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A fast (∼ 3 ms) adiabatic expansion of a volume of liquid 4He through the lambda
transition is being used to study the nature of the transition and to model the cosmo-
logical false vacuum to true vacuum phase transition of the early universe. Prelim-
inary results are reported showing that, in accordance with theoretical predictions
by W H Zurek (Nature 317, 505; 1985), there is copious production of quantized
vortex lines, which represent the superfluid analogue of cosmic strings. The line
density after the expansion appears to decay in two distinct stages, with a fast decay
being followed by a much slower one, in agreement with earlier work on the decay
of quantum turbulence created in thermal counterflow. Extrapolation of the initial
fast decay suggests an initial line density, immediately following the expansion, of
∼ 107 cm−2. Smaller, but still substantial, vortex densities are also found to occur
when the system is expanded from below the lambda transition, and the physical
implications are discussed.

1. INTRODUCTION

The origin of the vortex lines1 that seem to be universally present2 in He II
represents an interesting question to which the answer remains incomplete. These
vortices are extremely important because they are believed to seed the creation of
the array of parallel vortex lines that appear when a vessel of He II is rotated, as
well as the dense random tangles of vortex line that can be generated in a ther-
mal counterflow.3 Awschalom and Schwarz found2 that remanent vorticity seemed
to appear at the lambda transition and to decay towards a constant, presumed
metastable, density that was apparently independent of the history of the cooling
process.

One possible way2 in which vortices might be created at the lambda transition
relates to the flow and convection that may be occurring in the liquid above the
transition. Any such motions will effectively be converted to quantized vortex lines
with the onset of long-range order, as the system cools through the transition. A
second, quite different, mechanism relates to critical fluctuations of the superfluid

Published in J. Low Temp. Phys. 93, 1059-1067 (1993).



order parameter close to the transition, which must also correspond to vortices.4

The latter process is of some topical interest in view of the suggestion5 that it may
provide a basis for demonstrating, in the laboratory, the Kibble mechanism6 for
creation of the topological defects that seeded galaxy formation.

The analogy between liquid helium and the early universe arises as follows.
Viewed in terms of Ginzburg-Landau theory,7 the lambda transition may be con-
sidered as though it were a phase transition of second order, with a potential con-
tribution to the free energy of form

V = α|ψ|2 +
1

2
β|ψ|4 (1)

where the complex order parameter ψ is given by a solution of the Ginzburg-
Pitaevskii equation. Above the transition, the equilibrium value of |ψ| = 0 (al-
though there will also be thermal fluctuations to finite values: see below).Below
the transition, however, |ψ| acquires a finite equilibrium value and V [Re(ψ), Im(ψ)]
takes on the same “sombrero hat” shape as the corresponding cosmological free en-
ergy expressed in terms of Higgs fields. In the early universe, a symmetry-breaking
phase transition from false vacuum to true vacuum is believed to have occurred
∼ 10−34s after the big bang, once the temperature had fallen ∼ 1027K. Although
there are many variants of the basic model, both with and without inflation, it
is believed that a variety of topological defects8 would have been produced in the
transition because of an event horizon that prevented adjacent regions from being
causally connected. One type of defect, which appears to have the appropriate
properties for it to have played a role in galaxy formation, is the cosmic string - a
thin tube of false vacuum. The analogous object in He II is a quantized vortex line.

The idea of using the lambda transition to model the cosmological phase tran-
sition was due to Zurek. His suggestion5 was that a volume of He I should be ex-
panded fast from an initial temperature and pressure (Ti, PI) to final values (Tf , Pf ),
as sketched in Fig 1, so that it would undergo the transition to He II while still re-
taining frozen-in fluctuations from above the lambda point. The nascent superfluid
would therefore form with a spatially incoherent order parameter, corresponding to
a large density of vortex lines, modelling the cosmic strings of the early universe.
This scenario depends on the fact that the liquid can (in principle) be expanded at
any velocity up to that of first sound, whereas the propagation velocity for changes
in the order parameter is equal to the (much slower) velocity of second sound.

In this paper, we report the initial results obtained from an expansion cryostat
which we have built to carry out Zurek’s proposed experiment5 and to test his
predictions.

