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Abstract We complete a classification of the groups of endotrivial modules for the modular group
algebras of symmetric groups and alternating groups. We show that, for n � p2, the torsion subgroup of
the group of endotrivial modules for the symmetric groups is generated by the sign representation. The
torsion subgroup is trivial for the alternating groups. The torsion-free part of the group is free abelian
of rank 1 if n � p2 + p and has rank 2 if p2 � n < p2 + p. This completes the work begun earlier by
Carlson, Mazza and Nakano.
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1. Introduction

Endotrivial modules were first defined for p-groups by Dade [8, 9], though they had
appeared earlier in a celebrated paper of Hall and Higman [12]. Early work saw them
as the building blocks for the endopermutation modules which are the sources, in the
sense of Green’s theory of vertices and sources, of the irreducible modules of p-solvable
groups. These modules occur in several other situations in modular representation theory.
For p-groups a classification of the endotrivial modules was completed by Carlson and
Thévenaz [7], building on the work of several others. Subsequently, the endopermutation
modules were classified by Bouc [3].

In this paper, we consider endotrivial modules for symmetric and alternating groups.
Our motivation comes from the fact that taking the tensor product with an endotrivial
module is a self-equivalence (functor) on the stable module category, that is, the local-
ized category of modules modulo projectives. Thus, the endotrivial modules define a
distinguished subgroup of the Picard group of all self-equivalences of the stable module
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category. With that in mind, Carlson et al . determined the group of endotrivial modules
for finite groups of Lie type [5] and made some progress on the symmetric and alternating
groups. Specifically, the group of endotrivial modules for all symmetric and alternating
groups in characteristic 2 and for all Sn and An for n < p2 in the case in which p is odd
was found in [6].

Our main result is that, in almost all cases for n � p2, the group of endotrivial modules
for the symmetric group Sn is isomorphic to Z ⊕ Z/2, and for the alternating group An

is isomorphic to Z. The only exception is for p2 � n < p2 +p, where the torsion-free part
of both groups is the sum of two copies of Z rather than only one. The class of the sign
representation generates the copy of Z/2 in the case of the symmetric groups. The class
of the Heller shift Ω(k) of the trivial module k is a generator for the torsion-free part of
both groups. In the case in which p2 � n < p2 + p, there is another generator for the
torsion-free part of the group of endotrivial modules which remains somewhat elusive.
We have some information on the structure of this generator, but it is not precise. A
general discussion is given in the last section.

2. Notation and definitions

Let k be a field of characteristic p which is a splitting field for the symmetric group Sn

and all of its subgroups. When defining subgroups of the symmetric group we assume
the natural ordering on the letters unless otherwise indicated. For example, Sa is the
collection of all permutations on {1, . . . , a}.

For two subgroups H and K of a finite group G, we let [G/H] denote a complete set
of representatives for the left H-cosets in G and we let [H \ G/K] be a complete set of
representatives for the H–K double cosets in G. For elements g, h of a group G and for
a subgroup H of G, we write gh instead of ghg−1 and gH for gHg−1.

We consider finitely generated left modules over group algebras. We denote by mod(kG)
the category of finitely generated kG-modules and by stmod(kG) the corresponding stable
module category. Given a group inclusion H ↪→ G we denote the induction and restriction
functors between mod(kG) and mod(kH) by IndG

H and ResG
H , respectively. If M and N

are kG-modules, we write Homk(M, N) for the kG-module of all k-linear maps from M

to N . If N = M , we write Endk M instead of Homk(M, M) and if N = k is the trivial
kG-module, we write M∗ = Homk(M, k) for the k-linear dual of M . Let M ⊗ N be the
tensor product of two modules M and N over the base field k with diagonal action of
the group G. We write M | N to mean that the module M is isomorphic to a direct
summand of N .

For a kG-module M , let Ωn(M) be the kernel of a projective cover P → M of M

and let Ω−1(M) be the cokernel of the injective hull M ↪→ Q. Iterating, we define
Ωn(M) = Ω(Ωn−1(M)) and Ω−n(M) = Ω−1(Ωn−1(M)). We remind the reader that kG

is a self-injective ring, and hence injective modules are also projective.

