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Abstract. We consider theoretically the spontaneous oscillations of an elastic
cylinder in a streaming fluid flow. Such oscillations are responsible for stall flutter
in e.g. turbine blades and bridges, or Æolian tones when in the acoustic range. The
process of vortex separation from the oscillating surface is modelled as a self-excited
oscillator. The vortex separation frequency remains synchronized with the oscillations
of the cylinder over a great range of frequency mismatches, enabling the amplitudes
and frequencies to be calculated. Only when the vortex separation frequency is much
less than the cylinder’s natural oscillation frequency does the synchronization break
down, and two-frequency oscillations (beats) then occur.

1. Introduction

It has long been known that, when fluid flows past lengthy bodies, they can radiate

Æolian tones [1], sounds resulting from the reaction to the vortex-shedding that creates

a Kármán wake [2] downstream of the body, as sketched in Fig. 1. Familiar examples

include the “singing” of telegraph wires in the wind, the side movement of an oar in

water, and the Æolian harp. The phenomenon also arises in the engineering context as

the stall flutter [3, 4] of e.g. helicopter rotors, turbine blades, suspension bridges, steel

factory pipes, and periscopes of submarines [5, 6, 7, 8, 3, 9]. We will refer to all such

self-oscillations as stall flutter, and will not try to distinguish [8, 10] between the cases

of immovable or flexible cylinders because in both cases there occurs the excitation of

self-oscillations. Stall flutter often manifests when one of the body’s natural oscillation

frequencies is close to the frequency at which vortex separation would occur from the

same body while immovable. The rotary oscillations of wires caused by stall flutter are

similar in form to thermo-mechanical self-oscillations [11]. Stall flutter is known to have

been the underlying cause of many technical disasters of which one of the best known

is probably the collapse of the Tacoma Narrows suspension bridge [6, 3]. Despite its

prevalence and widespread importance, many experimental results and much numerical

analysis [12, 13], there is not yet to our knowledge a strict quantitative theory of stall

flutter.
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Figure 1. Schematic diagram of the Kármán wake for streamlined flow around a
cylinder

Stall flutter is often interpreted as the excitation of resonant oscillations under the

action of a periodic force caused by the vortex separation with a frequency dependent

on the flow velocity, and the size and shape of the streamlined body. The force

frequency may be found from the condition that the Strouhal number St = fD/U0

remains approximately constant, where, f is the frequency of vortex separation, D is

the cylinder diameter, and U0 is the flow velocity. We comment that such explanations

are in immediate conflict with the observation that stall flutter of sufficiently long ropes

can be maintained by flow at very different velocities over different sections of the rope.

In reality, as we shall see below, stall flutter does not correspond simply to forced

oscillations. Rather, it is a unified self-oscillatory phenomenon.

Because the process of vortex separation is evidently of a self-oscillatory character

[11, 12, 14, 15, 16], and the streamlined body represents an oscillatory element with

one or several natural frequencies, the stall flutter phenomenon must be similar to

self-oscillations in a system containing both active and passive oscillatory elements.

In this paper we therefore model stall flutter as an interaction phenomenon arising

between a self-excited oscillator (the flow oscillator) [14, 15, 16] corresponding to the

periodic vortex separation, and a passive oscillator (the elastic cylinder around which

the fluid flows). Note that the problems of this type were first investigated and solved

by physicists of the Mandelstam school in Moscow (including A. Andronov, A. Witt,

S. Strelkov and A. Skibarko), in 1934. The corresponding physical effects are known in

textbooks on oscillation theory as pulling phenomena.

2. Stall flutter as a self-oscillatory phenomenon

Stall flutter is remarkably similar to self-oscillations in a system containing both active

and passive oscillatory elements [11]. A classic example of such a system is an oscillator

with an additional oscillatory circuit [17, 18, 19, 20]. So we may anticipate that all of the

well-established features of such systems (e.g. frequency-pulling and the characteristic

variation of the oscillation amplitudes as the frequency mismatch varies) will appear in
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Figure 2. The dependence of the mismatch between the frequency of vortex separation
from the oscillated (f and immovable f0 cylinders ∆St = (f−f0)D/U0 on the mismatch
between the frequency fc of the cylinder oscillations and f0 ∆St0 = (fc − f0)D/U0

expressed in terms of the Strouhal numbers. From experimental data in [25]

the case of stall flutter too. Before attempting to model stall flutter in this way, we

make a few general remarks about philosophy of modelling.

