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We obtain here an approximate, nonlinear Fokker-Planck-type equation which offers an improved
model for two-dimensional nonequilibrium, bistable flows driven by exponentially correlated Gauss-
ian noise. The new model accurately predicts the renormalization of the phase-space statistical den-
sities P(x,v) with correlation time. The theory is tested for accuracy by both analog electronic and
digital simulations of a damped oscillator with a bistable potential, driven by additive, colored noise.
For large noise strengths, the improved theoretical scheme is applicable for small noise correlation
times 7, but becomes increasingly better for small noise strengths where its accuracy extends even to
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large noise correlation times. The crossover to overdamped motion is also discussed.

I. INTRODUCTION

The method of modeling the statistical behavior of non-
linear processes which are disturbed by random forces has
a long history in a variety of fields.! In most cases one re-
lies on an approximate Markovian theory, e.g., a Fokker-
Planck representation for the description of the statistical
dynamics of a macroscopic flow. Such an approach, how-
ever, implicitly supposes that there exists an extreme
separation between the time scales of the macroscopic
motion and the fluctuations, so that the latter can be real-
istically modeled by white (8-function-correlated) random
forces. On the other hand, there must, of course, always
exist corrections to these idealized situations which in cer-
tain instances can play an important and observable role.
A classic situation where the effect of nonwhite (or
colored) noise affects the system behavior in a crucial way
is the phenomenon of motional narrowing in magnetic res-
onance,’ where a significant finite correlation time of a
fluctuating magnetic field can affect the motion of the
corresponding spins significantly.

In recent years, important effects of correlated random
forces have been recognized in such fields as activation
rates in equilibrium systems’~® and driven, stationary
nonequilibrium systems,” such as are found, for example,
in nonlinear optical systems.® 10

The formal theory for dealing with colored noise has
been developed to a great extent in recent years.'! Ap-
proximate schemes, valid for small noise correlation times
and small noise intensity, have been well known for some
time'>!® and have recently been rediscovered by several
groups;'®14—18 and also particularly in the context of the
derivation of corrections to the Smoluchowski equation. !’
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Recently, however, several aspects of this “conventional”
approximation scheme, which essentially relies on a
Taylor-series expansion around the Markovian limit, has
come under scrutiny.?%2!

In the present work, we examine in greater detail the
problem of approximation schemes for nonlinear flows
driven by time-correlated noise taking as an example the
two-dimensional, nonlinear, damped oscillator dynamics.

II. BISTABLE OSCILLATOR DYNAMICS:
THE CONVENTIONAL CORRELATED NOISE
APPROXIMATION

As a typical multidimensional application, let us con-
sider the Brownian motion of a particle of unit mass in a
one-dimensional bistable potential field U(x),

U(x)=—%x2+§x4, a>0, B>0 @.1)

and a frictional force —yx which is subject to Gaussian,
exponentially correlated noise £(2), i.e.,

x=v,
U
vV=— ax —yv+£&(1), (2.2)
where
(E(1)E(s)) =(D'/T)exp(— |t —s | /7). (2.3)

Using an enlargement of the phase space, this dynamics
can be embedded into a three-variable, nonlinear Fokker-
Planck dynamics
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x=v, (2.4a)
v=—adU/dx —yv+y, (2.4b)
y=—1/7)y+f,1) (2.4¢)
with the white, Gaussian random force
(fy(0)f,(s))=2D" /7)8(t —s) . 2.5

In order to understand the equivalence of (2.5) with
(2.3) we use an integration of (2.4b) with y (¢ =0) being
prepared with the Gaussian stationary probability

poy)=(1/2mD") ?exp[ —(y*r/2D")] .

Moreover, the reduced dynamics in (2.2) and (2.3) also de-
pends on the initial preparation scheme between the ma-
crovariables x(#),u(t) and the auxillary variable y(r).22
For relations such as (2.3) to hold true, we must use a
“correlation-free” initial preparation; i.e., the initial prob-
ability Py(x,v,y) factors as

Py(x,0,y)=Py(x,0)po(y) . 2.7

(2.6)

This then establishes the equivalence between the non-
Markovian dynamics in (2.2) with the enlarged Markovian
dynamics in (2.4).2°

Before we proceed further, we note that the dynamics
in (2.2) or (2.4) does not model an equilibrium dynamics
obeying detailed balance. This is manifest in (2.2) by the
lack of presence of a fluctuation-dissipation relation
which would imply a memory damping; i.e.,
Yx— f y(t —s)X(s)ds. For small correlation time 7, the

