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Zero-dispersion stochastic resonance in a model
for a superconducting quantum interference device

I. Kh. Kaufman,* D. G. Luchinsky,* P. V. E. McClintock, S. M. Soskin,† and N. D. Stein
School of Physics and Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom

~Received 26 June 1997!

It is demonstrated that the signal-to-noise ratio for a weak periodic signal in a superconductive loop with a
Josephson junction~a superconducting quantum interference device, or SQUID! can be substantially enhanced,
over a wide range of frequencies, by the addition of noise. This manifestation ofzero-dispersion stochastic
resonance~ZDSR! is shown to occur for a wide variety of loop parameters and signal frequencies. Unlike most
earlier examples of stochastic resonance, ZDSR does not depend on fluctuational transitions between coexist-
ing stable states. Rather, it exploits the noise-enhanced susceptibility that arises in underdamped nonlinear
oscillators for which the oscillation eigenfrequency possesses one or more extrema as a function of energy. The
phenomenon is investigated theoretically, and by means of analog and digital simulations. It is suggested that
ZDSR could be used to enhance the sensitivity of radio-frequency SQUIDs and other SQUID-based devices. In
the course of the work, two additional useful results were obtained:~a! an asymptotic expression describing
ZDSR for the general case in the limit of weak dissipation;~b! a method for the numerical calculation of
fluctuation spectra in bistable or multistable underdamped systems.@S1063-651X~97!08112-9#

PACS number~s!: 05.40.1j, 85.25.Dq, 03.20.1i, 05.45.1b
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I. INTRODUCTION

Stochastic resonance~SR! has been the subject of inten
sive investigation over the last decade: for recent reviews
@1,2#. The idea of SR was originally introduced@3,4# in re-
lation to a noise-induced enhancement of the amplitude
low frequency periodic signal in a bistable system. It w
subsequently realized@5,6#, however, that a stronger defin
tion of SR in the same system was also possible: it w
shown that, for small enough signals, not only the sig
amplitude but also the signal-to-noise ratio~SNR! could in-
crease with noise intensity~temperature! within a certain
range. It is this latter definition of SR that is probably no
the more widely used and accepted, and which we will ap
below.

A general theory of SR, not confined to the conventio
bistable case@6#, was introduced in@7#. It was predicted@8,9#
on this basis that SR could also occur in monostable syst
@10#. In this perception of the phenomenon, SR is to be
ticipated in any system whose fluctuation spectrum in
absence of a periodic signal displays at least one narrow p
that grows quickly enough with increasing noise intensity.
the particular case considered in@8,9#, the SR was associate
with zero-dispersion peaks@12–15# in systems whose eigen
frequency as a function of energy possesses an extremu
distinguish it from conventional bistable SR, it was nam
zero-dispersion stochastic resonance~ZDSR!.

Unfortunately, the model analyzed in@8,9#, the tilted
single-well Duffing oscillator, typically requires such ve
small values of the damping parameter that SR~in terms of
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the strong definition above! could not be demonstrated in th
analog electronic experiments@9#. It was noted in@15#, how-
ever, that a model superconducting quantum interference
vice ~SQUID! appeared to be much more promising, in th
respect, because ZDSR was to be anticipated for consi
ably larger damping values. Our recent investigations@16#
have confirmed this hypothesis, both experimentally a
theoretically. In the present work, not only has the gene
theory of ZDSR been developed in detail, but we have a
been able to investigate some interesting features of ZD
that are peculiar to SQUIDs. The results could be of inter
in terms of applications, given that SQUIDs are frequen
used in practical devices@17#. It will become apparent tha
ZDSR can in principle be used to enhance the output SNR
a SQUID at moderate and high frequencies, in very much
same way as conventional SR has already been used to
hance the output SNR of multistable SQUIDs@18# in the
low-frequency range.

The structure of the paper is as follows. General expr
sions for the SNR in terms of the fluctuation spectrum, a
the asymptotic theory of ZDSR, are presented in Sec. II. T
general theory of fluctuation spectra for underdamped m
tion is developed in Sec. III. Analog electronic experimen
on a SQUID model, and their results, are described in S
IV. In Sec. V they are compared with the theory and d
cussed. The work is summarized and conclusions draw
Sec. VI.

