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Abstract

Weak noise acting upon a nonlinear dynamical system can have far-reaching consequences. The funda-
mental underlying problem } that of large deviations of a nonlinear system away from a stable or metastable
state, sometimes resulting in a transition to a new stationary state, in response to weak additive or
multiplicative noise } has long attracted the attention of physicists. This is partly because of its wide
applicability, and partly because it bears on the origins of temporal irreversibility in physical processes.
During the last few years it has become apparent that, in a system far from thermal equilibrium, even small
noise can also result in qualitative change in the system's properties, e.g., the transformation of an unstable
equilibrium state into a stable one, and vice versa, the occurrence of multistability and multimodality, the
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appearance of a mean "eld, the excitation of noise-induced oscillations, and noise-induced transport
(stochastic ratchets). A representative selection of such phenomena is discussed and analyzed, and recent
progress made towards their understanding is reviewed. ( 2000 Elsevier Science B.V. All rights reserved.

PACS: 05.10.Gg; 05.40.!a; 05.60.!k

Keywords: Fluctuational transitions; Stochastic ratchets; Noise-induced phase transitions
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1. Introduction

The problems of large deviations of nonlinear systems away from an equilibrium state, and
transitions to a new state, in response to weak noise, that can be either of internal or of external
origin, have long attracted the close attention of physicists, in part because these problems are
associated with irreversibility of physical processes. In the last few years it has emerged that, in
systems far from thermal equilibrium, weak noise can produce qualitative change in the properties
of a system, e.g., the transformation of an unstable equilibrium state to a stable one and vice versa
[1], the occurrence of multistability or multimodality [2,3], the appearance of a mean "eld [4}7],
the excitation of noise-induced oscillations [8}11], the occurrence of a peculiar kind of resonance
(so-called stochastic resonance) [12}19], a possibility of one-directional motion (net current) under
the action of zero average forces (so-called stochastic ratchet) [20}22,24,18] and so on. Many such
e!ects have been demonstrated in analogue electronic experiments } which in turn provided the
stimulus for further developments in the theory [23]. The aim of this review is to provide an
accessible introduction to such phenomena. We proceed by reviewing the basis of the theory, and
then consider some illustrative examples of current interest. In Section 2, we outline the theory of
#uctuational transitions and discuss how it can be applied to the problem of intermittency, in
which the dynamical properties of the system change in a seemingly random way between regular
and chaotic behavior. The theory is applied to the Brownian ratchet problem in Section 3, where
we consider the physical basis of noise-induced transport and derive explicit expressions for the
#ow in several di!erent limits. In particular, we consider di!usion in a saw-tooth potential with an
additional regular force, random modulation of the potential barrier height, the e!ect of an
additional random force with a large correlation time, the in#uence of the shape of the potential,
and the e!ect of the mass of the di!using particle. Another phenomenon in which the physical
behavior of the system is radically changed by the presence of noise is that of the noise-induced
phase transition. This is discussed in Section 4 in relation to noise-induced multistability, multi-
modality, and noise-induced oscillations. The formalism is applied to several examples of topical
interest including a pendulum with a randomly vibrated axis of suspension, a generic oscillator
with quadratic nonlinearity (which undergoes a noise-induced phase transition under the action
of additive noise), a model of childhood epidemics, and the Bonhoe!er}van der Pol oscillator.
We draw the ideas together and o!er some conclusions in Section 5. A formal derivation of the
approximate equation for the one-dimensional probability density is provided in the appendix.

2. Fluctuational transitions of nonlinear systems from one stable steady state to another

2.1. Elements of the theory of yuctuational transitions

The problem of how transitions occur from one stable state of a system to another under
in#uence of weak noise can be reduced to the statistical problem of the probability of the "rst
attainment of a boundary by a Brownian particle moving in a given force "eld [25}27]. Several
examples of such problems, as applied to systems of di!erent physical origin, were considered, e.g.,
in [27}39]. The best known of these is [28], in which the problem was solved for a double-well
oscillator in order to estimate the rates of chemical reactions. All of the systems considered in the
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1The condition for the smallness of the noise intensity can be written as S(:t`T
t

x5 m(t) dt)2T1@2;;
.!9

, where ¹ is an
interval of time of the order of the mean period of oscillations in the vicinity of the stable steady state of interest.

papers cited belong to the class of nonlinear oscillators with two or more stable steady states. In the
absence of #uctuations, the system, being in one of these states, cannot pass to one of the other
states without external action of some kind. In the presence of weak noise, however, the system
executes small random oscillations in the vicinity of one of the steady states and, from time to time,
undergoes a transition to a di!erent state. If the noise is su$ciently weak, such transitions occur
only very rarely. Thus that the system remains in the vicinity of the corresponding stable state over
a long period, and the probability distribution consequently has a chance to reach its stationary
value. First we consider systems for which one can obtain, exactly or approximately, a single
"rst-order di!erential equation with a random source describing the behavior of a certain variable
z characterizing the motion of the system.

As an example, let us consider a double-well oscillator with a su$ciently small (in comparison
with its natural frequency) damping factor [27]. Its equation of motion can be written as

xK#cx5 #F(x)"m(t) , (2.1)

where m(t) is a random process. In the particular case when F(x)"!ax#bx3, Eq. (2.1) coincides
with that considered by Kramers [28]. If the damping factor c and the intensity of the noise m(t) are
su$ciently small then the oscillator energy, which is described by

E"(x5 2/2)#;(x) , (2.2)

where ;(x)":x
0
F(x) dx, is a slowly varying function. The stable steady states correspond to

minima of the function ;(x), and the unstable ones correspond to maxima of this function.
A transition from one stable steady state to another can occur when;(x) attains its maximal value.
Multiplying both sides of Eq. (2.1) by x5 we obtain the following exact equation for E:

EQ "!cx5 2#x5 m(t) . (2.3)

So, combining (2.2) and (2.3) we obtain the two stochastic equations

x5 "J2(E!;(x)) ,

EQ "!2c(E!;(x))#J2(E!;(x))m(t) .
(2.4)

In the case when the damping constant c, and the intensity and correlation time of the noise, are all
su$ciently small1 the two-dimensional Fokker}Planck equation corresponding to the Langevin
equations (2.4) can [26] be reduced to the one-dimensional equation

Rw(E, t)
Rt "

R
REAAcu(E)J(E)!

i
2BwB#

i
2
R2
RE2

(u(E)J(E)w) , (2.5)

where

J(E)"
1
pP

x.!9

x.*/

J2(E!;(x)) dx

P.S. Landa, P.V.E. McClintock / Physics Reports 323 (2000) 1}80 5



2We assume that i does not depend on E.
3We assume that the correlation time of the noise is small in comparison with the duration of transient processes in the

system which we denote q
53
, i.e., the width of the noise band is much more than 1/q

53
.

is the action, and

u(E)"pAP
x.!9

x.*/

dx

J2(E!;(x))B
~1

is the oscillation frequency for a "xed value of the energy E; x
.*/

and x
.!9

are the extreme values
taken by x during the oscillations, and they are approximately equal to the roots of the equation
;(x)"E; i is the spectral density of the random process m(t) at a certain characteristic oscillation
frequency.2 It is evident that the following Langevin equation can be related to the Fokker}Planck
equation (2.5):

EQ "!cu(E)J(E)#
i
2A1!

1
2

d(u(E)J(E))
dE B#f(E, t) , (2.6)

where f(E, t) is white noise of zero mean and intensity K(E)"u(E)J(E)i. So, let us consider the
equation

z5 "u(z, m) , (2.7)

where m(t) is su$ciently wide-band3 noise, and the mean value of the right-hand side
Su(z, m)T,f (z) vanishes at the points z"z

0
and z"z

1
and is negative for z

0
(z(z

1
. This

implies that the point z
0

is a stable steady state and that z
1

is an unstable steady state.
As shown in [26], under the condition of the smallness of the noise correlation time indicated

above, u(z, m) can be represented as u(z, m)"F(z)#f(z, t), where F(z)"f (z)#K@(z),

K@(z)"P
0

~=
AT
Ru(z, m(t))
Rz u(z, m(t#q))U!f (z)

d f (z)
dz Bdq ,

and f(z, t) is zero-mean white noise of intensity

K(z)"2P
0

~=

(Su(z, m(t))u(z, m(t#q))T!f 2(z)) dq .

Because z can then be considered as a Markov process, we can use the Fokker}Planck equation for
the probability density w(z, t):

Rw
Rt"!

R
Rz (F(z)w(z, t))#

1
2
R2
Rz2 (K(z)w(z, t)) . (2.8)

The stationary solution of Eq. (2.8) satisfying the condition for zero probability #ux is

w
45
(z)"

C
K(z)

exp(!t(z)) , (2.9)
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4Below we substitute unprimed z in place of primed z@.

where the constant C is determined from the normalization condition, and

t(z)"!2P
z

z0

(F(z)/K(z)) dz . (2.10)

It is easy to verify that, for small noise intensity K(z), the function w
45
(z) peaks at the points

corresponding to stable steady states, in particular, at the point z
0
.

Let us calculate the probability for the passage of the system from a certain point z@ lying in the
range from z

2
to z

1
, where z

2
4z

0
, through the boundary z"z

1
. Clearly, for su$ciently small

noise intensity, the probability of reaching the boundary must be independent of the initial point z@,
provided only that this point is not located too close to the boundary. Let us denote a solution of
Eq. (2.8), satisfying the conditions

w(z, z@, 0)"d(z!z@), w(z
1
, z@, t)"0 ,

by w(z, z@, t). Then the probability that z does not attain the boundary z"z
1

in a time t is

P(t, z@)"P
z1

z2

w(z, z@, t) dz . (2.11)

One method of calculating P(t, z@) was suggested in [27]. The probability density w(z, z@, t) as
a function of z@ is described by the equation conjugate to Eq. (2.8), namely

Rw(z, z@, t)
Rt "F(z@)

Rw(z, z@, t)
Rz@ #

K(z@)
2
R2w(z, z@, t)
Rz@2 . (2.12)

Integrating Eq. (2.12) over z from z
2

to z
1
, and taking account of (2.11), we obtain an equation for

the probability P(t, z@):4

RP(t, z)
Rt "F(z)

RP(t, z)
Rz #

K(z)
2
R2P(t, z)
Rz2 . (2.13)

Let us represent RP(t, z)/Rt in terms of the characteristic function

H(iv, z)"!P
=

0

RP(t, z)
Rt e*vtdt . (2.14)

Expanding both sides of expression (2.14) as a power series in iv we obtain

H(iv, z)"
=
+
k/0

(iv)k
k!

m
k
(z) , (2.15)

where

m
k
(z)"!P

=

0

tk
RP(t, z)
Rt dt (2.16)

is the kth moment of the attainment time. Because P(R, z)"0 and P(0, z)"1, then
m

0
(z)"P(0, z)!P(R, z)"1. Di!erentiating both sides of Eq. (2.13) with respect to t, multiplying
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by e*vt and integrating over t from 0 to R, we obtain the following equation for the characteristic
function H(iv, z):

!ivH"F(z)
RH
Rz#

K(z)
2
R2H
Rz2 . (2.17)

Substituting (2.15) in Eq. (2.17) we can obtain equations for all of the moments of the attainment
time. In particular, for the mean "rst attainment time M(z),m

1
(z) we "nd

K(z)
2

d2M
dz2

#F(z)
dM
dz

#1"0 . (2.18)

This equation, as well as Eq. (2.13), was "rst derived in [25]. Therefore in the Russian mathematical
literature these equations are known as the xrst and the second Pontryagin equations, respectively.

To solve Eq. (2.18) we must set two boundary conditions. One of these is immediately evident:
it is

M(z
1
)"0 . (2.19)

The second boundary condition depends on the character of the boundary z"z
2

[27]. If it is
perfectly re#ecting, and the requirements that K(z

2
)O0, D f (z

2
)D(R and z

2
O!R are ful"lled,

then dM/dzD
z/z2

"0 [27]. If one of these requirements is not ful"lled, however, then we must use as
the second boundary condition the requirement of boundedness of the function M(z) at the point
z"z

2
. A solution of Eq. (2.18) satisfying the condition (2.19) is [25]

M(z)"2P
z1

z
P

z{

z2

1
K(z)

exp(!t(z)) exp(t(z@)) dz dz@#CP
z1

z

exp(t(z@)) dz@ , (2.20)

where the constant C is determined from the second boundary condition. In all examples
considered in [29}31,27] the second boundary condition causes C to be equal to zero.

In the case of su$ciently weak noise, for C"0, expression (2.20) can [27] be reduced approxim-
ately to

M(z)+2P
z1

z2

1
K(z)

exp(!t(z)) dzP
z1

z2

exp(t(z)) dz . (2.21)

If the conditions

Dz
1
!z

0
D<J!Q(z

0
), Dz

2
!z

0
D<J!Q(z

0
), Dz!z

1
D<JQ(z

1
) , (2.22)

where

Q(z)"
1
2 G

d
dzA

F(z)
K(z)BH

~1
,

are ful"lled, the integrals in expression (2.21) can be calculated approximately by using a method
similar to the saddle-point technique. We thus obtain

M(z)+p
J!Q(z

0
)Q(z

1
)

K(z
0
)

exp(t(z
1
)!t(z

0
)) . (2.23)
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We see from (2.23) that, in the approximation considered, the mean "rst passage time is indepen-
dent of z and exponentially dependent of the potential barrier height characterized by the di!erence
t(z

1
)!t(z

0
). If the second condition of (2.22) is not ful"lled, e.g., z

2
"z

0
, then an approximate

calculation of the integrals in expression (2.21) can be performed in another way. As an example, let
us consider Eq. (2.6). For this equation expression (2.21) takes the form:

M(E)+
2
iP

E1

E0

1
u(E)

expA!
2c
i

EBdEP
E1

E0

1
J(E)

expA
2c
i

EBdE . (2.24)

Taking account of the fact that exp(G2(c/i)E) have their largest values for E"E
0

and E"E
1
,

respectively, and decline rapidly for small i (i;c(E
1
!E

0
)), in the "rst integral of (2.24) we can

substitute u(E
0
) in place of u(E) and in the second integral we can substitute J(E

1
) in place of J(E).

In so doing we obtain

M(E)+
i

2c2
1

u(E
0
)J(E

1
)
expA

2c
i

(E
1
!E

0
)B , (2.25)

where u(E
0
) is the frequency of small oscillations around the stable steady state corresponding to

E"E
0
. We note that a formula similar to (2.25) was obtained by Kramers [28] and is well known

as the Kramers formula.
The value of M is equal to the mean time at which z "rst attains the boundary z"z

1
. If the

potential t(z) at this boundary has a smooth maximum, then the probability of passing through the
boundary (p) is equal to the probability (1!p) of returning back again, i.e., p"1/2. Hence the
mean time of the passage through the boundary ¹ has to be equal to 2M. As can be shown, if
pO1!p then

¹"M/p . (2.26)

We now consider another method of calculating the probability P(t, z) and the mean "rst
attainment time. It is based on solving the nonstationary Fokker}Planck equation (2.8). For the
most part this equation cannot be solved exactly. However, in the case of su$ciently small noise,
methods for obtaining approximate solutions of Eq. (2.8) are known. One of them was suggested in
[27]. Because Eq. (2.8) is linear, its solution, satisfying the boundary condition w(z

1
, t)"0 can be

represented as

w(z, t)"
=
+
n/0

e~jnt w
n
(z) , (2.27)

where w
n
(z) is nth eigenfunction described by the equation

1
2

d2

dz2
(K(z)w

n
(z))!

d
dz

(F(z)w
n
(z))#j

n
w

n
(z)"0 (2.28)

with the boundary condition

w
n
(z

1
)"0 . (2.29)

In the case that the noise is weak passages through the boundary are rare and, as a consequence,
the least eigenvalue j

0
is small, whereas the other eigenvalues are vastly greater. Therefore,

after a characteristic time that is short in comparison with 1/j
0

but long in comparison with

P.S. Landa, P.V.E. McClintock / Physics Reports 323 (2000) 1}80 9



1/j
1
, 1/j

2
,2, the main contribution to solution (2.27) will come from the "rst eigenfunction w

0
(z)

associated with the eigenvalue j
0
. So, we can write approximately

w(z, t)+e~j0tw
0
(z) . (2.30)

The normalization condition for w
0
(z) we set in the form

P
z1

z2

w
0
(z) dz"1 . (2.31)

It follows from (2.11), (2.30), and (2.31) that

P(t, z)"e~j0t . (2.32)

The fact that P(t, z) does not depend on z is associated with our having used from the outset the
small noise approximation. From (2.16) and (2.32) we obtain that M"1/j

0
.

