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Zero-dispersion peaks (ZDP’s), which can arise in the fluctuation spectra of noise-driven under-
damped oscillators for which the dependence of the eigenfrequency w(FE) on energy E possesses a
maximum or minimum, have been investigated by means of analog electronic experiments. Two
different model systems were studied: a tilted Duffing oscillator and a model of a bistable supercon-
ducting quantum-interference device (SQUID). It is demonstrated experimentally that, for strong
enough intensity 7' of Gaussian pseudowhite noise (equivalent to temperature in a thermal system),
the shape of a ZDP becomes universal, independent of the system under investigation. Its evolution
with T is also shown to exhibit universal features, being governed by a single parameter provided
that T exceeds a critical value T;, below which the ZDP disappears abruptly. The hierarchy of
universalities connected to particular types of extrema in w(FE) is discussed. The results are of
relevance to underdamped SQUID’s and, in particular, to the recently discovered phenomenon of

zero-dispersion stochastic resonance.

PACS number(s): 05.40.+j, 78.50.—w, 05.20.Dd

I. INTRODUCTION

The fluctuation spectra [1] of noise-driven oscillators
are of interest because they characterize the susceptibility
and consequently determine the frequency dependence of
experimentally accessible quantities such as absorption,
conductivity and polarizability [2]. The model of a clas-
sical nonlinear oscillator subject to noise (or interacting
with a thermal bath) is applicable to a diverse range of
physical systems, including electrical oscillating circuits
[3], Josephson junctions [4], local vibrations in certain
doped crystals [5], polymer molecules [6], and many oth-
ers [2]. The fluctuation spectra of classical oscillators
subject to noise have been studied intensively both the-
oretically [2,7-19] and experimentally [7,20-22].

The oscillatory character of the fluctuation-induced
motion is manifested in such spectra only when the rel-
evant damping constant is small, i.e., in the case of un-
derdamped systems. Because the energy of the oscillator
fluctuates in time, the shape of the fluctuation spectrum
is largely determined by the dependence of its eigenfre-
quency w(E) on energy E [23]. It was originally pointed
out in [24] that, if w(F) possesses an extremum, i.e., a
point where the dispersion of the frequency is zero,

dw(E)

5, =% (1)
then the fluctuation spectrum will contain sharp peaks
at the extremal frequency w(FEy,,) and its overtones. In a
sense, these zero-dispersion peaks (ZDP’s) are analogous
to Van Hove singularities [25] in solid-state physics.

A formalism was developed in [26] which demonstrated
that, for oscillators performing one-dimensional poten-
tial motion with sufficiently weak damping, the shape of
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ZDP’s should be described by a universal function. It was
also shown [27] that the evolution of the shape of a ZDP
with temperature (noise intensity) should be universal.
We will show in Sec. II below that there is actually a hi-
erarchy of universalities corresponding to the hierarchy of
types of extrema of w(F). The theoretical prediction of
the ZDP’s was recently confirmed in an analog electronic
experiment [28].

It should be noted that the class of systems in which
ZDP’s can in principle arise is not restricted to oscilla-
tors performing potential motion, although it was the
latter type of oscillator that was considered in [24,26-28]
(and that will also be considered below). Quite gener-
ally, ZDP’s are to be anticipated in dynamical systems
for which slow and fast variables exist and for which the
generalized eigenfrequency has either a minimum or a
maximum in the space of the slow variables E

% = w(E) + 6F¢(E; 1/)7 f¢(t))a

Z_Pt’ — eFa(E, ¥, fa(?)), (2)
dw(E) _

o

where F is some function of the dynamical variables and
of the random force f(t). The spectrum of fluctuations
for any quantity periodic in % will have a sharp peak at
the extremal frequency w(Ep,).

The occurrence of ZDP’s is important, not only as an
interesting physical phenomenon in its own right, but
also because of their significance in relation to stochastic
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resonance (SR), a stochastic amplification effect which is
normally assumed to be confined to bistable systems [29].
The perception of SR as a linear response phenomenon
[30], describable in terms of a linear susceptibility ob-
tained from the fluctuation dissipation theorem [1], has
led to the discovery [31] of a new form of SR in monos-
table systems, arising from the large susceptibility asso-
ciated with the ZDP’s; called zero-dispersion stochastic
resonance, it has been shown [32] to yield large enhance-
ments of the signal-to-noise ratio if the damping of the
system is sufficiently small.

