritional blood flow in capillaries close to the skin surface and flow in the
underlying arterioles and venules involved in regulation of skin temperature.
The tissue thickness sampled is typically 1 mm, the capillary diameters 10 mi-
crons and the velocity spectrum measurement typically 0.01 to 10 mm/s. The
technique depends on the Doppler principle by which low power light from
a monochromatic (single wavelength) stable laser is scattered by moving red
blood cells and, as a consequence, has its frequency broadened. The frequency-
broadened light, together with laser light scattered from static tissue, is pho-
todetected and the resulting photocurrent processed to provide a blood flow
measurement. Thus there are two optical fibres in laser Doppler probes. One
is to deliver light to the tissues and the other is to collect the scattered light.
Bonner and Nossal showed that after filtering the scattered light, they could
obtain an output that was proportional to the velocity and the number of red
blood cells in the measured volume, but which was unrelated to the direction
of movement of the red blood cells [200].

The corresponding instruments for blood flow measurement were developed
by Watkins and Holloway [201], Nilsson et al. [202] and Fischer et al. [203].
They demonstrated a good correlation between the output of the devices and
the blood flow.

In our study, based on a Moor Instruments (Axminster) DT4 instrument, a
near-infra-red laser of wavelength 785 nm is used to measure the velocity and
concentration of red blood cells within the volume covered by the laser light.
The size of the probed volume depends on several factors: the optical density
of the tissue, the separation of the probe fibres, and the power and wavelength
of the laser. From imaging at this wavelength with the DRT4, it is known that
the full dermal thickness (about 1 mm) is probed, so from simple geometry a
hemisphere of radius 1mm gives a volume of approximately 2 mm3.

Because there is a residual value called the biological zero, even in the case
of complete occlusion [5], we cannot use absolute unite (e.g. ml/s/mm3) but
are obliged to work in arbitrary units (AU) for the flow. The residual value
comes from the Brownian motion of the red blood cells. To obtain an abso-
lute measure, the biological zero is determined by doing probe calibration in
water containing a colloidal suspension of polystyrene microspheres of known
characteristics.

(b) Iontophoresis

Iontophoresis is widely used for transcutaneous delivery of ionized drugs for

89



T r a n s m i t t e r R e c e i v e r

Fig. B.2. Sketch showing how a laser-Doppler flowmetry (LDF) probe detects flow.

the assessment of skin microvascular function. A small electrical current is
used to transfer locally vasoactive substances such as endothelial-dependent
ACh and endothelial-independent SNP across the dermal barrier as unipolar
currents of relatively large molecules. It has been shown [204] that the potential
difference applied does not in itself cause a significant increase in blood flow.
As discussed in subsection A.6.2, SNP breaks down to yield nitric oxide (NO),
which acts directly on vascular smooth muscle cells, while ACh acts on the
intact vascular endothelium causing it to release NO. Endothelial activity
can therefore be assessed by looking at the difference between ACh and SNP-
stimulated oscillations. In this way oscillation around 0.01 Hz and 0.07 Hz were
shown to be endothelial-dependent [99–101,103]. ACh and SNP are relatively
high conductivity solutions and have opposite polarity. Therefore we need to
apply anodal iontophoresis to ACh and cathodal iontophoresis to SNP.

However, there are some potential methodological problems related to ion-
tophoresis. It is known that blood flow can sometimes be increased in respond
to the current itself, in the absence of vasoactive drugs but just with pharma-
cologically neutral electrolytes such as H2O [205, 206] or NaCl solution [207].
This phenomenon is known as the galvanic effect, or current-induced vasodila-
tion. The mechanism is unclear but could involve, for example, local heating
due to the voltage required to convey the ions through the dermal barrier. It
was shown in [113] that the magnitude of voltage between the adjacent cham-
bers needed to sustain the chosen iontophoresis current is not an important
factor in causing changes in blood flow using H2O and NaCl. In another earlier
study [208] H2O and NaCl were used with exactly the same protocol as that
described in this review, with both anodal and cathodal iontophoresis. The
results indicated that the differing responses of the 0.01 Hz spectral compo-
nent to ACh and SNP may be interpreted with confidence as a specific effect
of the substances, and not of the iontophoresis current itself.