For calculating j
0

we integrate Eq. (2.28) for n"0 over z from z
2

to z
1
. Using the normalization

condition (2.31) we "nd

j
0
"G(z

1
)!G(z

2
) , (2.33)

where

G(z)"F(z)w
0
(z)!

1
2

d
dz

(K(z)w
0
(z)) (2.34)

is the probability #ux. If the boundary z"z
2

is perfectly re#ecting, and the conditions (2.22) are
ful"lled, then G(z

2
)"0. In the case when z

2
"z

0
we can also put G(z

2
)+0 because, in the vicinity

of z"z
0
, the probability density w

0
(z) coincides closely in shape with the stationary distribution

(2.9) for which G"0. Taking account of the boundary condition (2.29) we "nd

G(z
1
)"!

1
2

d
dz

(K(z)w
0
(z))K

z/z1

. (2.35)

It follows from (2.33) and (2.35) that, for calculating j
0
, a knowledge of the solution of Eq. (2.28) for

n"0 in the vicinity of the boundary z"z
1

is su$cient. Because the value of w
0
(z) in the vicinity of

z"z
1

is very small, owing to the boundary condition (2.29), we can neglect the term j
0
w
0
(z) there.

Moreover, we can neglect this term for all values of z because, away from the boundary, as
mentioned above, the probability density w

0
(z) has to coincide in shape with the stationary

distribution (2.9). Thus, for calculating w
0
(z) we can use the stationary Fokker}Planck equation

with the boundary condition (2.29) and the normalization condition (2.31).
The "rst integral of the stationary Fokker}Planck equation in view of (2.33) is

F(z)w
0
(z)!

1
2

d
dz

(K(z)w
0
(z))"j

0
. (2.36)

Solving Eq. (2.36) with the boundary condition (2.29) we "nd

w
0
(z)"

2j
0

K(z)
exp(!t(z))P

z1

z

exp(t(z@)) dz@ , (2.37)

10 P.S. Landa, P.V.E. McClintock / Physics Reports 323 (2000) 1}80



where t(z) is de"ned by expression (2.10). The value of j
0

is found from the normalization
condition (2.31):

j~1
0

"M"2P
z1

z2

1
K(z)

exp(!t(z))GP
z1

z

exp(t(z@)) dz@Hdz . (2.38)

By reasoning as above we can remove the term in braces from the "rst integral by putting z"z
2
.

In doing so we obtain an expression coinciding with (2.21). Another approximate method for
solving the nonstationary Fokker}Planck equation (2.8) in the case of su$ciently small noise is
based on a technique similar to the WKB method. It was applied to the indicated problem in, for
example, [40,41]. The results coincide with those set forth above.

To conclude this section, let us consider in more detail the question of the most probable
trajectory z

015
(t) along which a #uctuational transition will occur. In recent years this problem has

attracted considerable interest from many researchers (see, e.g., [42}48]). Let a system be described
by the equations

y5 "F( y)#n( y, t) , (2.39)

where n( y, t) is white noise of zero mean and intensity K(y), and F(y) vanishes at the points y"y
0

and y"y
1
, i.e., y

0
and y

1
are singular points. We assume that the point y

0
is stable and that the

point y
1

is unstable. It was shown in [42] that, in the case when K(y) is independent of y, the most
probable trajectory y

015
(t) can be determined as a partial solution of the auxiliary Hamilton

equations

y5 "RH/Rp , p5 "!RH/Ry , (2.40)

where

H( y, p)"pF( y)#( p2/2)K( y) (2.41)

is a so-called Wentzel}Freidlin Hamiltonian. The required solution has to satisfy the condition
H"0. It is easily shown that Eqs. (2.40) are valid if K(y) depends on y as well. In particular,
for a one-dimensional system described by Eq. (2.7) with u(z, m)"F(z)#f(z, t) Eqs. (2.40)
become

z5 "RH/Rp, p5 "!RH/Rz , (2.42)

where

H(z, p)"pF(z)#(p2/2)K(z) . (2.43)

From the condition H"0 we "nd p"2F(z)/K(z). Substituting this expression into the "rst
equation of (2.42) we obtain

z5 "!F(z) , (2.44)

i.e., the most probable trajectory z
015

(t) along which the representative point moves away from
a stable singular point z"z

0
coincides with the incoming trajectory of the corresponding

dynamical system arriving at this point.

P.S. Landa, P.V.E. McClintock / Physics Reports 323 (2000) 1}80 11



A simple explanation of this result for the one-dimensional case can be given as follows. Because
the function

1
K(z)P

z1

z

exp(t(z@)) dz@

in expression (2.37) for the eigenfunction w
0
(z) varies more slowly than exp(!t(z)), the probability

density w(z, t) is maximal for z(t) satisfying the minimization condition of W(t)"t(z(t)). This
quantity can be considered as a classical action characterizing the motion along di!erent trajecto-
ries outgoing, for t"t

0
, from a common point and incoming, for a certain instant t, to di!erent

points. As is known from classical mechanics [49], this action is minimal for trajectories obeying
the Hamilton equations (2.42), where the Hamiltonian H(z, p, t) is associated with the action W(t) by
the Hamilton}Jacobi equation

RW/Rt#H(z, p)"0 . (2.45)

Let us "nd the action corresponding to a Hamiltonian of form (2.43). It is known [49] that the
action S(t) is determined by

S(t)"P
t

t0

¸ dt , (2.46)

where ¸ is the Lagrangian which is associated with the Hamiltonian by the relation

¸"pz5 !H . (2.47)

Let us now rewrite expression (2.10) in the form

t(z(t))"W(t)"P
t

t0

I̧ dt , (2.48)

where I̧ "!2z5 F(z)/K(z). Comparing (2.46) with (2.48) we see that S(t)"W(t) if ¸" I̧ . It follows
from (2.47) and (2.43) that the latter condition is ful"lled if H"0. Hence, for the trajectory z(t)
described by Eq. (2.44) the quantity W(t) is minimal and therefore the probability density w(z, t) is
indeed maximal. It should be noted that the optimal trajectories have recently been observed and
studied in analogue electronic experiments on nonlinear oscillators [44,46,47,23].

2.2. Applications of the theory of yuctuational transitions to the problems of intermittency

2.2.1. Intermittency as a result of a tangent bifurcation
It is well known that one possible route for the loss of stability of regular motion and the onset of

chaos in dynamical systems is the fusion of a stable steady state with an unstable one, with the
subsequent disappearance of both of these states. In certain conditions after this bifurcation, which
is often said to be tangential, the motion of the system exhibits the property of intermittency (see, for
example, [50}52]). This property implies that in the system phase space the representative point is
`walkinga over prolonged periods within a small vicinity of the vanished states. The motion of the
system corresponding to such walking is nearly regular (laminar phases). These long intervals
of nearly regular motion alternate with short irregular bursts (turbulent phases). Away from the
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Fig. 1. Sketch of a model map close to the transition through intermittency: (a) before the transition; and (b) after the
transition.

bifurcation point the duration of the laminar phases decreases and that of the turbulent ones
increases until, "nally, the laminar phases disappear altogether. The dependence of the mean
duration of the laminar phases on the excess of the bifurcation parameter beyond its critical value
can be evaluated by using a model map (see, for example, [53}55,35,36,52]). If the system is acted
upon by weak noise then the mean duration of the laminar phases is also dependent on the noise
intensity. We will concentrate on the results of [35,52], in which the theory of the passage through
a boundary was used.

Let us consider a system described by a one-dimensional map that can be presented as shown in
Fig. 1 close to the bifurcation point. At the bifurcation point a stable "xed point of the map, M

1
,

fuses with an unstable one, M
2
, and disappears. We set the bifurcation parameter e equal to zero as
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5The sense of x(1) and x(2) is clear from Fig. 1.
6The authors of [53] set an unjusti"ed second boundary condition w(x(1))"0 and added a constant source in

Eq. (2.52).

the map touches the bisectrix. For su$ciently small e, Dx(1)D and Dx(2)D 5 the part of the map labeled
I can be approximated as

x
n`1

"e#x
n
#axq

n
, (2.49)

where q is an even number. It is evident that laminar phases are associated with motion of the
representative point along part I of the map, whereas turbulent phases are associated with
transitions of the representative point to the part labeled II and back again. It has been shown
[54,55] by using a renormalization T-group technique that the mean duration q of laminar phases
is proportional to e~(1~1@q). The same result is obtained in [53,35,52] by replacing the di!erence
equation (2.49) by the corresponding di!erential equation. In [53}55,35,52] the in#uence of
external noise is also considered. It is found that, for e"0, q&g~2(q~1)@(q`1).

The presence of external noise can be described by an additional term in Eq. (2.49), namely

x
n`1

"e#x
n
#axq

n
#gm

n
, (2.50)

where m
n
is white noise with zero mean. We assume that Sm

n
m
m
T"d

nm
, where d

nm
is the Kronecker

delta. For su$ciently small e, g and a(x(1),(2))q Eq. (2.50) can be replaced by the following di!erential
equation [53,35]:

x5 "e#axq#gm(t) , (2.51)

where Sm(t)T"0, Sm(t)m(t@)T"d(t!t@). The Fokker}Planck equation for the probability density
w(x, t) associated with Eq. (2.51) for x4x(2) is

Rw
Rt"!

R
Rx((e#axq)w)#

g2

2
R2w
Rx2

. (2.52)

To calculate the mean duration of laminar phases it is su$cient to "nd a steady-state solution of
Eq. (2.52) satisfying the normalization condition and the zero boundary condition at the point
x"x(2).6 Because all points attaining the boundary x(2) leave the interval in question, we put

w(x(2))"0 . (2.53)

For x(1)4x4x(2) the steady-state solution of Eq. (2.52) with the boundary condition (2.53) is

w(x)"
2G

0
g2

expC
2
g2Aex#

axq`1

q#1BDP
x
(2)

x

expC!
2
g2Aey#

ayq`1

q#1BDdy , (2.54)

where G
0

is the value of the probability #ux

G"(e#axq)w!

g2

2
dw
dx
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within the interval x(1)4x4x(2). For x(x(1) the probability #ux is equal to zero, and therefore

w(x)"
2G

0
g2

expC
2
g2Aex#

axq`1

q#1BDP
x
(2)

x
(1)

expC!
2
g2Aey#

ayq`1

q#1BDdy . (2.55)

The value of the probability #ux G
0

is determined from the normalization condition by integrating
(2.54) and(2.55) with respect to x from !R to x(2). It follows from the general theory of #uctuational
transitions set forth above that the mean duration of laminar phases q is equal to G~1

0
. Thus,

q"
2
g2A P

x
(2)

x
(1)

expC
2
g2Aex#

axq`1

q#1BDP
x
(2)

x

expC!
2
g2Aey#

ayq`1

q#1BDdy dx

#P
x
(1)

~=

expC
2
g2Aex#

axq`1

q#1BDdxP
x
(2)

x
(1)

expC!
2
g2Aey#

ayq`1

q#1BDdyB . (2.56)

In the simplest case when g,0, i.e., in the absence of external noise, it immediately follows from
Eq. (2.52) that

w(x)"G
G

0
e#axq

for x(1)4x4x(2) ,

0 for x(x(1) .
(2.57)

It can be seen from (2.57) that in the speci"c case when q"2 the probability distribution takes the
form of a Lorentzian with its maximum at x"0; the width of this line is equal to Je/a. The value
of G

0
in (2.57) can be calculated explicitly for su$ciently small e when we can put x(1)+!R and

x(2)+R. In this case we "nd

q+
2p

q sin(p/q)
(aeq~1)~1@q . (2.58)

For q"2 we have q&e~1@2. In another speci"c case when e"0, gO0 we obtain from (2.56):

q"2(q~1)@(q`1)A
q#1

a B
2@(q`1)

Bg~2(q~1)@(q`1) , (2.59)

where B is determined by the formula

B"P
u2

u1

exp(uq`1)P
u2

u

exp(!vq`1) dvdu#P
u1

~=

exp(uq`1) duP
u2

u1

exp(!vq`1) dv ,

u
1,2

"A
2a

(q#1)g2B
1@(q`1)

x(1),(2) .

For su$ciently small external noise, when g2;aDx(1),(2)Dz`1 we can put u
1
+!R and u

2
+R. In

this case B is independent of g and we have from (2.59) q&g~2(q~1)@(q`1). In particular, for q"2,
q&g~2@3.

2.2.2. On}ow intermittency
Recently another type of intermittency was discovered. It is known as on}ow intermittency. This

term was introduced after the work [56], though a map associated with the similar type of
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intermittent behavior was "rst considered by Pikovsky [57] and then by Fujisaka and Yamada
[58]. An important point is that this type of intermittency can occur not only in coupled dynamical
systems but in stochastic systems as well [59]. In [59] the statistical properties of on}o!
intermittency were studied through analysis of the map

x
n`1

"a(1#y
n
)x

n
#f (x

n
) , (2.60)

where y
n

is either a deterministic chaotic process or a random process, a is the bifurcation
parameter, and f (x

n
) is a nonlinear function free from a linear term. For this map it was shown

that for a'0 the mean duration of laminar phases is proportional to a~1. The in#uence of
weak additive noise on the characteristics of on}o! intermittency was considered by Chenis and
Lustfeld [60].

We consider on}o! intermittency by reference to a speci"c example system described by the
following model equations:

x5 "!(b#ar2)x#xAm1(t)#
m
2
(t)
r B, y5 "!(b#ar2)y#yAm1(t)#

m
2
(t)
r B , (2.61)

where r"Jx2#y2, and m
1
(t) and m

2
(t) are white noises of intensities i

1
and i

2
, respectively.

Eqs. (2.61) can be rewritten in polar coordinates r and u"arctan(y/x) as

r5"!(b#ar2)r#rm
1
(t)#m

2
(t), u5 "0 . (2.62)

We see that m
1
(t) and m

2
(t) represent multiplicative and additive noise respectively. The "rst of

Eqs. (2.62) is of the same form as (2.7). Hence, the Fokker}Planck equation associated with this
equation can be written as

Rw
Rt"!

R
Rr((ba!ar2)rw(r,u, t))#

1
2
R2
Rr2((r2i1

#i
2
)w(r,u, t)) , (2.63)

where a"i
1
/2b!1 is the bifurcation parameter. To calculate the mean duration of the laminar

phases, we assume that our system is in a laminar phase if r4e, where e is a given small quantity.
The mean duration qe of the laminar phases is determined by the mean duration of a random
walk-like motion of a representative point on the phase plane xy inside a circle of radius e. As
shown above, this duration can be calculated by using the steady-state solution of Eq. (2.63) with
the boundary condition

w(r,u)D
r/e"0 . (2.64)

This solution is

w(r,u)"
2G
i
1
Ar2#

k
2(a#1)B

(ak`i1a)@2(a`1)i1~1
expA!

ar2
i
1
B

]P
e

r
Ao2#

k
2(a#1)B

~(ak`i1a)@2(a`1)i1

expA
ao2

i
1
Bdo , (2.65)

where G is the probability #ux across unit of length of any circumference inside the circle of radius
e, k"i

2
/b. The value of G is determined from the normalization condition by integrating
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expression (2.65) over the circle of radius e:

G~1"
4p
i
1
P

e

0

rAr2#
k

2(a#1)B
(ak`i1a)@2(a`1)i1~1

expA!
ar2
i
1
B

]P
e

r
Ao2#

k
2(a#1)B

~(ak`i1a)@2(a`1)i1

expA
ao2

i
1
Bdo dr . (2.66)

As already noted, the mean time at which the representative point "rst attains the circle boundary
r"e is determined by total probability #ux across this boundary, i.e., ¹"(2peG)~1. Taking
account of the fact that the representative point touching the boundary can return again with
probability (1!p), we obtain for the mean duration q of the laminar phases the following
expression [38,39]:

q"¹p
=
+
j/1

j(1!p)j~1 .