2.1. Levels of modelling

Modeling stall flutter in the way suggested above does not, of course, signify that such

a complex phenomenon is described by equations identical to those of an oscillator

with an additional oscillatory circuit. It is clearly evident that these equations are not

isomorphic with those for stall flutter. Due to the well-known universality of the laws of

oscillation theory, however, we can describe a wide range of oscillation phenomena with

relatively simple models described by known equations [21]. For example, turbulent

processes in submerged jets can be modeled successfully [22, 23] by the equation of a

pendulum with a randomly vibrated suspension axis, and the dynamics of the human

cardiovascular system can be modeled successfully [24] with Poincaré oscillators. In the

present case, we use a generic oscillator to model the observed behaviour of the system,

rather than approaching it via the mechanics of continuous media (hydrodynamics).

There are numerous other examples in science of high level modeling of a similar kind,

where one models an observed phenomenon rather than trying to predict it from a

first-principles approach based on the properties of more fundamental elements (e.g.

molecules or continua or cells) of the system.

Note that, in contradistinction to some of the earlier work on the oscillator with

an additional oscillatory circuit [17, 18, 19, 20], where only one-frequency regime was

considered, we show below that in our system a two-frequency regime exists for a small

range of mismatches between the vortex separation and cylinder oscillation frequencies.
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Figure 3. Schematic image of the oscillations of an elastic cylinder of length l taking
place along axis z in the case of flowing in the direction of axis x

2.2. Vortex separation as self-oscillations. Synchronization of the vortex separation

process

To justify the self-oscillatory character of the vortex separation process, we note first

that the velocity and pressure pulsations at any point behind a streamlined body

have a rather narrow spectrum with a well-defined maximum. Detemple-Laake and

Eckelmann have already shown [14] experimentally that the vortex separation process

from a streamlined body behaves like a nonlinear oscillator whose frequency can be

pulled by up to 25% by acoustic forcing. Secondly, this process from a streamlined body

may be synchronized by oscillations of the body at a frequency that is approximately

divisible by the frequency of vortex separation from the same body when immovable

[1, 26, 27, 28, 25]. Thirdly, the dependence of the vortex separation from the oscillating

body on the mismatch between the body oscillation frequency fb and the frequency

of vortex separation from the immovable body is very similar to the well-known

dependence of the frequency of synchronized oscillations of a van der Pol oscillator

on the mismatch between the free self-oscillation frequency and the external forcing

frequency [21]: see e.g. Fig. 2 constructed from the experimental data of [25]. In

this figure ∆St = (f − f0)D/U0 and ∆St0 = (fc − f0)D/U0 are the mismatches

between the frequencies of vortex separation from the oscillating f and the immovable f0

cylinders expressed in terms of the Strouhal numbers, fc is the frequency of the cylinder

oscillations, D is the cylinder diameter, and U0 is the flow velocity. For comparison

the dependence ∆St =
√

(∆St0)2 − (∆St0)2
s , where (∆St0)s is the half-width of the

synchronization region, is shown in the same figure by a dashed line.

This dependence should be valid in the case of synchronization of the oscillator by

a small harmonic external force. However, judging by the fact that the synchronization

region is rather wide, the amplitude of the cylinder oscillations was significant, resulting

in a steeper dependence of ∆St on ∆St0. As in other oscillators synchronization

can occur, not only for the fundamental frequency, but also for its harmonics and

subharmonics [27].
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3. A mathematical model of stall flutter

We therefore consider the oscillations of an elastic circular cylinder of length l with

fixed ends, placed transversely to the flow as shown in Fig. 3. The streamlines around

a circular cylinder have been considered in many books [29, 9] and papers [27, 30]. A

Kármán vortex wake [31] is formed behind a streamlined cylinder. For the Reynolds

numbers 40 < Re < 150 it is regular, and for 150 < Re < 300 it is turbulent. For

300 < Re < 2 · 105 the Kármán wake becomes again close to regular, but with turbulent

bursts. After this, for Re > 5 · 106, a dominant vortex separation frequency is again

observed in the wake spectrum [32]. It should be emphasized that such an alternation

between regions of different behavior as a parameter changes is typical of chaotic self-

oscillatory systems [33, 11]. In particular, the region 300 < Re < 2 · 105 may be

considered as a region of intermittency. The scenario represents additional evidence

that the formation of the Kármán wake is a self-oscillation process. In what follows we

will consider only that range of Reynolds numbers where vortex separation occurs in an

almost periodic manner.