J

o‘,(x,u)=i<5(x(t)_x)sw(t)—un

conventional approximation yields an approximate
Fokker-Planck equation, which for the system in (2.2) has
already been evaluated in the literature.”> This reduced,
approximate Fokker-Planck equation explicitly reads

; -, 3_ ) O 9
P,(x,u)-—vax P, +(Bx ax)av P +y 3 (vP,)

aZ , aZ

Lrwew P,+D'(1— a — P (2.8)

with the stationary probability P(x,v) given by
P(x,v)=Z" —y[Ux)+(1—71y)v%/2)]/D'} .

(2.9)

+

1exp {

Thus, the velocity distribution is expected to become more
narrow with increasing correlation time . More surpris-
ing, however, is the prediction that the x distribution, ac-
cording to the commonly used approximation scheme,
would remain unaffected by the finite noise correlation
time. In addition, (2.9) exhibits the usual shortcoming
that for sufficiently large y the velocity diffusion coeffi-
cient takes on negative values.

III. THE DECOUPLING THEORY

In an attempt to improve the conventional approxima-
tion scheme, let us start from the formally exact equation
of motion for the reduced probability o,(x,v). Due to the
Gaussian statistics of the correlated noise £(¢) in (2.2), one
can obtain by use of the technique of functional deriva-
tives the exact master equation'!

= aa o,(x,0)+(Bx3 —ax)—a,(x v)+7/ 9 [va,(x v)]
dx (1)
+ a0 | Jydsexn [~ =2 | (stx (000800~ Dty )}
& [p (t—s) ~ T
g |2 [lasenp | -5 '<8(x(t) X800 —0) g7 ] G.1)

where the two functional derivatives, 8x(t)/8&(s) and
Sv(t)/8&(s), obey the coupled integral equation

dx(8) o, t Sv(r)
—_55(5) =0(t —s) 8§(s)d ] (3.2a)
Sv(t) _ 2 x ()
s =00~ ‘1+f[ a+3Bx(r ]ag( dr
t Su(r)
—_— 3.2
s 8&(s) (3.26)

Clearly, the master equation in (3.1) is not closed, but in-

I

volves the evaluation of the rather complicated averages
inherent in the last two terms. According to the reason-
ing put forward in a recent paper,?! the equation in (3.1)
can be closed on a Fokker-Planck level by incorporating a
decoupling ansatz between the functional derivatives and
the probability

0 (x,0)=(8(x (1) —x)8(v (1) —v)))

itself. It should be stressed in this context that by assum-
ing this decoupling approximation, valid for not too large
correlation time 7 and small noise strength D’, one ob-
tains a self-consistent approximation scheme free of addi-
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tional problems. In particular, no non-Fokker-Planck
terms (i.e., no differential operators of order n >2) occur,
whose influence on an effective, truncated approximative
scheme in full phase space of the type in (2.8) enters in a
noncontrollable way. Usually, those infinitely many
terms which spoil the Fokker-Planck structure are
neglected by relying on nonrigorous, vague arguments
only.

In order to shed light on this novel approximation from
a different angle and gain additional insight, we will fol-
low here an alternative road based on projector-operator
techniques.”* The Fokker-Planck operator, which corre-
sponds to the set of stochastic differential equations in
(2.4) is divided up into three parts

F=L o+ Lo+ L (3.3)

the operator describing the drift,

d 9 d
La=—v— _ax)—/—4y—
a vax +(Bx ax)ax +v % v, (3.4a)
the bath part,
1 d D' 3
=" T3 T~ 3 4
b 3y 2 ap? (3.4b)
and the interaction part
L=y (3.40)
v
Working within the interaction picture, i.e.,
ﬁ,=exp(~—°5f0t)po, g():fa-*‘jb (3.5)
one obtains for the projected part
a¢(x,0)=2p,(x,v,y) ,
' P (3.6)

2 p(x,0.9)=poy) [ dy p(x,0,)

for (3.1) the alternative, exact, formal result [.Z(¢)
=exp(—.Lot)-L 1exp(Lt)]

G (x,0)= P L (1)F,(x,0)
+ [las 22,

Texp | [ drt1—2)2.7)

X(1=2).L(s)7(x,v) (3.7)

J

ox
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with 7~ denoting time ordering. A corresponding inho-
mogeneous term vanishes identically due to the
correlation-free initial preparation (2.7).