Summing the series we have

q"¹/p . (2.67)

Let us consider the speci"c case when ae2/i
1
;1. We can then ignore the terms exp(!ar2/i

1
) and

exp(ao2/i
1
). As a result we obtain

¹"

2
i
1
eP

e

0

rAr2#
k

2(a#1)B
(ak`i1a)@2(a`1)i1~1

P
e

r
Ao2#

k
2(a#1)B

~(ak`i1a)@2(a`1)i1

dodr . (2.68)

To calculate the inner integral approximately, we multiply and divide the integrand by o, substitute
y for o2 and take e/2 in place of o. This manipulation gives

¹"

2(a#1)
i
1
(a#2)!akG

2i
1
(a#1)

i
1
a#ak A1#

k
2(a#1)e2B

]C1!A
k

2(a#1)e2#kB
(i1a`ak)@2(a`1)i1

D!1H . (2.69)

In particular, for k"0 (additive noise is absent) we obtain from (2.69) the following simple formula:

¹"1/ba . (2.70)

So, for k"0, we have the same dependence of q on a as for the map (2.60); whereas, for kO0, the
dependence is more complicated. For kb;e2i

1
we have ¹"2(a#1)/(i

1
a#ak), i.e., nonlinearity

plays an important role in this dependence, given that the intermittent behavior begins to show
itself for a(a

#3
"0. In another limiting case, when kb<e2i

1
, ¹"e2/2i

2
, i.e., for very small e or

i
1

the mean duration of laminar phases is independent of a. For a"0, ak;b we obtain from
(2.70) the following dependence of ¹ on the intensity of additive noise, conveniently characterized
by the parameter i"k/2e2:

¹"

1
bA(1#i)ln

1#i
i

!1B , (2.71)
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Fig. 2. Dependence of b¹ on a in the case where ae2/i
1
;1 for i

2
"0 (curves labelled 1), i

2
"0.1 (curves labelled 2),

i"0.2 (the curves labelled 3), for: (a) b"0; and (b) b"1.

i.e., the decline of the mean duration of laminar phases with increasing intensity of additive noise is
logarithmic in character. The dependences of b¹ on a for di!erent values of i

2
constructed by the

formula (2.69) are shown in Fig. 2 for two cases: (a) when the nonlinearity characterized by
the parameter b"ae2/b can be neglected, and (b) when it is taken into account. We see that the
nonlinearity exerts only a small in#uence on these dependences. The dependences of b¹ on i

2
for

di!erent values of a are given in Fig. 3 for the same two cases.
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Fig. 3. Dependence of b¹ on i
2

in the case where ae2/i
1
;1 for a"!0.5 (curves labelled 1), a"0 (curves labelled 2),

a"0.5 (curves labelled 3), for: (a) b"0; and (b) b"1.

3. Noise-induced transport of Brownian particles (stochastic ratchets)

In recent years #uctuation-induced transport phenomena for Brownian particles have attracted
considerable interest, usually in the context of biological and chemical problems (see, for example,
[61}66,20,22,24]). A physical experiment demonstrating the possibility of such transport in
a ratchet-like potential "eld created by laser beam is described in [67]. In [68] it was experi-
mentally shown that directed motion of a particle can be induced merely by turning on and o!
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a periodic asymmetric potential (more recently, this phenomenon become known as a yashing
ratchet). Similar experiments are also presented in [69].

Systems in which noise-induced transport occurs are often called stochastic ratchet-like devices
by analogy with mechanical device `ratchet and pawla described and considered by Feynman [70].
Feynman showed that in the case of thermodynamic equilibrium the ratchet on average is at rest
} it advances and retreats by an equal number of teeth on the wheel } as it must be because of the
Second Law of Thermodynamics. It is interesting that similar considerations were discussed by
Smoluchowski [71] well before Feynman. The `ratchet and pawla device constitutes a mechanical
recti"er. It is similar in essence to an electrical recti"er. However, as is often the case, the problems
associated with electrical recti"cation of #uctuations were discussed independently of the ratchet
problems [72}77]. In [73,74] it was found that in the simplest electrical recti"er, consisting of
capacitor and diode, the capacitor can be charged without an external source, at the expense of
only thermal #uctuations. This paradoxical result cast some doubt on the applicability of the
Second Law of Thermodynamics to the phenomenon considered [76]. As far back as 1950,
however, considering the diode as a nonlinear resistor, Brillouin [72] showed that, for the Second
Law to apply, a shift of the characteristic of the nonlinear resistor must be taken into account.
Stratonovich [77,78] established, on a certain model of diode, that such a shift does indeed occur
due to #uctuations of the current through the diode considered as a nonlinear resistor, and he
calculated it. With this shift, the mean value of the voltage drop across the capacitor is found to
vanish for the case of thermodynamical equilibrium.

Most commonly, consideration of noise-induced transport is restricted to the so-called overdam-
ped case, when the mass of the Brownian particle can be neglected and its motion is described by
a "rst order di!erential equation of the form

x5 #f (x)"u(t)#f(x, t)#m(t) , (3.1)

where f (x) is a periodic function of x possessing an asymmetry, u(t) is a regular periodic force, f(x, t)
is a random process with zero mean value, and m(t) is white noise of intensity K imitating thermal
#uctuations. The process f(x, t) can be either given or described by additional equations.

More often than not researchers of noise-induced transport set the function f (x) to a form
corresponding to a saw-tooth potential ;(x)":x

0
f (x) dx shown in Fig. 4. In this case

f (x)"G
a
1

for n¸(x(n¸#x
1

,

!a
2

for n¸!x
2
(x(n¸ ,

(3.2)

where n"0,$1,$2,2,¸"x
1
#x

2
is the period of the function f (x). It is easily shown that, in

the absence of the disturbances f(x, t) and m(t), the points x"n¸ and x"n¸#x
1
"(n#1)¸!x

2
correspond to stable and unstable equilibrium states, respectively. If there are #uctuations then
transitions from one stable state to another can occur. Directional motion of the particle will occur
if the probabilities of transitions in opposite directions are di!erent. So, we see that the problem of
noise-induced transport is closely allied to the #uctuational transitions considered above.

It is usual to distinguish two types of ratchet devices [64,79,65,20,80]: (a) where f(x, t) is a force
independent of x; and (b) where f(x, t) depends on x. In its turn, the latter can be also divided into
two subclasses: (i) those where f(x, t)"f (x)s(t), which is to say that the height of the potential
barrier #uctuates [64]; and (ii) where f(x, t) is a random function of t and x [80].
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Fig. 4. An example of a saw-tooth potential ;(x).

In the last few years much attention has been concentrated on the possibility of exploiting such
phenomena to separate particles of di!erent mass or size. In this connection studies of di!erent
models giving #ux reversals as the system parameters change are very important [81}83,85,86].
Flux reversals induced by noise colour alone, predicted in [82], were subsequently observed in
analogue electronic experiments [84].

We consider below the one-dimensional motion of a Brownian particle in a viscous medium
described by the following equation:

kxK#x5 #f (x)"u(t)#f(x, t)#m(t) , (3.3)

where k"m/b, m is the particle mass, b is the viscous friction factor, f (x) is described by expression
(3.2), and u(t), f(x, t) and m(t) are the same that in Eq. (3.1). For k"0 this equation reduces to
Eq. (3.1).

3.1. Noise-induced transport of light Brownian particles in a viscous medium
with a saw-tooth potential

Here we consider the case when viscous friction in the medium is su$ciently large and mass of
the particle is su$ciently small, that the motion of the particle can be described approximately by
Eq. (3.1). In addition, we assume that f(x, t) is white noise of intensity f 2(x)K

1
which is uncorrelated
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with m(t). The Fokker}Planck equation associated with Eq. (3.1) at the speci"ed conditions is

Rw
Rt"!

R
RxAAu(t)!f (x)#

K
1

2
f (x) f @(x)Bw(x, t)B#

1
2
R2
Rx2

(K(x)w(x, t)) , (3.4)

where K(x)"K#f 2(x)K
1
. Because f (x) is a periodic function of x, w(x, t) is also a periodic

function of x. Thus Eq. (3.4) only needs to be solved within the interval from !x
2

to x
1
.

Let us show that the statistical average of the particle velocity x5 is determined by the relationship

Sx5 T"P
x1

~x2

G(x, t) dx , (3.5)

where

G(x, t)"!

1
2
R(K(x)w(x, t))

Rx #F(x, t)w(x, t) (3.6)

can be treated as the instantaneous probability #ux, F(x, t)"u(t)!f (x)#(K
1
/2) f (x) f @(x). Aver-

aging Eq. (3.1) over statistical ensemble and taking into account that the random process m(t) has
zero mean value and Sf(x, t)T"(K

1
/2) f (x) f @(x), we obtain

Sx5 T"SF(x, t)T"P
x1

~x2

F(x, t)w(x, t) dx .

According to (3.6), this expression can be rewritten as

Sx5 T"P
x1

~x2

F(x, t)w(x, t) dx"P
x1

~x2
AG(x, t)#

1
2
R(K(x)w(x, t))

Rx B dx .

Because of the spatial periodicity of the functions w(x, t) and K(x) we obtain the formula (3.5).
Averaging (3.5) over time we have

Sx5 T"P
x1

~x2

G(x, t) dx , (3.7)

where

G(x, t)" lim
T?=

1
¹P

T

0

G(x, t) dt .

So, the mean particle velocity, i.e., its net di!usive drift, is proportional to the probability #ux
averaged over both space and over time.

3.1.1. The case of an additional regular force
We now consider the case when K

1
"0 and u(t)O0. If the function u(t) is su$ciently slow, we

can use the successive approximation technique for solving Eq. (3.4) by putting

w(x, t)"w
0
(x, u)#w

1
(x,u)u5 #w

21
(x, u)uK#w

22
(x,u)u5 2#2 . (3.8)

22 P.S. Landa, P.V.E. McClintock / Physics Reports 323 (2000) 1}80



As a zeroth-order approximation, we take a quasistationary solution of Eq. (3.4) for which
Rw/Rt"0. In this approximation we obtain the following equation for w

0
(x, u):

K
2
Rw

0
(x, u)
Rx !(u!f (x))w

0
(x,u)"!G

0
(u) , (3.9)

where G
0
(u) is the probability #ux in the zero approximation. Solving Eq. (3.9) with account taken

of (3.2) we "nd

w
0
(x,u)"GA

C
0
(u)!

G
0
(u)

q
1
BexpA

2q
1
x

K B#
G

0
(u)

q
1

for 04x4x
1

,

AC0
(u)!

G
0
(u)

q
2
BexpA

2q
2
x

K B#
G

0
(u)

q
2

for !x
2
4x40 ,

(3.10)

where

q
1,2

"uGa
1,2

, (3.11)

and C
0
(u) is an arbitrary function of u. From the periodicity condition of the function w

0
(x, u) we

"nd the relation between G
0
(u) and C(u): C

0
(u)"Q(u)G

0
(u), where

Q(u)"
1

q
1
q
2

q
2
exp(2;

0
u/Ka

1
)!q

1
exp(!2;

0
u/Ka

2
)!(q

2
!q

1
) exp(2;

0
/K)

exp(2;
0
u/Ka

1
)!exp(!2;

0
u/Ka

2
)

, (3.12)

and ;
0
"a

1
x
1
"a

2
x
2

is the height of the potential barrier. The probability #ux G
0
(u) can be

found from the normalization condition for the probability density w
0
(x,u). In so doing we obtain

G~1
0

(u)";
0A

1
a
1
q
1

#

1
a
2
q
2
B#

K(a
1
#a

2
)2

2q2
1
q2
2

expA!
2;

0
K B

]
(exp(2;

0
u/Ka

1
)!exp(2;

0
/K))(exp(!2;

0
u/Ka

2
)!exp(2;

0
/K))

exp(2;
0
u/Ka

1
)!exp(!2;

0
u/Ka

2
)

. (3.13)

In the most interesting case when u is su$ciently small, namely when

maxu;

a
1
a
2

a
2
!a

1

minA1,
K
;

0
B , (3.14)

we "nd

G
0
(u)"G

00
u#G

01
u2#2 , (3.15)

where

G
00

"

;
0
a
1
a
2

K2(a
1
#a

2
)sinh2(;

0
/K)

,

G
01

"G
00

a
2
!a

1
a
1
a
2
A

;2
0

K2 sinh2(;
0
/K)

#

;
0

K tanh(;
0
/K)

!2B . (3.16)

For simplicity, we further restrict ourselves to the case when condition (3.14) is valid. In this case,
we have from (3.12), (3.11), (3.15) and (3.8)

C
0
(u)"C

00
#C

01
u#2 , (3.17)
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7Here we have taken into account that, as follows from the normalization condition for the function w(x, t), the
integrals of w

1
(x,u), w

21
(x,u) and w

22
(x,u) with respect to x between the limits x"!x

2
and x"x

1
must be equal to

zero.

where

C
00

"

2a
1
a
2

K(a
1
#a

2
)(1!e~2U0@K)

, C
01
"

a
2
!a

1
a
1
a
2

C
00A

;2
0

K2 sinh2(;
0
/K)

!1B ,

w(x, t)"w
0
(x, u)#(w

10
(x)#w

11
(x)u)u5 #(w

20
(x)#w

21
(x)u)uK#w

22
(x)u5 2#2 . (3.18)

It follows from (3.8) and (3.18) that the functions w
10

(x), w
11

(x), w
20

(x), w
21

(x), and w
22

(x) are
described by the equations

K
2

dw
10

(x)
dx

#f (x)w
10

(x)"!G
10

(x), G
10

(x)"!P
x

0

Rw
0
(x,u)
Ru Kr/0

dx#G
10

, (3.19)

K
2

dw
11

(x)
dx

#f (x)w
11

(x)"!G
11

(x), G
11

(x)"!P
x

0

R2w
0

Ru2 Kr/0

dx!w
10

(x)#G
11

, (3.20)

K
2

dw
20

(x)
dx

#f (x)w
20

(x)"!G
20

(x), G
20

(x)"!P
x

0

w
10

(x) dx#G
20

, (3.21)

K
2

dw
21

(x)
dx

#f (x)w
21

(x)"!G
21

(x), G
21

(x)"!P
x

0

w
11

(x) dx!w
20

(x)#G
21

, (3.22)

K
2

dw
22

(x)
dx

#f (x)w
22

(x)"!G
22

(x), G
22

(x)"!P
x

0

w
10

(x) dx#G
22

. (3.23)

So, for small u we "nd

Sx5 T+G
0
¸#

B2u2

2 P
x1

~x2

(G
22

(x)!G
21

(x)) dx"AG0
#G

2

B2u2

2 B¸ , (3.24)

where G
2
"G

22
!G

21
.7 Thus, the correction to the quasistationary solution is proportional to the

frequency squared and to the value of G
2
. Subtracting (3.22) from (3.23) we obtain the equation for

=(x),w
22

(x)!w
21

(x):

K
2

d=(x)
dx

#f (x)=(x)"!(w
20

(x)#G
2
) . (3.25)

A solution of this equation is

=(x)"GA
C#

G
2

a
1

!

2
KP

x

0

w
20

(x@) expA
2a

1
x@

K Bdx@B expA!
2a

1
x

K B!
G

2
a
1

for 04x4x
1

,

AC!

G
2

a
2

!

2
KP

x

0

w
20

(x@) expA!
2a

2
x@

K B dx@B expA
2a

2
x

K B#
G

2
a
2

for !x
2
4x40 .

(3.26)
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From the periodicity condition we "nd G
2
:

G
2
"!