A stalling streamline in the direction of the x axis with velocity V (identical for

all cylinder sections [34]) results in a nearly periodic lift force Fkz(t) along the z axis,

and a drag force Frx(t) along the x axis toward the flow. The latter is made up of: a

slowly-changing component; and a component that is nearly periodic at half the period

of the lift force.

For an immovable cylinder, over a wide range of the Reynolds numbers, the

frequency of the lift force is equal to that of vortex separation ωv, and the frequency of

the drag force is equal to 2ωv [27]. The difference arises because the lift force frequency

is defined by the distance between vortices along one side of the Kármán wake (2λ),

whereas the drag force frequency is defined by the distance between vortices along both

sides of the Kármán wake (λ) (see Fig. 1).

The frequency ωv is connected to the Strouhal number St and the flow velocity V

by ωv = 2πSt/DV, where D is the cylinder diameter. Experiments [9] show that, for

40 < Re < 150, the Strouhal number increases with Re, then becomes approximately

constant and equal to 0.2, and then increases again as shown in Fig. 4 [9]. For

2 · 105 < Re < 5 · 106 the vortex wake is strongly turbulent, so that the Strouhal

number cannot be determined. For Re > 5 · 106, the Strouhal number St ≈ 0.3.

As far as we are aware, no equations have been proposed that would enable us to

describe rigorously the lift and drag forces for a stalling streamline. However, expressions

for their amplitudes and frequencies have been deduced via dimensional considerations

[29, 27, 30, 3, 9]. The amplitudes of the lift and drag forces Fkz(t) and Frx(t) are

correspondingly

Akz = ck(Re)Syz
ρV 2

2
, Arx = cr(Re)Syz

ρV 2

2
, (1)

where ck(Re) and cr(Re) are factors depending on the quality of streamlining (the worse

the streamlining, the larger the values of ck and cr) and on the Reynolds number, Syz is



Æolian tones and stall flutter of lengthy objects 6

the area of the body projection on the plane yz normal to the flow direction. We note

that the factor cr(Re) is always much less than ck(Re), i.e. the oscillating component of

the drag force is small in comparison to the lift force.

For an oscillating cylinder, forces arising from the non-stationarity of the streamline

must be added to the forces Fkz(t) and Frx(t) defining the added hydrodynamic mass

and an additional damping factor; and the factors ck(Re) and cr(Re) will depend on the

oscillation amplitude.

Considering the oscillating cylinder as a stretched string, we write the equations of

its oscillations along axes x and z as

ρs
∂2ux

∂t2
+ β

∂ux

∂t
− T

∂2ux

∂y2
=

Frx(t)

Arx

,

ρs
∂2uz

∂t2
+ β

∂uz

∂t
− T

∂2uz

∂y2
=

Fkz(t)

Akz

, (2)

where ux(y, t)/Arx and uz(y, t)/Akz are the relative cylinder displacements along x and z,

ρs is the linear density of the string, T is the string tension, and β is the damping factor.

If the cylinder ends are fixed, the boundary conditions are ux(0, t) = 0, ux(l, t) =

0, uz(0, t) = 0, uz(l, t) = 0.

Noting that Frx(t) and Fkz(t) are nonzero only for 0 ≤ y ≤ l, and recalling that

the drag force frequency is twice the lift force frequency, we write

Frx(t) = Arx

∞∑

j=1

f (j)
rx (t) sin

(
2(2j − 1)π

l
y

)
,

Fkz(t) = Akz

∞∑

j=1

f
(j)
kz (t) sin

(
(2j − 1)π

l
y

)
, (3)

where

f (j)
rx (t) =

Frx(t)

2(2j − 1)πArx

, f
(j)
kz (t) =

Fkz(t)

(2j − 1)πAkz

.