The aim of the present paper is to present the results of
a detailed study of ZDP’s for systems with linear friction
performing potential motion driven by white noise,

.U
i=-% Tq+ f(t),

(3a)
where I' < 1 is a friction coefficient and f(t) is a white
noise

(F®) =0,  (f(t2)f(t2)) = 2TT6(t1 — t2),

and the noise intensity T is equivalent to a temperature
in cases where the dissipation and noise both arise from
coupling to a thermal bath. The study was based on
experimental measurements of the fluctuation spectra of
electronic models, which were used to check the predic-
tions of the universality of the shape of the ZDP’s. With
the latter purpose in mind, we chose for the investiga-
tion two quite different potentials, describing different
physical systems. The first of these was a tilted Duffing
oscillator

(3b)

U A S

(9) = 5+ +4g, (4)
where A is constant. This model could be used to de-
scribe, e.g., an electrical oscillator with a battery, or local
vibrations in doped crystals [5] subject to a constant field.
Note that, although U(q) in (4) is a single-well potential
as shown in Fig. 1(a), the dependence of its eigenfre-
quency w(E) on energy displays a minimum, provided
|A| > 8/(7)%, as shown in Fig. 1(b) [33].

The second potential

U(q) = cosqg + g(q - q0)%. (5)

With appropriate choice of the constants B and qo,
the potential (5) is multistable, as shown in Fig. 2(a).
This model describes a single-junction superconducting
quantum-interference device (SQUID) [4] and thus is of
potential importance in terms of applications. Its vari-
ation of eigenfrequency w(E) with energy is more com-
plicated than for the model (4), typically exhibiting a
number of extrema as shown in Fig. 2(b).

A brief review of the theory is presented in Sec. II.
The electronic experiments used to reveal the ZDP’s are
described in Sec. III. The results obtained are discussed
and compared with theory in Sec. IV. The work is sum-
marized, and conclusions are drawn, in Sec. V. Details of
the calculation of numerical values of parameters for the

10—
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FIG. 1. (a) Plot of the potential U(g) given by Eq. (4)
with A = 2 for the tilted Duffing oscillator. The zero of po-
tential energy has been shifted such that the energy of the
minimum is zero. (b) Plot of the eigenfrequency w(E) as a
function of energy E for the same potential. The minimum
of w(E) is at wm = 1.79125, B, = 2.51.

U-Uy
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FIG. 2. (a) Plot of the potential U(g) given by Eq. (5)
with B = 0.1, go = 0, for the SQUID model. The zero of
potential energy has been shifted such that the energy of
the lowest minima is zero. (b) Plot of the eigenfrequency
w(F) as a function of energy E for the same potential.
The relevant numerical values are wo = 1.029, w, = 0.451,
E, =1.55; E,, = 2.72,E, = 3.56, and E. = 3.76.
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two particular models selected for the investigation are
given in the Appendix.

II. THEORY

We consider a system described by the stochastic equa-
tion of motion (3). The stationary distribution for the
system is the Boltzmann distribution [2],

) 1
Wit (q’ Q) = E exp(—E/T), (6)
where F = %42+U (¢) = Umin is an energy which, for con-
venience, we measure from the minimum of the potential,
oo . . ags
:.nd Z = [% [. dadjexp(E/T) is the partition func-
ion.

The quantity in which we are interested is the spectral

density of the fluctuations [1,2]

Q@) = 5= [ dtexp(-i2)((@(®~@) @O,
™)

where brackets ( ) denote averaging over both the equi-
librium ensemble (6) [i.e., over initial conditions for the
equation of motion (3a)] and realizations of the noise
f).

In the zero-friction limit the initial energy of the sys-
tem does not vary in time, and the dynamics of the phase
of the vibrations is determined completely by the eigen-
frequency at this energy [34]

dy
71? = W(E),
(8)
r'=o.

Allowing for the periodicity of the coordinate over phase
(35], g(E,9) can be expanded as a Fourier series

q= Q(E’ 1/)) = Z q(n)(E)e—in'l/),
9)
g™ = (¢™)*.

Note that, in fact, (9) can be considered as the definition
of the phase variable 1.