2a
1
a
2

K(a
1
#a

2
)(e2U0@K!1)P

x1

~x2

w
20

(x) expA
2 f (x)x

K Bdx . (3.27)

So, to calculate G
2

we must "nd w
20

(x) which in turn is determined by Eq. (3.21). To solve this
equation we must previously have solved Eq. (3.19). Although this procedure is simple in principle,
it leads to rather cumbersome expressions. Therefore we restrict ourselves to the analysis of the
zeroth-order approximation. If condition (3.14) is ful"lled and u(t),B

0
"const (in addition to

f (x) a constant force acts upon the particle), then

Sx5 T+
;2

0
K2 sinh2(;

0
/K)

B
0

, (3.28)

i.e., the particle moves in the direction of this constant force no matter what the relation between
a
1

and a
2
. We see from (3.28) that in the absence of #uctuations, when KP0, Sx5 TP0, i.e.,

transport of the particle is impossible despite the presence of the constant force. This is because the
force is small and cannot by itself push the particle over the potential barrier. In another speci"c
case, when u(t)"B cosut, where B is su$ciently small, we obtain

Sx5 T+
;2

0
(a

2
!a

1
)B2

2K2a
1
a
2
sinh2(;

0
/K)A

;2
0

K2 sinh2(;
0
/K)

#

;
0

K tanh(;
0
/K)

!2B , (3.29)

i.e., the particle moves in the direction of the slower rate of potential change. It is easy to verify that,
in the absence of #uctuations, transport of the particle cannot occur, just as in the case of a small
constant force.

Examples of the dependences of Sx5 T/B2 on K/;
0

described by formulas (3.7), (3.13) are shown in
Fig. 5 for a number of values of B. We see that these dependences are of radically di!erent kinds for
B(min(a

1
, a

2
) and B'min(a

1
, a

2
). In the "rst case these dependences have a maximum at

a certain value of K/;
0

that is the smaller the greater is B. For K/;
0
P0, i.e., in the absence of the

thermal #uctuations, Sx5 T/B2P0. In the second case Sx5 T/B2 tends to a certain "nite value as
K/;

0
P0, which can be calculated from the theory of vibrational transport [87,86]. For B(0.5

the dependences found are almost coincident with those described by the approximate formula (3.29).
In this case the averaged particle velocity is maximal for K/;

0
+0.43. In the case that B(min (a

1
, a

2
),

the ratio K/;
0

is either very small or very large, noise-induced transport is not feasible.
The results obtained can be explained in the following manner. Noise-induced transport can

occur if #uctuational transitions through each potential barrier are more frequent in one direction
than in another. Because the probability of the transition through a certain potential barrier
depends only on its height and the intensity of #uctuations, transport is impossible in the absence of
the additional force u(t). In the case of a constant force the result is self-evident because the heights
of the potential barriers for the particle moving rightwards and leftwards are di!erent. The case of
an alternating force is more complicated. During one half-period the right potential barrier
is lowered to ;

0
!Bx

1
, whereas the left one rises to ;

0
#Bx

2
. During the next half-period the

right potential barrier rises to ;
0
#Bx

1
, whereas the left one is lowered to ;

0
!Bx

2
. Because

the lowering of the potential barrier plays a dominant role, the particle moves, in average, in the
direction of larger lowering of the potential barrier.
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Fig. 5. Dependence of Sx5 T/B2 on K/;
0
as described by Eqs. (3.7) and (3.13) for a

1
"1.25, a

2
"5, x

1
"0.8, x

2
"0.2, and:

B"0.1 (curve 1); B"1 (curve 2); B"2 (curve 3); and B"5 (curve 4).

We note that a similar problem for B
0
"0 was solved numerically in [81] by use of the so-called

matrix continued fraction technique. It was shown that, for low frequencies, the numerical results
coincide with quasistationary approximation (in [81] it is called the adiabatic approximation).
But for high frequencies the results obtained were radically di!erent in character; for example,
a reversal of the probability #ux over certain ranges of K/;

0
and B was detected.

3.1.2. The case of random modulation of the potential barrier height
For simplicity assume that in Eq. (3.1) the regular force u(t) is absent. In this case a stationary

solution of the Fokker}Planck equation (3.4) satisfying the continuity condition for x"0 is

w(x)"G
!

G
a
1
A1!expA!

2a
1
x

K(1)BB#C expA!
2a

1
x

K(1)B for 0(x(x
1

,

G
a
2
A1!expA

2a
2
x

K(2)BB#C expA
2a

2
x

K(2)B for !x
2
(x(0 ,

(3.30)

where

K(1,2)"K#K
1
a2
1,2

.
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From the periodicity condition for the function w(x) we "nd the relation between G and C:

GCa1A1!expA!
2;

0
K(2)BB#a

2A1!expA!
2;

0
K(1)BBD

"Ca
1
a
2CexpA!

2;
0

K(1)B!expA!
2;

0
K(2)BD . (3.31)

Taking account of (3.30) and (3.31), and from the normalization condition, we "nd G:

G"

2a2
1
a2
2

a
1
#a

2
CexpA!

2;
0

K(1)B!expA!
2;

0
K(2)BDG(a1#a

2
)(K#K

1
a
1
a
2
)C1!expA!

2;
0

K(1)BD
]C1!expA!

2;
0

K(2)BD!2;
0
(a

2
!a

1
)CexpA!

2;
0

K(1)B!expA!
2;

0
K(2)BDH

~1
. (3.32)

It follows from (3.32) that Sx5 T"G¸O0 only if a
1
Oa

2
and K

1
O0. The dependences of Sx5 T on

K
1

for di!erent values of K/;
0
, and on K/;

0
for a number of "xed values of K

1
, are shown in

Fig. 6. It is interesting that the particle moves on average in the direction of the greater rate of the
potential change. We draw attention to the fact that, for random modulation of the potential
barrier, the directional di!usion of particles is possible even in the absence of thermal #uctuations
(K"0).

3.1.3. The case of an additional random force of large correlation time
Fluctuational transport of a Brownian particle in a viscous medium induced by thermal

noise and a correlated random force that is a Markov process was studied in [79]. However,
concrete results were obtained only for dichotomous and `kangarooa-like processes. We
suggest here a way of tackling this problem for the case where the correlated random force is
the so-called Ornstein}Uhlenbeck process [88]. We can then write the following equations of
motion:

x5 #f (x)"y#m(t) , (3.33)

y5 "!cy#m
1
(t) , (3.34)

where f (x) is determined by expression (3.2), and m(t) and m
1
(t) are uncorrelated white noises with

zero mean values and intensities equal to K and K
1
respectively. The stationary probability density

of the variable y is independent of x and can be easily calculated from the Fokker}Planck equation
associated with Eq. (3.34). It is equal to

p(y)"S
c

pK
1

expA!
cy2

K
1
B . (3.35)

Let us calculate now the conditional probability density of the variable x for a "xed value of y. In
the quasistationary approximation, which is valid for su$ciently large correlation time of the
process y(t), this probability density w(xDy) satis"es the following Fokker}Planck equation:

G(y)"!( f (x)!y)w(xDy)!
K
2
Rw(xDy)
Rx , (3.36)
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Fig. 6. Dependence of Sx5 T: (a) on K
1
/;

0
for K/;

0
"0, 0.5, 1, and 2 for curves 1}4, respectively; and (b) on K/;

0
for

K
1
"0.01, 0.035, 0.1, and 0.4 for curves 1}4, respectively. In both cases, a

1
"1.25 and a

2
"5.

where G(y) is the probability #ux for a "xed value of y. A solution of Eq. (3.36) is

w(xDy)"G
G(y)

y!a
1

#AC(y)!
G(y)

y!a
1
BexpA

2(y!a
1
)

K
xB for 0(x(x

1
,

G(y)
y#a

2

#AC(y)!
G(y)

y#a
2
BexpA

2(y#a
2
)

K
xB for !x

2
(x(0 ,

(3.37)
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where C(y) is an arbitrary function of y. From the periodicity condition of the function w(xDy) we
"nd a relation between G(y) and C(y):

C(y)"
G(y)
q
1
q
2
Cq2 expA

2;
0
y

Ka
1
B!q

1
expA!

2;
0
y

Ka
2
B!(a

1
#a

2
) expA

2;
0

K BD
]CexpA

2;
0
y

Ka
1
B!expA!

2;
0
y

Ka
2
BD

~1
, (3.38)

where q
1,2

"yGa
1,2

. Taken together, (3.38) and the normalization condition yield the probability
#ux G(y):

G~1(y)";
0A

1
a
1
q
1

#

1
a
2
q
2
B!

K(a
1
#a

2
)2

2q2
1
q2
2

expA!
2;

0
K BCexpA

2;
0

K B!expA!
2;

0
y

Ka
2
BD

]CexpA
2;

0
y

Ka
1
B!expA

2;
0

K BDCexpA
2;

0
y

Ka
1
B!expA!

2;
0
y

Ka
2
BD

~1
. (3.39)

In analogy with the formula (3.24) we "nd that, for the quasistationary approximation con-
sidered,

Sx5 T"SG(y)T¸"

a
1
#a

2
a
1
a
2

SG(y)T;
0

, (3.40)

The dependences of Sx5 T on K
1
/c calculated numerically for a

1
"1.25, a

2
"5 and di!erent

values of K/;
0

are shown in Fig. 7(a). It is seen from this "gure that for a "xed value of K/;
0

the value of Sx5 T "rst increases as K
1
/c increases and then slowly decreases again, approaching

zero as K
1
/cPR. The peak of Sx5 T is located at greater values of K

1
/c, the greater is K/;

0
.

The dependencies of Sx5 T on K/;
0

for a "xed value of K
1
/c, shown in Fig. 7(b), are of a

somewhat di!erent form. They display maxima at a certain value of K/;
0
O0 only for K

1
/c

less than a critical value; whereas for greater K
1
/c the dependences become monotonically

decreasing.

3.2. The ewect of the potential shape

It is interesting to "nd how the shape of the potential in#uences noise-induced
transport. We illustrate this problem by the example of the case when a small additional
harmonic force acts upon the particle. So, we consider the motion of a particle described
by Eq. (3.1) for f,0, u(t)"B cos ut, where u is su$ciently small. In this case the probability
density is

w(x, t)"CC(u(t))!
2G(u(t))

K P
x

0

exp(2(;(x@)!u(t)x@)K) dx@D expA!
2(;(x)!u(t)x)

K B , (3.41)
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Fig. 7. Dependence of Sx5 T: (a) on log(K
1
/c) for K/;

0
" 0.1, 0.5, 1 and 2 for curves 1}4, respectively; (b) on K/;

0
for

K
1
/c" 0.2, 1, 2, and 10 for curves 1}4, respectively. In both cases, ;

0
"1, ¸"1, a

1
"1.25 and a

2
"5.

where ;(x)":x
0

f (x@) dx@ is the potential, and C(u(t)) and G(u(t)) are arbitrary functions of t. From
the periodicity condition of the function w(x, t) we "nd the relationship between C(u) and G(u):

C(u)"
2G(u)I

1
(u)

K C1!expA!
2¸u
K BD

~1
, (3.42)
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where ¸ is the period of the functions f (x) and ;(x),

I
1
(u)"P

L

0

expA
2(;(x)!ux))

K B dx . (3.43)

Taking account of (3.42) and from the normalization condition we determine G(u):

G(u)"
K
2GI1(u)I

2
(u)C1!expA!

2¸u
K BD

~1
!I

3
(u)H

~1
, (3.44)

where

I
2
(u)"P

L

0

expA!
2(;(x)!ux))

K Bdx ,

I
3
(u)"P

L

0
P

x

0

expA
2(;(x@)!;(x)!u(x@!x))

K Bdx@dx . (3.45)

If B satis"es to the condition

¸B;K , (3.46)

we "nd from (3.44)

G(u)+G
01

u#G
02

u2, I
1
(u)+I

10
!I

11
u, I

2
(u)+I

20
#I

21
u, I

3
(u)+I

30
, (3.47)

where

G
01

"

¸

I
10

I
20

, G
02
"G

01A
I
11

I
10

!

I
21

I
20

!

¸

KA1!
2I

30
I
10

I
20
BB , (3.48)

I
11
"

2
KP

L

0

x expA
2;(x)

K Bdx, I
21
"

2
KP

L

0

x expA!
2;(x)

K Bdx .

By substituting (3.47) into (3.7) we obtain

Sx5 T+
¸2B2

2I
10

I
20
A
I
11

I
10

!

I
21

I
20

!

¸

KA1!
2I

30
I
10

I
20
BB . (3.49)

As the "rst example, we set the function f (x) proportional to the "rst two terms of the Fourier series
for f (x) determined by (3.2), viz.

f (x)"
2
+
n/1

1.1
npA(a1

#a
2
) sin

2pn(x#x
0
)

¸

!a
1
sin

2pn(x#x
0
!x

1
)

¸

!a
2
sin

2pn(x#x
0
#x

2
)

¸ B , (3.50)

where x
0

is chosen so that ;(0)"0. Plots of the functions ;(x)":x
0

f (x) dx, f (x) and f @(x) for
x
1
"0.8, x

2
"0.2 and x

0
"0.075 are shown in Fig. 8(a). As the second example, we take the

function f (x) associated with a saw-tooth potential with smoothed edges. This function and the
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Fig. 8. Plots of the functions ;(x)":x
0
f (x) dx, f (x) and f @(x) as determined by equations: (a) (3.50) for a

1
"1.25, a

2
"5,

x
1
"0.8, x

2
"0.2, and x

0
"0.075; (b) (3.51) and (3.52) for x

1
"0.8, x

2
"0.2, and l

2
"0.05 (l

1
"0.015, a

1
+1.27,

a
2
+6.67, and b+133.33).

corresponding potential ;(x) are described by the following expressions:

f (x)"G
bx for 04x4l

1
,

a
1

for l
1
4x4x

1
!l

1
,

a
1
!b(x!x

1
#l

1
) for x

1
!l

1
4x4x

1
#l

2
,

!a
2

for x
1
#l

2
4x4¸!l

2
,

!a
2
#b(x!¸#l

2
) for ¸!l

2
4x4¸ ,

(3.51)
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;(x)"G
bx2/2 for 04x4l

1
,

a
1
(x!(l

1
/2)) for l

1
4x4x

1
!l

1
,

1!b(x!x
1
)2/2 for x

1
!l

1
4x4x

1
#l

2
,

1!a
2
(x!x

1
!(l

2
/2)) for x

1
#l

2
4x4¸!l

2
,

b(x!¸)2/2 for ¸!l
2
4x4¸ ,

(3.52)

where

a
1
"

1
x
1
!l

1

, a
2
"

1
x
2
!l

2

, l
1
"

x
1
2
!S

x2
1
4
!x

2
l
2
#l2

2
, b"

a
2

l
2

,

x
1
"0.8, x

2
"0.2, ¸"1, l

2
is a certain parameter that characterizes the extent to which the

potential edges are smoothed. Plots of the functions ;(x), f (x) and f @(x) for l
2
"0.05

(l
1
+0.0095, a

1
+1.265, a

2
+6.67, and b+133.333) are shown in Fig. 8(b).

For f (x) described by the expressions (3.50) (for a
1
"1.25, a

2
"5, x

1
"0.8, x

2
"0.2) and (3.52)

(for the same values of x
1

and x
2

and l
2
"0.05) the dependences of Sx5 T/B2 on;

0
/K are illustrated

in Fig. 9 (the curves 2 and 3, respectively). For comparison, in the same "gure the corresponding
dependence for a nonsmoothed saw-tooth potential is shown too (the curve 1). We see that all of
these dependencies coincide in a qualitative sense but diverge quantitatively.

3.3. The ewect of the particle mass

We revert now to Eq. (3.3) assuming that k is su$ciently small, viz.

kmax f @(x);1 . (3.53)

In this case we can obtain an approximate one-dimensional Fokker}Planck equation for the
probability density of the variable x, much as this was done by Stratonovich [26]. The derivation of
such an equation for the case that f(x, t),0 is given in Appendix A. For k"0 the equation found
is the exact Fokker}Planck equation corresponding to the Langevin equation (3.1).