Definition 2.1. A kG-module M is endotrivial provided that Endk M ∼= k ⊕ (proj)
or, equivalently, Endk M ∼= k in stmod(kG).
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Recall that Homk(M, N) ∼= M∗ ⊗N as kG-modules. Consequently, the tensor product
of two endotrivial modules is endotrivial. This allows us to define the group of endotrivial
modules whose elements are equivalence classes of endotrivial modules.

Definition 2.2. Two endotrivial kG-modules are equivalent if they are isomorphic in
stmod(kG). That is, [M ] = [N ] if M ⊕ P ∼= N ⊕ Q for projective modules P and Q. The
group of endotrivial kG-modules is the set T (G) of equivalence classes [M ] of endotrivial
kG-modules M , with the operation given by the rule [M ] + [N ] = [M ⊗ N ].

Clearly, T (G) is abelian, and we have that 0 = [k] and −[M ] = [M∗]. Furthermore,
if p does not divide the order of G, then every module is projective. In this case, the
definition of an endotrivial module does not have much meaning, as every object in the
stable category is equivalent to the zero object, and also every module is an endotrivial
module, by a strict interpretation of the definition. In that case, we set T (G) = {0}.

3. Properties of endotrivial modules

In this section we recall some basic properties of the group T (G) that will be of use to
us.

Theorem 3.1. Let G be a finite group. The group T (G) is finitely generated. Thus,
the torsion subgroup TT (G) of T (G) is finite and there is a torsion-free subgroup TF (G)
of T (G) of finite rank, such that T (G) ∼= TT (G) ⊕ TF (G).

(a) The modules Ωn(k) are endotrivial and their classes form a cyclic direct summand
of T (G) [6, Theorem 2.3 (a)].

(b) Let n denote the number of conjugacy classes of maximal elementary abelian p-
subgroups of p-rank 2 in G [6, Theorem 2.3 (b)]. Then the rank of TF (G) is n if G

has p-rank at most 2 and is n + 1 if the p-rank of G is greater than 2.

(c) Let P be a Sylow p-subgroup of G [6, Theorem 2.3 (d)].

(i) The torsion subgroup TT (P ) is trivial except in the case in which P is cyclic,
quaternion or semi-dihedral.

(ii) If TT (P ) is trivial, then TT (G) is generated by the classes [M ] of indecom-
posable endotrivial kG-modules M such that ResG

P M ∼= k ⊕ (proj), for a
projective kP -module (proj).

Note that, in general, a module with vertex P and trivial source is not endotrivial.
Nevertheless, for a subgroup H which contains a Sylow p-subgroup, the groups T (G) and
T (H) are related to each other by the following.

Proposition 3.2 (Carlson et al . [5, Proposition 2.6]). Let H be a subgroup of G

that contains a Sylow p-subgroup P of G, and let M be an indecomposable endotrivial
kG-module. The following hold.
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(a) If NG(P ) � H, then the restriction map ResG
H : T (G) → T (H) is injective. The

kH-module ResG
H M is endotrivial and has a unique indecomposable non-projective

direct summand. This summand has vertex P and is isomorphic to the kH-Green
correspondent of M .

(b) Suppose that H is a normal subgroup of G. Then ResG
H M is endotrivial and

indecomposable. Thus, if P is non-cyclic and is a normal Sylow p-subgroup
of G, then TT (G) is isomorphic to the group of one-dimensional kG-modules,
i.e. TT (G) ∼= G/G′P .

More generally, for any indecomposable endotrivial kG-module M and for any sub-
group H of G, we have that ResG

H M ∼= M0 ⊕ (proj), where M0 is an indecompos-
able endotrivial kH-module and (proj) is a projective kH-module. In particular, for any
endotrivial kG-module M , there is a unique indecomposable endotrivial direct summand
M0 of M such that M ∼= M0 in stmod(kG). Notice also that Dim M ≡ ±1 mod |P | if p

is odd, whereas Dim M ≡ ±1 mod |P |/2 if p = 2.

4. Subgroup structure

In this section we collect some information concerning the p-local structure of the sym-
metric and alternating groups for p an odd prime. We write G for the symmetric group
Sn of degree n, for an integer n greater than or equal to p2, and we write A for the
alternating subgroup of the same degree n as G. Hence, the Sylow p-subgroups of G are
not abelian and are all contained in A.

