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Abstract

This paper introduces a new model and methodology for estimating the ability of NBA

players. The main idea is to directly measure how good a player is by comparing how

their team performs when they are on the court as opposed to when they are off it. This

is achieved in a such a way as to control for the changing abilities of the other players

on court at different times during a match. The new method uses multiple seasons’ data

in a structured way to estimate player ability in an isolated season, measuring separately

defensive and offensive merit as well as combining these to give an overall rating. The use

of game statistics in predicting player ability will be considered. Results using data from

the 2008/9 season suggest that LeBron James, who won the NBA MVP award, was the

best overall player. The best defensive player was Lamar Odom and the best rookie was

Russell Westbrook, neither of whom won an NBA award that season. The results further

indicate that whilst the frequently–reported game statistics provide some information on

offensive ability, they do not perform well in the prediction of defensive ability.

Keywords: Defensive Ratings, Game Statistics, Offensive Ratings, Rating NBA players

1 Introduction

The most basic rating systems for professional basketball players are simple (or not so simple)

functions of ‘positive’ statistics such as free throw percentage and the number of steals as well

as ‘negative’ statistics like the number of turnovers and personal fouls. One example is the

computer ranking procedure used to assign the 1998 IBM player award (the function used is

detailed in equation 1 of Berri (1999)). Although such rating systems yield some information

on player ability, they usually offer neither a justification for the functional form, for the
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choice of player statistics used, for the ‘value’ ascribed to each statistic in calculating the

rating nor an estimate of the precision.

One alternative is to model an outcome variable (like whether or not the team won) as a

function of game or player statistics, for example by using a regression model. Provided the

data is well described according to the chosen model, standard statistical techniques may be

applied to overcome and provide answers to the issues mentioned above. One of the earliest

published attempts to model professional basketball team performance was by Zak et al.

(1979) in which a Cobb–Douglas production function was used to model the ratio of final

scores against game level statistics including those four mentioned above. Although this paper

did not seek to rate individual players, the authors mention that such an approach is feasible

using their method.

Berri (1999) models team wins as a linear combination of player and game level statistics, the

idea being to learn which statistics are valuable in predicting team wins. Unfortunately the

problem with ascribing team wins to individual performances over entire games ignores some

important information, namely that at any one time there are only 10 active players.

Although this issue is addressed in his paper by adjusting for the time spent by each player

on court, there is still some loss of information as only certain combinations of players meet

each other during the game. Moreover, Berri’s method though ingenious, is somewhat

intricate and difficult to justify at a methodological level: it is still not clear why the range of

statistics considered should be preferred over another candidate set. The reliance on these

statistics means that methods such as Berri’s tend to be overly complicated; it is the opinion

of the present authors that it does not matter how a net point difference is achieved, simply

that it is achieved.

Thanks to modern game charting techniques and records, much more information is now

available to researchers (Kubatko et al., 2007). Not only are player–level summary statistics

available, but some organisations provide time–lines of important events during each game.

With this information, it is possible to infer which players were on pitch at any time in the

game, thus allowing an alternative modelling perspective. A basketball game consists of a

sequence of time intervals in which no substitutions occur. Each of these intervals can be

thought of as a ‘small game’ in which the players on court remain constant; the outcome of

the game as a whole being the sum of outcomes of the small games. By comparing how the

results of these small games depends on the players on the court, the relative ability of the

2



different players can be measured. For example if player A is substituted by player B then the

relative ability of these two players is measured by looking at how well their team performs

when player A is on the court as compared to player B.

Formally, the new model introduced in this article measures each player’s offensive and

defensive ability. The expected number of points per possession for a given team during a

‘small game’ is modelled as a linear function of the offensive ability of the 5 players of that

team who are on the court and in possession and the defensive ability of the 5 players on the

opposing team, adjusting for home advantage. This approach is similar to that of Rosenbaum

(2004) and Ilardi and Barzilai (2008). The main difference compared with Rosenbaum (2004)

is that the author estimates only a combined ability for each player. The model presented

here further uses a structured approach to combining information from multiple seasons.

In the model of Ilardi and Barzilai (2008) (which has been used by Macdonald (2010) in the

context of estimating the abilities of NHL players) the home advantage parameter only acts

when the home players are in possession, whereas in the present article it also modelled as an

effect when they are defending. This article further extends the results of Ilardi and Barzilai

(2008) by providing a combined measure of player ability and a method for analysing results

from a single season informed by data from previous seasons. Furthermore the utility of game

statistics in predicting offensive and defensive ability is also considered here.