In order to find the spectrum Q(2), one has only to
average 6-shaped peaks at frequencies w(F), and at cor-
responding harmonics, over a statistical (Boltzmann) dis-
tribution of energies. Thus it may readily be shown
[24,26] that, in this zero-friction limit, the spectrum is
given by

@) = QU@ = Z 3. 5 1 [22E Do
n=1 j

where E;(z) are determined by the equation

w(By(z) == (10b)
and the summation over j in (10a) implies a summation
over all the roots of Eq. (10b).

It is seen immediately from (10) that, if w(E) has an
extremum at some point E,,, then there are peaks of in-
finite magnitude at the extreme frequency wm = w(Em)
and at its harmonics, because the spectral densit}{ of os-
cillations (23] gn(Q) = 3=, (|dw(E)/dE||g;a/n)) " tends
to infinity as Q tends to nw, [cf. (1)]. These peaks are
called zero-dispersion peaks (ZDP’s).

In reality, of course, friction is always nonzero. Hence,
the energy varies over time due to fluctuations and dis-
sipation, and this results in a decay of the phase cor-
relation. It is the dynamics of this decay that deter-
mines the shape of ZDP’s. A special theoretical tech-
nique, based on an asymptotic solution of the Fokker-
Planck equation, developed in [26], allows one to derive
the shape of the ZDP explicitly. The main result is that
its shape is universal, whereas the width of the peak and

its 1magnitude are proportional respectively to T' and
I3 exp(—En/T):

Q-
Q(ZDP) (Q) = Cscales ('_'_Al;';fﬂ) ]
n=123,...

[ — nwm | K wm, (11a)

1
» #0, 10
|dw(E)/dE|] pem 8y 7 (10a)
[
where
AQ = sgn(w”)A /nrlw”ITF,
c _ 4/ exp(—Em/T)|q¢"™ (Ewm)|?
scale Zwm(nlwul)s/:;(rTF)l/‘; ’
(11b)
" d2 Em
o)
—_1 [ 89(E,¥)\?
P2=% A dzp(wm—————aw )
=202 > " n?lg"(Bn)?,
n=1
and
_ *° exp(—izT) |
S(z) = Re[ A d—r\/(1 —E -i)r]] . (11c)

The function S(z), which determines the universal shape
of the ZDP, is plotted in Fig. 3.

It is assumed here that d?w(E,,)/dE2, # 0, the most
frequently occurring case in real systems. At the same
time, it is possible in principle that the order of the low-
est nonzero derivative in the extremum is higher than 2
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FIG. 3. Plot of the function S(z) [see Eq. (11c)], which
determines the universal shape of the ZDP.

(as for an inflection point, for instance). In this case,
the shape of the ZDP will be different from (11c), al-
though still universal, i.e., described by a function that
is independent of any parameter. Thus the hierarchy of
universal shapes of the ZDP depends on the order of the
extremum of the functions w(E). The quantitative anal-
ysis of this hierarchy, based on the reduction of the full
Fokker-Planck equation to the asymptotic dimensionless
one, and its further solution, will be presented elsewhere
J

(D) ~ (B £ AB()) ~ 0(Bn)lt ~ 7 lo® [(CTR) 2%,

The decay time t) of phase correlation corresponds to

Ap(E®)) ~ . (15)
Then it follows from (14) and (15) that
#8) ! (16a)

Jw ) /Rl| % (P Tp?) 75

The corresponding scaling factor for the width of the
ZDP is

1
NOK

[

|AQ®) | =

(16b)

The characteristic band of energies near E,,, which

are responsible for the ZDP, is of width ~ AE(tﬁM), ie.,
using (13) and (16),

I'Tp? "
AE(tgk)) ~ <—_]w<’°)[/k!>

The scaling factor for the magnitude of the ZDP at wn,
is [cf. the definition (11b)]

(17)

o EPCER/T) p 540y 140 (B, 209
m
exp(—Em/T)Iq(l) (Em)l2
Ztwm|w®) /K| 72 (Tp2T) k53

(18)

For the case k = 2, the expressions for the scaling factors
(16), (17), and (18) reduce to (11b).

[36]. Here, we will present instead a qualitative expla-
nation of the hierarchy in universality and corresponding
scaling factors.