II. THEORY OF ZERO-DISPERSION STOCHASTIC
RESONANCE

Let us consider a one-dimensional oscillator subject t
weak periodic force, and to friction and noise which, for t
sake of convenience, we take to be linear and white, res
tively,

e,

i-
78 © 1998 The American Physical Society
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q̈1Gq̇1
dU

dq
5 f ~ t !1Acos~Vt !,

^ f ~ t !&50, ^ f ~ t ! f ~ t8!&52GTd~ t2t8!, ~1!

whereU(q) is a potential, and the noise intensityT corre-
sponds to temperature in cases where the noise is of the
origin. We introduce the SNR@6# in terms of the power
spectrum,

Q~v!5 lim
t→`

~4pt!21U E
2t

t

dt q~ t !exp~ ivt !U2

. ~2!

Q(v) consists ofd spikes at the frequencyV of the periodic
force, and its harmonics, superimposed on a smooth fluc
tional background that corresponds to the power spect
Q(0)(v) in the absence of the periodic force. The SNR
then defined as the ratio of the intensity~square! of the d
spike atV to the fluctuational background atV @6#, so that

R5
I d~V!

Q~0!~V!
. ~3!

As shown in@7#, the SNR~R! can be written in terms of the
complex susceptibility which, in turn, can be expressed
terms ofQ(0)(V) using the fluctuation dissipation theore
and the Kramers-Kronig relations

R5
1

4
A2ux~V!u2/Q~0!~V! ,

Re @x~V!#5
2

T
PE

0

`

da S a2

a22V2D Q~0!~a!, ~4!

Im @x~V!#5
pV

T
Q~0!~V!,

where P denotes the Cauchy principal part and

Q~0!~V!5
1

p
ReE

0

`

dt exp~2 iVt !Q̃~ t !, ~5!

Q̃~ t !5Š@q~ t !2^q&#@q~0!2^q&#‹

is the power spectrum in the absence of the periodic for
It was shown in@8# that the SNR can increase withT if

Q(0)(V) has a tall narrow peak that rises rapidly withT and
if the frequencyV of the driving force lies within the range
of the peak. Just such a situation can be realized for un
damped oscillators for which the dependence of an eige
cillation frequency on energy possesses an extremum.
derivative of the eigenfrequency with respect to ener
dv(E)/dE ~the ‘‘dispersion’’ of the eigenfrequency!, is
equal to zero at the extremum. Correspondingly, energy fl
tuations near the extremal energy,Em , affect the phase much
less than in other energy ranges, so that the correlation o
phase~and of the coordinate oscillations as well! lasts much
longer. Consequently,Q(0)(V) exhibits a tall narrow peak in
the vicinity of the extremal eigenfrequencyvm[v(Em), the
al
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so-called zero-dispersion peak~ZDP! @12,13# which, for
small enoughG, is described by the asymptotic formula

Q~0!~V!5Q~ZDP!~V!5CscaleSS V2vm

Dv D ,

where

S~x!5uRe@ S̃~x!#u,
~6!

S̃~x!5E
0

`

dt
exp~2 ixt!

$~12 i !sinh@~12 i !t#%1/2
,

andCscaleandDv are frequency-independent scale factor

Cscale5
4Apuq1mu2

vm~ uv9u!3/4

exp~2Em /T!

Z~GTq̇m
2̄ !1/4

,

Dv5sgn~v9!~Guv9uTq̇m
2 !1/2, ~7!

v9[
d2v~Em!

dEm
2

,

wherev(E) is the frequency of an eigenoscillation as a fun
tion of its energy,

E5
1

2
q̇21U~q!, ~8!

andEm is the energy at whichv(E) has an extremum,

Z52pE
Umin

`

dE
exp~2E/T!

v~E!
~9!

is the partition function,Umin is the minimum value ofU(q),

q̇m
2̄ is q̇2 averaged over one period of the motion wh

E5Em , andq1m[q1(Em) is the first Fourier component in
the expansion ofq as a periodic function of anglef @19# at
the energyEm ,

q5 (
n52`

`

qn~E!exp~2 inf!. ~10!

As shown in Fig. 1, the functionS(x) has an asymmetric
peak whose height, half-width, and position have charac
istic values of order unity.

Equations~6!–~10! are valid provided that~i! the ZDP is
well separated from other characteristic peaks in the sp
trum; ~ii ! there is a homogeneous population of the relev
energy band aroundEm ; ~iii ! the ZDP is larger than the
relaxational plateau of the spectrum. Thus the conditions
the validity of Eqs.~6!–~10! are ~cf., @13#!