If the frequency of vortex separation from the oscillating cylinder is close to its n-th

Figure 4. The dependence of the Strouhal number on the Reynolds number for
transversal streamline of an immovable circular cylinder
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natural frequency then we can retain only one term in each of the expansions (3), i.e.

Fkz(t) = Akzf
(n)
kz (t) sin

(
(2j − 1)π

l
y

)
,

Frx(t) = Arxf
(2n)
rx (t) sin

(
2(2j − 1)π

l
y

)
. (4)

Solving Eqs. (2) by expansion in terms of the natural functions for an undamped string

with fixed ends, and retaining only the first term in the expansion, we have

ux(y, t) = U (j)
x (t) sin

(
2(2j − 1)π

l
y

)
,

uz(y, t) = U (j)
z (t) sin

(
(2j − 1)π

l
y

)
.

In so doing we find for functions U (n)
z (t) and U (2n)

x (t) the following equations:

d2Uz

dt2
+ 2δ

dUz

dt
+ ω2

nUz =
f

(n)
kz (t)

ρs

,

d2Ux

dt2
+ 2δ

dUx

dt
+ 4ω2

nUx =
f (2n)

rx (t)

ρs

, (5)

where δ = β/(2ρs) ¿ ωn.

Owing to the difference of the oscillation frequencies in the x and z directions, the

resultant oscillations will in general be of complex form. Moreover, in the ranges of

Reynolds numbers where the vortex separation process is random, these oscillations will

also be random. Precisely this feature was observed prior to collapse of the Tacoma

bridge, and it also appears in the stall flutter of power lines.

As indicated above, the vortex separation process is self-oscillatory in nature. It

arises owing to the formation behind the streamlined body of a backwash, providing

the feedback needed for excitation of the self-oscillations. To calculate the forces

Fkz(y, t) and Frx(y, t) we take the van der Pol oscillator as a model of the excitation

of self-oscillations phenomenon [11]. Taking account of the experimental fact that the

cylinder oscillations can synchronize the vortex separation, we write the following model

equations for frx(t) and fkz(t):

d2fkz

dt2
− µ

(
1− 4f 2

kz

)dfkz

dt
+ ω2

vfkz = m1Uz,

d2frx

dt2
− µ

(
1− 4f 2

rx

)dfrx

dt
+ 4ω2

vfrx = m2Ux, (6)

where µ is a small parameter, and the coupling coefficients m1,2 are assumed small.

The terms m1Uz and m2Ux are responsible for the synchronization of vortex separation

by the cylinder oscillations. Note that µ represents a negative friction that is inversely

proportional to the transition time of the self-oscillations. Depending on the value of

µ, therefore, the oscillations can in principle occur at almost any frequency and are not

confined to the acoustic range.
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Figure 5. The dependences of the self-oscillation amplitudes of the lift force (A1) and
cylinder (A2) on the frequency mismatch ξ for δ/ωn = 0.1 with (a) m1/ω2

n = 0.05,
m2/ω2

n = 1 and (b) m1/ω2
n = 0.15, m2/ω2

n = 1

It follows from Eqs. (6) that, for Ux(t) ≡ Uz(t) ≡ 0, the stationary values of Fkz(t)

and Frx(t) are

Fkz(t) = Akzfkz(t) ≈ Akz cos(ωvt),

Frx(t) = Arxfrx(t) ≈ Arx cos(2ωvt + ϕ), (7)

where ϕ represents the phase shift between the drag and lift forces. Note that (7) are

in full accord with the expressions for the lift and drag forces given in [27].