We suppose that, near the extremum, w(E) is of the
form

w(E):wm+%w(’°>(E—Em)’°, k=2,3,4,.... (12

The characteristic time tgk) for the decay of phase corre-
lation is determined by the fluctuations of energy, giving
rise in turn to fluctuations of the phase derivative with
respect to time dy/dt =~ w(E) [cf. (8)] and correspond-
ingly to a loss of phase correlation. In order to estimate
£’°) we need to take into account the diffusionlike growth
with time of the energy distribution (for an initially def-
inite value of energy) [2]:

AE(t) ~ \/TTp2t. (13)

Correspondingly, the distribution of the phase of vibra-
tion for energies close to E,, (in which region of energy

tgk) is at its largest) is of the order of

(14)

-

The dynamics of the decay of phase correlation is de-
termined [cf. (8)] by a diffusionlike growth (13) of the
energy distribution and by its influence on phase fluctu-
ations, i.e., by the power-type function w(E) (12). Corre-
spondingly, a change of parameters leads only to a rescal-
ing of time and energy, and thus the shape of the ZDP
depends only on the value of k in the expression for w(E)
(12). This universality can be proven rigorously by means
of a Fokker-Planck equation treatment [36].

Now we return again to consider the most widespread
and important (for applications) case of an extremum for
which k£ = 2, i.e., the situation for which the dependence
of eigenfrequency upon energy w(FE) (12) has either a
minimum or maximum of parabolic form. It has recently
been shown theoretically [27] that, not only is the shape
of the ZDP universal in the low-friction limit, but the
evolution with temperature towards this shape has a scal-
ing property as well, i.e., after the ZDP near Q = nw,
arises at some critical temperature Tc("), the evolution of
its shape towards the universal one with further growth
of temperature is governed by only one parameter v/ ni ,

where
AE [ Tp? 1
=7 =\ ) (192)
and
AE = AE(t®) (19b)

is the characteristic scale of energy (17) for the case of
parabolic maximum or minimum (k = 2):
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1
~ Y TN 4
Q(Q) =~ CscaleS (AQ’ ‘2";_}—7 m2 ) )

| — nwm| K wm, n=123,....
Here, Cscale and AS2 are defined in (11b),

(20a)

exp [—i:m- + 92 (

5'(a:,y,z) =

o0
Re / dr
0

where erfe(z) = 2/y/7 [ dyexp(—y?) is the complement
of the error function with respect to 1. .

It was shown in [27] that the function S(z,y, 2) has
the following structure for z > 1:

g(z,y, Z) = S(ZDP)(x,y) + LeXp(tlyz)

8ym 28 '

e~1, S@PP) 1 at |z|<~1, y<~l, z>1.

(21)

Thus for 1 < z < (5/4y)In(5/4y) (under which condi-
tions the ZDP is manifested), S(z,y, z) does not depend
on z. The evolution of § with y is shown in Fig. 4. As
y — 0, SEPP)(z,y) — S(z) (11lc).

The existence of a critical temperature Té") for the
manifestation of the ZDP is due to contributions to the
spectrum at = nw,, from lower energies in the dis-
tribution, in particular from the relaxation-induced tail
caused by vibrations in the bottom of the potential well.
The latter can be calculated at low temperatures, as for a
harmonic oscillator of eigenfrequency equal to the eigen-
frequency in the bottom of the potential [2,27]

; T
(harmonic) Q
@ (€2, ) T2 — )2’

Q=w(0), [Q-Q|>T, T<KEn, (22

FIG. 4. Plots of the shape 5(z,y, 2) of the ZDP (21) for
z = 3 and various values of y (numbers adjacent to curves)
showing how it evolves towards the universal shape S(z) of
Eq. (11c) (dashed curve) as y — 0.

2{(1 — i)sinh[(1 — )7 /2]}7
xerfc (—{-—(1 — i)tanh[(1 — 'i)'r]}%z +y

_En _ Eﬁtiw”I i
m=AE = (;}‘;-5‘) , Tm > 1, (20b)
VTm < 51n(zmn%/2),
and
1+ sech[(1 —%)7]
{(@ —é)tanh[(1 - z‘)ﬂ}%) l (20c)

[

Since the magnitude of the ZDP is proportional to the
Boltzmann factor exp (—Ep,/T) [see (11b)], its contribu-
tion to the spectrum becomes negligible at small enough
temperatures. In order to find the critical temperature,
one should compare Cgcale (11b) with the relaxation-
induced tail (22) and with the “nondissipative” contri-
bution [see (10a)] from the lowest root of (10b), i.e., the
energy E; at which w(E;) = (n/i)w(Em),1=1,2,3, ...,
E, # E,, (if such an energy exists).