A summary of the paper is as follows. In section 2, the data collection process will be

reviewed and the new models for within and between year analyses presented. In section 3 the

ability of players at the end of the 2008–2009 season are estimated. In section 4, the use of

game statistics in inferring player ability is addressed. The article ends with a discussion.

2 Methods

2.1 Data Collection

The information required to fit the proposed model is available from the ESPN website in the

form of individual game ‘play–by–play’ and ‘box score’ records (ESPN, 2010). For each

regular season match, the box score pages provide summary statistics by player and the

play–by–play pages give a detailed record of events over the course of the match. The

3



play–by–play pages consist of a list of important events on court together with the time at

which the event occurred. Using the available information on substitutions, together with the

list of ‘starters’ (players on court at the start of the match) from the box score page, it is

possible to infer exactly which 10 players are on court at any time during the match and

furthermore exactly which team is in possession at any time. The latter requires the mild

assumption that between time records, possession remains in one team and that all changes of

possession are recorded.

Any quarter or overtime period of a game may therefore be split up into small intervals of

time in which the players on court remain constant (this will be taken as the definition of the

word ‘interval’ in this paper). The duration of these intervals, the number of possessions for

each team and the number of points gained (or conceded) in that space of time can be

inferred from the play by play data. In the course of one season, there are of the order of

30000 such intervals, so some data error is to be expected. In the analysis to follow, any

interval in which it was not possible to infer the exact 10 players on court was excluded from

the analysis; this restriction meant that approximately 10% of all available data was excluded.

Using the game summary information from the box score page, it was possible to cross check

inferences from the play–by–play pages for games with complete information (ie those games

in which there were no apparent errors), this included total time on pitch by player and total

inferred game time; the corroboration between these two sources was excellent.

2.2 The New Model

Suppose there are currently N players in the NBA; let {αi}Ni=1 and {βi}Ni=1 denote respectively

the attacking and defensive ability of each player. For each game let H be the the home team

and A the away team. Suppose the number of intervals in the game is n and for interval k, the

number of possessions for team H is nHk and for team A is nAk (so that n =
∑

k(nHk + nAk)).

If team H (resp. A) comes into possession in interval k, let yHk (resp. yAk) be the total

number of points scored by team H (resp. A) in the interval. This gives the model:

100× yHk = nHk

( ∑
i:home player i on court

αi −
∑

j:away player j on court

βj + γ +
σ
√
nHk

εHk

)
, (1)

100× yAk = nAk

( ∑
i:away player i on court

αi −
∑

j:home player j on court

βj − γ +
σ
√
nAk

εAk

)
, (2)
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where εAk and εHk are independent standard normal random variables, σ is a positive scaling

parameter fro the noise and γ is a constant representing the home advantage over

approximately half of the course of a match (see below). A typical basketball game has of the

order of 100 possessions, hence the function of the multiplicative factor on the LHS of (1) and

(2) is to scale the estimates of the αs and βs so that they can be interpreted at the more

meaningful game level; a similar idea was used by Rosenbaum (2004); Ilardi and Barzilai

(2008).

The interpretation of the parameters is that, for a set of 5 home players, K, and 5 different

away players, L, where K,L ⊂ {1, . . . , N}, assuming nHk = nAk for all k, the quantity,

∑
k∈K

(αk + βk)−
∑
l∈L

(αl + βl) + 2γ,

would be the expected score difference between the home and away players over a period of

time approximately equal to that of a typical NBA game without overtime. A possible

criticism of the above model is the use of a Gaussian error term, since the chosen outcome

variable is always non–negative. The model is justifiable on the basis of a central limit

theorem argument: a game consists of a series of around 100 alternating possessions, the

outcome of the game being the difference in the sum of points scored by each team in their

share of possessions (Harville, 2003). Although the parameters αi and βj are not identified by

this model (which means that the likelihood of the observed data is unchanged if the same

constant is added to each αi and βj) their relative difference is estimable, which allows ratings

and standard errors to be constructed directly using the posterior density of the unknown

parameters.

The parameters γ and σ were treated as fixed, which is justifiable on the basis that there is a

lot of information in the data on these quantities. The other parameters in the model were

assumed to be drawn from Gaussian distributions, which represent the variability in offensive

and defensive ability of NBA players,

αi ∼ N (µα, σ
2
α), (3)

βi ∼ N (µβ, σ
2
β);

the posterior will therefore also be Gaussian. The fixed parameters and prior
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hyperparameters were estimated by maximum likelihood (ML) and are given in Table 1.