U Dv

min~vm ,uvm2v i u!
U,U Dv

v9T2U1/2

!1,

2uDvu&sgn~v9!~V2vm!!uv9uT2, ~11!
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80 57I. KH. KAUFMAN et al.
T.
0.4Em

lnu v9Em
2 /Dvu

,

wherev i denotes the frequency of any other characteri
peak of the spectrum. These conditions are always satis
in the asymptotic limit of smallG whenV is close enough to
vm .

It may be noted from Eqs.~6!–~10!, first, that the height
and width of the ZDP become infinitely large and sma
respectively, asG→0 and, secondly, that the dependence
the height onT is of activation type, i.e., the height grow
extremely fast withT if T!Em . Thus one may expect SR t
be manifested in the system. Indeed, if Eqs.~6!–~10! are
inserted into Eq.~4! with account taken of Eq.~11!,

R5R~ZD![
1

4
A2

p2vm
2

T2
CscaleR S V2vm

Dv D ,

R~x!5
u S̃~x!u2

S~x!
. ~12!

The functionR(x), plotted in Fig. 2 characterizes the fre
quency dependence of the SNR. It decreases monotoni
with x ~cf. the harmonic oscillator for whichR}V22), but

FIG. 1. The universal shape of zero-dispersion peaks, as g
by the functionS(x) defined in Eq.~6!.

FIG. 2. The normalized frequency dependence of the signa
noise ratio in the asymptotic limit of small dissipation, as given
the functionR(x) defined in Eq.~12!.
c
ed

,
f

lly

the form of the decrease changes withx: it can be shown that
R }(2x)3/2 for large negativex, and that SNR}x21/2 for
large positivex.

Of greater interest in the present context is that the SNR
proportional toCscale, which increases sharply withT for
T!Em . Consequently, the SNR must increase withT within
some range@20#, just as in the case of SR in convention
bistable systems@5–7,1#. The same holds true even when th
shape of the ZDP is not universal. The only condition is th
the magnitude of the ZDP should be sufficiently large
comparison to other spectral peaks@8#. The activation-law
type dependence of the SNR onT arises because both th
susceptibility and fluctuation spectrum are determined
those oscillator vibrations whose energies lie within a narr
band around the extremal frequency, whose population
creases rapidly withT.

The frequency dependence of the SNR is well descri
by the universal functionR, but only for very small values of
G and in the close vicinity ofvm ~see Sec. V!; the same
restrictions apply also to the shape of the ZDP itself@13,15#.
In order to calculate the SNR over a wider range of para
eters, it is necessary to compute the fluctuation spect
numerically. The algorithm we have used for this calculati
is described in the next section.

III. THEORY OF FLUCTUATION SPECTRA
FOR UNDERDAMPED MOTION

An efficient algorithm for the calculation of fluctuatio
spectra in underdamped oscillators was developed in@21#,
but was restricted to systems with single-well potentials. B
cause the potential that describes the dynamics of SQU
can be of either the single-well or multiwell type, it is ne
essary to generalize the method of@21# to treat the case
where the potential may also have one or more local barri

Our aim, therefore, is to calculateQ(0)(V), i.e., the fluc-
tuation spectrum~5! of the coordinateq whose dynamics is
governed by Eq.~1! with A50. It is convenient to start from
the Fokker-Planck equation~FPE! for the probability density
w(q,p,t;q0 ,p0 ,0) of a transition in the space of coordinat
q and momentap[q̇ from the point (q0 ,p0) occupied at
time zero to the point (q,p) occupied at timet ~see, e.g.,
@22#!,

]w

]t
52

]

]q
~pw!1

]

]p S dU~q!

dq
wD1GL̂w,

L̂51
]

]p
p1T

]2

]p2
, w[w~q,p,t;q0 ,p0 ,0!, ~13!

w~q,p,0;q0 ,p0 ,0!5d~q2q0!d~p2p0!.

According to the definition~5!, we can express the time co
relation functionQ̃(t) in terms ofw(q,p,t;q0 ,p0 ,0) and the
stationary distributionwst(q0 ,p0) as

Q̃~ t !5E
2`

` E
2`

`

dq dp ~q2^q&!W̃~q,p,t !,
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W̃~q,p,t !5E
2`

` E
2`

`

dq0 dp0 ~q02^q&!

3w~q,p,t;q0 ,p0 ,0!wst~q0 ,p0!, ~14!

wst~q,p!5Z21exp~2E/T!.