3.3.1. The case of a small additional regular force
Setting in Eq. (A.20) e2"k and F(x, t)"f (x)!u(t), and retaining the terms up to the order 3,

inclusive, with respect to k, we obtain in the quasistationary approximation the following equation
for w(x,u):

G(u)"!G1#k f @(x)#k2C
3K
4

f A@(x)#2( f (x)!u) f A(x)#2( f @(x))2D
#k3C

29K2

48
f V(x)#

K
8

(23( f (x)!u) f IV(x)#64 f @(x) f A@(x)#31( f A(x))2)

#

7
2
( f (x)!u)2 f A@(x)#16( f (x)!u) f @(x) f A(x)#5( f @(x))3DH

]A
K
2
Rw
Rx#( f (x)!u)wB , (3.54)
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Fig. 9. Dependence of Sx5 T/B2 on ;
0
/K for f (x) described by (3.2) (curve 1), (3.50) (curve 2), and (3.52) (curve 3) for the

same values of the parameters as in Fig. 8.

where G(u) is the probability #ux at a "xed value of u. A solution of Eq. (3.54) is

w(u)"expA!
2(;(x)!ux)

K BGC(u)!
2G(u)

K P
x

0
A(1!k f @(x@)!k2C

3K
4

f A@(x)

#2( f (x)!u) f A(x)#( f @(x))2D!k3C
29K2

48
f V(x)#

K
8
(23( f (x)!u) f IV(x)

#52 f @(x) f A@(x)#31( f A(x))2)#
7
2
( f (x)!u)2 f A@(x)#12( f (x)!u) f @(x) f A(x)

#2( f @(x))3DBexpA
2(;(x@)!ux@)

K B dx@H . (3.55)

From the periodicity condition of the function w(x,u) we "nd the relationship between C(u) and
G(u):

C(u)"
2G(u)

K
(I

1
(u)!kI

4
(u)!k2(I

6
(u)!I

7
(u)u)

!k3(I
12

(u)!I
13

(u)u#I
14

(u)u2))C1!expA!
2¸u
K BD

~1
, (3.56)
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where I
1
(u) is determined by (3.43),

I
4
(u)"P

L

0

f @(x)expA
2(;(x)!ux)

K B dx, I
7
(u)"2P

L

0

f A(x) expA
2(;(x)!ux)

K Bdx ,

I
6
(u)"P

L

0
A
3K
4

f A@(x)#2 f (x) f A(x)#( f @(x))2B expA
2(;(x)!ux)

K Bdx ,

I
12

(u)"P
L

0
C
29K2

48
f V(x)#

K
8
(23 f (x) f IV(x)#52 f @(x) f A@(x)#31( f A(x))2)

#

7
2

f 2(x) f A@(x)#12 f (x) f @(x) f A(x)#2( f @(x))3D expA
2(;(x)!ux)

K B dx ,

I
13

(u)"P
L

0
A
23K
8

f IV(x)#7f (x) f A@(x)#12 f @(x) f A(x)B expA
2(;(x)!ux)

K B dx ,

I
14

(u)"
7
2P

L

0

f A@(x) expA
2(;(x)!ux)

K B dx .

Taking account of (3.56), and from the normalization condition, we "nd G(u). It can be written as

G(u)"G
0
(u)(1#kM

1
(u)#k2M

2
(u)#k3M

3
(u)) , (3.57)

where G
0
(u) is determined by the formula (3.44), and

M
1
(u)"

I
2
(u)I

4
(u)!I

5
(u)(1!exp(!2¸u/K))

I
1
(u)I

2
(u)!I

3
(u)(1!exp(!2¸u/K))

,

M
2
(u)"M2

1
(u)#

I
2
(u)(I

6
(u)!I

7
(u)u)!(I

8
(u)!I

9
(u)u)(1!exp(!2¸u/K))

I
1
(u)I

2
(u)!I

3
(u)(1!exp(!2¸u/K))

, (3.58)

M
3
(u)

"2M
1
(u)M

2
(u)!M3

1
(u)

]
I
2
(u)(I

12
(u)!I

13
(u)u#I

14
(u)u2)!(I

15
(u)!I

16
(u)u#I

17
(u)u2)(1!exp(!2¸u/K))

I
1
(u)I

2
(u)!I

3
(u)(1!exp(!2¸u/K))

.

I
2
(u), I

3
(u) are determined by (3.45),

I
5
(u)"P

L

0
P

x

0

f @(x@) expA
2(;(x@)!;(x)!u(t)(x@!x))

K B dx@dx ,

I
8
(u)"P

L

0
P

x

0
A
3K
4

f A@(x@)#2 f (x@) f A(x@)#( f @(x@))2B
]expA

2(;(x@)!;(x)!u(x@!x))
K B dx@dx ,

I
9
(u)"2P

L

0
P

x

0

f A(x@) expA
2(;(x@)!;(x)!u(x@!x))

K Bdx@ dx ,
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I
15

(u)"P
L

0
P

x

0
C
29K2

48
f V(x@)#

K
8
(23 f (x@) f IV(x@)#52 f @(x@) f A@(x@)#31( f A(x@))2)

#

7
2
f 2(x@) f A@(x@)#12 f (x@) f @(x@) f A(x@)#2( f @(x@))3D

]expA
2(;(x@)!;(x)!u(x@!x))

K Bdx@dx ,

I
16

(u)"P
L

0
P

x

0
A
23K
8

f IV(x@)#7f (x@) f A@(x@)#12 f @(x@) f A(x@)B
]expA

2(;(x@)!;(x)!u(x@!x))
K Bdx@dx ,

I
17

(u)"P
L

0
P

x

0

7
2

f A@(x@) expA
2(;(x@)!;(x)!u(x@!x))

K B dx@dx .

If u is su$ciently small then G
0
(u)"G

01
u#G

02
u2, where G

01
and G

02
are determined by (3.48), and

M
i
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"
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!
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#
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!
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,

I
121
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48
f V(x)#
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If u(t)"B cos ut#B
0

then

Sx5 T+
B2¸

2
[G

02
#k(G

01
M

11
#G

02
M

10
)#k2(G

01
M

21
#G

02
M

20
)

#k3(G
01

M
31
#G

02
M

30
)]#B

0
¸G

01
(1#kM

10
#k2M

20
#k3M

30
) . (3.59)

For f (x) described by the formula (3.52), with x
1
"0.8, x

2
"0.2 and l

2
"0.05, the dependencies of

Sx5 T/B2 on K/;
0

for di!erent values of k are shown in Fig. 10. We see that the third approximation
gives the #ux reversal both at moderately large values of K/;

0
(K/;

0
'3) and at moderately small

values of K/;
0

(K/;
0
(1). In the second approximation only one #ux reversal retains, for

K/;
0
'3. It follows from here that for the veri"cation of the results obtained a consideration of

higher approximations is necessary.
It is evident that the dependence of the mean velocity of a particle on its mass can be used for the

separation of particles of di!erent masses. Examples of the dependencies of Sx5 T/B2 on k for
di!erent values of K/;

0
calculated in the "rst, second and third approximations are illustrated

in Fig. 11. We see that the di!erence between the results is small only for k(0.002 but for such
values of k the #ux reversal is possible only for large values of K/;

0
.

We note that the results reported in this section coincide qualitatively with the corresponding
results of [86].

4. Noise-induced phase transitions in nonlinear oscillators

In recent years the problem of nonequilibrium noise-induced phase transitions has attracted
considerable attention from many scientists. These transitions are characterized by a qualitative
change of the state of a system as the intensity of noise acting upon it increases. This change can
manifest itself in the appearance of new extrema in the probability distribution for the system
variables or disappearance of old ones [2,89], in either stabilization or destabilization of system
equilibrium states [1,9], in the occurrence of so-called mean "eld [4}7], in the excitation of
oscillations [1,8,9,11,10], in the appearance of supernarrow spectral peaks close to the transition
[90,91], and other marked changes in behaviour.

4.1. Noise-induced multistability and multimodality

Horsthemke and Lefever discuss [2] many examples where additional peaks appear in the
probability density under in#uence of multiplicative noise. This phenomenon is treated as
a nonequilibrium noise-induced phase transition (NIPT). In so doing it is correctly reasoned that the
appearance of a peak in the probability density signals the appearance of a new stable steady state,
i.e., the occurrence of multistability or multimodality. NIPTs of this type were "rst demonstrated
convincingly in the genetic model equation [3] and subsequently in a cubic bistable system [92].

We consider here one example of noise-induced multistability: the pendulum with a randomly
vibrated axis of suspension, for which the unstable upper equilibrium position can be transformed
by noise to a stable one. It is well known that, where the suspension is vibrated harmonically, the
upper equilibrium position can become stable if the frequency of the vibration is su$ciently high
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Fig. 10. The dependence of Sx5 T/B2 on K/;
0

for f (x) described by formula (3.51) for k"0, 0.005 and 0.01 for curves 1}3,
respectively: (a) in the range 04K/;

0
43; and (b) in the range 24K/;

0
49.

(see, for example, [49,87,1]). This phenomenon was observed experimentally by Kapitsa [93,94].
More recently, it was shown [8,9] that a similar phenomenon can be also occur in the case of
random, but su$ciently high-frequency, vibration of the suspension axis.

The equation describing the oscillations of a pendulum with randomly vibrated suspension axis
and additive noise can be written as

uK#2bu5 #(1#u2f(t))sinu"m(t) , (4.1)
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Fig. 11. The dependencies of Sx5 T/B2 on k for (a) K/;
0
"0.2, (b) K/;

0
"0.35, (c) K/;

0
"0.5, (d) K/;

0
"3,

(e) K/;
0
"4 and (f) K/;

0
"7. The results obtained in the "rst and second approximations with respect to k are labelled

1 and 2, respectively.

where u2f(t) is the acceleration of the pendulum suspension axis in terms of the acceleration of
gravity, m(t) is su$ciently wide-band random process with a negligibly small spectral density at the
frequency u. Let f(t) be coloured narrow-band noise described by the equation

f$#2afQ#u2f"s(t) , (4.2)

where s(t) is white noise of intensity i
1
, 1;a;u. In this case the correlation function of the

process f(t) is

Sf(t)f(t#q)T+p2e~aq cosuq , (4.3)
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where p2"i
1
/2u2a is the variance of f(t). First we put m(t),0 and show directly that the

pendulum upper equilibrium state becomes stable if p2 is su$ciently large. If the power spectrum of
the random process f(t) does not contain components in zones of parametric resonance, #uctu-
ations of the variable u caused by the random vibration of the suspension axis are small. Putting
u"SuT#du, where du;SuT, we obtain from (4.1)

SuK T#2bSu5 T#sinSuT#u2 cosSuTSf(t)duT"0 , (4.4)

duK#2b du5 #cosSuTdu#u2f(t) sinSuT"0 . (4.5)

A steady-state solution of Eqs. (4.4) and (4.5), having the form

SuT"p, du"0 , (4.6)

corresponds to the upper equilibrium position of the pendulum, in whose stability we are
interested. To investigate this stability, we can linearize Eqs. (4.4) and (4.5) with respect to small
deviations from the solution (4.6) t"SuT!p and du. The linearized equations are

t$ #2btQ !t!u2Sf(t)duT"0 , (4.7)

duK#2b du5 !du!u2f(t)t"0 . (4.8)

A steady-state solution of Eq. (4.8) is

du(t)"
u2

2J1#b2P
t

~=

[exp(p
1
(t!t@))!exp(p

2
(t!t@))]f(t@)t(t@) dt@ , (4.9)

where p
1,2

"!b$J1#b2 are the roots of the characteristic equation p2#2bp!1"0. From
here we "nd

Sf(t)duT"
u2

2J1#b2P
t

~=

[exp(p
1
(t!t@))!exp(p

2
(t!t@))]Sf(t)f(t@)Tt(t@) dt@ . (4.10)

Putting in this expression t@!t"q and taking into account that the value t does not vary
signi"cantly during the correlation time of the random process f(t), we rewrite (4.10) in the
following form:

Sf(t)duT"!

u2

2J1#b2
t(t)P

=

0

(e~p1q!e~p2q)Sf(t)f(t#q)Tdq . (4.11)

Substituting (4.3) into this expression and calculating the integral we obtain

Sf(t)duT"!

p2u
2
(u2!(p

1
#a)(p

2
#a))

(u2#(p
1
#a)2)(u2#(p

2
#a)2)

t(t) . (4.12)

Because u<1,b, a, we have

Sf(t)duT+!p2t(t) . (4.13)

Substituting (4.13) into (4.7) we obtain for t(t) the following approximate equation:

t$ #2btQ #X2
0
t"0 , (4.14)
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where X
0
"Ju2p2!1 is the natural frequency of small oscillations of the pendulum about the

upper equilibrium position. It follows from (4.14) that the mean deviation of the pendulum from its
upper equilibrium position will decay, i.e., the equilibrium position will be stable, if the frequency
X

0
is real. This condition is valid if

u2p251 . (4.15)

Let us show further that at condition (4.15) an additional maximum and minimum appear in the
probability distribution. It follows from Eq. (4.1) that there is no stationary probability distribution
for the original variables u and u5 . Therefore we use the `slowa variable /"SuT and the `fasta
variable du, which are described by Eq. (4.5), and include the additive noise m(t). Taking into
account the fact that f(t) is a narrow-band random process, which can be represented as

f(t)"f
1
(t) cosut#f

2
(t) sinut , (4.16)

where f
1
(t) and f

2
(t) are `slowa variables, we can put

du"A(t) cosut#B(t) sinut , (4.17)

where A(t) and B(t) are `slowa variables. Substituting u(t)"/(t)#du(t), in view of (4.17), into
Eq. (4.1), taking into account (4.16), and equating the slowly varying component and the coe$-
cients of cosut and sinut, we obtain the following equations for /, A and B:

/$ #2b/Q #sin/#

u2 cos/
2

SAf
1
#Bf

2
T"m(t) , (4.18)

(u2!cos/)A!2buB"u2f
1
sin/, 2buA#(u2!cos/)B"u2f

2
sin/ . (4.19)

Because u<1,b, we "nd from Eqs. (4.19)

A+f
1
sin/, B+f

2
sin/ . (4.20)

Substituting further (4.20) into Eq. (4.18) we obtain for /(t) the following equation:

/$ #2b/Q #sin/#

u2 sin 2/
2

p2"m(t) . (4.21)

Here is taken into account of the fact that Sf2
1
#f2

2
T"2p2. The Fokker}Planck equation for the

probability density w(/,/Q , t) associated with Eq. (4.21) is conveniently written [26] as

Rw
Rt"!C/Q

Rw
R/!Asin/#

u2p2

2
sin 2/B

Rw
R/Q D#C

R(/Q w)

R/Q
#

i
2
R2w
R/Q 2D . (4.22)

As shown in [26], a steady-state solution of Eq. (4.22) can be found by equating each from the
braces in the right-hand side to zero. As a result, we obtain

w(/,/Q )"C expA
/Q 2
i Bw(/) , (4.23)

where

w(/)"C
1
expC

2
iAcos/#

u2p2

4
cos 2/BD , (4.24)
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Fig. 12. Examples of the transformation of the function w(/)/C
1
, determined by the expression (4.24), with increasing

p2 for i"4 and up2" 0, 1, 2, 5 and 10 for curves 1}5, respectively.

and C and C
1

are normalization constants. It is easily seen from (4.23) that the function w(/,/Q ) has
three extrema for /Q "0 and /"0, /"p, /"arccos(!1/u2p2). The last of these exist only if
u2p2'1, i.e., it is induced by the random vibration of the pendulum suspension axis. Under this
condition the probability density w(/) has two maxima (for /"0 and /"p) and one minimum
(for /"arccos(!1/u2p2)). If u2p2(1 than the probability density w(/) has only one maximum
(for /"0) and one minimum (for /"p). Thus, the random vibration considered causes multi-
stability. An example of the transformation of the probability density w(/) with increasing p2 is
shown in Fig. 12 for i"4.

4.2. Noise-induced oscillations

Here we consider noise-induced phase transitions revealing themselves in excitation of oscilla-
tions. It should be noted that there are di!erent mechanisms of such excitation. We will discuss
a selection of them.