Parameter µα σα µβ σβ γ σ
Estimate 9.82 2.55 -9.12 1.82 1.43 106.8

Table 1: Prior hyperparameter estimates.

The interpretation of these parameters is that 1
100

(5µα − 5µβ + 2γ) = 0.98 is the expected

number of points scored by a team on their home court (see (1)) in one possession; the

standard error is 1.1.

One point of interest from Table 1 is that the estimated prior hyperparameter for the variance

of the βs is smaller than that for the αs, this indicates that under the proposed model, players

are more similar in terms of defensive ability than in terms of offensive ability. The ML

estimate of γ suggests that there is a home–court advantage of around three points, which was

similar to the figure of 3.6 found by Entine and Small (2008), using data from two seasons.

2.3 Allowing Player Strength to Vary Over Time

A further extension is to consider the strength of players over a number of years. This is most

simply achieved by using the model described above in equations (1) and (2) for each year.

For the first year the priors given by (3) are used, then for subsequent years, a model is

introduced to describe how a player’s ability may change from year to year. Let α
(t)
i and

α
(t−1)
i be the respectively the offensive ability of player i at the start of season t and at the

end of season t− 1; define similar terms for the defensive abilities, βi. A simple way to allow

for a change in ability between seasons is to assume,

α
(t)
i = pα

(t−1)
i + (1− p)µα + sαεi, β

(t)
i = pβ

(t−1)
i + (1− p)µβ + sβεi, (4)

where sα, sβ > 0 and εi
iid∼ N (0, 1). If a new player starts in season t, then he is assigned a

normal prior, as per (3). The two effects of this end–of–year transition are firstly that p

shrinks each parameter estimate towards the prior mean, µα or µβ; secondly, by adding either

N (0, s2
α) or N (0, s2

β) noise, the uncertainty in each of the estimates is increased whilst some of

the correlation structure learned to–date is preserved (the off–diagonal correlations being

shrunk towards zero). Increasing the uncertainty in the estimates at the end of the year is

important because it allows each player’s ability to vary over time: one might expect a player
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to (at least initially) improve with experience, but also they may have been injured during the

previous season or change teams at the end. Using data from the 2006/2007 – 2008/2009

seasons, the respective maximum likelihood estimates of p, sα and sβ were 0.83, 1.23 and 0.59.

2.4 Estimating Ability in a Single Season

It is often of interest to estimate how well each player has performed in just the most recent

season, one example being the decision as to who should receive the annual NBA awards.

Whilst it is possible to obtain such estimates using multiple years data and the methodology

discussed thus far, the estimates of ability obtained from these models can be heavily

influenced by performance in previous seasons (consider the example of the combined ability

of Kevin Garnett in the results section). For rookie players, the methodology discussed does

not present any problems as there is no information from previous years on the ability of

these players. For non–rookie players on the other hand, data from earlier seasons is still

useful because it enables better estimates of how good the other players are, but the manner

in which this information should be included requires care. In this section, a method for

handling information from previous seasons is presented, this method may be used to

estimate the abilities of non–rookie players in a particular season.

Suppose interest is in estimating how well player i performed in the most recent season. The

approach suggested here is to use data from the most recent season to estimate the parameters

associated with player i; but data from all seasons to estimate the parameters associated with

the other players. The simplest way of implementing this is to analyse all seasons’ data, as in

Section 2.3, but changing the prior distribution for αi and βi for the most recent season so

that it is independent of data in previous seasons. If t denotes the most recent season, this is

achieved by imposing the prior α
(t)
i ∼ N (µα, σ

2
α) and β

(t)
i ∼ N(µβ, σ

2
β); rather than using (4).

The posterior distribution for α
(t)
i and β

(t)
i under this model is a measure of how well player i

performed in that season. This method reduces the standard errors of parameter estimates

compared to those that would be obtained with a single season’s data under model (1)–(2).

The model in this section will henceforth be referred to as model (2.4).
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3 Results

3.1 2008/2009 Season Results

In this section the 2009 season results will be presented. Tables 2, 3 and 4 give respectively

offensive, defensive and combined player ratings, with standard errors in parentheses, and

rankings for the top ten players under the three scenarios described. The ratings and rankings

in the second column of these tables correspond to model (1)–(2) using the 2007–2009 data; in

the third column are results from the same model, but only using the 2009 data; and the

fourth column gives the results from model (2.4). The parameter estimates in these tables are

centred.