2. EXPERIMENTAL DETAILS

A full description of the expansion cryostat will be given in a later paper but,
briefly, the arrangement was as follows. A sample of ∼ 10−3 kg of isotopically pure9

liquid 4He is held within a small chamber whose walls consist of a bronze bellows,
as indicated diagrammatically in Fig 2. The chamber is secured at the top, but its
bottom surface can be pulled up to compress the liquid, or released to expand it
as shown by the arrows, using a mechanical linkage from the top of the cryostat.



The chamber is held within an evacuated enclosure immersed in a cryogenic bath
of liquid 4He at ∼ 2.0K. The cell is fitted with a capacitance pressure gauge and a
carbon resistance thermometer. The temperature of the sample can be adjusted by
means of a breakable thermal link to the surrounding bath, or by a heater.

To detect the vortices that are expected5 to be produced in an expansion, there
is a small insert in the cell carrying a heater and bolometer for the generation and
detection of second sound. The bolometer signal passes via a FET preamplifier
in the bath at ∼ 2.0K, and thence to a main amplifier at room temperature. At
the moment of the expansion, a sequence of second sound pulses is initiated, and
their attenuation in the ∼ 4 mm of He II separating bolometer and heater provides
a measure1 of the vortex line density. Typically, the cell is expanded from an
initial pressure Pi = 29.6 bar and temperature Ti = 1.81 K, through the lambda
transition, to final values of Pf = 6.9 bar and Tf = 2.04 K, in a time τe ∼ 3 ms.
During the following 1.7 s, some 170 single-pulse second sound signals are recorded
by a Nicolet 1280 data processor. About 600 s later, at exactly the same pressure
and temperature, a reference signal is averaged and recorded, defining the signal
amplitude in the (virtual) absence of vortices.

The signal sequence is analysed automatically in two quite separate ways. First,
any given signal is cross-correlated with the reference signal; the ratio of the maxi-
mum of the cross-correlogram to that of the auto-correlogram of the reference signal
gives the ratio of the signal magnitude to that of the reference signal. Secondly, a
least squares method is used to find the factor by which the reference signal must
be multiplied in order to obtain a best fit to the signal being analysed, after each
has first been baseline-corrected to an average of zero.

3. RESULTS

Some typical second sound signals, recorded shortly after an expansion, are
shown in the inset to Fig 3. Although the signals at the shortest times (lower
signal in each inset) are rather noisy, owing to mechanical vibrations caused by
the expansion itself, coupled to a slight microphony of the low level electronics,
it is immediately evident that the expansion leads to a considerable increase in
attenuation. This is true both of expansions that take the system through the
lambda transition, and of ones that start from below the transition i.e. with the
sample already superfluid; but the attenuation is larger in the former case.

The evolution of the signal magnitude, expressed as a percentage of the refer-
ence signal, is shown as a function of time in the main part of Fig 3. The circled
data points are for an expansion through the transition, and the triangles show
what happens in an expansion from almost the same starting conditions but just
below the transition. The results shown were all based on the least squares signal
analysis; those from the correlation analysis were in agreement within experimental
error and seldom differred by more than 2%.

To enhance the signal/noise ratio, groups of adjacent signals were averaged
together prior to analysis. This reduced, but did not eliminate, the effect of noise
due to the mechanical vibrations; inevitably, the process was least effective where
it was most needed, at very short times, where the size of the averaging groups had
to be kept small (or equal to unity) to prevent distortion. The results shown in



Fig 3 have all been enhanced in this way, reducing the scatter of the data but not
causing any detectable systematic shifts.

4. DISCUSSION

It must be emphasized that the results presented in the preceding section are
of a preliminary character. Data of higher quality are to be anticipated once the
microphony of the cryogenic preamplifier system has been reduced and other im-
provements incorporated, including better temperature control and thermal isola-
tion of the sample. Nonetheless, it is of interest to discuss the initial results in the
light of the theoretical predictions and to draw some tentative conclusions.

The large transient second sound attenuation observed after the system has
followed an expansion trajectory through the lambda transition (circled data in Fig
3) is qualitatively in excellent accord with Zurek’s prediction.5 It must be borne
in mind, however, that the geometry of the expansion is far from being ideal. In
principle, to entirely avoid vortex creation by fluid flow, one would wish to contrive
a spherically symmetrical expansion, or a longitudinal expansion of a cylinder with
stretchable walls, but this appears to be impossible in practice. The actual cell
approximates the latter situation, but both the convolutions of the bellows and also
the presence of the second sound heater and bolometer within the cell represent
nonidealities that will inevitably result in some fluid movement parallel to surfaces
during the expansion. The expansion results in the bottom of the cell dropping a
distance of ∼ 4 mm in ∼ 3 ms−1. Although the resultant transient velocity is quite
fast (average ∼ 1 ms−1), we may note that there is no relative motion at all between
the top and bottom surfaces of the cell and helium adjacent to them; the flow that
occurs will presumably be due to the second order effects mentioned above. It is
not obvious how to calculate the vortex line density likely to be produced by such
flows, especially in view of their very short duration, but we may guess that it is
likely to be considerably smaller than that expected to be produced through the
Zurek mechanism.5