Like w(q,p,t;q0 ,p0 ,0), the functionW̃(q,p,t) satisfies the
FPE ~13!, but with a different initial condition

W̃~q,p,0!5~q2^q&!wst~q,p!. ~15!

For further analysis, it is convenient to rewrite Eq.~13! in an
energy-angle representation@19# and to make a half Fourie
transform with respect to time. Unlike the single-well ca
@21#, however, the energy-angle representation must be
ferently defined in different regions of the phase space,
vided by separatrices corresponding to the barrier energy
els @cf. Fig. 3~b!#.

Tagging each such region with an indexj , we can write
the equation for the half Fourier transformW in the j th phase
space region as

FIG. 3. The effective potential for a SQUID, Eq.~26!, plotted
for ~a! B50.3, qdc50; ~b! B50.1, qdc521.0. The numbers in~b!
identify different regions of phase space corresponding to mo
confined within energy ranges of three different kinds, separate
the dashed lines: between local energy maxima adjacent in he
between a local maximum and the local minimum adjacent in
ordinate; or between the highest local maximum and infinity.
if-
i-
v-

2 iVW1v
]W

]f
5GL̂W1~q2^q&!wst~q,p!,

v[v~ j !~E!, q[q~ j !~E,f!, p[p~ j !~E,f!,

L̂[L̂ ~ j !~E,f!5Fp
]

]E
2v

]q

]E

]

]f

3FpS 11T
]

]ED2Tv
]q

]E

]

]f G , ~16!

W[W~ j !~E,f,V!5E
0

`

dt exp~ iVt !W̃~q,p,t !.

Like q(E,f) and p(E,f), the functionW(E,f;V) is peri-
odic in f with period 2p, and so can be expanded in
Fourier series,

W~ j !~E,f;V!5 (
n52`

`

Wn
~ j !~E,V!exp~ inf!. ~17!

Substituting Eq.~17! into Eq. ~16!, we obtain

2~V2nv~ j !!Wn
~ j !5G(

m
L̂nm

~ j ! Wm
~ j !1~qn

~ j !2^q&dn0!wst,

L̂nm
~ j ! 5

1

2pE0

2p

df exp~2 inf!L̂ ~ j !exp~ imf!, ~18!

qn
~ j !5

1

2pE0

2p

df exp~2 inf!q~ j !~E,f!,

wheredn0 is a Kronecker delta. Our aim is to find theWn
( j ) ,

since the fluctuation spectrum can be written in terms
them as

Q~0!~V!5(
j

2 ReF E
Emin

~ j !

Emax
~ j ! dE

v~ j !~E!

3 (
n50

`

$@qn
~ j !~E!#* 2dn0^q&%Wn

~ j !~E,V!G ,

~19!

where Emin
( j ) and Emax

( j ) are, respectively, the minimum an
maximum energies of thej th region.

If we consider the underdamped case~smallG) and if, as
is usually the case, it is the peaks ofQ(V) that are of interest
rather than low fluctuational plateaus, then we need re
only the diagonal terms in Eq.~18! ~i.e., terms}L̂nn) @21#,
thus obtaining a closed set of ordinary differential equatio
for Wn

( j ) @23#,

n
y

ht;
-
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2 i ~V2nv!Wn
~ j !5GS 11p2

d

dED S 11T
d

dEDWn
~ j !

2GTn2v2 S ]q

]ED 2

Wn
~ j ! ~20!

1~qn2dn0^q&!wst

where the bar implies averaging@(1/2p) *0
2pdf •••# over

the angle.
In order to solve Eq.~20!, we also need to know the

boundary conditions atEmin
( j ) and Emax

( j ) for each region. Ifn
Þ0 @25#, W vanishes at the boundaries

Wn
~ j !~Emin

~ j ! ,V!5Wn
~ j !~Emax

~ j ! ,V!50. ~21!

The case whereEmin
( j ) corresponds to a local minimum in th

potential may be treated similarly to the single-well case@21#
in deriving Eq.~21!: Eq. ~20! can have two solutions near th
minimum,Wn

( j )}(E2Emin
( j ) )1/2 or Wn

( j )}(E2Emin
( j ) )21/2, given

the necessary finiteness ofWn
( j ) , we choose the convergen

solution and thus arrive at Eq.~21!. The validity of the con-
dition is obvious whenEmax

( j ) is equal to infinity. WhenEmin
( j )

or Emax
( j ) correspond to a barrier, Eq.~21! is derived in the

following way. It is straightforward to demonstrate that, f
energies close to one of the barrier levelsEb ,

S ]q

]ED 2

}
1

~ uE2Ebu!2
. ~22!