Under model (1)–(2), the 2007–2009 data gives greater accuracy in predicting player ability

compared to using the 2009 data only; however it may not always be appropriate to use

information from previous years. The estimates in the third column are therefore the best

estimates of player abilities using only 2009 season information, and those in the fourth are

the overall best estimates for this season using all available information.

For the 2009 season only (columns three and four), there was much similarity between the

results from model (1)–(2) and model (2.4); both models identifying the same top three

players in the same order for the combined ratings. One of the interesting point from these

tables is that using the 2007–2009 data, Kevin Garnett (the most highly paid player in 2009)

is identified as the number 3 player, but by using only the 2009 data, he ranks 13th/12th.

The likely cause of this is the fact that during a game against the Utah Jazz, Garnett strained

his right knee: he was forced to miss the next 14 games and played in four further games

before missing the final 25 games due to a right knee sprain (Associated Press, 2009; Spears,

2009). Thus considering data from one season in isolation does not give a complete picture of

a player’s ability.

In the Bayesian framework advocated in this article, it is of interest to compute the posterior

probability that one player is stronger than another. For players A and B, the marginal joint

posterior density of their respective combined abilities is multivariate Gaussian. It is therefore

straightforward to compute the posterior probability that the combined ability of player A is

larger that that of player B. These probabilities were computed for a subset of players using

the 2007–2009 data, the results are in Table 5. It is also straightforward to compute the
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2007–2009 data 2009 data 2007–2009 data
Player Name Model (1)–(2) Model (1)–(2) Model (2.4)
Steve Nash 7.62 (1.53), 1 5.05 (1.77), 2 4.79 (1.68), 5
LeBron James 7.08 (1.5), 2 4.96 (1.78), 3 6.47 (1.66), 1
Chris Paul 6.87 (1.7), 3 4.51 (1.87), 5 5.02 (1.75), 4
Dwyane Wade 6.69 (1.56), 4 5.28 (1.78), 1 5.59 (1.73), 2
Kobe Bryant 5.91 (1.55), 5 3.51 (1.8), 11 4.15 (1.66), 8
Carmelo Anthony 5.33 (1.52), 6 3.95 (1.75), 7 4.09 (1.72), 9
Dirk Nowitzki 5.1 (1.52), 7 2.73 (1.77), 31 3.53 (1.64), 12
Pau Gasol 4.89 (1.36), 8 4.28 (1.72), 6 4.15 (1.56), 7
Kevin Martin 4.67 (1.42), 9 3.61 (1.66), 10 3.87 (1.63), 10
Michael Redd 4.34 (1.68), 10 3.16 (1.91), 17 3.23 (1.88), 19
Danny Granger 4.14 (1.4), 14 4.58 (1.64), 4 5.05 (1.59), 3
Brandon Roy 4.08 (1.51), 15 3.91 (1.73), 8 4.18 (1.67), 6
Lamar Odom 2.9 (1.39), 33 3.72 (1.62), 9 3.49 (1.54), 13

Table 2: Centred offensive ratings showing mean (standard error), rank under model.