For H and W two finite groups, with W a transitive subgroup of some symmetric
group Sn, the wreath product of H and W is the group G = H � W , isomorphic to a
semidirect product

(H(1) × · · · × H(n)) � W with H(i) ∼= H for all i

and with W acting on the set {H(i) | 1 � i � n} by permutation of the superscripts
{1, . . . , n}. The normal subgroup H(1) × · · · × H(n) of G is called the base subgroup.
More generally, we define inductively iterated wreath products H �i = (H �(i−1)) � H, for all
i � 2, and for all transitive subgroups H of some symmetric group.

Some detail of the structure of the Sylow p-subgroup of G and its normalizer can be
found in [1]. Let N be the normalizer of a Sylow p-subgroup P of G. The normalizer
NA of P in A has index 2 in N . For i � 0, write Ni = NSpi (Pi) for the normalizer of
a Sylow p-subgroup Pi

∼= Cp
�i in Spi . Then, Ni

∼= P � (Cp−1)i. In the general case, we
write

n =
∑

0�i�s

aip
i with s � 2 and as �= 0

for the p-adic expansion of n. There are isomorphisms

P ∼=
∏

1�i�s

(P ai
i ) and N ∼=

∏
0�i�s

(Ni � Sai).
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For a group H, let us denote by H ′ its derived subgroup. (We thank Jørn Olsson for
providing the proof of the next lemma.)

Lemma 4.1. Assume that n = pt for some integer t � 1 and set N = Nt and P = Pt.
Then, N ′ = P and NA

′ = P .

Proof. Since the factor group N/P is abelian, we have that P contains N ′.
Conversely, we need to show that N/N ′ has order prime to p. We proceed by induction

on t for t � 1. If t = 1, then N1 ∼= P1 � Cp−1 and we can easily verify that the p-cycle
generating P1 is a commutator in N1. So P ⊆ N ′. Assume now that t > 1 and set
Q = Qt for the base subgroup of Pt. That is Qt

∼= P p
t−1. By [14, Lemma 4.2], we have

that Qt � Nt, which implies that Nt = NHt(Pt−1 � P1), where Ht is the subgroup of G

containing Pt and which is isomorphic to Spt−1 � Sp. Now, by [14, Proposition 1.5], the
factor group Nt/Q′

t is isomorphic to NSpt−1 (Pt−1)/P ′
t−1 × N1. Since Q′

t � N ′
t , we obtain,

by induction, that Nt/N
′
t

∼= (Cp−1)t−1 × Cp−1.
The statement for the alternating group is immediate. �

We end with an important observation that will be useful in the next section.

Proposition 4.2. Consider the above notation and assume that n = ps for s � 1. Let
H be a subgroup of G isomorphic to Sn−1. There exist elements σ1, σ2, . . . , σs ∈ H, each
of order p − 1, such that

N = 〈P, σ1, σ2, . . . , σs〉 ∼= Ps � (Cp−1)s.

Furthermore, if σi,j = σiσj for all 1 � i, j � s, then NA = 〈P, σi,j , 1 � P, σi,j ; 1 � i, j �
s〉, and the in a given subgroup of A isomorphic to An−1.

Proof. We proceed by induction on s. Clearly, the statement holds in the case when
s = 1, where σ1 is just a (p − 1)-cycle. Assume that s � 1 and that the statement holds
for n = ps−1. By [1, (1.3)],

NSps (Ps)
Ps

=
NSps−1·p

(Ps−1 � P1)

Ps−1 � P1
=

NSps−1 (Ps−1)

Ps−1
×

NSp(P1)
P1

.

With the above inductive statement we can construct specific instances of the normal-
izer of the Sylow subgroup. That is, the normalizer of P1 is generated by the cycles

σ1 = (1, 2, . . . , p) and µ1,1 = (σ1 �→ σ�
1),

where � generates the group of units in Fp. For example, if p = 5, we can take � = 2 and
hence µ1,1 = (1, 2, 4, 3), which fixes the letter 5. In general, µ1,1 can be taken to be the
(p − 1)-cycle, (1, �, �2, . . . , �p−1), where �i should be read as the residue of �i modulo p,
or as the element in Fp. The cycle fixes the letter p (which is zero in Fp).