In order to proceed, we now introduce three approxima-
tions. First, we approximate the time-ordered exponential
in (3.7) by the unit operator. Transforming back from the
interaction picture we then obtain

é,(x,v)=—via,(x,v)+(ﬁx3—ax)—a—a,(x,v)
ox dv
+ —a—[va (x,v)]
Y £ (X,
D' prt. 9 1
+ ; fodsav exp i’a——T (t—s)]
x L g(x,0) . (3.8)

v

Next we use, inside the last term in (3.8), the identity?>2%
d d
exp(f,,t)~a;=exp(f§t)5-v—exp(i’at) R (3.9

where L3A=L,A—A.L,. Further we employ the
linear-response approximation, that is, we shall use within
this last term, the approximation

exp(.L4)o,(x,v)=0,(x,v) . (3.10)
By use of the two relations
d ) d
x 2 =2, 3.11
Za w_ox o G.11a)
and
29 (a3 (3.11b)
ox v

our third approximation consists in the replacement of
(3.110b) by the effective operator approximation

59 a—3p(xtnd (3.12)
X dv

This latter approximation precisely mirrors the decou-
pling ansatz put forth in Ref. 21. Thus we end up with a
closed, approximate, effective Fokker-Planck equation

o (x,v)= -—uia,(x,v)+(3x3—ax)%a,(x,v)-}-y%[vo,(x,v)]

F)
D’ 3?

—0,(x,v)
+ 1+y7+(38(x?) —a)? dv? 70X

Its stationary probability &(x,v) is found to be

F(x,v)=Z " [exp(—3v2/0,)]

X {exp[ —(—ax2/2+Bx*/4)/0,1} (3.14a)
with
o, =(D'/YN14+73B8(x?) —a)/(y+1/7)]"",  (3.14b)
o, =D /YN 1 +1y +7(3B(x?) —a)]"!. (3.14¢)

D'r 3?
v)+ o,(x,v) . (3.13)
1+y7+(3B8(x?) —a)r* 3xdv d
|
The following features of this decoupling-

approximation scheme are evident. Because (x?)~a/B,
the effective diffusion coefficients occurring in (3.13) are
non-negative, i.e., no artificial boundaries are exhibited.
Moreover, the stationary probability &(x,v), becomes
more narrow with increasing noise correlation time not
only in the velocity coordinate v, but also in the configura-
tion coordinate x. That &(x) is narrowed with increasing
7 has already been predicted and observed for a two-
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dimensional system represented by the overdamped limit
of Eq. (2.2) with (2.1) by the results of Hanggi et al.,!
Jung and Risken,”’ and experimentally by Moss and
McClintock.?® The results of the conventional perturba-
tive scheme in (2.8) and (2.9) are recovered from (3.13)
and (3.14) if we set equal to zero the effective nonlineari-
ty, 38(x?) —a=0, and expand in first order of the noise
correlation time 7.

IV. DIFFUSION EQUATION
FOR THE CONFIGURATION COORDINATE

Finally, we discuss here the implications of our novel
approximation for the overdamped case, where
the configuration coordinate remains the only slowly
varying observable. The standard approximation
schemes!(®10:12=18.29 are recovered if we were to expand
the exponent in (3.8) in a power series. In contrast, the
important property of the approximation in (3.12), yield-
ing the potential renormalization in (3.14), as a function
of the correlation time 7, essentially corresponds to a
resummation of infinitely many terms ~7". This very
feature is evident if we contract the dynamics onto the x
variable alone.

For example, let us integrate (2.9) over the velocity vari-
able. This leaves one with a stationary probability for x,
which is not dependent on 7. This is in clear contrast
with the result in Ref. 21. This readily can be understood
if we recall that (2.8) is based on a small-r expansion
(r—0), such that 7y <<1. In the overdamped limit
(y— ), (2.8) no longer remains in the range of useful ap-
plicability, because 7y >>1 for 7 small, but finite [see also
the comments made after Eq. (7.8) of Ref. 10(a)].