In the asymptotic limit I' — 0 (when I is smaller than
any other relevant parameter)

_ 4max{E,/5; Em, — Ei}
- In(wp, /T) ’

™ =T, r -0,

(23)

although, strictly T¢ is described by the formula (23) only
at extremely small I' (cf. Sec. IIT) because it is the small-
ness of In~!(I'"1) that is important, rather than that of
T itself.

As can be seen from (19) and (23), the parameter 7,
which determines the shape of the ZDP (20), is much
less than 1 at T' = T, in the asymptotic limit I' — 0.
Thus, in this limit, the ZDP’s rise extremely rapidly as T’
is increased beyond its critical value of T; their shape is
described by the universal function S (11c).

III. THE ANALOG EXPERIMENT

In order to test the above ideas, we have investigated
the properties of the predicted ZDP’s through analog
electronic experiments. To provide a check on the pre-
dictions of universality, two very different models were
chosen: the tilted Duffing oscillator (TDO) described by
Egs. (3) and (4) with A = 2 [see also Fig. 1(a)]; and the
SQUID model described by Egs. (3) and (5) with B =
0.01 [see also Fig. 2(a)]. The calculations of w(FE) and of
some relevant parameters for these models are presented _
in the Appendix. Their eigenfrequencies as functions of
energy, w(E), are plotted in Figs. 1(b) and 2(b) respec-
tively, where they can be seen immediately to be very
different from each other.

The basis of the analog technique has been described in
detail elsewhere [22] but, in essence, is extremely simple.
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An electronic model of the stochastic differential equa-
tion under study is built using standard analog compo-
nents (operational amplifiers, multipliers, etc.). This is
then driven by noise from an external noise generator,
and the response of the model is analyzed with the aid
of a digital data processor. Systematic uncertainties in
measurements of this kind arise from departures of pas-
sive components (e.g., resistors, capacitors) from their
nominal values and, usually of greater significance, from
the internal noise and slightly nonideal responses of the
active components (e.g., operational amplifiers, analog
multipliers). Consequently, there is a net systematic er-
ror of typically a few percent [22], as is the case for the
particular models to be considered below. The statistical
uncertainties in the results show up as scatter, and can
be estimated from the departure of the data points from
a smooth curve drawn through them. The statistical er-
rors can in principle always be reduced by extending the
time of data acquisition, i.e., by increasing the number
of realizations included in the average. Compromise is
necessary, however, partly because of the need to com-
plete the research on a reasonable schedule, and partly
because extended acquisition periods can exacerbate the
effect of thermal drift in the system, leading, in turn, to
increased systematic errors.

The circuit model of the TDO was exactly the same
as described previously when used for the investigation
of noise-induced spectral narrowing [33], except that, in
order to provide the required extremely small value of
I', the corresponding feedback resistor on the first inte-
grator was necessarily rather larger (~ 100 MQ) than
would normally [22] be used in circuit modeling experi-
ments. This exacerbated the effect of leakage currents,
stray capacitance, and other nonidealities of the compo-
nents. Consequently, a precise value of I' could not be
calculated from the nominal values of the components.
Instead, I' was measured experimentally, using two en-
tirely different methods. First, having checked that the
oscillator modeled (3) and (4) correctly and that it res-
onated at the calculated frequency, it was driven precisely
at resonance by adding an extremely weak periodic force
of amplitude F from a frequency synthesizer in place of
f(t) in (3), enabling I to be determined directly from the
amplitude F/T" of the resultant velocity ¢(t). Second,
I' was measured by driving the circuit with quasiwhite
Gaussian noise of mean-square voltage (VZ) from a noise
generator [equivalent to f(t) in (3)]. Measurement of the
second moment of the velocity (¢%) and use of the prin-
ciple of equipartition of energy (¢2) = T then enabled T’
to be calculated from the circuit’s noise-scaling relation
2]