Then NSp2 (P2) is generated by

σ1, σ2 =
p∏

i=1

(i, i + p, . . . , i + (p − 1)p), µ2,1 =
p−1∏
i=0

σi
2µ1,1σ

−i
2 and µ2,2 = (σ2 �→ σ�

2).



88 J. F. Carlson, D. J. Hemmer and N. Mazza

Here σ1 and µ1,1 are the cycles given exactly as above, but they are now considered to
be elements of Sp2 . The elements σ1 and σ2 generate P2. The element µ2,1 is the product
of the conjugates of µ1,1 by powers of σ2. These conjugates are disjoint cycles and hence
µ2,1 commutes with σ2 and normalizes the normal subgroup of P2 generated by σ1 and
its conjugates by powers of σ2. The elements σ2 and µ2,2 generate a subgroup isomorphic
to NSp

(P1).
The general case is similar. The group Ps is generated by σ1, . . . , σs, where σs is the

product of ps−1 disjoint p-cycles:

σs =
ps−1∏
i=1

(i, i + ps−1, . . . , i + (p − 1)ps−1).

Then the normalizer NSps (Ps) is generated by Ps, by

µs,j =
p−1∏
i=0

σi
sµs−1,jσ

−i
s for j = 1, . . . , s − 1 and by µs,s = (σs �→ σ�

s).

The element µs,s is a product of ps−1 (p − 1)-cycles, conjugation by each one of which
takes the corresponding p-cyclic factor of σs to its �th power and fixes the other factors.
The elements σ1, . . . , σs in the statement of the proposition can be taken to be the
elements µs,1, . . . , µs,s in the above construction. It is a straightforward exercise to show
that these elements commute with one another. It is also clear that every one of these
elements stabilizes the letter n = ps, and hence they are contained in Sps−1 as asserted.
The normalizer of any other Sylow p-subgroup is conjugate to this one, and hence the
conjugate elements stabilize some letter.

The last statement of the proposition is straightforward from this analysis and from [1,
Equation (2.1)]. �

5. The torsion subgroup

Let H be a subgroup of G = Sn isomorphic to Sn−1. Let N be the normalizer of a Sylow
p-subgroup P of G. We let A, NA, HA = H ∩ A be as in the previous section.

By Proposition 3.2, the indecomposable torsion endotrivial kG-modules are among the
Green correspondents of the one-dimensional kN -modules. So suppose that χ is a one-
dimensional kN -module which has an endotrivial kG-Green correspondent M . In this
section we show that χ, and thus M , is necessarily either k or ε, where ε denotes the
one-dimensional sign representation.

Throughout this section let χ and M be as above. Assume that χA is a one-dimensional
kNA-module with kA-Green correspondent MA which we assume to be endotrivial.

We recall the results from [5, Theorems A and B].

Proposition 5.1. TT (Sn) = 〈[ε]〉 and TT (An) = {[k]} for all 3p � n < p2.

Our objective is to prove the following theorem.
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Theorem 5.2. Let p �= 2 and assume that n � p2. Then TT (Sn) = 〈[ε]〉 and
TT (An) = {[k]}.

We proceed by an inductive argument which varies depending on the p-adic expansion
of n. The most difficult cases are those in which the expansion has only one term. These
situations are treated first. The base case of the induction is given by Proposition 5.1.

Suppose that n = ps. The next result is needed for this case.

Lemma 5.3.

(a) There are exactly (p − 1)s one-dimensional kN -modules, corresponding to a choice
of a (p − 1)st root of unity for each σi.

(b) The restrictions to H ∩ N of the one-dimensional kN -modules remain pairwise
non-isomorphic.

(c) There are exactly (p−1)s/2 one-dimensional kNA-modules, all of which are pairwise
non-isomorphic upon restriction to HA ∩ NA.

Proof. The first statement is straightforward from Proposition 3.2 and Lemma 4.1.
The second claim follows from the choice of the elements σi that determine the action of
N on any one-dimensional kN -module. Namely, by Proposition 4.2, σi ∈ H ∩N for all i.
Part (c) follows from parts (a) and (b). �

The case when p = 3 and n = 9 is treated separately, because Proposition 5.1 does
not apply and S8 has torsion endotrivial modules which are not one dimensional. In
this case, N has four one-dimensional modules. Explicitly, we checked using the algebra
software Magma [2] that the Green correspondents for these modules are k, ε, M and
M ⊗ ε, where M has dimension 118, which is not congruent to ±1 mod 81. Hence, M is
not endotrivial. A similar statement holds for MA.