Currents were delivered from a battery-powered constant-current iontophore-
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sis controller (Moor Instruments MIC1-e). The iontophoresis probehholders
were of perspex with internal platinum wire electrodes. Their internal diame-
ter was 8 mm, giving an area of 1 cm2 in contact with the skin. The dosages of
the drugs delivered are proportional to the total charge (Q) in millicoulombs
(mC) which migrates through skin surface, determined by the product of con-
stant current measured in milliamperes (mA) and the duration (t) of current
flow in seconds. We used a protocol that passes a charge of 2 mC (100 µA for
20 seconds) followed by a 240 seconds interval seven times in one measurement,
thus filling the 30 min of recording.

B.2.4 Measurement set up

The measurement of two blood flow channels with ACh and SNP was obtained
by laser Doppler flowmetry (LDF) with a commercially available instrument
(DRT4, Moor Instruments, Axminster, Devon, UK). A battery powered con-
stant current source for iontophoresis was connected to the DRT4 and the
probeholders for ACh and SNP. The two iontophoresis chambers combined
with laser Doppler MP1 probes were positioned on the anterior side of the left
forearm on adjacent sites under which the vessel densities were similar. A 1 %
solution of electrolyte was placed in each chamber.

The measurement of basal blood flow was obtained with two additional probes
(MoorLAB server and MoorLAB satellite, Moor Instruments, Axminster, De-
von, UK). They were fixed on the right wrist and on the inner right ankle
respectively.

The cut-off frequency of the low-pass filter of 22.5 kHz and a time constant of
0.1 s were selected, thus allowing the dynamics of the slow oscillatory processes
to be captured.

The ECG was set up as described in subsection B.2.1. The ECG and respira-
tion signals were amplified by a signal conditioning unit (Cardiosignals, Stefan
Institute, Ljubljana, Slovenia). All signals were sampled at 400 Hz by a 16-bit
A/D converter (National Instruments) and stored in a personal computer.

B.3 Subjects

In the course of data recording, 118 healthy individuals were measured, in-
cluding 71 males (42.6± 15.1 years, range 16-74 years) and 47 females (45.8±
16.6 years, range 18-82 years). They were not taking any medication nor did
they have any history of cardiovascular disease prior to the recordings. They
were asked to refrain from eating or drinking coffee for one hour before the
measurements.
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Subjects lay on a bed in a supine position and were asked to relax while
peripheral blood flow, ECG and respiration were recorded throughout 30 min.
The measurements were done at room temperature 22± 1 ◦C during daytime.

B.4 Recorded signals

B.4.1 ECG and respiration
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Fig. B.3. (a) An ECG signal, and (b) a respiratory signal obtained from the mea-
surements. The PQRST events are marked in (a).

For the first several decades of ECG measurements, attention was focussed
mainly on the detailed shape of the approximately periodic pulses seen in the
signal. As discussed in subsection B.2.1, a typical ECG signal consists of the P
wave, the QRS complex, and the T wave as illustrated in Fig. B.3a. A typical
respiratory signal is shown in Fig. B.3b. The maximum point in each period
represents inspiration and the minimum expiration.

B.4.2 Blood flow with iontophoresis

Blood flow signals with iontophoresis are shown in Fig. B.4. Parts (a) and (b)
show the full record of 30 min for ACh and SNP respectively. Part (c) shows
the pulses of iontophoresis current. In parts (d) and (e), just 10 seconds of the
records are shown in order to resolve the faster oscillation. Note that the flow
and its oscillations increase by a factor of more than 10× after applying the
substances.
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Fig. B.4. Blood flow in arbitrary units measured with (a) ACh and (b) SNP, over
30 min. (c) The corresponding iontophoretic current pulses. Parts (d) and (e) show
10 s samples of the recordings in (a) and (b) respectively.