To try to estimate the vortex line density immediately following the expansion
by extrapolation of the data back to time t = 0, we note that the spontaneous decay
rate dL/dt of homogeneous superfluid turbulence is proportional10 to −L2, where
L is the length of vortex line per unit volume. Using the same nomenclature and
symbols as Schwarz and Rozen11 and the earlier papers by Schwarz,12 we may write

dL

dt
= −αIlβc−1

L L2 (2)

where the constants α, Il, β and c−1
L are all known, at least within limits, from

earlier work on turbulence generated in thermal counterflow, and its free decay.
Integrating (2), we find immediately that the evolving line length per unit volume
is given by

L−1 = αIlβc
−1
L t+ L−1

i (3)

where Li is the initial line density at t = 0, which we take to be the instant when
the expansion stops. The relationship between the line density and the attenuation



of a second sound signal is known1 from experiments on rotating helium, and for
present purposes can be expressed in the form

L =
8u2ln(S0/S)

3Bκd
(4)

where u2 is the velocity of second sound, S0 and S are the signal amplitudes in the
absence and presence of vortices, B is a temperature dependent parameter1, κ =
9.97 ×10−4 cm2 s−1 is the quantum of circulation, and d is the heater/bolometer
separation. From (3) and (4) it is evident that a plot of [ln (S0/S)]−1 as a function
of t should yield a straight line from whose ordinate intercept Li can be determined.
Such a plot is shown in Fig 4 for the initial, rapidly rising, part of the evolution.
From the intercept of a line fitted to the data by the method of least squares, we
calculate that Li ∼ 107 cm−2. This is a very large value: to place it in context, we
may note that to create a comparable density by rotation of a container of He II
would require an angular velocity of ∼ 4000 radians s−1. It seems implausible that
a line density of this magnitude could be created in the very brief episode of fluid
flow during the expansion, and we conclude that it must arise mainly through the
Zurek mechanism.5

It is evident from Fig 3 that smaller, but still very large, initial line densities
are created by expansions that do not pass through the lambda transition (from
the triangle data we obtain Li = 2 ×106 cm−2). Again, there will obviously be
a contribution from vortices produced by flow, but the density seems implausibly
large to account for entirely in this way. A possible explanation can be found in
Williams theory4 of the lambda transition as a vortex-driven phenomenon. At the
starting point, very close to the lambda transition Tλ, there will be a relatively
large equilibrium density of vortices. Following the expansion, the line density will
therefore decay towards a new, lower, equilibrium value appropriate to the larger
final value of (Tλ − T ). Thus, the experiment can perhaps be regarded as a rather
direct way of revealing the large vortex density predicted to exist close to Tλ.

The growth of the signal following both types of expansion (Fig 3) exhibits
evidence of a small local maximum or anomaly near t = 200 ms, separating a
regime of fast vortex decay from a second regime characterised by a much slower
decay rate. Similar effects have been seen previously in the decay of turbulence
generated by thermal counterflow,11,13,14 though not14 in the turbulence generated
mechanically. The effect has been discussed11 by Schwarz and Rozen.

5. CONCLUSION

The preliminary results of the expansion experiment, reported above, are con-
sistent with Zurek’s prediction5 that a fast adiabatic passage through the lambda
transition would result in copious vortex production. In common with some recent
experiments on phase transitions in liquid crystals,15,16 these observations provide
support for the ideas underlying the Kibble mechanism of galaxy formation.6,8 Be-
cause the velocity of second sound tends to zero at Tλ, it is to be expected that
slower expansions, or temperature sweeps, through the transition will also lead to
significant vortex creation which, in the latter case, would contribute to the rema-
nent vorticity observed earlier.2 The smaller, but still large, vortex densities created



by expansions from just below Tλ may represent confirmation of the existence of a
large equilibrium vortex density4 corresponding to critical fluctuations of the order
parameter close to the transition.

