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Experiments on Critical Phenomena in a Noisy Exit Problem
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We consider a noise-driven exit from a domain of attraction in a two-dimensional bistab
system lacking detailed balance. Through analog and digital stochastic simulations, we fin
theoretically predicted bifurcation of the most probable exit path as the parameters of the sys
are changed, and a corresponding nonanalyticity of the generalized activation energy. We
investigate the extent to which the bifurcation is related to the local breaking of time-reversal invarian
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Noise-induced motion away from a locally stable stat
in a system far from thermal equilibrium, arises in divers
scientific contexts, e.g., glasses [1], arrays of Joseph
junctions [2], stochastically modeled computer networ
[3], stochastic resonance [4], and stochastic ratchets
Because these systems in general lack detailed bala
progress in understanding this phenomenon has b
slower than in thermal equilibrium systems. In particula
there exist no simple or general relations from which t
rate of noise-induced transitions between stable states
be obtained.

Recently, substantial progress on the nonequilibriu
case has been achieved in the limit of weak noise,
ing path integral or equivalent Hamiltonian formulation
[6–11]. Fluctuational motion of the system can then b
characterized by the pattern of optimal (i.e., most prob
ble) fluctuational trajectories. An optimal trajectory is on
along which a system moves, with overwhelming prob
bility, when it fluctuates away from a stable state towa
a specified remote state. These are rare events but, w
they occur, they do so in an almost deterministic wa
e.g., escape from a domain of attraction typically follow
a unique trajectory. The properties of this most probabl
exit path (MPEP) determine the weak-noise behavior
the mean first passage time (MFPT).

In recent years, it has been realized that in nonequil
rium systems, the pattern of optimal fluctuational traject
ries may contain “focusing singularities” [11–13]. The
effect on exit phenomena was considered by Maier a
Stein [14,15] who showed that, for a symmetric doub
well system (see below), the MPEP bifurcates when t
model parameters are changed in such a way that a foc
ing singularity appears along it; that is, the MPEP ceas
to be unique. This bifurcation breaks the symmetry
the model, and is accompanied by a nonanalyticity of t
generalized activation energy for interwell transitions:
is analogous to a second-order phase transition in a c
densed matter system [15]. This analogy throws new lig
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on, e.g., exit bifurcation phenomena in systems driven
colored noise [8].

Many of these theoretical ideas, although importa
remain untested experimentally or numerically. In th
Letter we use an analog experiment and numeri
simulations to demonstrate the predicted bifurcation
the MPEP, and the corresponding nonanalytic behavio
the generalized activation energy and related quantit
We investigate the nature of the broken symmetry
detail, and show how bifurcation is accompanied by
loss of time-reversal invariance along the MPEP.

We investigate the motion of an overdamped partic
in the two-dimensional drift field first proposed in [10
usx, yd ­ sx 2 x3 2 axy2, 2y 2 x2yd, where a is a
parameter. It has point attractors ats61, 0d and a saddle
point at s0, 0d. If the particle is subject to additive
isotropic white noisefstd ­ s fx , fyd, its position sx, yd
will satisfy the coupled Langevin equations

Ùx ­ x 2 x3 2 axy2 1 fxstd ,

Ùy ­ 2y 2 x2y 1 fystd , (1)

k fistdl ­ 0, k fissdfjstdl ­ Ddijdss 2 td .

Since u is not a gradient field (unlessa ­ 1), the
dynamics will not satisfy detailed balance. The Fokke
Planck equation for the particle’s probability densityr ­
rsx, y, td will be

Ùr ­ sDy2d=2r 2 = ? s rud . (2)

In the weak-noise limit, escape of the particle from th
domain of attraction of either fixed pointsxs, 0d ­ s61, 0d
is governed by the slowest-decaying nonstationary eig
mode of the Fokker-Planck operator [16], whose eige
valuel1 becomes exponentially small asD ! 0. In this
limit the MFPT ktexitl is well approximated byl21

1 . The
slowest-decaying eigenmode is called thequasistationary
probability density;we denote it byr1. It may be approxi-
mated in a WKB-like fashion [9,10,14,15], i.e.,
© 1997 The American Physical Society 3109
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r1sx, yd , Ksx, yd expf2W sx, ydyDg, D ! 0 . (3)

HereW sx, yd may be viewed as aclassical action at zero
energy,since it turns out to satisfy an eikonal (Hamilton
Jacobi) equation of the formHsx, =W d ­ 0, where
Hsx, pd ­