C Appendix C. Statistics

Physiological signals taken from different subjects usually have variance in
their characteristics. It is of course inevitable, because there are many possible
unknown factors which could be responsible for individual differences. In order
to judge the trend of signals, a careful application of statistics is needed. In
this Appendix, we explain in detail the statistical methods that have been
used in the main part of the review.

Standard tests have been used to determine the statistical significance of the
observations. When the underlying distribution of the data was known, or
could be assessed, a parametric test was conducted, e.g. a t-test [209]. It can
be used to determine whether two Gaussian populations have different distri-
butions in their statistics. On the other hand, when the underlying distribu-
tion of data was unknown, a non-parametric test was conducted: we used the
Wilcoxon rank sum test [210] to test the difference between the distributions
of the two groups. We calculated linear regression, correlation coefficients, and
their significance, using MatLab (MatWorks). The level of statistical signifi-
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cance was usually set to 0.05, as is conventional.

With an assumption about the underlying distribution of the data, a para-
metric test can be conducted. For example, the t-test is a typical parametric
test [209]. It is used to test whether two Gaussian populations have different
statistical distributions. On the other hand, when the underlying distribution
of data is unknown, a non-parametric test should be conducted. In our stud-
ies, we use non-parametric tests, the Wilcoxon rank sum test and Spearman’s
rank correlation coefficient, because we have no prior knowledge of the dis-
tribution of samples. In section C.1, the details of the significance tests are
explained. Correlation analysis is used to draw inferences about the strength
of the relationship between two or more variables. In section C.2, the details
of correlation analysis will be explained.

C.1 Significance tests

A conjecture concerning the unknown distribution of a random variable is
called a statistical hypothesis. The aim of a significance test is to establish
whether the hypothesis is true or not. If the probability that the hypothesis
holds is below the threshold chosen for statistical significance, the hypothesis
is rejected. The statistical significance is usually set to 0.05 and the same value
was used in this review. Again, the statistical significance tests were conducted
using MatLab (MatWorks).

C.1.1 The t-test

In this subsection, a typical parametric test, the t-test, is explained briefly.
The t-statistics method was introduced by William Sealy Gosset for cheaply
monitoring the quality of stout. Gosset published his t-test in Biometrika in
1908, but was forced to use a pen name, “Student”, by his employer who
regarded the fact that they were using statistics as a trade secret.

Given two data sets X1 and X2, each characterized by its mean X̄1 and X̄2,
standard deviation s1 and s2 and number of data points n1 and n2, we can use
a t-test to determine whether the means are distinct under the assumption
that the underlying distributions can be assumed to be normal. All such tests
are usually called Student’s t-tests. Strictly speaking that name should only
be used if the variances of the two populations are also assumed to be equal.
The test used when this assumption is dropped is sometimes called Welch’s
t-test. There are different versions of the t-test depending on whether the two
samples are independent of each other (e.g., individuals randomly assigned
into two groups), or paired so that each member of one sample has a unique
relationship with a particular member of the other sample (e.g. the same
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subjects measured before and after an intervention, or IQ test scores of a
husband and wife).

In the case that two samples are independent, the t-value is calculated as

t =
X̄1 − X̄2

sX1−X2

, where sX1−X2 =

√
(n1 − 1)s1

2 + (n2 − 1)s2
2

n1 + n2 − 2

(
1

n1

+
1

n2

)
.(C.1)

Once a t-value is determined, a p-value can be found using a table of values
from the t-distribution with (n1+n2−2) degrees of freedom. The t-distribution
fT is a symmetric bell-shaped distribution with heavier tails than the normal
distribution. The t-distribution is defined as

fT (t) =
Γ((k + 1)/2)√

kπΓ(k/2)
(1 + t2/k)−(k+1)/2, (C.2)

where k is the degree of freedom. The p-value is calculated as

p = 2

∞∫

t

fT (t)dt. (C.3)

If the p-value is below the threshold chosen for statistical significance (usually
0.05), then the null hypothesis H0 that the distributions of the two groups
are identical is rejected in favor of an alternative hypothesis, which typically
states that the groups do differ.