4.2.1. Noise-induced oscillations in a pendulum with randomly vibrated suspension axis.
The inyuence of additive noise

Landa and Zaikin considered [8}10] a pendulum with a randomly vibrated suspension axis and
nonlinear friction described by the equation

uK#2b(1#au5 2)u5 #u2
0
(1#m

1
(t)) sinu"u2

0
m
2
(t) , (4.25)
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where u is the pendulum's angular deviation from the equilibrium position, u
0
"Jmbg/J is the

natural frequency of the pendulum's small free oscillations, J and m are the moment of inertia and
the mass of the pendulum, b is the distance between the center of mass and the suspension axis,
g is the acceleration due to gravity, b"H/2J is the linear damping factor, Hu5 is the moment
of the friction force in the linear approximation, a is the coe$cient of nonlinear friction, m

1
(t) is

a multiplicative noise proportional to the acceleration of the suspension axis, and m
2
(t) is an

additive noise. m
1
(t) is assumed to be a comparatively wide-band random process with nonzero

power spectrum density at the frequency 2u
0
. m

2
(t) can be either uncorrelated with m

1
(t), or

correlated if it has a component caused by a deviation away from the vertical in the direction of the
suspension axis vibration.

We will assume that the suspension axis vibration is vertical, and moderately small in amplitude,
so that pendulum oscillations can be considered small enough for u to be substituted in place of
sinu in Eq. (4.25).

An approximate analytical solution of the problem can be obtained on the assumptions that
b/u

0
&e, m

1
(t)&Je, and m

2
(t)&Je, where e is a certain small parameter which should be put

equal to unity in the "nal results. Eq. (4.25) can then be solved by the Krylov}Bogolubov method;
to do this we set u"A(t) cost(t)#eu

1
#2, where t(t)"u

0
t#/(t),

AQ "ef
1
#2, /Q "eF

1
#2 , (4.26)

u
1
,2, f

1
,2, F

1
,2, are unknown functions. By using the Krylov}Bogolubov technique for

stochastic equations (see [26]) we "nd the expressions for the unknown functions f
1

and F
1
.

Substituting these expressions into Eqs. (4.26) we obtain

AQ "!b(1#3
4
au2

0
A2)A#u

0
g
1
(A,t(t), m

1
(t), m

2
(t)) , (4.27)

/Q "u
0
g
2
(A,t(t), m

1
(t), m

2
(t)) , (4.28)

where

g
1
(A,/, t)"

A
2
m
1
(t) sin 2t(t)!m

2
(t) sint(t) ,

g
2
(A,/, t)"m

1
(t) cos2 t(t)!

1
A

m
2
(t) cost(t) ,

the bar over the expression signify averaging over time. As follows from [26], the Fokker}Planck
equation associated with Eqs. (4.27) and (4.28) is

Rw(A,/, t)
Rt "!

R
RACA!bA1#

3
4
au2

0
A2BA#u2

0
R

1Bw(A,/, t)D!u2
0
R

2

Rw(A,/, t)
R/

#

u2
0

2 G
R2
RA2AA

K
11
4

A2#K
12Bw(A,/, t)B#AK21

#

K
22

A2 B
R2w(A,/, t)
R/2 H , (4.29)

where

R
1
"P

0

~=
AT
Rg

1
(A,/, t)
RA g

1
(A,/, t#q)U#T

Rg
1
(A,/, t)
R/ g

2
(A,/, t#q)UB dq , (4.30)
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R
2
"P

0

~=
AT
Rg

2
(A,/, t)
RA g

1
(A,/, t#q)U#T

Rg
2
(A,/, t)
R/ g

2
(A,/, t#q)UB dq , (4.31)

the angular brackets signify averaging over the statistical ensemble,

K
11
"1

2
im1

(2u
0
), K

12
"1

2
im2(u0

) , (4.32)

K
21
"1

4
(im1(0)#1

2
im1

(2u
0
)), K

22
"1

4
(im2(0)#1

2
im2(u0

)) , (4.33)

and

im(u)"P
=

~=

Sm(t)m(t#q)Tcosuqdq

is the power spectrum density of the process m(t) at the frequency u. Let us now calculate the
integrals (4.30) and (4.31) taking into account the expressions for g

1
and g

2
. As a result we obtain

R
1
"

3A
8 P

0

~=

Sm
1
(t)m

1
(t#q)T cos 2u

0
q dq#

1
2AP

0

~=

Sm
2
(t)m

2
(t#q)T cosu

0
qdq

"

3K
11

8
A#

K
12

2A
, (4.34)

R
2
"

1
4P

0

~=

Sm
1
(t)m

1
(t#q)Tsin 2u

0
qdq!

1
A2P

0

~=

Sm
2
(t)m

2
(t#q)Tsinu

0
q dq,M . (4.35)

The value of M depends on the characteristics of the random processes m
1
(t) and m

2
(t): if they are

white noises then M"0; but if, for example, m
2
(t) is white noise but m

1
(t) has a "nite correlation

time and its power spectrum density is

im1(u)"
a2
1
im1(2u

0
)

(u!2u
0
)2#a2

1

,

then

M"!

a
1
u

0
im1(2u

0
)

4(16u2
0
#a2

1
)
.

It should be noted that M is negative, resulting in a decrease of the mean oscillation frequency. This
decrease is the more considerable the larger is the intensity of the noise.

The following Langevin equations can be related to the Fokker}Planck equation (4.29) in view
of (4.34) and(4.35):

AQ "bAg!
3u2

0
4

aA2BA#

u2
0

2A
K

12
#

u
0

2
Af

11
(t)#u

0
f
12

(t) ,

/Q "u2
0
M#u

0Af21(t)#
f
22

(t)
A B ,

(4.36)

where g"3u2
0
K

11
/8b!1, and f

11
(t), f

12
(t), f

21
(t), and f

22
(t) are each white noises of zero mean

value uncorrelated with A. The intensities of these noises are K
11

, K
12

, K
21

, and K
22

, respectively.
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First we consider the case when additive noise is absent. We note that even in this case Eqs. (4.36)
di!er by numerical coe$cient of g from that derived in [95,26]. The reason is that authors, using
the variable u"lnA in place of A, implicitly ignored correlation between the noise m(t) and the
amplitude A. The same mistake is reproduced in [1,8,9].

For i
2
,0 the steady-state solution of Eq. (4.29), satisfying the condition of zero probability

#ux, is

w(A,/)"
C

2pA2
expG

3
1#gAg lnA!

aA2

2 BH , (4.37)

where a"3au2
0
/4 is the nonlinear parameter. The constant C is determined from the normaliz-

ation condition

P
2p

0
P

=

0

w(A,/)AdAd/"1 .

Upon integrating (4.37) over / we "nd the expression for the probability density of the amplitude of
oscillations

w(A)"CA(2g~1)@(1`g)expA!
3aA2

2(1#g)B . (4.38)

From the normalization condition we "nd

C"2GA
3a

2(1#g)B
3g@2(1`g) 1

C(3g/2(1#g))
for g50 ,

0 for g40 .
(4.39)

Hence,

w(A)"2GA
3a

2(1#g)B
3g@2(1`g) A(2g~1)@(1`g)

C(3g/2(1#g))
expA!

3aA2

2(1#g)B for g50 ,

d(A) for g40 .
(4.40)

The fact that for g40 the probability density of the amplitude turns out to be a d-function is
associated with the absence of additive noise (see below).

Using (4.40) we can "nd SAT and SA2T:

SAT"GS
3

2a(1#g)
C((4g#1)/2(1#g))
C(3g/2(1#g)#1)

g for g50 ,

0 for g40 ,
(4.41)

SA2T"G
g/a for g50 ,

0 for g40 .
(4.42)

It is therefore evident that for g'0 parametric excitation of pendulum oscillations occurs under
the in#uence of multiplicative noise. This manifests itself in the fact that the mean values of the
amplitude and of the amplitude-squared become nonzero. The availability of this parametric
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Fig. 13. Plots of w8 (aA2)"w(A)/2aA for g"0.01 (curve 1), and g"0.2 (curve 2).

excitations implies a transition of the system to a new state, which is to say that a phase transition
has occurred in the system. Thus, the condition g"0 gives the onset of the phase transition. It
follows that, in the absence of additive noise, the critical value of the multiplicative noise intensity is

i#3m (2u
0
),i

#3
"16b/3u2

0
. (4.43)

The parameter g characterizes the extent to which the intensity of multiplicative noise component
exceeds its critical value.

It should be noted that, for g'0, the steady state A"0 loses its stability and the state AO0
becomes stable. At the same time, (4.40) implies that the probability density of A2 is monotonically
decreasing with increasing A2 for any values of g'0 (see Fig. 13). The same result has also been
obtained by numerical simulation. Hence, the appearance of a new stable state need not be
accompanied by the appearance of a new maximum in the probability distribution.

In the case when the intensity of additive noise is nonzero, the steady-state solution of Eq. (4.29),
satisfying the condition of zero probability #ux, is conveniently written as

w(A,/)"
Ca

2p(aA2#q)
expGP

3(g!aA2)aA2#q
(1#g)(aA2#q)A

dAH , (4.44)

where q"4aK
12

/K
11

characterizes the ratio between the intensities of additive and multiplicative
noises.
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Upon integrating (4.44) over / and calculating the integral under the exponential symbol, we
obtain

w(A)"2pAw(A,/)"CA2(A2#q/a)3(q~1)@2(1`g) expA!
3aA2

2(1#g)B . (4.45)

It follows from the normalization condition that

C~1"P
=

0

A2(A2#q/a)3(q~1)@2(1`g) expA!
3aA2

2(1#g)BdA . (4.46)

The integral on the right-hand side of (4.46) can be expressed in terms of a Whittaker function [96].
As a result we "nd

C~1"
Jp

4a2kq1@2~kA
3

2(1#g)B
~k~1@2

expA
3q

4(1#g)B=k~1,kA
3q

2(1#g)B , (4.47)

where k"3(g#q)/4(1#g). We can obtain an expression for C in explicit form in the limiting case
when the additive noise intensity is small compared to that of the multiplicative noise, so that

q;1 . (4.48)

In this case we can use a representation of the Whittaker function =j,k(z) in terms of two other
Whittaker functions Mj,k(z) and Mj,~k(z) [96]:

=j,k(z)"
C(!2k)

C(1/2!k!j)
Mj,k(z)#

C(2k)
C(1/2#k!j)

Mj,~k(z) . (4.49)

We then expand each of the functions Mj,k(z) and Mj,~k(z) in powers of z [96]:

=j,k(z)"Jz expA!
z
2BC

C(!2k)
C(1/2!k!j)

zkA1#
1!2(j!k)
2(1#2k)

z#2B
#

C(2k)
C(1/2#k!j)

z~kA1#
1!2(j#k)
2(1!2k)

z#2BD . (4.50)

Substituting (4.50) into (4.47) we obtain

C~1"
Jp
4a2kC

C(!2k)
C(3/2!2k)

q2kA1#
9q

4(1#2k)(1#g)
#2B

#

C(2k)
C(3/2)A

2(1#g)
3 B

2k
A1#

3(3!4k)q
4(1!2k)(1#g)

#2BD . (4.51)

The expression (4.39), obtained in the absence of additive noise, follows at once from (4.51) for
qP0.

The probability distribution (4.45) for qO0 di!ers essentially from (4.40): "rst, it is not
a d-function for g(0 and, secondly, w(A)"0 for A"0. Plots of w8 (aA2)"w(A)/2aA for
q
0
"q(1#g)"3au2

0
K

12
/2b"0.01 and di!erent values of g are shown in Fig. 14.
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Fig. 14. Plots of w8 (aA2)"w(A)/2aA for q"0.01/(1#g) and g"!0.2, 0 and 0.2 for curves 1}3, respectively.

Using (4.45) and (4.47) we can calculate SAT and SA2T. For example, for SA2T we obtain

aSA2T"S
3q(1#g)

2
=k~3@2,k`1@2

(3q/2(1#g))
=k~1,k(3q/2(1#g))

. (4.52)

Taking into account the following recursion relation [96]

=j,k(z)"Jz=j~1@2,k`1@2
(z)#(1

2
!j!k)=j~1,k(z) ,

expression (4.52) can be rewritten as

aSA2T"(1#g)A1!A
3
2
!2kB

=k~2,k(3q/2(1#g))
=k~1,k(3q/2(1#g))B . (4.53)

The expression for SA2T can be obtained in explicit form only with the constraint (4.48). Using
(4.50) we "nd for =k~2,k(z)/=k~1,k(z) the following approximate expression:

=k~2,k(z)
=k~1,k(z)

+

2
(3!4k)C

Jp
2

C(!2k)zk(1!2k)(2(1#2k)#5z)

#C(2k)CA
3
2
!2kBA1!

4k
3 Bz~k(1#2k)(2(1!2k)#(5!4k)z)D
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Fig. 15. The dependence of aSA2T on g for q
0
"0, 0.005 and 0.02 for curves 1}3, respectively.

]C
Jp
2

C(!2k)zk(1!2k)(2(1#2k)#3z)

#C(2k)CA
3
2
!2kBz~k(1#2k)(2(1!2k)#(3!4k)z)D

~1
. (4.54)

Substituting (4.54) in (4.53) we obtain

aSA2T+(1#g)C
4k
3

C(2k)CA
3
2
!2kB(1#2k)A2(1!2k)#(5!4k)

3q
2(1#g)B

!

3q
2(1#g)AJpC(!2k)(1!2k)A

3q
2(1#g)B

2k
#2C(2k)CA

3
2
!2kB(1#2k)BD

]C
Jp
2

C(!2k)(1!2k)A
3q

2(1#g)B
2k
A2(1#2k)#

9q
2(1#g)B

#C(2k)CA
3
2
!2kB(1#2k)A2(1!2k)#

3(3!4k)q
2(1#g) BD

~1
. (4.55)

The corresponding dependence of aSA2T on g for di!erent values of the parameter q
0

is illustrated
in Fig. 15. We see that slight additive noise results in a smoothing of the dependences of the mean
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8This divergence is caused by the presence of an unstable singular point of Eq. (4.56) for c(0.25.

oscillation amplitude and amplitude-squared on the multiplicative noise intensity: they lose the
discontinuities inherent in the phase transition induced by multiplicative noise alone.

4.2.2. Phase transition in an oscillator with quadratic nonlinearity induced by additive noise
We now show that in an oscillator with a quadratic nonlinearity in the restoring force, additive

noise can result in a nonequilibrium phase transition similar to that considered above. The physical
mechanism of such the transition is subharmonic resonance [1].

Let us consider a nonlinear oscillator described by the following equation:

xK#2bx5 #u2
0
(1#bx#cb2x2)x"u2

0
m(t) , (4.56)

where b is the friction factor, m(t) is a su$ciently wide-band random process with zero mean value,
b is the quadratic nonlinearity parameter, and the term cb2x3 is introduced to prevent the solution
diverging to in"nity.8 Substituting x@"bx into Eq. (4.56) and dropping primes we obtain

xK#2bx5 #u2
0
(1#x#cx2)x"u2

0
bm(t) . (4.57)

So, variation of the nonlinearity parameter b is evidently equivalent to variation of the noise
intensity.

Because the noise intensity which is necessary to induce the phase transition in question is not
small, we cannot use the Krylov}Bogolyubov method for Eq. (4.57) directly. To use this method,
we have to introduce new variables (just as for calculating subharmonic resonances [1]). So, we
substitute into Eq. (4.57)

x(t)"y(t)#s(t) , (4.58)

where s(t) is a random process satisfying the equation

sK#2bs5 #u2
0
s"u2

0
bm(t) . (4.59)

In this way we can "nd the equation for the variable y(t). It can conveniently be written as

yK#2by5 #u2
0
(1#y#2s#c(3s2#y2#3ys))y"m

1
(t) , (4.60)

where m
1
(t)"!u2

0
s2(t)(1#cs(t)) is additive noise. The terms 2sy and 3cs2y are responsible for

the phase transition, whereas the terms cy3 and csy2 are responsible for limiting the oscillation
amplitude.

An approximate analytic solution of Eq. (4.60), consistent with Eq. (4.59), is possible in the
speci"c case when the spectral density of the random process m(t) at the main frequency u

0
is

negligibly small, whereas it is su$ciently large at the frequency 2u
0
. The random force in Eq. (4.59)

is then nonresonant. Consequently, s(t) is su$ciently small that we can ignore in Eq. (4.60) the two
terms m

1
(t) and 3cs2y. As a result we obtain the following approximate equation for y:

yK#2by5 #u2
0
(1#y#2s#cy2)y"!3u2

0
cy2s . (4.61)
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Putting y"A(t) cost(t)#2, where t(t)"u
0
t#/(t) and using the Krylov}Bogolyubov method

for stochastic equations, we obtain the following truncated equations for A(t) and /(t):

AQ "!b(1#aA2)A#u
0
g
1
(A,/, t), /Q "u

0
g
2
(A,/, t) , (4.62)

where a"(3/4)c,

g
1
(A,/, t)"As(t) sin 2t(t)#

3cA2

2
s(t) cost(t) sin 2t(t) ,

g
2
(A,/, t)"2s(t) cos2t(t)#3cAs(t) cos3t(t) .