On the contrary, if we are going to perform a contrac-
tion over the velocity v in the improved approximation
(3.13) we obtain for the reduced probability o,(x),

o= [ oyxvdy (4.1)
an effective Fokker-Planck equation, where with a =a /7,

b=B/y,and D =D'/y?,

g(x)= —%(ax —bx3)o,(x)

D[1+1/(y7)] 9
1+1/y7+7(3b(x%) —a) 9x?

o,(x) . (4.2)

In the overdamped limit, i.e., y7>>1, we recover from
(4.2) ?lrecisely the limiting result obtained by Hanggi
et al.,

o (x)= ——aa;(ax —bx3)a,(x)

4 D 9’
14+7(3b{x2%)—a) 9x?

o.(x) . 4.3)

This is clear evidence that the novel theory, based on
(3.10) and (3.12), has advantageous features; it is quite dif-
ferent from an expansion in small 7 of (2.8), which is not
compatible with y7>> 1.

V. EXPERIMENTAL TESTS

The main result of this new approximate approach is
the prediction, given by Egs. (3.13) and (3.14), that the
noise correlation time not only reshapes the density of the
velocity coordinate, but also that of the displacement.
Such effects ought to be easily observable. In addition,
such an experiment also would critically check the limits
of applicability of our novel, but still approximative,
theory.

In this section we report the results of separate experi-
ments, carried out in Pisa, Lancaster, and St. Louis, on
quite different electronic circuits which, however, effec-
tively mimic the three-dimensional dynamics defined by
Eqgs. (2.2) and (2.4). Our conclusions are reinforced by a
digital simulation which is discussed below. All these re-
sults confirm the predictions of Egs. (3.14). It is also im-
portant to note that similar such effects have recently
been predicted by matrix continued-fraction solutions of a
two-dimensional Fokker-Planck equation?’ and observed®®
in measurements of P(x,y) for an overdamped system.

The experimental approach is similar to that used in
previous work.’®3! Electronic analogs of Eq. (2.1) and
(2.2) were constructed, driven by exponentially correlated
Gaussian noise, and the fluctuating output voltages were
digitized and analyzed by computer. The circuits are
shown in Fig. 1. The construction and functioning of the
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FIG. 1. The analog simulators. (a) The “minimum com-
ponent” system used in Pisa, (b) the system used in Lancaster
and St. Louis. Both systems are constructed from standard ana-
log electronic components. Multipliers, dividers, and summers
are indicated by the appropriate arithmetic symbol.
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circuit used in Pisa has been discussed elsewhere®! and so
will not be detailed here. The two simulators are quite
different from the points of view of design (the circuit
used in Pisa is a “minimum component” design) and
internal time scaling. Actual measurements of the rms
noise voltage and correlation time were scaled to dimen-
sionless values in accord with Eq. (2.3), which for ¢—s re-
sults in (£2)=D'/r. In this relation, 7 is the dimension-
less noise correlation time defined by =7, /7;, where 7,
is the actual correlation time of the noise voltage applied
to the simulator and 7; is the internal time scale of the
simulator defined by the integrator time constant. The
colored-noise voltages were prepared in the usual way by
passing wide-band (approximately white) noise through a
low-pass, single-pole filter, whose cutoff frequency deter-
mined 7,. In the circuit used in St. Louis and Lancaster
7; =100 us and 7, varied from 50 us (r=0.5) to 200 us
(r=2). The circuit used in Pisa, by contrast, functioned
with an internal time scale approximately 1 order of mag-
nitude larger, but was operated over the same range of di-
mensionless parameters.

We display first the data from Pisa, which were ob-
tained for small noise intensity D’<0.5. In Fig. 2 are
shown the measured values of P(x) for a range of values
of 7. It is unmistakable that the shape of P(x) is signifi-
cantly altered by 7, the ratio R of the maxima to the
minimum varying from R=~3.2 for the smallest 7 to
R ~19 for the largest. The solid curves in Fig. 2 were ob-
tained from Eqgs. (3.14) after integrating over all velocities.
The only adjustable parameter used to fit the data was the
normalization constant of the density. This constant was
obtained simply by requiring that the calculated and mea-
sured maxima be approximately equal. Under this condi-
tion, a rather strong test of the theory is obtained by ob-
serving how well the minima in P(x) are then predicted.
Figure 2 shows that the new approximate theory is
surprisingly accurate for small D’, even for rather large 7.

Figure 3 shows the measured Pisa velocity distributions
compared to Eqgs. (3.14), integrated over all displacements.
As before, the normalization constant was obtained by
matching theory to measurement at the maxima, so that
the predicted widths serve as tests of the accuracy.