TN 2
T=—
FT[ (VN>7

where 77 is the integrators’ time constant and 78y < 71
is the correlation time of the noise. The values of I" ob-
tained by means of these two independent methods were
larger by 13% than those calculated from the nominal
component values, but agreed with each other to within
2%, which was well within the experimental error of the

meast.;rements, leading to a final result of ' = (2.4 + 0.1)
x107°,

The circuit of the SQUID model is shown in (slightly
simplified) block form in Fig. 5. It was designed and
scaled in the standard way [22] so as to optimize use of
the dynamic range of the active components. Thus, the
actual equation simulated was the integral form (see Fig.
5) of

R4R3C, |
)y 4

R R
f(t)—4 +10sing — =2g = R4C1R3Co§ + ,
Rl R2

Rs
with nominal values

Ry =22 kQ,

Ry ~10% Q (see text),
R3 =Ry =Rs=10°Q,
Cl = 02 =10 nF,

T/ =T =R4Cl =T2 =R302 = 10_38.

With the exception of R, the resistances and capaci-
tances all lay within +1% of their nominal values. Thus,
the circuit actually simulated
100
7§ +T'7'g = 10sing — g + 5@,
where 7/ and I are readily related to the 7 and I in the
theory by means of the scaling relations

T, I\I
- m» - —rl—éy

The sine function was obtained from an ADG639 inte-
grated circuit [37]. As in the case of the TDO (above),
the value of I' was made extremely small by use of a
very large feedback resistor R, across the first integrator.
Using the same two independent experimental methods
described above, ' was measured as (2.8 & 0.2) x104.

The experimental results are presented in Figs. 6 and
7 for the TDO and SQUID models, respectively. The
insets show the spectrum in the immediate vicinity of
the ZDP in each case, plotting the spectral density as

7(6) = 5o £'®)

Cq
s I
W ra ¥
f(tl——'wa——‘{D, R3 L .q)
q
ST rropemen|
10sm(x)[
Rg q

Rg Re

FIG. 5. Block diagram of the electronic circuit used to
model the SQUID, Egs. (3) and (5).
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the discrete data points obtained from the fast-Fourier-
transform (FFT) averaging technique used to measure it.
In Fig. 6, the insets refer to the ZDP’s at the fundamen-
tal frequency; in Fig. 7, the ZDP’s at the fundamental
are plotted in the left-hand insets and those at the third
harmonic in the right-hand insets. In the latter case, the
statistics are relatively poor except [Fig. 7(c)] at rela-
tively strong noise intensity.

IV. DISCUSSION

Before discussing the results in detail, we note that
it was impossible in practice to obtain reliable measure-

0.4
Q
0.3~

0.2

0.1

w

04— 0.6 T T T
Q Q

0.3 041

m
ozl °F oo
m[ﬂ
0.1 1.76 lm'?B 1.80 1.82
. . i . 8 (b)
t l | 1 I ]
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w
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1+ . ,‘ . .
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L | | 1 ]

0.0 0.5 1.0 1.5 2.0 2.5
w

FIG. 6. Spectral densities of fluctuations measured exper-
imentally for the electronic model of the TDO, Egs. (3) and
(4), for various temperatures (noise intensities) T: (a) T =
0.370; (b) T' = 0.445; (c) T = 1.5. The insets in each case
show a comparison, on expanded scales, of the experimen-
tal ZDP with the theoretical prediction for the fundamental
peak.

ments of spectra in the ZDP region for small values of
T. The reason is that the statistical average of the the-
ory is replaced, in the experiments, with an average over
time, which is correct if the latter extends over an in-
finite period of time. However, the period of data ac-
quisition is of course always finite in real experiments.
For temperatures ' < E,,, the probability of the sys-
tem having an energy E,, is small and, correspondingly,
the time interval that elapses between such events for
the random process ¢(t) given in (3) will be large [be-

Q 3 T T T 0.015
6 Q . Q

2k o\ g 0.010

1(ae0 e 0.005

L
132 134 136 1.38

LJ\/\

0.0

0.43 044 045 0.46

N
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Q | Q 0
0.015(- e B
sl 00104,/ \, |
0.005~ oo
6 p—
043 044 045 046 152 154 1I36 1:35
4 -
2 (b)
| //L |
0.0 0.5 1.0 1.5
@
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Q
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043 044 0.4‘15 046 1.32 134 136 138
40 . @ @
201~ (e)
| ]
0.0 0.5 1.0 1.5