Eqs. (5) and (6) describe two independent self-oscillatory systems each of which has

two degrees of freedom. In terms of oscillation theory, each of them is an oscillator with

an additional oscillatory circuit coupled to the main one by a capacitance [19]. Due to

oscillations of the instantaneous streamline velocity as the cylinder oscillates, Eqs. (6)

could be nonlinearly coupled, but we neglect this possibility. A similar oscillator, but

with inductive coupling, was studied by Andronov and Witt with use of the Poincaré

small parameter method [17], and by Strelkov using qualitative methods [18]. These

works considered a single-frequency approximation, i.e. the synchronous regime. In

each case, parameter ranges were identified where frequency-pulling and quenching of

the self-oscillations occurred. It should be noted that the character of coupling may be

defined only by using experimental data. We have set capacitive coupling because it

results in new phenomenon (the beat regime) in comparison with inductive one.

We now consider the system described by the first equations in (5) and (6). For an

approximate solution we apply the averaging method of Bogolyubov [35] as developed

by Mitropol’sky [36], but in the form described in [20]. It should be noted that a model

described by the equations similar to (5),(6) was considered only in one-frequency regime

by another method in [16]. Rewriting Eqs. (5), (6) with a conditional small parameter

ε and dimensionless time τ = ωt, where ω is the self-oscillation frequency,

f̈kz + fkz = ε
[(

1− ξ2

ω̃2

)
fkz +

m̃1

ω̃2
Uz +

µ̃

ω̃

(
1− 4f 2

kz

)
ḟkz

]
,
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Figure 6. The dependences of relative self-oscillation frequency (a) and phase
difference between oscillatory circuits 1 and 2 (b) on the frequency mismatch for
δ/ω2 = 0.1: m1/ω2

n = 0.05, m2/ω2
n = 1 (curves 1); m1/ω2

n = 0.15, m2/ω2
n = 1

(curves 2)

(8)

Üz + Uz = ε

[
fkz(t)

ρsω2
nω̃

2
+

(
1− 1

ω̃2

)
Uz − 2δ̃

ω̃
U̇z

]
.

Here µ̃ = µ/ωn, δ̃ = δ/ωn, m̃1 = m1/ω
2
n, ξ = ωv/ωn is the mismatch between

the frequencies of vortex separation (ωv) and cylinder oscillation (ωn), ω̃ = ω/ωn is

the relative self-oscillation frequency, and dots imply differentiation with respect to

dimensionless time τ .

We now introduce new variables A1,2(τ) and Φ1,2(τ) ≡ τ + ϕ1,2(τ) defined by the

equations

fkz(τ) = A1(τ) cos Φ1(τ), ḟkz(τ) = −A1(τ) sin Φ1(τ),

Uz(τ) = A2(τ) cos Φ2(τ), U̇z(τ) = −A2(τ) sin Φ2(τ). (9)

In view of (9), Eqs. (8) become

Ȧ1 cos Φ1 − A1ϕ̇1 sin Φ1 = 0, −
(
Ȧ1 sin Φ1 + A1ϕ̇1 cos Φ1

)
=

ε

[(
1− ξ2

ω̃2

)
A1 cos Φ1 − µ̃

ω̃

(
1− 4A2

1 cos2 Φ1

)
A1 sin Φ1 +

m̃1

ω̃2
A2 cos Φ2

]
,

Ȧ2 cos Φ2 − A2ϕ̇2 sin Φ2 = 0, −
(
Ȧ2 sin Φ2 + A2ϕ̇2 cos Φ2

)
=

ε

[(
1− 1

ω̃2

)
A2 cos Φ2 +

2δ̃

ω̃
A2 sin Φ2 +

m̃2

ω̃2
A1 cos Φ1

]
,

where m̃2 = 1/(ρsω
2
n). It should be noted that Eqs. (10) are exact equations for the

amplitudes and phases.

Proceeding to apply the averaging method, in the first approximation it is necessary

to solve Eqs. (10) relative to Ȧ1, Ȧ2, ϕ̇1, ϕ̇2 and to average the equations found over the
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fast time τ . We thus obtain:

Ȧ1 =
ε

2ω̃

(
µ̃(1− A2

1)A1 − m̃1

ω̃
A2 sin ϕ

)
,

Ȧ2 = − ε

2ω̃

(
2δ̃A2 − m̃2

ω̃
A1 sin ϕ

)
, (10)

ϕ̇1 = − ε

2A1

[(
1− ξ2

ω̃2

)
A1 +

m̃1

ω̃2
A2 cos ϕ

]
,

ϕ̇2 = − ε

2A2

[(
1− 1

ω̃2

)
A2 +

m̃2

ω̃2
A1 cos ϕ

]
, (11)

where ϕ = ϕ1−ϕ2 is the phase difference between the lift force oscillations and cylinder

oscillations.