(4.63)

Substituting (4.63) into (4.30) and (4.31) we "nd

R
1
"

3K
1

2
A#

45c2
32

(K
2
#K

3
)A3 , (4.64)

R
2
"P

0

~=

Ss(t)s(t#q)TAsin 2u
0
q#

9c2A3

4
(3 sin u

0
q#sin 3u

0
q)B dq,M

1
, (4.65)

where K
1
"is(2u

0
)/2, K

2
"is(u0

)/2, K
3
"is(3u

0
)/2. Taking into account of (4.64) and(4.65) we

can write the Fokker}Planck equation associated with Eqs. (4.62) in the following form:

Rw(A,/, t)
Rt "!

R
RA (b(g!a

1
A2)Aw(A,/, t))!u2

0
M

1

Rw(A,/, t)
R/

#

u2
0

2 G
R2
RA2CAK1

#

9c2A2

16
(K

2
#K

3
)BA2w(A,/, t)D

#A2K
0
#K

1
#

9c2A2

16
(K

2
#K

3
)B
R2w(A,/, t)
R/2 H , (4.66)

where

g"
3u2

0
K

1
2b

!1 ,

a
1
"a!

5
3

r(1#g), r"
9c2
16

K
2
#K

3
K

1

, K
0
"is(0) .

(4.67)

The steady-state solution of Eq. (4.66), satisfying the condition for zero probability #ux, is

w(A,/)"
C

2pA2(1#rA2)
expAP

2b(g!a
1
A2)

u2
0
K

1
A(1#rA2)

dAB
"

C
2pA2(1#rA2)

expA
3

1#gP
(g!a

1
A2)

(1#rA2)A
dAB . (4.68)

Upon integrating (4.68) over / and calculating the integral under the exponential symbol we obtain

w(A)"CA(2g~1)@(1`g)(1#rA2)~((2`5g)r`3a1)@2r(1`g). (4.69)
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9Eq. (4.60) for m
1
(t),0 we will call reduced equation and its solution we will denote y

3
.

It is easily shown that for rP0 expression (4.69) is equivalent to (4.38). From the normalization
condition we "nd

C"2G
a
1
#rg
a
1

r3g@2(1`g)
C(3(a

1
#rg)/2r(1#g))

C(3g/2(1#g))C(3a
1
/2r(1#g))

for g50 ,

0 for g40 .
(4.70)

It then follows that the probability density of the amplitude is d-function for g40, as for the
pendulum considered above. Using (4.69) and (4.70) we "nd SA2T:

SA2T"
3g

3a
1
#r(2#5g)

"

g
a!r

. (4.71)

We see that for rP0 expression (4.71) transforms to (4.42). If rO0, the slope of the dependence
SA2T(g) increases with increasing r. It is evident that the solution found is valid only for r(a.

The results of numerical simulation of exact equations (4.59) and (4.60) in the case of su$ciently
wide-band noise are shown in Fig. 16. For comparison, the results of numerical simulation of
Eqs. (4.59) and (4.60) with m

1
(t),0 are given in the same "gure.9 We see that in the "rst case the

phase transition is extremely noisy. In the second case the phase transition is clearly de"ned: close
to the critical point, the dependence of the variance of the variable y

3
(which can be treated as an

order parameter) on the parameter b2 (which can be treated as temperature) can be approximated
by the straight line described by the equation p2

y3
"0.056(b2!b2

#3
), where b

#3
+4.1, i.e., the critical

index is equal to 1 (see Fig. 16(a)).
Fig. 16(b) demonstrates that we can use as an order parameter not only the variance, but the

mean value of the variable y as well. Close to the critical point, the dependence of Sy
3
T on b2 can be

approximated by the straight line Sy
3
T"!0.025(b2!b2

#3
).

It should be noted that the phase transition would occur for a smaller value of b2 if the term
3cs2y in the reduced equation were ignored. Hence this term has the e!ect of suppressing the phase
transition. This is also attested to by the fact that the slope of the dependence of p2

y3
on b2 decreases

with increasing b2 rather than increases.
To reduce the noise spectral density at the frequency u

0
, we have passed our noise m(t) through

a bandpass "lter with a central frequency of 2u
0
and a bandwidth of u

0
. The spectral density of this

noise is shown in Fig. 17. We see that it is indeed very small at the frequencies u
0

and 3u
0
. Next we

simulate Eqs. (4.59) and (4.60) using the "ltered noise as m(t). For comparison we simultaneously
simulate Eq. (4.60) with m

1
(t),0. The results are shown in Fig. 18. We see that, even though the

spectral density of the "ltered noise m(t) at the frequency u
0

is very small, the in#uence of the noise
m
1
(t) and of the term 3cs2y is considerable. The reason is that the component of the noise s(t) at

the frequency u
0

does not appear to be small, because it is resonant. Nevertheless, it can be seen
that in this case the phase transition occurs for a somewhat smaller value of b2 and the slope of the
dependence of p2

3
on b2 in the vicinity of the transition is greater than in the case of wide-band

noise.
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Fig. 16. (a) The numerical dependences of p2
y
(curve 1), p2

y3
(curve 2), and p2

x
(curve 3) on b2 for c"0.251. (b) The numerical

dependences of SyT (curve 1) and Sy
3
T (curve 2) on b2 for same value of c.

4.2.3. Oscillations in a standard model for childhood epidemics induced by random
seasonal variations in the rate at which susceptible children contact infection

It is known that the incidence of childhood diseases such as chickenpox, measles, mumps and
rubella, varies seasonally [98,99]. A standard epidemiological model for the description of these
variations, taking into account seasonal variations of the contact rate of children susceptible to
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Fig. 17. The spectral density of the noise passed through a bandpass "lter.

10For this reason the model under consideration is often called the SEIR model.

infection with infective ones, includes four components: (1) susceptibles (S); (2) exposed but not yet
infective (E); (3) infective (I); (4) recovered and immune (R).10 Relationships between these compo-
nents are illustrated schematically in Fig. 19. The relative number of children S susceptible to
infection increases with total number of children but decreases because a section of the group
remains unexposed and because a section of them falls into the category of the exposed but not yet
infective (E). Some of the children exposed remains noninfective, whereas others fall in the category
of the infective (I). In its turn, a group of the infective children do not fall sick and another part,
having had the disease, recover and falling in the forth category (R). Taking account of the fact that
the total number of children is constant, the model equations can be written as

SQ "m(1!S)!bSI, EQ "bSI!(m#a)E, IQ"aE!(m#g)I , (4.72)

RQ "gI!mR , (4.73)

where 1/m is the average expectancy time, 1/a is the average latency period, 1/g is the average
infection period, b is the contact rate (the average number of susceptibles contacted infection
annually). Note that Eqs. (4.72) do not contain the variable R; hence these equations can be
considered independently of Eq. (4.73).
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Fig. 18. (a) The numerical dependences of p2
y

(curve 1), p2
y3

(curve 2), and p2
x

(curve 3) on b2 for the noise passed
through a bandpass "lter. (b) The numerical dependences of SyT (curve 1) and Sy

3
T (curve 2) on b2 for the noise

passed through a bandpass "lter.

Eqs. (4.72) were "rst considered by Dietz [100], who assumed that the contact rate b varies
periodically with the period equal to one year and found analytically periodic oscillations of the
model variables. Later these equations were studied in detail by Olsen and Scha!er [101] and
Engbert [102]. It was shown that periodic variation of the contact rate can result not only in
periodic oscillations of childhood infections but in chaotic behavior as well.
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Fig. 19. Diagram illustrating mutual relations between di!erent components in the SEIR model. The relative number
S of susceptible children is increased by the birthrate. Of this group, some are not exposed (down-arrow). Of the relative
number E that are exposed, some remain noninfective (down-arrow). Of the relative number I that become infective,
some do not fall sick but just lose their infectivity again (down-arrow). The relative number that recover R after
contracting the disease and falling sick also become noninfective ("nal down-arrow).

It is easily shown that for a time-independent contact rate b"const"b
0

Eqs. (4.72) have,
depending on the parameters, either one (for ab

0
4(m#a)(m#g)) or two (for ab

0
'

(m#a)(m#g)) singular points: one of them has the coordinates S"1, E"I"0 and another
(if it exists) has the coordinates

S
0
"

(m#a)(m#g)
ab

0

, E
0
"

m
m#a

!

m(m#g)
ab

0

, I
0
"

am
(m#a)(m#g)

!

m
b
0

. (4.74)

In the case that there is only one singular point it is stable, whereas in the case that both of the
singular points exist the "rst of them is aperiodically unstable and the second is stable. These cases
are said to correspond to extinction of epidemics and endemic equilibrium, respectively.

It is shown in [101] that the values of the model parameters most closely corresponding to the
estimates made for childhood diseases in "rst world countries are m"0.02 yr~1, a"35.84 yr~1,
g"100 yr~1, b

0
"1800 yr~1. For these parameters Eqs. (4.72) have two singular points. In our

studies we have used these same parameter values.
If the parameter b oscillates then the variables S, E and I oscillate too, and these oscillations

occur about the stable singular point with coordinates (4.74). Therefore, it is convenient to
substitute into Eqs. (4.72) the new variables x"S/S

0
!1, y"E/E

0
!1, and z"I/I

0
!1. Putting

b"b
0
(1#b

1
f (t)), where f (t) is a function describing the shape of the contact rate oscillation, let us

rewrite Eqs. (4.72) in the variables x, y, z:

x5 #mx"!b
0
I
0
((1#b

1
f (t))(x#z#xz)#b

1
f (t)) ,

y5 #(m#a)y"(m#a)((1#b
1
f (t))(x#z#xz)#b

1
f (t)) ,

z5 #(m#g)z"(m#g)y .

(4.75)

In Eqs. (4.75) the term b
1
f (t) can be considered as an external action upon the system. We see from

(4.75) that this action is not only multiplicative, i.e., parametric, but additive, i.e., forcing, as well. It
should be noted that, owing to the quadratic nonlinearity, the forcing action can cause a strong
response of the system even in the absence of resonance.

For b
1
"0 and small initial deviations from the steady state x"0, y"0, z"0 the system

executes damped oscillations which are close to harmonic in shape (Fig. 20(a)). The frequency of
these oscillations u

0
+p. As initial deviations increase the natural oscillations of the system
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Fig. 20. Natural oscillations of the SEIR model variables x and y for y(0)"0, z(0)"0 and: (a) x(0)"0.1; (b) x(0)"1.
The values of the parameters are determined by (4.75). The time-evolution of the variable z is similar to that of y.

deviate further and further from harmonicity, as exempli"ed by Fig. 20(b). The frequency of natural
oscillations decreases with their increasing amplitude.

As mentioned above, in [100,101] it was assumed that, owing to seasonal variations of
environmental conditions, the contact rate b depends periodically on time with a period equal to
one year, viz., f (t)"cosut, where u"2p. We emphasize that the frequency of the contact rate
variation is about twice the natural frequency of small free oscillations of the model variables u

0
.

It was shown that the periodic variation of the parameter b causes the appearance either periodic
or chaotic oscillations of the variables S, E, and I. For very small b

1
the oscillations excited are

close to harmonic at the frequency of the action u. For a certain value of b
1

a period-doubling
bifurcation occurs that is associated with the parametric mechanism of the oscillation excitation.
As b

1
increases the main frequency of the oscillations remains equal to u/2 and the shape of the

oscillations of the variable x approaches a saw-tooth. On further increasing b
1

another period-
doubling bifurcation takes place, and then a drastic transition to chaos, accompanied by a dra-
matic increase in the oscillation variance, occurs. We note that chaotic oscillations for b

1
"0.28

were "rst found numerically by Olsen and Scha!er [101]. For this value of b
1
the time dependences

of x and y, and the projection of the phase trajectory on the x, y-plane found by numerical
simulation of Eqs. (4.75) are shown in Fig. 21(a).

From a physical standpoint, an assumption of random variation of the contact rate seems more
justi"ed than a periodic variation. It is evident that b(t) has to be a su$ciently wide-band random
process for which the spectral density peaks at the frequency corresponding to one reciprocal year.
Starting from this assumption we have simulated numerically Eqs. (4.75) with f (t)"s(t), where s(t)
is a random process which is a solution of the equation

sK#2ps5 #6p2s"km(t) , (4.76)
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Fig. 21. The time dependences of the variables x and y, and the projection of the phase trajectory on the x, y-plane for:
(a) f (t)"cos 2pt, b

1
"0.28; and (b) f (t)"s(t), b

1
"0.235.

m(t) is white noise, and k is a factor which we choose such that the variance of s(t) is equal to 1
2
. The

resultant plots of s(t) and its spectral density are shown in Fig. 22.
The results of numerical simulation of Eqs. (4.75) with f (t)"s(t) are shown in Fig. 21(b) for the

same values of the parameters as in Fig. 21(a) and b
1
"0.235 chosen so that the variance of x(t)

would be approximately the same as for f (t)"cos 2pt, b
1
"0.28. It is seen from this "gure that the

noise-induced oscillations di!er very slightly in their form from those for the case of a harmonic
variation of the contact rate. This is associated with the fact that the variation of the contact rate
only induces the phase transition, whereas the shape of the induced oscillations is mainly
determined by intrinsic properties of the system, manifesting themselves in the shape of free
oscillations as well.

The evolution of the oscillation power spectra in the case of a periodic variation of the contact
rate is illustrated in Fig. 23. We see that, for b

1
"0.03, the spectral density does peak at the

frequency u whereas, for b
1
"0.1, it peaks at the frequency u/2. For b

1
"0.26 the power spectrum
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Fig. 22. Plots (a) of s(t) and (b) of its spectral density S(u).

contains the forth subharmonic, and for b
1
"0.28, when the oscillations are chaotic, the spectrum

becomes continuous with a maximum at the frequency u/4.
The excitation of oscillations at the frequency u/2"p can be considered as a second-order

phase transition induced by the periodic variation of the contact rate. This is supported by the
dependence of the variance of the variable x, which we denote by p2, on the parameter b

1
(Fig. 24(a)). We see that for b

1
+0.066 the rate of change of the variance increases markedly.

Close to this point the dependence of p2 on b
1

can be approximated by the formula
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Fig. 23. The evolution of the oscillation power spectra of x(t) and y(t) in the case of a harmonic variation of the contact
rate for: (a) b

1
"0.03, (b) b

1
"0.1, (c) b

1
"0.26, and (d) b

1
"0.28.

p2"0.038(b
1
!0.066)1@2. So, the critical index is equal to 1/2. Such a dependence is typical of

second-order phase transitions: one can consider p2 as an analog of the order parameter and b
1

as
an analog of the temperature. For b

1
+0.27 another transition, revealing itself in going from

periodic oscillations to chaotic ones and in a jump-like increase of the variance, occurs (see
Fig. 24(b)). This transition can be considered as an induced "rst-order phase transition.

The evolution of the oscillation power spectra in the case of random variation of the contact rate
is given in Fig. 25. In contrast to what happens when the variation of the contact rate is periodic,
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Fig. 24. The dependence of the variance of x(t) (p2) on the parameter b
1
: (a) in the range 04b

1
40.268; and (b) in the

range 0.234b
1
40.3. The dependence p2"0.038(b

1
!0.066)1@2 is shown in (a) as a solid line.

in this case the power spectra are always continuous, even if have a number of maxima. As
b
1

increases the main maximum of the spectrum shifts to lower frequencies.
As with the periodic variation of the contact rate, a random variation also induces a phase

transition [103]. The dependence of the variance of x(t) on the parameter b
1

is shown in Fig. 26. In
a certain range of b

1
this dependence can be approximated by a straight line. The value of b

1
for

which this straight line intersects the abscissa is equal to 0.066. Such a dependence is typical of
noisy second-order phase transitions.
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Fig. 25. The evolution of the power spectra of x(t) and y(t) for the case of random variation in the contact rate, with:
(a) b

1
"0.03; (b) b

1
"0.1; (c) b

1
"0.2; and (d) b

1
"0.235.