The t-test is also used to examine whether the slope of a regression line differs
significantly from 0.

C.1.2 Rank sum test

Rank sum tests form a large category of non-parametric tests [144]. The gen-
eral idea is that, instead of using original observed data, we list the data in
ascending order and assign a rank to each item, the position where the item
appears in the sorted list. Using the ranks instead of the original observed
data makes the test much less sensitive to outliers and noise than parametric
tests.

Depending on the number of classes in the data sets, there are different kinds
of rank sum tests. The Wilcoxon rank sum test [210] is a non-parametric al-
ternative to the t-test. Here we focus on the Wilcoxon rank sum test and
demonstrate how to conduct it by taking an example. Let us take two groups
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X and Y. X contains 11 samples and Y contains 7 samples as shown in Ta-
ble C.1. We want to test whether the null hypothesis H0 that the distribution
of samples X is identical to that of samples Y is true or false.

Types Number Values

X 11 33 14 12 11 22 28 10 8 18 19 20

Y 7 17 28 15 35 27 32 29
Table C.1
Values of two groups, considered as an example.

We combine all the samples of X and Y and sort them into ascending order.
Ranks are then assigned to the samples based on their order. If k samples have
the same rank of i, than all k samples have an average rank i+(k− 1)/2. The
results of the example are shown in Table C.2

Values 8 10 11 12 14 15 17 18 19

Types X X X X X Y Y X X

Ranks 1 2 3 4 5 6 7 8 9

Values 20 22 27 28 28 29 32 33 35

Types X X Y X Y Y Y X Y

Ranks 10 11 12 13.5 13.5 15 16 17 18
Table C.2
The ranks assigned to each sample.

Suppose that n1 and n2 are the numbers of the smaller sample size and the
larger sample size, respectively. In this example, n1 = 7 and n2=11. Then
we calculate the sum of group Y and have the statistic W = 6 + 7 + 12 +
13.5 + 15 + 16 + 18 = 87.5. If the null hypothesis H0 holds, the statistic W
should be around the expectation value (n1 + n2 + 1) × n1/2 = 66.5. If W
is too small or too large, the null hypothesis H0 is likely to be false. Using
MatLab, the p-value is calculated as p = 0.0589 for this example. If we set
the statistical significance to 0.05, the null hypothesis H0 cannot be rejected
because 0.05 < 0.0589, whereas if we set the statistical significance to 0.1, the
null hypothesis H0 is rejected.

We used the Wilcoxon rank sum test to assess the differences between different
genders, different age groups and different drugs.

C.1.3 Walde-Wolfowitz runs test

The WaldWolfowitz test is a non-parametric statistical test to check the hy-
pothesis that the elements of a two-valued data sequence are mutually indepen-

96



dent. A “run” is the maximal non-empty segment of the sequence consisting of
the adjacent same elements. For example, the sequence +−−++−+++−−
consists of six runs, three of which consist of +s and the others of −s. Let us
suppose that the number of runs is R, the total number of observation is N ,
N+ is for occurrences of + and N− is for occurrences of (N = N+ + N−). In
the above example, R is 6, N is 11, N+ is 6 and N−is 5. Then the mean µ and
standard deviation σ of the probability at which R is obtained given N+ and
N− is calculated as

µ(R) = 1 +
2N+N−

N
(C.4)

σ(R) =
2N+N−(2N+N− −N)

N2(N − 1)
. (C.5)

When N is relatively large (N > 20), the distribution of R is approximately
normal. If there are much more or less runs than expected, the hypothesis of
statistical independence of the elements may be rejected. Runs tests can be
used to test:

(1) The randomness of a distribution, by taking the data in the given order
and marking with + the data greater than the median, and with the
data less than the median; (Numbers equalling the median are omitted.)