Thus, we have proved the smallest case (ps = 9) of the following.

Proposition 5.4. Let s � 2. If ps > 9, then assume also that TT (Sps−1) = 〈[ε]〉, and
TT (Aps−1) = {[k]}. We have that TT (Sps) = 〈[ε]〉 and TT (Aps) = {[k]}.

Proof. Assume that ps > 9. We know that M | IndG
N χ. Tensoring by ε if necessary,

we can assume without loss of generality that ResG
H M ∼= k ⊕ (proj), and so there is

a non-trivial map in HomkH(k,ResG
H M). Likewise, HomkHA

(k,ResA
HA

MA) is non-zero.
Using the Mackey Formula and the Eckmann–Shapiro Lemma, we get that

0 �= HomkH(k,ResG
H IndG

N χ)

∼= HomkH

(
k,

⊕
x∈[H\G/N ]

IndH
xN∩H Res

xN
xN∩H

xχ

)

∼=
∏

x∈[H\G/N ]

Homk(xN∩H)(k,Res
xN
xN∩H

xχ). (5.1)

By Lemma 5.3 (b), the latter is non-zero only if χ = k, in which case M ∼= k. Thus,
TT (G) = 〈[ε]〉, as desired. Similarly, HomkHA

(k,ResA
HA

IndA
NA

χA) is non-zero if and only
if χA = k. �
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Suppose that n = 2ps and s � 2. The normalizer of the Sylow p-subgroup P has the
form N ∼= Ns � S2, where Ns is the normalizer of the Sylow p-subgroup of Sps . Let J be
the subgroup of G containing N and which is isomorphic to a wreath product Sps � S2.
We proceed as in [6, §§ 6 and 8]. Let S = Sps × Sps be the Young subgroup of G for the
partition (ps, ps). Note that J = SN and S is a normal subgroup of index 2 in J . Write
NS = N ∩ S. Likewise, let us set A = A2ps and JA = J ∩ A.

Proposition 5.5. Assume that TT (Sps) = 〈[ε]〉, TT (Aps) = {[k]}. Assume also that
TT (S2ps−2) = 〈[ε]〉. Then we have that TT (S2ps) = 〈[ε]〉 and TT (A2ps) = {[k]}.

Proof. Let χ be a one-dimensional kN -module with an endotrivial kJ-Green corre-
spondent L. By the Green correspondence and the Mackey Formula, we have that

ResJ
S L | ResJ

S IndJ
N χ ∼= IndS

NS
χNS

since J = SN , and where χNS
= ResN

NS
χ. Therefore, ResJ

S L is a direct summand of
IndS

NS
χNS

.
Now, the conditions that S is normal in J and that L is an indecomposable endotrivial

module imply that ResJ
S L is an indecomposable endotrivial module, by Proposition 3.2.

Thus, LS = ResJ
S L is the kS-Green correspondent of χNS

. Note that the Green corre-
spondence is well defined in this case, since NS = NS(P ).

Let K be a subgroup of S containing NS and which is isomorphic to a direct prod-
uct Sps × Ns, where Ns is the normalizer of the Sylow p-subgroup of Sps . By our
assumption, LS is an indecomposable endotrivial module. So ResS

K LS
∼= U ⊕ (proj) for

some indecomposable endotrivial kK-module U which also satisfies the condition that
ResK

NS
U ∼= χS ⊕ (proj). Now, because K has a non-trivial normal p-subgroup, ResK

NS
U

has no non-zero projective summand. That is, U must be a direct summand of χS induced
to K, and the restriction back to NS consists entirely of modules whose vertices contain
that normal subgroup. Therefore, ResK

NS
U ∼= χS and U has dimension 1. A similar argu-

ment, using the fact that a set of coset representatives of K in S can be taken to normalize
a p-subgroup of K, shows that ResS

K LS
∼= U , and so LS and L also have dimension 1.