Further investigations are now in progress to explore the influence of the ex-
pansion rate, the fractional molar volume change in the expansion, the starting
temperature for expansions from below Tλ, and other relevant parameters.
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Fig. 1. Sketch of expansion trajectory (dashed) through the lambda transition on
the 4He phase diagram
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thin tube of false vacuum. The analogous object in He II is a quantized vortex line.
The idea of using the lambda transition to model the cosmological phase transi-

tion was due to Zurek. His suggestionS was that a volume of He I should be expand-
ed fast from an initial temperature and pressure (T;, Pi) to final values (TJ' PJ), as
sketched in Fig 1, so that it would undergo the transition to He II while still re-
taining frozen-in fluctuations from above the lambda point. The nascent superfluid
would therefore form with a spatially incoherent order parameter, corresponding to
a large density of vortex lines, modelling the cosmic strings of the early universe.
This scenario depends on the fact that the liquid can (in principle) be expanded at
any velocity up to that of nrst sound, whereas the propagation velocity for changes
in the order parameter is equal to the (much slower) velocity of second sound.

In this paper, we report the initial results obtained from an expansion cryostat
which we have built to carry out· Zurek's proposed experimentS and to test his
predictions.

A full description of the expansion cryostat will be given in a later paper but,
briefly, the arrangement was as follows. A sample of ~ 10-3 kg of isotopically pure9

liquid 4He is held within a small chamber whose walls consist of a bronze bellows,
as indicated diagrammatically in Fig 2. The chamber is secured at the top, but its
bottom surface can be pulled up to compress the liquid, or released to expand it
as shown by the arrows, using a mechanical linkage from the top of the cryostat.
In use, an expansion is effected by allowing the bottom of the cell to drop suddenly
by ~ 4 mm to a new final position (dashed), increasing its volume by ~ 20%,
under the force due to its own internal pressure. The chamber is held within an
evacuated enclosure immersed in a cryogenic bath of liquid 4He at ~ 2.0K. The cell
is fitted with a capacitance pressure gauge and a carbon resistance thermometer.
The temperature of the sample can be adjusted by means of a breakable thermal
link to the surrounding bath, or by a heater.

To detect the vortices that are expected5 to be produced in an expansion, there
is a small insert in the cell carrying a heater (h) and bolometer (b) for the generation

Figure 2: The experimental cell (schematic).
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Fig. 3. Evolution of the amplitude of second sound following the expansion at t =
O. The ins.ets show typical signals measured at two different times: (a) for an

expansion through the lambda transition; and (b) starting just below the

transition. The main figure shows the evolution of the normalised signal

amplitude for expansion through the transition (circles) and from below the
transition (triangles).

Figure 3: Evolution of the amplitude of second sound signals following the expansion at t

= 0. The insets show typical signals measured at two different times for expansions: (a)

through the transition; and (b) starting below the transition.
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Fig. 4. Plot of inverse In (So/S) against time t over 200 ms following anexpansion through the lambda transition, to enable the initial line density at t = 0
to be estimated.

L = 8u2In(So/S) (4)
3BKod

where U2 is the velocity of second sound, So and S are the signal amplitudes in theabsence and presence of vortices, B is a temperature dependent parameter1, Ko =9.97 X 10-4 cm2 s-1 is the quantum of circulation, and d is the heater/bolometerseparation. From (3) and (4) it is evident that a plot of [In (Sli/S)t1 as a functionof t should yield a straight line from whose ordinate intercept Li can be determined.Such a plot is shown in Fig 4 for the initial, rapidly rising, part of the evolution.From the intercept of a line fitted to the data by the method of least squares, wecalculate that Li ,.., 107 cm-2• This is a very large value: to placeit in context, wemay note that to create a comparable density by rotation of a container of He II·would require an angular velocity of,.., 4000 radians S-1. It seems improbably thata line density of this magnitude could be created in the very brief episode of fluidflow during the expansion, 'and we conclude that it must arise mainly through theZurek mechanism.5 '
It is evident from Fig 3 that smaller, but still very large, initial line densitiesare created by expansions that do not pass through the lambda transition (fromthe triangle data we obtain L; = 2 X 106 cm-2). Again, there will obviously be

Figure 4: Plot of inverse ln (S0/S) against time t over 200 ms following an expansion

through the lambda transition to enable the initial line density at t = 0 to be extrapolated.
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