(2) Whether a function fits well to a data set, by marking the data exceeding
the function value with + and the other data with -. For this use, the
runs test, which takes into account the signs.

We conducted the runs test by using MatLab, which returns values of h and
p. This is a test of the null hypothesis that the +s and −s come in random
order, against the alternative that they do not. The test returns the logical
value h = 1 if it rejects the null hypothesis at the 5 % significance level, and
h = 0 if it cannot. The p-value is computed from either the test statistics or
the exact distribution of the number of runs and if p is below the significant
level (usually 0.05), the null hypothesis is rejected.

C.2 Correlation analysis

C.2.1 Linear correlation

Suppose that we have n observations of two variables, X = x1, · · · , xn and
Y = y1, · · · , yn. The variation of variable Y can be separated into two parts:
the variation associated with variable X and the variation not associated with
variable X. The fraction that is explained by a linear relationship between
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X and Y is called the coefficient of determination and its square root is the
correlation coefficient. The correlation coefficient r can be expressed [211] as

r =

∑n
i=1 xiyi − 1

n
(
∑n

i=1 xi)(
∑n

i=1 yi)√∑n
i=1 x2

i − 1
n
(
∑n

i=1 xi)2
√∑n

i=1 y2
i − 1

n
(
∑n

i=1 yi)2
. (C.6)

The estimated correlation coefficient r is a random variable that has a distri-
bution function. The distribution of r is a function of the sample size n and
the real correlation coefficient ρ. A correlation coefficient of zero means that
there is no linear relationship between the two variables. To test whether two
variables are linearly related, we set the null hypothesis,

H0 : ρ = 0. (C.7)

It can be shown that for n > 2, this hypothesis can be tested using a t-test
that is given by

tr = r

√
n− 2

1− r2
. (C.8)

The value tr is a random value with a t-distribution that has n− 2 degrees of
freedom. The p-value is defined as

p = 2

∞∫

tr

fT (t)dt. (C.9)

If the p-value is lower than statistical significance, then the null hypothesis is
rejected and the correlation coefficient is considered statistically significant.

It is important to check the relationship between variables graphically before
performing the correlation analysis in order to check whether there might
be an outlier in the data. In the t-test, an outlier can affect the statistics
significantly. In some cases, variables have a nonlinear relationship and this
can be identified graphically as well. It was reported by Anscombe [212] that
several different patterns, one of which had a linear relationship and some of
which did not, could return the same correlation coefficient. Nonlinearity may
result in low correlation and may sometimes be improved by using a log-plot.

C.2.2 Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient or Spearman’s rho, named after Charles
Spearman and often denoted by the Greek letter ρ, or sometimes as rs, is a
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non-parametric measure of correlation - that is, it assesses how well an ar-
bitrary monotonic function could describe the relationship between two vari-
ables, without making any other assumptions about the particular nature of
the relationship between them. It is unaffected by outliers.

Suppose that Xi and Yi are two variables between which we want to find the
correlation and xi and yi are the rankings of Xi and Yi respectively.

ρ = 1− 6
∑

di
2

n(n2 − 1)
, (C.10)

where di is the difference between the two variable, xi − yi.

In order to assess the significance level of ρ, we shuffled one variable and
obtained ρ from the permutated data. We repeated this process 105 times and
calculated the probability of the ρ of the shuffling data being larger than that
of the real data. We represented this probability as p and used this value as
an indicator of the significance level.

In plotting the relationships of two variables in the main part of the review,
we present ρ and p in each figure. If ρ is positive, there is positive correlation
and, if ρ is negative, there is negative correlation. However, we do not plot
linear regression because we do not assume a linear relationship (unlike the
cases of the Pearson correlation coefficient).