2007–2009 data 2009 data 2007–2009 data
Player Name Model (1)–(2) Model (1)–(2) Model (2.4)
Kevin Garnett 4.07 (1.31), 1 2.47 (1.52), 9 2.51 (1.47), 8
Bruce Bowen 4.04 (1.28), 2 2.62 (1.45), 3 2.26 (1.43), 16
Kurt Thomas 3.47 (1.25), 3 2.29 (1.49), 13 1.92 (1.48), 28
Lamar Odom 3.38 (1.21), 4 3.41 (1.39), 1 3.2 (1.34), 1
Chuck Hayes 3.15 (1.37), 5 0.93 (1.58), 78 0.69 (1.57), 127
LeBron James 3.09 (1.29), 6 3.18 (1.48), 2 2.78 (1.41), 4
Nene Hilario 2.99 (1.38), 7 1.89 (1.52), 27 2.51 (1.45), 7
Amir Johnson 2.92 (1.58), 8 2.49 (1.6), 8 2.26 (1.59), 15
Anderson Varejao 2.75 (1.27), 9 1.15 (1.44), 58 1.27 (1.39), 59
Ron Artest 2.64 (1.18), 10 2.27 (1.41), 14 1.91 (1.36), 29
Ime Udoka 2.29 (1.29), 16 2.5 (1.53), 7 2.24 (1.52), 18
Andrew Bogut 2.12 (1.47), 22 2.44 (1.63), 10 2.84 (1.62), 2
Jeff Foster 2.09 (1.25), 24 2.23 (1.44), 16 2.48 (1.42), 9
Kirk Hinrich 2.08 (1.26), 25 2.58 (1.45), 5 2.23 (1.43), 19
Rashard Lewis 1.81 (1.2), 36 1.99 (1.41), 23 2.53 (1.34), 6
Marko Jaric 1.45 (1.36), 54 2.62 (1.66), 4 2.81 (1.66), 3
Ronald Murray 1.25 (1.22), 68 1.95 (1.38), 26 2.42 (1.35), 10
Quinton Ross 1.22 (1.31), 74 2.25 (1.52), 15 2.54 (1.51), 5
Jarvis Hayes 1.17 (1.25), 78 2.56 (1.45), 6 2.18 (1.43), 21

Table 3: Centred defensive ratings showing mean (standard error), rank under model.
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2007–2009 data 2009 data 2007–2009 data
Player Name Model (1)–(2) Model (1)–(2) Model (2.4)
LeBron James 10.17 (1.98), 1 8.14 (2.32), 1 9.25 (2.18), 1
Dwyane Wade 7.6 (2.05), 2 6.41 (2.31), 3 6.61 (2.25), 3
Kevin Garnett 7.18 (2.02), 3 4.19 (2.36), 13 4.16 (2.28), 12
Chris Paul 6.7 (2.23), 4 5.46 (2.42), 4 5.41 (2.28), 5
Steve Nash 6.46 (2.03), 5 4.48 (2.31), 9 4.06 (2.21), 14
Kobe Bryant 6.45 (2.05), 6 4.31 (2.34), 11 5.02 (2.16), 6
Lamar Odom 6.28 (1.85), 7 7.14 (2.13), 2 6.69 (2.04), 2
Tim Duncan 5.72 (2.08), 8 2.62 (2.3), 42 2.7 (2.2), 41
Dirk Nowitzki 5.57 (2.01), 9 3.19 (2.31), 28 3.45 (2.15), 25
Rashard Lewis 5.41 (1.85), 10 5.27 (2.18), 5 5.57 (2.06), 4
LaMarcus Aldridge 4.78 (2.02), 11 3.39 (2.28), 25 4.32 (2.19), 10
Yao Ming 4.07 (1.98), 21 4.4 (2.2), 10 3.64 (2.12), 22
Matt Bonner 3.8 (2.04), 25 4.85 (2.24), 6 4.48 (2.18), 8
Ray Allen 3.71 (1.94), 27 4.64 (2.3), 8 3.65 (2.13), 21
Danny Granger 3.31 (1.87), 36 4.16 (2.16), 14 4.88 (2.11), 7
Nene Hilario 3.14 (2.14), 40 4.78 (2.39), 7 3.97 (2.26), 16
Brandon Roy 3.07 (2), 42 4.15 (2.27), 15 4.36 (2.19), 9

Table 4: Centred combined ratings showing mean (standard error), rank under model.

posterior probability that a particular player is the best; this is most easily achieved by a

Monte Carlo estimate, simulating directly from the Gaussian posterior. With 1000 draws

from this density based on the the 2007–2009 data, LeBron James had the highest rating on

466 occasions, followed by Dwayne Wade (77) and Kevin Garnett (51), that is the respective

posterior probabilities that these players were the best at the end of the 2009 season were

0.47, 0.08 and 0.05. Using only the 2009 data, the posterior probability that the top player

was LeBron James was 0.21; Lamar Odom, 0.11 and Dwayne Wade, 0.06.
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Dwyane Wade 0.82 · · · · · · · ·
Kevin Garnett 0.86 0.56 · · · · · · ·

Chris Paul 0.88 0.62 0.56 · · · · · ·
Steve Nash 0.91 0.66 0.6 0.53 · · · · ·

Kobe Bryant 0.91 0.66 0.6 0.53 0.5 · · · ·
Lamar Odom 0.92 0.68 0.63 0.56 0.53 0.52 · · ·
Tim Duncan 0.94 0.74 0.69 0.63 0.6 0.6 0.58 · ·

Dirk Nowitzki 0.95 0.76 0.71 0.65 0.62 0.62 0.6 0.52 ·
Rashard Lewis 0.96 0.79 0.74 0.67 0.65 0.65 0.63 0.55 0.52

Table 5: Posterior probability that player on top of table is stronger than players at the side
of the table. Computed using the 2007–2009 data.
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4 Player Statistics

As mentioned in the introduction, one common, but ad hoc, means of rating NBA players is

by using their individual game statistics. In this section it will be considered whether the 2009

game statistics can predict player ability and if so, which of the game–statistics are important.