We have also made a digital simulation of Eq. (2.2)
with (2.1) and (2.3) using standard techniques. Equation
(2.2) was integrated using the predictor method,*? with a
time step of At=10"2 for 4 10° points chosen at ran-
dom from a table of Gaussian numbers of the desired
standard deviation. The finite correlation time was built
in by allowing each chosen noise point to decay (for a
number of iterations) at a rate chosen from an exponential
distribution. Both the Gaussian nature and the exponen-
tial dependence of the correlations have been tested, the
former by comparing simulated and calculated moments
up to the eighth order, and the latter by insisting that the
fits to an exponential function be accurate to a few per-
cent.

The digital simulations were all carried out for D'=1
and y=1 for r varying from 0.1 to 1.0. The results are
shown in Fig. 4 by the vertical bars compared to the
theory shown by the curves. Two remarks are obvious:
first, that the agreement between theory and simulation is

P(x)

P(x)

P(x)

-2 -1

0
x (V)

FIG. 2. The analog measurements taken in Pisa (solid circles)
of P(x) compared to the predictions of Egs. (3.14) (solid curve)
for D=0.32 and y=1.0; (a) 7=0.63, (b) 7=1.17, and (c)
7=2.14. Statistical measurement errors are indicated by the
size of the circles.
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FIG. 3. The analog measurements taken in Pisa (solid circles)
of P(x) compared to the predictions of Egs. (3.14) (solid curve)
for D=0.32 and y=1.0; (a) 7=0.63 and (b) 7=2.14. The
values of x were measured in volts as shown, but are numerical-
ly equal to the velocities given by Egs. (3.14).

satisfactory only for the smallest r (7=0.1); and second,
despite the poor agreement, it is nevertheless quite clear
that the shape of P(x) is changed in at least qualitative
agreement with the data obtained at Pisa. The question is
whether the theory becomes inaccurate at large D’ (and
large 7) or whether the digital simulation is at fault. We
show below, with the circuit used in St. Louis and Lancas-
ter, that it is the former.

The results of measurements carried out on this simula-
tor are shown in Fig. 6 for small D’ (D’ chosen equal to
that of the Pisa measurements). The predictions of the
theory are shown by the smooth curves. Clearly, satisfac-
tory agreement has been demonstrated among the theory
and the two experiments for D’'=0.32. However, for
larger D'=1, (corresponding to the digital simulation)
measurements of P(x) made on this simulator, shown in
Fig. 5, are in quite good agreement with the digital simu-

P(x)

P(x)

P(x)

FIG. 4. The digital simulations of P(x) done in Lancaster
(vertical bars) compared to Eqs. (3.14) (solid curve) for (a)
7=1.0, (b) 7=0.5, and (c) 7=0.1. All simulations were for
D =1 and y=1. The accuracy of the simulation is indicated by
the height of the bars.
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FIG. 5. The analog measurements done at Lancaster and St.
Louis (jagged curves) of P(x) compared to Egs. (3.14) (smooth
curves) for large noise intensity: D=1 and y=1; for r=0.5
(shallower curves) and 7=2.0 (steeper curves).

lations. We therefore conclude that the theory becomes
inaccurate for noise strengths approaching D’'=1.

VI. CONCLUSIONS

It is not difficult to conclude that the new colored-noise
approximation, obtained here by the projector-operator
method and previously by use of the functional derivative
method,?!"® represents a profound improvement over the
conventional approximate method. It has been shown by
both digital and analog simulation that the new approxi-
mation is quite accurate for large noise correlation times,
though the upper limit of the accuracy is not known. The
approximation is, however, only good near the white-noise
limit (7~0.1) for large noise intensity (D'~1), but re-
gains its accuracy for large 7 at small noise intensity
(D' <0.3).

We might also point out that, while we had previously
tested this approximation on a two-dimensional system

0
x (V)

FIG. 6. The analog measurements done in Lancaster and St.
Louis (jagged curves) of P(x) compared to Egs. (3.14) (smooth
curves) for small noise intensity: D =0.32 and y=1; for 7=0.5
(shallow broad curves) and 7=2.0 (steep narrow curves).

[the overdamped limit of Eq. (2.2)] by making sojourn
time measurements,’! we have here demonstrated its effi-
cacy on a three-dimensional system, see Eqs. (2.4). More-
over, we have here measured the densities which are the
more fundamental quantities representing direct, station-
ary solutions of the Fokker-Planck equation. We hope
that our theory proves to be useful in describing multidi-
mensional nonlinear optical systems for which correlated
noise necessarily plays an essential role.®°
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