Likewise, the indecomposable torsion endotrivial kJA-modules have dimension 1.
We first handle the case of the symmetric groups. There are exactly four one-dimen-

sional kJ-modules, which form a Klein four-group. That is, TT (J) is generated by the
sign representation and χ = k � ε, which is the one-dimensional module on which S acts
by the trivial representation and elements not in S act by multiplication by −1. Relative
projectivity shows that the kG-Green correspondent M of χ is a Young module. Namely,
M is isomorphic to a direct summand of the permutation module IndG

S k = M (ps,ps).
It is well known that the indecomposable summands of a permutation module Mλ are
Young modules labelled by partitions greater than or equal to λ in the dominance order.
In addition, the Young module Y λ occurs exactly once. Now, S is the only proper Young
subgroup of G of index prime to p, and therefore Y (ps,ps) is the only indecomposable
direct summand of M (ps,ps) with vertex P . By the Krull–Schmidt Theorem, we conclude
that M is isomorphic to Y (ps,ps).
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Therefore, the question is reduced to determining whether Y (ps,ps) is an endotrivial
module. From [13, Theorem 5.1] we prove that this is not the case. Explicitly, if L is a
subgroup of G isomorphic to S2ps−1, then ResG

L Y (ps,ps) has a direct summand V of the
form

V =
⊕

0�i�s

Y (ps+pi−1,ps−pi).

Recall that s � 2 and that a Young module Y λ is projective if and only if λ is p-
restricted; that is, the difference of any two consecutive parts of λ is less than p (cf. [11,
Theorem 2]). In particular, V has at least two direct summands which are not projective,
and so ResG

L Y (ps,ps) is not endotrivial. A fortiori, neither is Y (ps,ps). This shows that
TT (G) = 〈[ε]〉 ∼= Z/2, whenever G = S2ps , with s � 2.

We now turn to the alternating groups. As in [6], the above argument does not apply to
the non-trivial one-dimensional kJA-modules. These form a Klein four-group, generated
by the restriction of a two-dimensional kJ-module. Namely, let V be the subgroup of
J of index 8 that is isomorphic to a direct product Aps × Aps . Then V is normal in
J . Because the factor group J/V is dihedral of order 8, there is a simple kJ-module
U of dimension 2. The same argument in [6, § 8] says that ResJ

JA
U splits as the direct

sum of two one-dimensional conjugate modules χ ⊕ xχ, and that ResJ
S U ∼= λ ⊕ (ελ),

where λ ∼= kSs
p

⊗ εps affords a signed permutation module, usually denoted as M (ps|ps),
and with Young vertex S, in the sense of Grabmeier (cf. [10, § 1.3]). Moreover, M (ps|ps)

contains the kG-Green correspondent Y of U (in fact, Y = M (ps|ps), as the latter is
indecomposable). We have that ResG

A Y = YA ⊕ xYA, where YA is isomorphic to the kA-
Green correspondent of χ. Now, if YA is endotrivial, then so is ResA

B YA, for any subgroup
B of A. Hence, take B ∼= S2ps−2 and assume that ResA

B YA is endotrivial. By hypothesis,
we have that ResA

B YA
∼= µ ⊕ (proj), where µ ∼= ε, or µ ∼= k. In particular, it follows that

0 �= HomB(µ,ResA
B YA). By the Mackey Formula and the Eckmann–Shapiro Lemma and

using the fact that A = JAB, we obtain

0 �= HomB(µ,ResA
B IndA

JA
χ)

∼= HomB(µ, IndB
JA∩B ResJA

JA∩B χ)
∼= HomJA∩B(k,ResJA

JA∩B χ),

since ResB
JA∩B µ = k. However, a direct computation shows that ResJA

JA∩B χ is not trivial.
So we have a contradiction to the assumption that YA is endotrivial. �

Suppose that n = aps for 3 � a < p and s � 2. Again, we assume without loss of gen-
erality and by induction that ResG

H M ∼= k ⊕ (proj) and that ResA
HA

MA
∼= k ⊕ (proj),

where H ∼= Saps−1 as before. Moreover, ResG
N M ∼= χ ⊕ (proj) and ResA

NA
MA

∼=
χA ⊕ (proj), by the Green correspondence. In this case, N ∼= Ns �Sa, which has 2(p − 1)s

modules of dimension 1, as in the previous case. However, these modules are distinguished
by their restrictions to the two subgroups Ns and Sa−1. Both of these subgroups are con-
tained in H, and hence the restrictions of M to both of these subgroups must be a trivial
module plus a projective module. We conclude that χ = k is the trivial kN -module and
its Green correspondent M is the trivial kG-module.
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Suppose the p-adic expansion of n has two or more terms. We write

n = a0 + a1p + · · · + asp
s for s � 2, as �= 0 and n �= asp

s.