In the steady-state regime all derivatives in Eqs. (10), (11) may be set equal to

zero, yielding the following equations for the amplitudes A1, A2, phase difference ϕ and

relative self-oscillation frequency ω̃:

µ̃(1− A2
1)−

m̃1

ω̃

A2

A1

sin ϕ = 0, 2δ̃
A2

A1

− m̃2

ω̃
sin ϕ = 0,

1− ξ2

ω̃2
+

m̃1

ω̃2

A2

A1

cos ϕ = 0,
(
1− 1

ω̃2

)
A2

A1

+
m̃2

ω̃2
cos ϕ = 0. (12)

Eliminating the amplitude ratio A2/A1 from Eqs. (12, (12), we find the following

equations for the phase difference ϕ and the relative frequency ω̃:

ω̃(ω̃2 − ξ2) +
m̃1m̃2

4δ̃
sin 2ϕ = 0, (ω̃2 − 1) tan ϕ + 2δ̃ω̃ = 0. (13)

Next, we calculate the dependence of the self-oscillation amplitudes on the frequency

mismatch. From (12), (12),

A1 =

√√√√1− m̃1m̃2

2µ̃δ̃ω̃2
sin2 ϕ, A2 =

m̃2

2δ̃ω̃
A1 sin ϕ. (14)

Substituting ω̃(ξ) and ϕ(ξ) calculated above, we find the dependences of A1 and A2 on

ξ. Some examples are shown in Fig. 5.

4. Discussion and conclusions

The dependences of the lift force and cylinder oscillation amplitudes (A1 and A2) are

quite different from each other, although each has a minimum at ξ = 1. On either

side of the minimum, the oscillation amplitude of the lift force increases monotonically,

whereas that of the cylinder exhibits maxima.

Examples of the dependences of ω/ωn and ϕ on the mismatch ξ are shown in Fig. 6.

It is seen from Fig. 6(a) that, for mismatches ξ ≤ ξcr, i.e. for comparatively small

frequencies of vortex separation in the case of an immovable cylinder, synchronous self-

oscillations are impossible. The value of ξcr can be found analytically. It is equal to

ξcr =
√

m1m2/ω4
n.
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As the mismatch increases, the self-oscillation frequency tends to the frequency of

the oscillator without its additional circuit, but not monotonically. In the vicinity of

ξ = 1, frequency-pulling occurs when the self-oscillation frequency depends, not only

on the initial value of the frequency, but also on the direction of its variation. In this

region, our results coincide with those reported earlier [19]. The dependences in Figs. 5

and 6 are calculated without consideration for the stability of the solutions, but these

are readily found from Eqs. (5), (6). Unsurprisingly, some parts of the dependences near

ξ = 1 in these figures turn out to be unphysical and drop out.

The reason that the results shown in Figs. 5 and 6 differ from the corresponding

dependences found in [16] is probably associated with the different methods used in

the respective calculations. Facchinetti et al [16] simply equated the coefficients of the

main harmonics whereas, here, we have applied well-established methods of oscillation

theory. Our results are consistent with those of Teodorchik [19] obtained by his energetic

method.

In summary, we have proposed a theory of stall flutter, modeled as a self-excited

oscillator with an additive oscillatory circuit. We have shown that this process is

accompanied by synchronization and pulling. It has enabled us to calculate the

amplitudes and frequencies of the resultant self-oscillations. We have found that vortex

separation may be synchronized by the natural oscillations of the cylinder, and that

there should also exist a regime of beating for sufficiently large frequency mismatch.

Such effects would be consistent with the frequency-pulling observed earlier [14] under

acoustic forcing, and they invite experimental investigation.

We emphasize that our present theory allows us to find only the regular regimes of

stall flutter. But we infer that the model described by Eqs. (4), (5), plus some additive

nonlinear terms, will describe the chaotic regimes as well. As indicated above, such

regimes are potentially damaging for engineering constructions.
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