To clarify the physical mechanisms responsible for the phase transitions, let us change somewhat
Eqs. (4.75) so that the amplitudes of parametrical and forcing actions can be varied independently.
Namely, let us rewrite Eqs. (4.75) in the form

x5 #mx"!b
0
I
0
((1#b

1
f (t))(x#z#xz)#b

2
f (t)) ,

y5 #(m#a)y"(m#a)((1#b
1
f (t))(x#z#xz)#b

2
f (t)) ,

z5 #(m#g)z"(m#g)y .

(4.77)
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Fig. 26. The dependence of p2 on the parameter b
1

in the case of a random variation of the contact rate. The solid line
represents p2"0.47(b

1
!0.066).

First we consider the case when the additive action is absent, i.e., b
2
"0, b

1
O0. In this case the

dependence of p2 on b
1

for periodic variation of the contact rate is shown in Fig. 27(a). It is evident
from this "gure that oscillations are excited only when a critical value of the parameter b

1
is

exceeded. This is the characteristic property of parametrically excited oscillations (see, for example,
[1]). With increasing di!erence between b

1
and its critical value b(#3)

1
+0.032 the variance increases

nearly linearly. So, the critical index for this case is equal 1. For b
1
'0.075 the solution becomes

unstable and goes to in"nity.
If there is only additive action, i.e., b

1
"0, b

2
O0, oscillations are excited even for values of b

2
as

small as is wished. However, for b
2
(b(#3)

2
, where b(#3)

2
+0.0885, the amplitude of these oscillations

is very small and their frequency is equal to u. For b
2
+b(#3)

2
the rate of change of the variance

increases rapidly and for b
2
'b(#3)

2
the dependence of p2 on b

2
can be approximated by the straight

line p2"0.14(b
2
!b(#3)

2
) (see Fig. 27(b)). The drastic increase in the rate of change of the variance is

associated with the onset of subharmonic resonance. Indeed, the main frequency of the oscillations
excited, for b

2
'b(#3)

2
, becomes equal to u/2. Considering this process as a second-order phase

transition, we can conclude that, as with purely parametric action, in the case of purely additive
action the critical index is also equal to 1. For b

2
'0.15 the solution, as in the case of parametrical

excitation, becomes unstable and goes to in"nity. The computation of Eqs. (4.77) with b
1
O0

and b
2
O0 shows that parametric and additive actions a!ect the behavior in opposite directions,

resulting in the stabilization of the solution for moderately large amplitudes. The combined e!ect of
these actions is described above.
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Fig. 27. Plot of p2 versus the action amplitude for (a) parametrically excited oscillations; and (b) additively forced
oscillations. The dependencies p2"0.21(b

1
!0.032) and p2"0.14(b

2
!0.0885) are shown by the solid lines in parts

(a) and (b), respectively.

In the case of random variation of the contact rate we have also attempted to simulate Eqs. (4.77)
with f (t)"s(t) and put b

2
"0, b

1
O0 and vice versa. It is found that, in the case of only

multiplicative action, the phase transition occurs via on}o! intermittency as for a pendulum with
randomly vibrated suspension axis [38,39]. The critical value of the parameter b

1
is approximately

equal to 0.095, i.e., signi"cantly larger than in the case of harmonic variation of the contact rate. An
example of oscillations of the variables x and y for b

1
"0.099, illustrating on}o! intermittency, is
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Fig. 28. An example of oscillations of the variables x and y for b
1
"0.099 for the case of purely multiplicative random

action.

given in Fig. 28. Unfortunately, the determination of the dependence of the oscillation variance on
b
1

appears to be impossible because, even for b
1
"0.1, the solution goes to in"nity. In the case,

when b
1
"0, b

2
O0, the system behaves in a similar manner: the solution goes to in"nity for

b
2
50.08. Nevertheless, we can conclude that the multiplicative component of the random action

induces a phase transition much as in a pendulum with randomly vibrated suspension axis,
whereas the additive component induces a phase transition much as in a nonlinear oscillator with
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11We note that there is some variability in the names of such trajectories. For example, in [115] they are called local
separatrices and local attractors, whereas in [116] the attracting trajectory is called phantom attractor and so on.

quadratic nonlinearity. The joint action of both components results in the dependence of the
variance of x(t) on the parameter b

1
which is shown in Fig. 26.

4.2.4. Noise-induced oscillations in a Bonhoewer}van der Pol oscillator
The equations that came to be known as those for a Bonhoe!er}van der Pol oscillator were

suggested by Bonhoe!er for simulating neural pulses [104}107]. They are a generalization of the
van der Pol equations for relaxation oscillations [108], and describe oscillations of the voltage
across a neural membrane x allowing for the refractoriness characterized by the variable y.
Subsequently, similar equations, but incorporating spatial di!usion, came to be known as the
Fitz Hugh}Nagumo equations [109}111]. The Bonhoe!er}van der Pol equations can be
written as [112]

x5 "x!
x3

3
!y#I(t), y5 "c(x#a!by) , (4.78)

where a, b, and c are the membrane radius, the speci"c resistivity of the #uid inside the membrane,
and the temperature factor, respectively; I(t)"I

0
#F(t) is the current across the membrane with

I
0

being the direct component of this current. For F(t)"0 and the parameters corresponding to
real membranes (following, for example, [113] we set a"0.7, b"0.8, and c"0.1). Eq. (4.78) have
one singular point x"x

0
, y"y

0
"(x#a)/b, where x

0
is a real root of the equation

x3

3
#A

1
b
!1Bx#

a
b
!I

0
"0 . (4.79)

In the ranges I
0
(0.341 and I

0
'1.397 this point is a stable focus; whereas for 0.341(I

0
(1.397

it is an unstable focus.
Setting m"x!x

0
, g"y!y

0
we obtain for m and g the following equations:

mQ "!A
m3

3
#x

0
m2#(x2

0
!1)m#gB#F(t), g5 "c(m!bg) . (4.80)

The case when the system under consideration is not self-oscillatory is of prime interest for the
purpose of this paper. Therefore we restrict our consideration to the value of I

0
equal to 0.2.

Eqs. (4.80) are notable for that they have two exceptional phase trajectories. One of these tra-
jectories has a positive Lyapunov exponent, i.e., it is unstable, whereas the other is stable. The "rst
trajectory has a part which repels all neighboring phase trajectories and, conversely, the second has
two parts which attract all neighboring phase trajectories. It is evident that these exceptional
trajectories are not a repeller and attractor in the strict sense, because the system described by
Eqs. (4.80) for I

0
"0.2 has no repellers and only a single attractor: the stable singular point.

However, due to their similarity to an ordinary repeller and attractor they have been called [114]
a transient repeller and transient attractor, respectively. We will follow this convention.11

To "nd the transient repeller numerically, we can reverse the direction of time. As a result, we
obtain the phase plane picture shown in Fig. 29(a). The part which repels all neighboring phase
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Fig. 29. (a) The transient repeller and neighboring phase trajectories, and (b) the phase portrait involving the transient
repeller and transient attractors. In each case, a"0.7, b"0.8, c"0.1 and I

0
"0.2.

trajectories is shown as a thick solid line. A full phase portrait involving the trajectories with
attracting and repelling parts is given in Fig. 29(b). The transient attractor is shown as a thick solid
line. We see that the transient repeller separates the regions of deviations from the equilibrium state
corresponding to radically di!erent transient processes.

If the current across the membrane contains an alternating component, for example,
F(t)"A cosut then, from a certain critical value of A onward oscillations are excited, associated
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Fig. 30. The dependence of the variance of the variable m (p2) on the amplitude A of a periodic component of the current
across the membrane for u"0.3 in the ranges: (a) 04A40.4; (b) 0.057174A40.05723; and (c) 0.05714A40.0578.

with the motion of the representative point along the transient attractor [117,118]. It follows from
the results of numerical simulation of Eq. (4.80) that the variance of the variables m and g increases
almost discontinuously in this process. An example of the dependence of the variance of the
variable m on A for u"0.3 is given in Fig. 30(a). The excitation of such oscillations, accompanied
by a drastic increase in the oscillation variance, can be considered as a "rst-order phase transition.
It is interesting that the jump exhibits "ne structure: there are local ups and downs in the variance
growth (see Fig. 30(b) and (c)). This "ne structure is associated with drastic changes in the
oscillations' shape under small changes of A (see Fig. 31).

The critical value of A depends on the frequency u: it is minimal for a certain value of the
frequency which in turn depends on I

0
. The reason of this dependence lies in the resonant response

of the nonlinear oscillator to a harmonic external force. As an example, the dependence of the
critical value of the amplitude A on the frequency u is shown in Fig. 32 for I

0
"0.2. We see that the

critical value of the amplitude is minimal for u"0.27, which is close to the frequency u
0
+0.3146

of small free oscillations about the equilibrium state.
If the alternating component of the current across the membrane F(t) is a random process, for

example white noise, then the transition to a new state occurs too, but is of radically di!erent
character. The appearance of a `limit cyclea induced by white noise was considered in
[115,119,97]. However, these works are mainly devoted to the calculation of the probability
distributions in the vicinity of the induced `limit cyclea. We consider this phenomenon in terms of
how it exhibits the intrinsic properties of the system and from the standpoint of a noise-induced
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Fig. 31. Plots of m(t) for u"0.3 and: (a) A"0.057; (b) A"0.05717; (c) A"0.0572; (d) A"0.05723; (e) A"0.05746;
(f) A"0.058; and (g) A"0.059.

transition to a new state. The latter is associated with the crossing of a boundary on the phase plane
(the transient repeller is such a boundary) by the representative point under action of noise. In
principle, such an intersection is possible for an arbitrarily small noise intensity i. Therefore the
transition occurs smoothly from i"0 onward and hence, in a strict sense this process is not
a phase transition. Nonetheless, it is closely similar to a second-order noise-induced phase
transition. For example, the dependence of the variance of the variable m on the noise intensity i,
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Fig. 32. The dependence of the critical amplitude value A
#3

on the frequency u for I
0
"0.2.

found by numerical simulation of Eqs. (4.80) and shown in Fig. 33, can be approximated on
a certain interval by p2m+5(i!i

#3
)1@2, where i

#3
+0.0065. This formula is similar to that

describing the dependence of an order parameter on temperature for conventional second-order
phase transitions, with a critical index equal to 1/2. Furthermore, it can be seen (see, e.g., Fig. 34)
that this transition occurs via a peculiar kind of on}o! intermittency. Just as for ordinary on}o!
intermittency [56,59,38,39], close to the onset of the transition the representative point on the
phase plane is moving within a certain e-vicinity of the equilibrium state over prolonged periods
(so called `laminar phasesa), and only occasionally escapes from this vicinity. Unlike ordinary
on}o! intermittency, however, these escapes have not random but strictly speci"ed shape of pulses,
and their durations are unchanged as the noise intensity increases. That is why these escapes should
not be called `turbulent phasesa. Away from onset, the duration of the laminar phases decreases
and the variance of the system variables increases. Because the duration of the pulses is unchanged,
we can use the mean interpulse time (the mean period) in place of the mean duration of the laminar
phases. The dependence of the mean period ¹ on the noise intensity i is shown in Fig. 35. It can be
approximated by the formula

¹+38 exp(0.02/i) ,

which is typical for the mean time for reaching a boundary (see Section 1). We see that the mean
period decreases exponentially as the noise intensity increases. This result coincides qualitatively
with the initial part of the corresponding dependence obtained in [115,119]. However, we have not
found an increase of the mean period with increasing the noise intensity as reported in [115,119].
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Fig. 33. The dependence of the variance of the variable m on the noise intensity i. The solid curve plots

p2m"5Ji!0.0065.

Fig. 34. An example of oscillations of the variable m(t) for i"0.0098.
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Fig. 35. The dependence of the mean period ¹ on the noise intensity i. The solid curve plots ¹"38 exp(0.02/i).

Fig. 36. Plot of m(t) for i"0.1152.
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It is very important that the pulses induced by noise di!er little in their shape from the pulses
induced by periodic force (compare Figs. 36 and 31(g)). In the "rst case only the pulses are
somewhat noisy and the interpulse time is random. Thus do the intrinsic properties of the system
reveal themselves.

5. Conclusions

We have demonstrated that weak noise acting upon a nonlinear dynamical system can have
far-reaching consequences, such as a transition to a new state, the transformation of an unstable
equilibrium state into a stable one, and vice versa, the occurrence of multistability and multimodal-
ity, noise-induced transport (stochastic ratchets), and the excitation of noise-induced oscillations.
Many of these phenomena can be treated as nonequilibrium phase transitions induced by noise.
The origins of these transitions lie in intersection of a certain boundary in the system phase space
by the representative point under the action of noise.

Appendix A. Derivation of the approximate equation for the one-dimensional probability density

Let us consider an equation

e2xK#x5 #F(x)"m(t) , (A.1)

where m(t) is white noise of zero mean and intensity K. Eq. (A.1) can be rewritten in the form of two
equations of the "rst order:

ex5 "y, ey5 "!

y
e
!F(x)#m(x, t) . (A.2)

The two-dimensional Fokker}Planck equation associated with Eqs. (A.2) is

e2
Rw(x, y, t)
Rt "!eAy

Rw
Rx!F(x)

Rw
RyB#

R(yw)
Ry #

K
2
R2w
Ry2

. (A.3)

Let us seek a solution of Eq. (A.3) in the form of the following expansion:

w(x, y, t)"
=
+
n/0

enw
n
(x, t)>

n
(y) , (A.4)

where >
n
(y) are the eigenfunctions of the boundary-value problem described by the equation

K
2

d2>
dy2

#

d(y>)
dy

#j>"0 (A.5)

with the boundary conditions>($R)"0. As can be easily shown, the eigenvalues of this problem
j
n
"n, where n"0, 1, 2,2, and the eigenfunctions can be expressed in terms of the Hermite
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12These relationships follow from the properties of Hermite polynomials.

polynomials H
n
(z) as

>
n
(y)"

(!1)n

JpK2nn!
e~y

2@KH
nA

y

JKB . (A.6)

Substituting into (A.6) the expression for the Hermite polynomial we obtain

>
n
(y)"S

Kn~1

p2nn!
dn

dyn
(e~y

2@K) . (A.7)

It can be shown that the functions >
n
(y) satisfy the following orthogonality and normalization

conditions:

P
=

~=

>
n
(y)>

m
(y)

>
0
(y)

dy"d
nm

. (A.8)

We substitute (A.4) into Eq. (A.3) taking into account the following relationships:12

d>
n
(y)

dy
"S

2(n#1)
K

>
n`1

(y), y>
n
(y)"!S

K
2
(Jn#1>

n`1
(y)#Jn>

n~1
(y)) ,

d(y>
n
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As a result, we "nd
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=
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n/0
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Equating the terms of >
n
(y) with the same subscripts, we obtain the following equations:
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For n44 these equations are
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1
Rx , (A.12)
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Putting in Eqs. (A.11) w
i
"w

i0
#e2w

i1
#e4w

i2
#e6w

i3
#2 (i"1, 2, 3,2), we can "nd sequen-

tially the functions w
10

, w
11

, w
12

,2, w
1n

,2 . The calculations show that for n51 these functions
can be expessed as
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where U(n)
k

are functions of F(x) and its derivatives,
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Substituting

w
1
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=
+
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1n

(A.19)

into Eq. (A.12) and using the fact that

w(x, t)"P
=
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w(x, y, t) dy"w
0
(x, t) ,

we obtain the following equation for w(x, t):
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If e2 is su$ciently small then series (A.19) is converged and Eq. (A.20) is the exact one-dimensional
equation for the probability density w(x, t). In a stationary case Eq. (A.20) becomes

S
K
2

=
+
n/0

e2nw
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"!G , (A.21)

where G is the probability #ux. In this case the derivatives of w
10

, which are contained in the
expressions for w

1n
, in their turn should be expanded as power series in e2:
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