The solution of Eq.~20! near the barrier can thus be of tw
types:Wconvergent}uE2Ebu and Wdivergent}(uE2Ebu)21. Al-
lowing for the finiteness ofWn

( j ) as before, we choose th
convergent solution and arrive at Eq.~21!.

Equation~20! can easily be solved numerically~cf. @21#!
for the boundary conditions~21!, enabling the power spec
trum, susceptibility, and SNR to be calculated via Eqs.~19!
and~4!, respectively; the algorithm for calculation of certa
parameters in Eqs.~19!, ~20! follows directly from their defi-
nition and is described in detail in@15,21#. In Secs. IV and V
below we report the results of such calculations for a sys
of practical importance, the SQUID, and compare them w
measurements made with an analog electronic model.

IV. ANALOG ELECTRONIC EXPERIMENTS
FOR A SQUID MODEL

The aim was to try to test some of the ideas of the p
ceding section by modeling a superconductive loop cont
ing a Josephson junction. This is the simplest type
SQUID. It forms the central element of a radio-frequen
SQUID, is often used in more complicated SQUID devic
@17#, and, as we shall see, may be expected to display ZD
for an appropriate choice of parameters.

The dynamics of the loop is described in many cases
the resistively shunted model, in terms of which the tim
evolution of the phase of the order parameter, or of the m
netic flux F(t) threading the loop, can@17# be described by
the equation
m
h

-
-
f

s
R

y

g-

LC
d2q

dt2
1

L

RN

dq

dt
1q1bsin~q!5qe ,

q52p
F

F0
, qe52p

Fe

F0
, b5

2pLJc

F0
. ~23!

HereF is the full magnetic flux through the loop;Fe is the
flux of the external magnetic field;F05h/2e is the flux
quantum;L is the inductance of the loop; andC, RN , and
Jc are, respectively, the capacitance, normal resistivity,
critical supercurrent of the junction.

The external flux usually includes a noisy compone
FN(t), to which can formally be added an additional cont
bution due to thermal fluctuations within the loop itself a
to noise in the Josephson junction. In addition, there is of
a constant componentFdc and a small periodic signa
Fscos(vst). We will therefore assume that

Fe[Fe~t!5Fdc1Fscos~vst!1FN~t!, ~24!

^FN~t!FN~t8!&52Dd~t2t8!.

Taking account of Eq.~24! and introducing the normalized
variables

t5vpt, G5
1

vpRNC
, V5

vs

vp
,

A5
Fs

LJc
, qdc5

2pFdc

F0
,

T5
2pDRN

F0L2Jc

, vp5S 2pJc

CF0
D 1/2

, ~25!

Eq. ~23! takes the same form as Eq.~1!, with

U~q!5
B

2
~q2qdc!

22cos~q!, B[
1

b
. ~26!

The frequency of eigenoscillations in the potentialU(q) of
Eq. ~26! possesses extrema as a function of energy ifB&1
~Fig. 4!. Consequently, the system should display the f
range of zero-dispersion phenomena including, in particu
ZDSR. The criterion for the smallness of the amplitude
the periodic signal can in practice easily be found expe
mentally by finding the maximum amplitude for which th
response is linear.

The circuit used to model Eqs.~1! and ~26!, shown in
outline by the block diagram of Fig. 5, was designed acco
ing to a standard prescription@27,28#, using operational am-
plifiers, an analog multiplier@29#, and a trigonometric inte-
grated circuit ~IC! @30# to perform the necessar
mathematical operations. In the diagramA8cosV8t8 and
f 8(t8) are, respectively, a signal and an external noise
plied to the underdamped nonlinear oscillator.A8 is the am-
plitude of the signal in volts,f 8(t8) is the value of the noise
voltage applied to the circuit, andV8 and t8 are the real
frequency and time. Setting to zero the total currents at
inputs of the operational amplifiers whose outputs areVA and
VB , respectively, we obtain
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VA

RG
1C1

dVA

dt8
1

f 8~ t8!

RN
1

A8cos~V8t8!

RF

2
~R5 /R4!VB

R2
1

VD

R1
50, ~27!

C2

dVB

dt8
1

VA

R3
50. ~28!