Consider estimating the offensive ability of player i, αi. Given covariate information (the

game statistics) for this player, Xij, a simple linear model would take the form,

αi =
∑
j

ajXij + σaεi, (5)

where εi
iid∼ N (0, 1) and σa > 0 is the residual variance. One problem with this model is that

the quantity αi is unknown, however it can be estimated as described earlier using model

(2.4) for example.

The approach advocated here is therefore to replace αi in (5) by the estimate, α̂i, and to allow

the variance of each of the observations to vary to account for the relative precision of the

estimated α̂i. This leads to a linear model of the form,

α̂i =
∑
j

ajXij + S.E.(α̂i)νi, (6)

where νi
iid∼ N (0, 1) and Xij corresponds to the value of the explanatory variable Xj in Table 6

for player i. The quantities, α̂i and S.E.(α̂i)
2, can be read directly from the estimated vector of

means and from the leading diagonal of the estimated covariance matrix. A similar model was

also set up for estimating β̂i as a linear combination of the covariates, but with coefficients bj.

Under model (6), the variance of α̂i is S.E.(α̂i)
2. Since this is different for each player, the

estimates of the parameters aj are given by weighted least squares. Covariates were chosen

via backwards selection, starting from the saturated model, excluding independent variables

clearly not linked to the dependent variable (for example mean points scored was excluded

from the defensive model). An intercept term was included in the model, though the

coefficient of this term is not reported as it does not affect rankings derived from the fitted

values.

Table 6 presents the results from these two linear models as well as listing the explanatory
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Standardised Not Standardised
Statistic Off. (95% C.I.) Def. (95% C.I.) Off. Def.
X1 field goal % 0.11 (0,0.22) · 2.63 ·
X2 free throw % 0.12 (0.02,0.22) · 1.62 ·
X3 turnovers/40 mins -0.22 (-0.32,-0.12) 0.12 (0.01,0.22) -0.45 0.05
X4 total rebounds/40 mins 0.14 (0.03,0.25) · 0.08 ·
X5 assists/40 mins 0.35 (0.25,0.46) · 0.28 ·
X6 points scored/40 mins 0.49 (0.4,0.59) · 0.18 ·
X7 steals/40 mins · 0.15 (0.04,0.26) · 0.33

Table 6: Results from model (6) derived from the 2009 data. The table gives both standardised
and raw coefficients.

variables. The potential covariates of ‘3 pointer%’, ‘blocks/40 mins’ and ‘personal fouls/40

mins’ were not found to be significant in either model. Standardising (centring and scaling)

the outcome and explanatory variables makes it easier to identify which effects have the

greatest influence on ability; the un–standardised coefficients are also provided in this table

for ease of reference. For the offensive model, it is perhaps not surprising that the number of

points scored and the number of assists are the most important predictors of ability. These

results further suggest that not losing possession and rebounds are more important than free

throw or field goal accuracy.

Plots of the dependent variables against fitted values are shown in Figure 1, these plots show

a clear evidence of a linear trend in the case of the offensive abilities, but not in the case of

defensive ability. From the plot of the fitted offensive abilities, there is some evidence that the

best players (in terms of the α̂s) also have much better game statistics than the rest –

consider the points in the top right corner of the plot. Of the ten game statistics considered,

only steals, blocks and rebounds are potentially connected with defensive ability. There is no

recorded information on, for example whether a fast–breaking team are contained by the

forwards or guards. One possible problem with the fit of the defensive model may therefore be

a lack of relevant covariate information.

Assuming that a linear model is appropriate for these data, the results in this table give the

coefficients, aj and bj, that can be used to predict player ability. For example in the case of

the offensive model, the predicted strength of player i is given by the expected value of α̂i

under the model,

E[α̂i] =
∑

j∈{1,...,6}

ajXij,
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Figure 1: Plots of estimated ability against fitted values from the regression model (6). The
markers are scaled according to the variance from (1)–(2), with lager markers having less
uncertainty from the original fit. The respective R2 values for the offensive/defensive fits were
0.41 and 0.03.