@

FIG. 7. Spectral densities of fluctuations measured exper-
imentally for the electronic model of the SQUID, Egs. (3) and
(5), for various temperatures (noise intensities) T: (a) T =
0.394; (b) T = 0.463; (c) T' = 1.3. The insets in each case show
a comparison, on expanded scales, of the experimental ZDP
with the theoretical prediction for the fundamental (left-hand
insets) and third-harmonic (right-hand insets) peaks.
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ing ~ I~ exp(—E,,/T)]. Given that the practical upper
limit on the time of data acquisition 7exps ~ 1 day, and
that I'"! ~ 3s in real time, the lower limit of T was
determined as
Em Em

Ti = In(TTexpt) 9 (24)
Thus, for the parameters of the experiments, T; ~ 0.3 for
both the TDO and SQUID models. If we calculate criti-
cal temperatures for the various harmonics of the ZDP’s
as described in Sec. II, we obtain: for the TDO, Tc(l) ~
0.18-0.2; and for the SQUID, TV ~ 0.15-0.16, T ~
0.30-0.32. Consequently, we were able to observe the full
evolution of a ZDP (i.e., right from first onset until the
peak has attained its universal shape) only for the third
harmonic for the SQUID model. The theoretical predic-
tions for the shape of the ZDP (full curves) are compared
with the experimental measurements (data points) in the
insets of Figs. 6 and 7.

The evolution of the shape of the experimental ZDP
in its third harmonic for the SQUID model (right-hand
insets of Fig. 7) can be seen to be in remarkably good
agreement with theory: note that the theoretical curves
plot only the ZDP itself, and do not include the other con-
tributions to the spectrum. In Fig. 7(a), for T = 0.394,
which is close to the threshold temperature, the ZDP is
clearly manifested but is superimposed on the large rela-
tively flat “pedestal” due to other spectral contributions;
the statistics are relatively poor, but the shape of the
ZDP is nonetheless seen to be very close to the theoreti-
cal prediction. In Fig. 7(b), with T = 0.463, the ZDP
has already become the dominant contribution to the
spectrum; with further increase of T', its shape evolves
towards the universal one [Fig. 7 (c)].

The results for the fundamental frequency also allow
us to draw important conclusions about the evolution of
the ZDP’s shape. First, it may be noted from the inset
to Fig. 6(c), and the left-hand inset to Fig. 7(c), that
the ZDP’s approach the universal shape for large enough
T, when v <« 1 (cf. Fig. 4). The small discrepancies
in frequency are attributable to nonidealities in the cir-
cuit model, and lie well within the experimental error of
~ 2%; the discrepancies in magnitude arise from the ex-
perimental uncertainty of +2% in 7', which in turn gives
rise to a much larger uncertainty in the scaling factor
Cscale X exP(_Em/T)'

The evolution with T of the ZDP’s on the fundamen-
tal coincides qualitatively with the universal evolution
described by Eq. (20) and plotted in Fig. 4. In partic-
ular [cf. Fig. 6(a)], at small T where the parameter 7
is not small, the ZDP is more like a step than a peak.
The quantitative agreement between theory and exper-
iment becomes poorer as T' decreases. One reason (see
above) is the sensitivity of Cscale to any inaccuracy in
T; but the main reason is presumably that, when the
parameter v becomes comparable with unity, the shape
of the ZDP will differ from that of the universal func-
tion S given by (20) and will be defined, instead, by
the individual characteristics of the particular system be-
ing investigated. The results are thus very much in ac-

cord with theory [27], which predicts that the departure
from universal shape in the vicinity of the ZDP, i.e., for
IQ — nwm| <~ |AQ| = (nD|w"|Tp?)?,

max{1l,yx

6Q(@) ~ 2L YEm}, (25)
mm
Thus, the deviation is expected to increase with dis-
tance from nwy,, consistent with the experimental results
shown in Figs. 6(a)-6(c) insets, and 7(a)-7(c) left-hand

insets.

V. CONCLUSIONS

The experimental data presented above, and their com-
parison with theory, allow a number of conclusions to
be drawn. If the dependence of eigenfrequency w(F)
on energy E for the underdamped oscillator (3) pos-
sesses a maximum or minimum at some energy E,,, then
the spectral density of its fluctuations will exhibit sharp
peaks (ZDP’s) at the extremal frequency wy, = w(E,,)
and at its harmonics nw,,.