The trigonometric IC was configured to give an output
10sin@50(y12y2)# where the two inputsy1 and y2 are in
volts and the argument of the sine is in degrees. The
operation is restricted to lie within the range6500°. In order
to increase the dynamic range ofq @see Eq.~26!# encom-
passed by the model, an analog multiplier was used as sh
to convert the argument to the double angle. The voltag
its output, in terms of the voltageVC at the input of the
trigonometric IC and the constant voltagesV1 and V2, and
allowing for internal scaling by a factor of 0.1, is

VD50.1$10sin@50~V12VC!#%21V2 ~29!

or, in terms of the double angle, now expressed in radia

FIG. 4. Dependences of the frequencyv(E) of eigenoscillation
on energyE for the potentials shown in Fig. 3:~a! B50.3, qdc50;
~b! B50.1, qdc521.0. Dashed lines indicate the positions of t
first three extrema in each case:~a! vm150.372, vm250.600,
vm350.506;~b! vm150.385,vm250.380,vm350.321.
f

C

wn
at

,

VD55S 12cosF p

1.8
~V12VC!G D1V2 . ~30!

The voltageVC is just

VC52
R7

R6
VB . ~31!

EliminatingVA , VC , andVD from Eqs.~27!, ~28!, ~30!, and
~31!, and writing VB[x, the differential equation for the
voltagex in the circuit can therefore be written

R1C1R3C2

d2x

dt82
1

R1

RG
R3C2

dx

dt8
1

R1R5

R2R4
x

25H 12cosF p

1.8S V11
R7

R6
xD G J 2V2

5
R1

RF
A8cosV8t81

R1

RN
f 8~ t8!, ~32!

where we have chosen

RN5RF5100 kV, R15R35100 kV,

R45R55R6510 kV, R7511.459 kV,

RG522 MV, C15C2510 nF, V1520.9 V.

The multiwell and single-well cases of the potential~26!
correspond to different values of the parametersR2 andV2.
For example, on introducingR25100 kV, V2523.93V,
the time constantt85R1C1 /A55R3C2 /A5, and the damp-
ing constantG85R1 /(RGA5), Eq. ~32! can be reduced to

t82ẍ1G8t8ẋ10.2~x21.07!1sin~2x!

50.2A8cosV8t810.2f 8~ t8!, ~33!

whose parameters are readily related to those in the m
~1! by means of the scaling relations

FIG. 5. Block diagram of the analog electronic circuit model.
behavior can conveniently be analyzed in terms of the volta
VA ,VB ,VC , andVD at the points indicated~see text!.
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q52x, t5
t8

A2
, t5

t8

t
, V5V8t, G5

G8

A2
,

B50.1, qe52.14,

A50.2A8, f ~ t !50.2f 8~ t8!.

The nominal value ofG was 0.001 44. However, for suc
small damping, the actual value usually differs from t
nominal one due to the effects of stray capacitance and o
nonidealities of the circuit. In the present case, the ac
value, measured experimentally by two independent meth
@15#, was found to beG50.0012 for the multiwell case an
G50.0011 for the single-well case.

The circuit model was driven by noise from a feedba
shift-register noise generator@27,31# and by a sinusoidal pe
riodic force from a Hewlett-Packard model 3325B frequen
synthesizer. The response of the circuit to stochastic and
riodic forces was analyzed with the aid of a Microst
DAP3200a/415 ADC card@32# installed in a Pentium 133
personal computer.

The evolution of the fluctuation spectra with increasi
noise intensity was measured for the two cases of a sin
well and a multiwell potential~with four wells! as shown in
Figs. 3~a! and 3~b!. The results are shown in Fig. 6.

The SNR was calculated as a function of both noise
tensity and signal frequency, for both single-well and mu
well cases, yielding the results shown in Fig. 7. The dep
dences of the SNR onT for fixed V, and onV for fixed T,
both measured and calculated, are shown in Figs. 8 an
respectively.

V. DISCUSSION

It is immediately evident from the results of Figs. 7 and
that a substantial noise-induced increase in the SNR can
cur for the SQUID model: note the satisfactory agreem
between the theory and the analog experimental data~Fig. 8!.
It is to be expected, therefore, that underdamped SQU
will display closely similar behavior.