The fitted values from this linear model gives another means of rating and ranking players’

offensive ability. The top ten offensive players using these fitted values are LeBron James,

Chris Paul, Dwyane Wade, Gilbert Arenas, Kobe Bryant, Tony Parker, Dirk Nowitzki, Deron

Williams, Brandon Roy, Steve Nash; seven of these players feature in Table 2.

4.1 Offensive Ability of Forwards and Guards

The three main types of position on court have different functionality in their offensive and

defensive modes. For example, one aspect of the defensive ability of a guard is expertise in

manoeuvres that prevent effective progress of the offense up the court – they must me able to

contend with players dribbling the ball. The function of the guards and forwards on the

offense is also different: the former being more concerned with governing the general form of

an attack and obtaining field goals, and the latter with shooting from the side of the court

and obtaining rebounds (Ambler, 1979).

The linear model (6) was fitted to subsets of the players (all guards and all forwards

separately) with the aim of finding any differences in covariate choice for predicting offensive

ability. Using backward selection as above, the standardised covariate effects with standard

errors in parenthesis are as follows. For the forwards, the most important ability were points

scored, 0.47 (0.08); then assists, 0.44 (0.08); turnovers −0.29 (0.09); and lastly rebounds, 0.17
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(0.08). For the guards the significant effects were points scored, 0.42 (0.07); personal fouls,

−0.23 (0.07); then assists, 0.20 (0.06); and lastly field goals, 0.19 (0.07). The R2 values were

respectively 0.40 and 0.47 for the forwards and guards. It is interesting to note that the

different functions of the points and guards are reflected in the choice of covariates in these

models: for the forwards, the ability to rebound is identified as important, whereas for the

guards, shooting accuracy is relevant.

5 Discussion

This article introduces a new method for estimating both the offensive and defensive ability of

NBA players and a justifiable way of conjoining this information to derive a combined

estimate of player utility. To the knowledge of the authors, the model presented here is

unique in providing a structured means of updating player abilities between years. One of the

most important findings here is that whilst using player game statistics and a simple linear

model to infer offensive ability may be okay, the very poor fit of the defensive ratings model

suggests that defensive ability depends on some trait not measured by the current range of

player game statistics.

At the end of each season, the NBA presents players with awards including ‘Most Valuable

Player’ (MVP), ‘Defensive Player of the Year’, ‘Rookie of the Year’ and ‘Most Improved

Player’ (MIP); though there is no material prize for the winning player, the awards are highly

prestigious. The NBA employs a panel of sportswriters and broadcasters to rank their top five

(in the case of the MVP award) or top three players. The individual rankings are combined

by weighting each with respect to the voted position eg 10 points for first place votes and

respectively 7, 5, 3, 1 for 2nd to 5th place (NBA, 2010) and summing these over voters.

Although the sportswriters and broadcasters are undoubtedly experts in their field, the

rhetoric accompanying the announcement of the awards repeatedly refers to the much

published player game statistics NBA (2009). It is of interest to compare the results presented

here with those of the NBA committee.

The 2009 MVP according to model (2.4) was LeBron James (Cleveland Cavaliers) since he

has the highest estimated combined ability from Table 2, this is in agreement with the NBA

decision. Similarly the best defensive player in 2009 was Lamar Odom (Los Angeles Lakers),
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here the NBA presented the award to Dwight Howard, who was ranked 34th by the new

method. In order to rank rookie players, the approach advocated here is to use the combined

ratings ratings from the 2007–2009 data, since in this setting the ability of non–rookie players

is more accurately estimated by including historical data. The best rookie player here goes to

Russell Westbrook of Oklahoma City Thunder (the award was given to Derrick Rose of the

Chicago Bulls, ranked 27th by the new model). To compute the most improved player is a

simple case of comparing the combined estimates of ability obtained from successive historical

rankings, for example by using all available data up to 2008 and then all available data up to

to 2009 – excluding rookies, the largest difference between the combined estimates thus

obtained gives the most improved player. Using the new method the 2009 MIP was Hakim

Warrick of the Memphis Grizzlies (the NBA presented this award to Danny Granger of the

Indiana Pacers, who was ranked 6th by the method described here).
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