For large enough temperature (noise intensity) T or,
equivalently, for sufficiently small values of the dissi-
pation parameter I', the shape of the ZDP’s can be
described in terms of the universal function S((Q —
nwm)/AQ) of Eq. (11), plotted in Fig. 3; the param-
eters of the particular system and noise determine only
the scaling factors.

The magnitude of the ZDP decreases rapidly with de-
creasing T [being x exp(—En,/T)] and, at some critical
temperature Tc("), depending on the particular system
considered, the ZDP becomes smaller than a pedestal de-
termined by the relaxation-induced tail of the ordinary
intrawell vibrations and other contributions from ener-
gies far from E,,.

For T > Tc("), the evolution of the shape of the ZDP
with increasing T is governed primarily by a single pa-
rameter (18),

_|_ I
Tn = [nlw”lTs

y

and the shape is described by the function SZPF((Q —
nwm)/AQ,v,) given by (20) and (21) and plotted in Fig.
4. The universal shape S(z) given by (11) corresponds to
the limit where 7,, < 1. The accuracy of this universal
description is good in the close vicinity of the ZDP [i.e.,
(192 — nwm| <~ AQ)], but it decreases with increasing
distance from nw,,.

For sufficiently small I, the parameter v,, < 1, even at
the critical temperature Tc(n). In such cases, the shape
of the ZDP transforms to the universal shape almost dis-
continuously as T" exceeds Tc("). For larger I', the ZDP
acquires a steplike shape for T close to Tc("), which then
evolves relatively slowly towards the universal shape S
given by Eq. (11) with a further increase of T'.

The hierarchy of universalities should depend only on
the type of extremum in w(E). The universal function
S given by Eq. (11), and described above, corresponds



48 UNIVERSALITY OF ZERO-DISPERSION PEAKS IN THE . .. 155

to the most widespread case in which the extremum is
quadratic, corresponding to a maximum or minimum.

Finally, we note that the new phenomenon of zero-
dispersion stochastic resonance (ZDSR), closely associ-
ated with the ZDP’s, has recently been discovered [32]
and discussed [33]. It may be expected that, correspond-
ing to the universality of the ZDP’s shape and evolution
discussed above, there will be related universal features
in ZDSR for small enough I'. The results, for the case
of Egs. (3) and (5), could be useful in relation to experi-
ments and applications on SQUID’s.
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APPENDIX

The dependence of the eigenfrequency upon energy can
be calculated numerically for any potential as

-1
w(E) =“( ﬂw—ﬁ(q—) !

where ¢ and ¢, are the turning points, i.e. roots of the
equation

U(g) =

(in the particular case of the tilted Duffing oscillator, the
integral in (Ala) can be expressed in terms of elliptic
functions [33]].

In order to calculate the scaling factors Cycale, A2, and
the parameter « in (20), we need to know some param-
eters at £ = E,, [see (11b) and (19)]. The quantities
Wm,y Em, and w” = d?(E)/dE?|g,, are easily found once
w(E) (Ala) has been calculated. The partition function
Z can be expressed in terms of w(E) by use of the canoni-

(Ala)

(A1b)

cal transformation [34] to action angle variables I, 9, and
the formula [34]

A1) (42)
Then
Z=or / dEe"pL(]f)/ exp(~E/T) (A3)

Harmonics ¢(™ (E,,) can be calculated numerically from
the definition (9)

27

d™(E)=— [ dye(E,p)em,

or, allowing for [cf. (8)],

Y(E,q) = w(E) (A4)

qt 'V (E U(

we obtain

q dg’
LU(E) /qtr dquOS {(-U(E) g0 2(E-U(q")) }

(n) —
TE = ) V2(E - U@)

(A5)

The parameter p2 can be calculated either directly from
the definition (11b) or, equivalently, as [38]

1

—_ E,,
7 = w(Bm)I(Em) = wm /0 dE 7 (A6)

Thus, using (A1), (A5), and (A6), we obtain for the mod-
els used in our experiments:

(i) TDO model (2) with A = 2: w(E) as depicted in
Fig. l(bg E,, = 2.51; w, = 1.795; w” = 0.062; p?
2.41; |gV |2 = 0.355.

(11) SQUID model (3) with B = 0.1: w(E) as depicted
in Fig. 2(b). Ep, = 2.72; wy, = 0.4514; w” = — 0.119; p?
= 2.89; |¢D|?2 = 6.61; lq(3)|2 = 0.0462.
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