Throughout this review, we used Spearman’s rank test to calculate corre-
lations with age, and their significance, based on the utilization of MatLab
(MatWorks). We used ρm and pm to represent correlation with age and prob-
ability for males, respectively, ρf and pf for females. The blue lines and dots
represent males, and the red lines and dots females in the various graphs.
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[99] A. Stefanovska, M. Bračič and H. D. Kvernmo, Wavelet analysis of oscillations
in the peripheral blood circulation measured by laser Doppler technique, IEEE
Trans. Bio. Med. Eng. 46(10) (1999) 1230–1239.

[100] P. Kvandal, A. Stefanovska, M. Veber, H. D. Kvernmo and K.-A. Kirkebøen,
Regulation of human cutaneous circulation evaluated by laser Doppler
flowmetry, iontophoresis, and spectral analysis: importance of nitric oxide and
prostaglandines, Microvasc. Res. 65(3) (2003) 160–171.

[101] P. Kvandal, S. A. Landsverk, A. Bernjak, A. Stefanovska, H. D. Kvernmo and
K. A. Kirkebøen, Low frequency oscillations of the laser Doppler perfusion
signal in human skin, Microvasc. Res. 72(3) (2006) 120–127.

[102] H. D. Kvernmo, A. Stefanovska, M. Bračič, K.-A. Kirkebøen and K. Kvernebo,
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[105] T. Söderström, A. Stefanovska, M. Veber and H. Svenson, Involvement of
sympathetic nerve activity in skin blood flow oscillations in humans, Am. J.
Physiol.: Heart. Circ. Physiol. 284(5) (2003) H1638–H1646.

106



[106] D. S. Celermajer, K. E. Sorensen, D. J. Spiegehalter, D. Georgakopoulos,
J. Robinson and J. E. Deanfield, Aging is associated with endothelial
dysfunction in healthy men years before the age-related decline in women,
J. Am. Coll. Cardiol. 24 (1994) 471–476.

[107] A. Algotsson, A. Nordberg and B. Winblad, Inflence of age and gender on
skin vessel reactivity to endothelium-dependent and endothelium-independent
vasodilators tested with iontophoresis and a laser Doppler perfusion imager,
J. Gerontol. A: Biol. Sci. Med. Sci. 50(2) (1995) M121–M127.

[108] H. Seidel and H. Herzel, Analysing entrainment of heartbeat and respiration
with surrogates, IEEE Eng. Med. Biol. Mag. 17(1–2) (1998) 54–57.

[109] A. S. Pikovsky, M. G. Rosenblum, G. V. Osipov and J. Kurths, Phase
synchronization of chaotic oscillators by external driving, Physica D 104(3-
4) (1997) 219–238.

[110] D. Gabor, Theory of communication, J. IEEE 93 (1946) 429–457.

[111] M. G. Rosenblum, A. S. Pikovsky and J. Kurths, Phase synchronization of
chaotic oscillators, Phys. Rev. Lett. 76(11) (1996) 1804–1807.

[112] J. P. Lachaux, E. Rodriguez, J. Martinerie and F. J. Varela, Measuring phase
synchrony in brain signals, Human Brain Mapping 8(4) (1999) 194–208.

[113] A. Bandrivskyy, A. Bernjak, P. McClintock and A. Stefanovska, Wavelet
phase coherence analysis: Application to skin temperature and blood flow,
Cardiovascular Engineering 4(1) (2004) 89–93.

[114] R. Q. Quiroga, A. Kraskov, T. Kreuz and P. Grassberger, Performance
of different synchronization measures in real data: A case study on
electroencephalographic signals, Phys. Rev. E 65(4) (2002) 041903.

[115] S. Hales, Statistical Essays II, Hæmastatisticks (Innings Manby, London,
1733).

[116] Y. C. Tzeng, D. C. Galletly and P. D. Larsen, Paradoxical respiratory sinus
arrhythmia in the anesthetized rat, Autonimic Neurosci. – Basic and Clin.
118(1–2) (2005) 25–31.

[117] D. C. Galletly and P. D. Larsen, Relationship between cardioventilatory
coupling and respiratory sinus arrhythmia, Br. J. Anæsth. 80(2) (1998) 164–
168.