The special features of ZDSR peculiar to SQUIDs a
closely related to corresponding features in their fluctuat
spectra which, in turn, are determined by the character
form of v(E). The latter may have several extrema,
shown in Fig. 4. Thus there could be several ZDPs co
sponding to the different extrema. They become activa
sequentially with increasingT. This is most clearly seen in
the single-well case where the extremal frequencies are
separated. The higher the extremal energy, the higher
noise intensity at which the spectral contribution from a ZD
becomes comparable with those from other energy ran
At the same time, the higher the extremal energyE, the
larger the amplitude of the oscillations and, in most cas
the flatter v(E) becomes. The latter effect broadens t
range of energies that contribute significantly to the Z
@12,13,15# and causes the correlation time of the oscillati
to lengthen. Taken together, the two effects result in
maximum magnitude of each successive ZDP increas
markedly@cf. Fig. 6~a!#.

In the case of a multiwell potential (B!1), most of the
extremal eigenfrequencies are very close to each other~all
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'B1/2). Thus, in addition to the increase in magnitude
each successive partial ZDP, many of the ZDPs will overl
and the higher the noise intensity, the greater the numbe
overlapping peaks. Thus the noise-induced increase in
magnitude of the spectral peak is especially pronounce
the multiwell case. As shown by the analysis ofCscale~7! for
small B, the maximum magnitude of the peak grows asB
decreases, as}B23/2, until it reaches the limit;G21.

Let us now turn to the signal-to-noise ratio. As discuss
in Sec. II, if a ZDP in the spectrumQ(0)(V) dominates over
other contributions to the spectrum in the vicinity ofvm then
the SNR is proportional toCscale/T

2 in the vicinity of vm ,
which provides a resonance-like dependence of the SNR
T: it first sharply increases withT, like the ZDP magnitude,
and then, when the temperature becomes of the order ofEm ,
the sharp growth ofCscale with T saturates and the increas
of the SNR changes into a slow decrease. Although the s
trum in a SQUID typically manifests more than one ZD
and the ZDPs often overlap~cf. Fig. 6!, the dependence o
the SNR on T may still be characterized qualitativel
~though not quantitatively! by Eq. ~12! using parameters o
that extremum ofv(E) corresponding to the ZDP which
dominates within the relevant ranges of temperature and
quency. Figure 8 demonstrates resonancelike dependenc
the SNR onT. The rapid increase of the SNR asT decreases
at smallT occurs because the SNR is determined at sm
temperatures by oscillations near the bottom of the low
potential well, resulting in a dependence proportional toT21.
Thus, when the signal frequency is close to one of the
treme eigenfrequencies, the temperature dependence o
SNR is very similar to that for conventional SR@5,6,1,2#.

It should be emphasized that an increase of SNR withT
would still have been observed, even if the damping cons
had been considerably larger than the value (G;1023) used
in the present experiments: the relevant criterion forG can be
written approximately as

G!B1/2&1 ~34!

or, in terms of SQUID parameters,

RN@~L/C!1/2, b*1. ~35!

A characteristic feature of the frequency dependence
the SNR in a SQUID is its rapid increase in the direction
a ZDP’s steepest decrease. The reason is that the real p
the susceptibility ~and also uxu2) decreases much mor
slowly than the spectral density@c.f. Eq.~12!#. As a rule, the
SNR passes through a maximum and then decreases a
The physical reason is that the spectral density is then b
determined by energy regions far from the extremal ener
the SNR increase therefore saturates and changes to a
crease as the signal frequency moves even further away
the extremal eigenfrequency. Note that the frequency ra
within which the SNR increases is typically much larger th
the width of the associated ZDP itself.

The frequency dependence of the SNR is described q
well by our numerical algorithm, as can be seen in Fig. 9.
Fig. 9~a!, which corresponds to the monostable SQUID, t
left ~sharply decreasing! section of the dependence is most
due to the minimum ofv(E) at about 0.4; the left wing of
the peak is mostly due to the ZDP atV'0.6 while the right