Recall that
N ∼=

∏
i�0

(Ni � Sai
).

We know that the kN -Green correspondent of M has dimension 1. Without loss of
generality, we assume by induction that

ResG
Sasps M ∼= k ⊕ (proj) and ResA

A′ MA
∼= k ⊕ (proj),

where A′ = Sasps ∩ A. Now, each of the subgroups Ni � Sai for i < s is conjugate to a
subgroup of Sasps , and the corresponding claim holds for the corresponding subgroups
of NA. Thus, ResG

N M ∼= k ⊕ (proj) and ResA
NA

MA
∼= k ⊕ (proj). Hence, M and MA are

the Green correspondents of k and are trivial modules.
With all of this we can complete the proof of the main theorem.

Proof of Theorem 5.2. We perform induction on s, where s is the largest degree in
the p-adic expansion of n, beginning with s = 2. For n = p2, we invoke Propositions 5.1
and 5.4. We use the proof of the case in which the p-adic expansion of n has more than
one term to prove the theorem for n < 2ps. Then we apply Proposition 5.5. Now we use
the proof for the case in which n = aps for a � 3 and the proof for the case of more than
one term in the p-adic expansion of n. Applied in the proper order, these results prove
the theorem for all n such that n < ps+1. We can now use Proposition 5.4 to prove the
theorem for n = ps+1. The latter is the induction step. �

6. Torsion-free complements

Recall our assumption that p > 2. It is an easy calculation to see that, for n � p2 +p, the
groups G = An and G = Sn have no maximal elementary abelian p-subgroups of p-rank 2.
As a consequence, by Theorem 3.1, the torsion-free part TF (G) of the group T (G) is
isomorphic to Z and is generated by [Ω(k)]. This is the major part of our investigation
of TF (G).

In the case when p2 � n < p2 +p, a Sylow p-subgroup P of G has the form Cp �Cp, and
P has two conjugacy classes of maximal elementary abelian subgroups. These are the
base subgroup E1 ∼= Cp

p , which is normal in P , and E2 = 〈x, y〉 ∼= C2
p , where 〈x〉 = E1∩E2

is the centre of P and y is a non-central p-element not in E1. We can take y to be a
generator of the second Cp in the wreath product expression for P .

We have proved the first part of the following.

Theorem 6.1. Let G denote either the symmetric group Sn or the alternating An.

(i) If n � p2 + p, then TF (G) = 〈[Ω(k)]〉 ∼= Z.

(ii) Suppose that p2 � n < p2 + p. Then TF (G) ∼= Z
2. The class [Ω(k)] generates one

direct summand of TF (G). The other summand is generated by the class [M ] of
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an indecomposable endotrivial kG-module M , having the property that

ResG
E1

M ∼= k ⊕ (proj) and ResG
E2

M ∼= Ω2pr(k) ⊕ (proj)

for some integer r with 1 � r � p − 1.

Proof. Theorem 3.1 shows that the rank of TF (G) in case (ii) is 2, once we have
verified that E1 and E2 are maximal elementary abelian p-subgroups of G. That is,
the only question is whether or not E2 is conjugate to a subgroup of E1 in Sn. This
is not possible because of the cycle structure of the elements of E2. Specifically, every
non-identity element of E2 is the product of p p-cycles. On the other hand, there is
a subgroup F of index p in E1 which has no element that is a product of p p-cycles.
Explicitly, consider H = E1 ∩ Sp2−p. Then, any subgroup of order p2 in E1 has a non-
trivial intersection with H and hence contains a non-identity element which does not
have the cycle structure of the non-identity elements of E2.