1
2 p2 1 usxd ? p is a so-called Wentzel-

Freidlin Hamiltonian [17]. The optimal fluctuationa
trajectories are projections onto coordinate space of
zero-energy classical trajectories determined by t
Hamiltonian. These lie on the three-dimensional ener
surface specified byH ­ 0, embedded in the four-
dimensional phase space with coordinatessx, y, px , pyd.
In general, the computation ofW sx, yd requires a mini-
mization over the set of zero-energy trajectories starting
sxs, 0d and terminating atsx, yd. Moreover the MPEP, for
the domain of attraction ofsxs, 0d, is the zero-energy trajec-
tory of least action which extends fromsxs, 0d to the saddle
s0, 0d. The MPEP actiondW ; W s0, 0d 2 W sxs, 0d gov-
erns the weak-noise behavior of the MFPT. To leadi
order it is of the activation type, i.e.,

ktexitl , const3 edWyD , D ! 0 , (4)

where dW can be viewed as an “activation energy” fo
noise-induced interwell transitions. The prefactor “cons
is determined byKsx, yd in (3).

When a ­ 1, the dynamics of the particle satisfy
detailed balance, and the pattern of optimal trajector
emanating fromsxs, 0d contains no singularities. It was
found earlier [14,15] that, asa is increased, the first
focusing singularity on the MPEP (initially lying along
the x axis) appears whena ­ ac ; 4. It signals the
appearance of a transverse “soft mode,” or instabili
which causes the MPEP to bifurcate. Its physical origin
clear: asa is increased, the drift towardsxs, 0d “softens”
away from thex axis, which eventually causes the on
axis MPEP to split. The two new MPEP’s move off axis
causing the activation energy (previously constant) to st
decreasing. So the activation energy as a function ofa

is nonanalytic ata ­ ac. If a is increased substantially
beyondac, further bifurcations of the on-axis zero-energ
classical trajectory occur whena equals as jd

c ; s j 1

1d2, where j is the number of the bifurcation. But the
oscillatory trajectories arising from such bifurcations a
believed to be unphysical, since the on-axis trajectory
no longer the MPEP (cf. [11]).

To test these theoretical predictions, and to seek furt
insight into the nature of the broken symmetry, we ha
built an analog electronic model of the system (1) usi
standard techniques [18]. We drive it with zero-mea
quasiwhite Gaussian noise from a noise generator, digit
the responsexstd, ystd, and analyze it with a digital
data processor. Transition probabilities are measu
by a standard level-crossing technique. Experimen
investigations of the optimal fluctuational trajectories a
based on measurements of the prehistory probabi
distribution [19,20]. This method was recently extende
to include analysis of relaxational trajectories and th
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to investigate directly the presence or absence of tim
reversal symmetry and detailed balance [21].

We have also carried out a complementary digita
simulation of (1) using the algorithm of [22], with par-
ticular attention paid to the design of the noise generat
on account of the long simulation times. Transition prob
abilities were measured using a well-to-well method, an
the analysis of the data to extract the optimal fluctuation
and relaxational trajectories was based on a method sim
lar to that used in the analog experiments.

Some activation energy results are shown in Fig.
Figure 1(a) plots the MFPTktexitl as a function of in-
verse noise intensity1yD for the special casea ­ 1.
In this case the drift field is the gradient of the poten
tial Usx, yd ­ f y2s1 1 x2d 2 x2 1 x4y2gy2, andW can
be obtained exactly (W ­ 2U). The analog and digi-
tal results are in good agreement, and demonstrate t
the noise dependence of the MFPT is indeed of the a
tivation type predicted by the theory. Activation ener
gies determined from the slopes of a series of plots lik
those in Fig. 1(a) yielded the results shown in Fig. 1(b
where they are compared with theoretical values ofdW
determined from the true (least action) MPEP or MPEP
[14,15]. At the predicted critical valueac ­ 4, marked
changes in both the activation energy and MFPT pre
actor (which! 0) are evident: theory predicts that the

FIG. 1. (a) The mean first passage time as a function
inverse noise intensity1yD for a ­ 1, from analog experiment
(bars), numerical simulation (circles) and calculation (soli
line). (b) The interwell activation barrierdW , as a function
of a, from analog experiment (crosses), numerical simulatio
(squares) and theory [14,15] (full line). The dashed curve an
circle data represent the MFPT prefactor from calculation an
numerical simulation, respectively.
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activation energy bifurcates here into two values, corr
sponding to paths on and off thex axis, of which only
the latter (lower action) path is expected to be physica
meaningful. The dependence of the activation energy
a near the second critical valueas2d

c ; 9 is smooth, in
agreement with the prediction that higher bifurcations co
respond to folding of a nonphysical sheet of the “actio
surface”W ­ W sx, yd, and are not observable [11,15].

Interestingly, the transition shown in Fig. 1(b) resem
bles the bifurcation of the activation energy in an ove
damped oscillator driven by colored noise [8]. Th
suggests that the WKB analysis [14,15] of (1), whe
suitably extended, may provide physical and topologic
insight into the corresponding transition phenomena
systems driven by colored noise where the noise-induc
transition rate can [23] display “kinks,” or sudden shift
between regimes of different behavior.