a-
ure

its
nd

ell
fre-

-
e-
rrier
nd

d by
n-
pec-

cil-

o

e

57 85ZERO-DISPERSION STOCHASTIC RESONANCE INA . . .
FIG. 6. Evolution of the fluctuation spectra with increase
noise intensityT, measured~full curves! and calculated using the
numerical algorithm of Sec. III~dashed curves! for ~a! the single-
well SQUID potential of Fig. 3~a!; and ~b! the multiwell SQUID
potential of Fig. 3~b!. Dash-dotted lines mark the positions of th
relevant extrema ofv(E) ~see Fig. 4!.
~decreasing! wing of the peak is due to the relaxational pl
teau dominating in the spectrum at these frequencies. Fig
9~b!, which corresponds to the multistable SQUID, exhib
two peaks in the SNR. The left-hand wing of the right-ha
peak is associated with the ZDP nearV50.38, whereas the
opposite wing of this peak is associated with the intraw
peak of the spectrum. The decrease of the SNR as the
quency decreases changes atV'0.3 into an increase, con
trary to Eq.~12!, because the spectrum in this range of fr
quencies is governed by energies close to one of the ba
levels where the parabolic approximation is inapplicable a
the spectrum decreases much more rapidly than predicte
Eq. ~6!. The opposite wing of this peak of the SNR depe
dence is associated with the zero-frequency peak of the s
trum @33#.

Thus, the frequency dependence of the SNR in ZD os

f

FIG. 7. The dependence of the signal-to-noise ratio~normalized
by a squared signal amplitude! on the noise intensityT and the
signal frequencyV, calculated using Eq.~4! and the numerical
algorithm described in Sec. III, for~a! the single-well SQUID po-
tential of Fig. 3~a!; and ~b! the multiwell SQUID potential of Fig.
3~b!.
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lators quite generally displays a resonantlike behavior,
contrast to the behavior of the SNR in conventional syste
At the same time, the width of each resonance is gener
much larger than the band of frequencies within which c
ventional SR is manifested in overdamped SQUIDs.

Finally, in this section, we comment that the extrem
frequencies can be varied over a wide range by adjustme
the parametersB andqdc, i.e., by changing the inductance o
critical supercurrent and the external magnetic field.

VI. SUMMARY AND CONCLUSIONS

We have demonstrated above, both theoretically and
perimentally, that a substantial increase of SNR in an und

FIG. 8. The dependence of the signal-to-noise ratio on no
intensity for ~a! the single-well SQUID potential of Fig. 3~a!, with
V50.62 andA50.016; and~b! the multiwell SQUID potential of
Fig. 3~b!, with V50.39 andA50.005. The results of the electron
experiments and numerical calculations are shown, respectively
the circles and the solid lines.
n
s.
lly
-

l
of

x-
r-

damped superconducting loop with a Josephson junction
be achieved by the addition of noise. This ZDSR pheno
enon arises in SQUIDs because of extrema in the dep
dence of their frequencies of eigenoscillation on ene
which give rise, in turn, to characteristic asymmetriczero-
dispersionpeaks in the fluctuation spectrum whose mag
tude sharply increases with temperature. Thus the increas
SNR can be very large~infinite, in the limit of zero dissipa-
tion!. The SNR also exhibits a rapid increase with chang
frequency in the direction of the steepest decrease of
associated ZDP; and this increase usually occurs ove
broader range of frequencies than the width of the ZDP
self. The evolution of fluctuation spectra with increasi
noise intensity takes place through sequential activation
the zero-dispersion peaks corresponding to different extre

e

by

FIG. 9. The experimental~data points! and numerically calcu-
lated ~solid line! frequency dependence of the SNR at fixed no
intensity for ~a! the monostable potential and~b! the multiwell po-
tential. Dash-dotted lines mark the positions of the relevant extre
of v(E) ~see Fig. 4!.
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of v(E) and exhibits an increasing magnitude for each s
cessive peak. Thus, the SNR increase can take place o
wide range of signal frequencies and SQUID parameters;
SQUID can be designed to suit a given signal freque
through adjustment of its inductance or critical supercurre
and also tuned by varying the external magnetic field.

Given that a superconductive loop with a Josephson ju
tion constitutes the central element of a radio-freque
SQUID and of a variety of other SQUID-based devices, i
clear that ZDSR could in principle be used to improve t
SNR at the output in many such applications. It should
noted also that an investigation of ZDSR in arrays of und
damped SQUIDs could be of interest, given that the coup
has been shown@34# to enhance the SNR for convention
SR in arrays of overdamped SQUIDs.

Finally, note that in the course of the work we have a
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obtained, as byproducts, two useful results:~a! a universal
asymptotic function~12! describing the SNR in any ZD sys
tem, valid for the limit of a small dissipation; and~b! a
convenient method for the numerical computation of fluctu
tion spectra in underdamped bistable and multistable s
tems, as a generalization of the method developed earlie
the monostable case@21#.
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