In case (ii) we know that the class of Ω(k) generates a summand of TF (G). The sum
of the restriction maps

TF (G) → TF (E1) ⊕ TF (E2) ∼= Z ⊕ Z

is an injection. Let [M ] be the other generating class. By replacing M with a suitable
Heller translate, we may assume that the restriction of the class of M to E1 is zero in
TF (E1). Hence, we can assume that the restriction of M to E1 is the direct sum of k

plus a projective module. The restriction to E2 is isomorphic to the direct sum of Ωt(k)
plus a projective module, with t �= 0. By taking a dual if necessary we can assume that
t > 0.

The restriction map ResG
E2

factors through the restriction map ResG
P to the Sylow p-

subgroup P of G that contains E1 and E2. Consequently, t is bounded below by the same
value that is obtained for TF (P ). This value is 2p by [7]. It also follows that t = 2pr

is a multiple of 2p. On the other hand, t is bounded above by the minimal degree of a
cohomology element of H∗(G, k) whose restriction to the centre Z of P is not nilpotent
(see the proof of [5, Theorem 3.1]). Now, by the analysis of [4, Proposition 5.1], there is
an element γ of degree 2p(p−1) in the integral cohomology whose restriction to Z is not
zero. Because Z is cyclic and γ has even degree, this element is not nilpotent and thus γ

restricts to a non-zero element in the mod-p cohomology. Therefore, 2p � t � 2p(p − 1)
and t is divisible by 2p, as asserted. �

We conclude with some partial information on the missing generator. From [5,7], we
can find explicit generators for T (NG(P )). In the case of the symmetric group Sn, with
p2 � n < p2 + p, this latter result can be improved in the following way. Consider P , E1

and E2 = 〈x, y〉 as above. Set H = NG(E1). Then, H contains NG(P ) and has the form
H ∼= (N1 � Sp) × Sa, with a = n − p2, in the notation of § 4. Notice that the inflation
of an endotrivial module from N1 � Sp to H is endotrivial, and that any endotrivial kH

module can be obtained up to equivalence in this way. Thus, our task is reduced to
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finding generators for T (H) in the case in which n = p2, which we assume henceforth.
Now, [7, Theorem 3.1] gives us that

T (P ) = 〈[Ω(k)], [M ]〉 with M = Ω−2(Ω2
P/〈y〉(k)).

Here, Ω2
P/〈y〉(k) is the unique indecomposable direct summand of the tensor product

ΩP/〈y〉(k) ⊗ ΩP/〈y〉(k), where ΩP/〈y〉(k) is the kernel of the map k[P/〈y〉] → k which
sends a coset u〈y〉 ∈ P/〈y〉 to 1. We observe that ΩP/〈y〉(k) extends to H. Indeed,
let C be a complement of E1 in the base subgroup of H. Thus, C ∼= Cp

p−1. In fact,
H = E1 � CSp, with 〈y〉 � H. Consider the permutation module L = k[H/CSp]. Then

ResH
P L ∼= ResH

P IndH
CSp

k ∼=
⊕

x∈[P\H/CSp]

IndP
x(CSp)∩P k ∼= k[P/〈y〉]

by the Mackey Formula and since H = PCSp. Thus, the relative syzygy ΩH/CSp
(k), that

is, the kernel of the map L → k, restricts to P to an indecomposable module, isomorphic
to ΩP/〈y〉(k). Consequently, Ω2

P/〈y〉(k) extends to Ω2
H/CSp

(k), proving simultaneously
that the latter is endotrivial. The same holds for the translate M = Ω−2(Ω2

H/CSp
(k)).

Obviously, the restriction of M to A ∩ H is an indecomposable endotrivial module. This
proves the following.

Proposition 6.2. Consider the symmetric group G = Sn and the alternating group
A = An, with p2 � n < p2 + p. In the same notation as above, with H = NG(E1) and
HA = NA(E1), we have that

T (H) = TT (H) ⊕ 〈[Ω(k)], [M ]〉 and T (HA) = TT (HA) ⊕ 〈[Ω(k)], [ResH
HA

M ]〉,

where TT (H) and TT (HA) are generated by the one-dimensional modules, and where
the module M satisfies

ResH
E1

M ∼= k ⊕ (proj) and ResH
E2

M ∼= Ω2p(k) ⊕ (proj).
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