To verify experimentally the expected relationsh
between the bifurcations of the MPEP and of the a
tivation energy, we have measured two-dimension
prehistory probability distributions [19] of fluctuationa
trajectories bringing the system into the vicinity of th
separatrix between the two wells (they axis). In the limit
of low noise intensity, the maxima of the correspondin
distributions trace out optimal trajectories [20,21]. The
positions are compared to the calculated MPEP’s
a ­ 6.67 in Fig. 2(a). It is clear that the typical fluc-
tuational path corresponding to escape from the dom
of attraction of sxs, 0d follows very closely one of the
predicted MPEP’s.

To seek further experimental insight into the charac
of the broken symmetry for the MPEP, we have als
followed the dynamics of the relaxational part of th
escape paths, after they have crossed they-axis separatrix.
The prehistory and relaxational probability distribution
provide a complete history of the time evolution of larg
fluctuations to and from a given remote state. O
can thus investigate experimentally detailed balan
and time symmetry (or the lack of them) [21]. Th
positions of the maxima of the measured relaxation
distributions are compared with the corresponding th
oretical trajectories in Fig. 2(b). A detailed analys
of the distributions will be given elsewhere. It can b
seen from the figure that fora . ac the MPEP breaks
time-reversal symmetry, i.e., the average growth a
average decay of fluctuations [24] traced out by t
ridges of the corresponding distributions take place alo
trajectories that are asymmetric in time. That is, fora .

ac the MPEP is not a time-reversed relaxationa
trajectory.

The inset in Fig. 2(b) shows the distribution of point
where the escape trajectories hit they-axis separatrix
(i.e., the exit location distribution). Its shape is near
Gaussian, as expected from the approximation of [1
The maximum is situated near the saddle point clea
demonstrating that, in the limit of weak noise, exit occu
via the saddle point.
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FIG. 2. Measured positions of the ridges (first moments) fo
a ­ 6.67 of (a) the fluctuational part (filled circles) and (b) the
relaxational part (crosses) of the escape trajectories. Near
theoretical trajectories are shown by lines. The inset shows th
exit location distribution along they axis.

The relationship between time-reversal symmetr
breaking for the MPEP whena . ac, and symmetry
breaking generally for the system (1), is quite subtle
The system loses detailed balance and time-revers
symmetry as soon asa . 1 and the drift fieldu becomes
nongradient. It is on account of a special symmetry o
the system (reflection symmetry through thex axis) that
the MPEP can remain unchanged in this nongradient dr
field up to the valueac ­ 4. Thus, for1 , a , 4 the
dynamics of the most probable fluctuational trajectorie
is a mirror image of the relaxational dynamicsonly along
the x axis; everywhere else in the domain of attraction o
sxs, 0d the outward optimal trajectories are not antiparalle
to the inward relaxational trajectories, and the resultin
closed loops enclose the nonzero area [14,17].

This prediction has been tested experimentally b
tracing out optimal paths to/from specified remote state
both on and off thex axis, for 1 , a , ac. Some
results are shown in Fig. 3 fora ­ 3.5. It is evident that
the ridges of the fluctuational (filled circles) and relaxa
tional (pluses) distributions follow closely the theoretica
curves. For an off-axis remote state [Fig. 3(a)], the
form closed loops of nonzero area, thus demonstratin
3111
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FIG. 3. Demonstration of local properties of detailed balan
and time-reversal symmetry of (1) fora ­ 3.5. (a) Measured
positions of the ridges of the fluctuational (filled circles
and relaxational (pluses) parts of the trajectories froms1, 0d
to s0.3, 0.3d, compared with theoretical predictions [14,15
(curves). (b) The same for trajectories extending to the o
axis remote states0.15, 0d.

the expected rotational flow of the probability current
a nonequilibrium system [24]. The corresponding ridg
for an on-axis remote state [Fig. 3(b)] are antiparalle
indicating that symmetry is preserved along thex axis.

Our results verify the predicted bifurcation of th
MPEP in (1) ata ­ ac ; 4, with a corresponding non-
analyticity of the activation energy. We have demo
strated that, in the limitD ! 0, detailed balance and
time-reversal symmetry can be considered as local pr
erties along the MPEP of the system in the sense d
cussed above, and that the bifurcation phenomenon
be related to local time-reversal symmetry breaking alo
the MPEP: results that may bear on two-dimensional s
chastic ratchets [25] where symmetry plays an importa
role. Having thus demonstrated (see also [20]) the re
ity of phenomena inferred fromD ! 0 optimal paths, we
anticipate that other importantD ! 0 theoretical predic-
tions, e.g., “cycling” of the exit location distribution [26],
will also be physically realizable.
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