[118] J. Hayano, S. Mukai, M. Sakakibara, A. Okada, K. Takata and T. Fujinami,
Effects of respiratory interval on vagal modulation of heart rate, Am. J.
Physiol.: Heart. Circ. Physiol. 267(1) (1994) H33–H40.

[119] K. Umetani, D. H. Singer, R. McCraty and M. Atkinson, Twenty-four hour
time domain heart rate variability and heart rate: Relations to age and gender
over nine decades, J. Amer. Coll. Cardiol. 31(3) (1998) 593–601.

107



[120] P. K. Stein, R. E. Kleiger and J. N. Rottman, Differing effects of age on heart
rate variability in men and women, Am. J. Cardiol. 80(3) (1997) 302–305.

[121] T. Higuchi, Approach to an irregular time-series on the basis of the fractal
theory, Physica D 31(2) (1988) 277–283.

[122] T. Higuchi, Relationship between the fractal demension and the power law
index for a time-series – a numerical investigation, Physica D 46(2) (1990)
254–264.

[123] L. Guzman-Vargas, E. Calleja-Quevedo and F. Angulo-Brown, Fractal changes
in heart rate dynamics with aging and heart failure, Fluctuation and Noise
Lett. 3(1) (2003) L83–L89.

[124] L. M. Xu, I. P. C., K. Hu, Z. Chen, A. Carbone and H. E. Stanley,
Quantifying signals with power-law correlations: A comparative study of
detrended fluctuation analysis and detrended moving average techniques,
Phys. Rev. E 71(5) (2005) 051101.

[125] P. Bak, C. Tang and K. Wiesenfeld, Self-organized criticality: an explanation
of 1/f noise, Phys. Rev. Lett. 59 (1987) 381–384.

[126] J. Beran, Statistics for Long-Memory Processes (Chapman & Hall, New York,
1994).

[127] W. H. Press, Flicker noises in astronomy and elsewhere, Comments Astrophys.
7 (1978) 103–119.

[128] C. K. Peng, J. M. Hausdorff and A. L. Goldberger, Fractal mechanisms in
neural control: human heartbeat and gait dynamics in health and disease, in
J. Walleczek, ed., Self-Organized Biological Dynamics and Nonlinear Control
(Cambridge. Univ. Press., Cambridge, UK, 2000), pp. 66–96.

[129] F. Beckers, B. Verheyden and A. E. Aubert, Aging and nonlinear heart rate
control in a healthy population, Am. J. Physiol. Heart Circ. Physiol. 290(6)
(2006) H2560–H2570.

[130] M. J. Katz, Fractals and the analysis of waveforms, Comput. Biol. Med. 18(3)
(1988) 145–156.

[131] C. Bogaert, F. Beckers, D. Ramaekers and A. E. Aubert, Analysis of heart rate
variability with correlation dimension method in a normal population and in
heart transplant patients, Auton. Neurosci. – Basic & Clin. 90(1-2) (2001)
142–147.

[132] S. M. Pincus, Approximate entropy as a measure of system complexity, Proc.
Natl. Acad. Sci. USA 88(6) (1991) 2297–2301.

[133] G. Kaiser, A Friendly Guide to Wavelets (Birkhäuser, Boston, 1994).
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flowmeter for measurement of tissue blood flow, IEEE Trans. Biomed. Eng. 27
(1980) 597–604.

[203] J. C. Fischer, P. M. Parker and W. W. Shaw, Comparison of two laser Doppler
flowmeters for the monitoring of dermal blood flow, Microsurgery 4(3) (1983)
164–170.

[204] A. Bandrivskyy, A. Bernjak, P. V. E. McClintock and A. Stefanovska, Role
of transdermal potential difference during iontophoretic drug delivery, IEEE
Trans. Biomed. Eng. 51(9) (2004) 1683–1685.

113



[205] M. N. Berliner, Skin microcirculation during tapwater iontophoresis in
humans: cathode stimulates more than anode, Microvasc. Res. 54(1) (1997)
74–80.
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