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Abstract: A new numerical technique is demonstrated and shown to reduce exponentially the time
required for Monte Carlo simulations of non-equilibrium systems. The quasi-stationary probability dis-
tribution is computed for two model systems, and the results are compared with the asymptotically exact
theory in the limit of extremely small noise intensity. Singularities of the non-equilibrium distributions

are revealed by the simulations.
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1. INTRODUCTION

Fluctuations in systems away from thermal equi-
librium represnt a problem of long standing in
statistical physics [Onsager and Machlup, 1953].
Well known examples of systems in which non-
equilibrium fluctuations play a particularly impor-
tant role include e.g. lasers [Keay et al., 1995],
proteins [Serpersu and Tsong, 1983], Josephson
junctions [Kautz, 1996], and chemical reactions
[Smelyanskiy et al., 1999b]. In particular, activated
processes are of big importance. Noise induced es-
cape means a transition from one state to another,
which e.g. in chemical system describes a reaction
[Smelyanskiy et al., 1999b; Huber and Kim, 1996].
In non-equilibrium systems, where symmetries of
detailed balance are broken, no general methods ex-
ist for the calculation of even basic quantities like
the probability distribution. This is a case where
numerical and asymptotic theoretical methods for
investigating the probability distribution are of par-
ticular importance.

In the limit of small noise intensity, D — 0
[Ventcel and Freidlin, 1970; McKane, 1989; Dyk-
man, 1990; Smelyanskiy et al., 1999b], asymptotic
theoretical approaches, such as WKB-like or path-
integral methods, can be used. The theory suggests
that a solution to the problem of non-equilibrium
fluctuations requires an understanding of the dy-
namics of deviations from the steady state [Onsager
and Machlup, 1953] and an analysis of singularities
in the non-equilibrium potential [Graham and Tel,
1984; Smelyanskiy et al., 1997]. Some ideas have
recently been proposed for how to extend the ex-
isting (D — 0 limit) theory to encompass the case

of still small but finite noise intensity [Smelyanskiy
et al., 1999a; Lehmann et al., 2000; Bandrivskyy
et al., 2003].

Monte Carlo simulation provides the main nu-
merical technique used to verify such theoretical
predictions, and to analyse the behavior of the dy-
namical system under study. The theory gives an
asymptotically exact solution only in the D — 0
limit. In contrast, D in the numerical simulations
is necessarily finite. Typically, the time required
for Monte Carlo simulations grows exponentially as
D — 0. This meant that theoretical predictions
of interesting singular structures, and of the non-
equilibrium probability distribution [Graham and
Tel, 1984; Jauslin, 1987], for long remained untested
either experimentally or by numerical simulation.
Furthermore, there has been no clear understand-
ing of how the picture changes as the noise intensity
becomes finite.

Earlier attempts to speed up the simulations
focussed mainly on finding optimal fluctuational
paths and rates of transition in between stable
states of a system (e.g. efficient transition path
sampling [Dellago et al., 1999] and dynamics im-
portance sampling [Woolf, 1998], which follow the
earlier suggestion of [Pratt, 1986]). In [Crooks
and Chandler, 2001] the path sampling method was
adapted to non-equilibrium systems. Based on the
same idea, the umbrella sampling technique was
suggested to estimate the probability to reach any
point of phase space of an equilibrium system start-
ing from a fixed initial state [Dellago et al., 1999].
An idea how to improve sampling by splitting up
the probability packets was suggested in [Huber



and Kim, 1996]. So far, however, no general algo-
rithm has been suggested for non-equilibrium sys-
tems, able to provide both the whole probability
distribution and also dynamical information, e.g.
optimal fluctuational paths, for small noise intensi-
ties.

We now introduce a numerical method that en-
ables the time required for Monte Carlo simula-
tions to be reduced by an exponentially large fac-
tor. It is applicable to generic two-dimensional non-
equilibrium systems, does not require any a priori
knowledge about the system apart from its dynam-
ical equations of motion, and it allows the quasi-
stationary probability distribution to be computed
directly over the whole phase space. Using this
method, we reveal singular behavior of the non-
equilibrium distribution and show that it is in quan-
titative agreement with the asymptotic theory. The
central idea is to perform the simulations in sequen-
tial steps.

We construct the quasi-stationary distribution
in stages, patching together intermediate results,
starting from the minimum of the potential and
gradually moving away from it. We find that the
time required for the simulations at each step is re-
duced by an exponentially large factor as compared
to the standard technique: if the time necessary for
a conventional Monte Carlo simulation technique is
T, our modified method would require only time

T, ~ NT exp~ N-D%"

)

where N is the number of steps involved and %

is distance in logarithm of the probability between
them. Given that T is exponentially large, the ben-
efit in reduced processing time can be very substan-
tial. The result of simulations for Duffing system
(Fig.3, for D = 0.02) can be practically directly
compared with a result given by an ordinary tech-
nique. It took us around 15 minutes to simulate the
whole distribution shown in Fig.3 (for D = 0.02)
with our fast technique, and it takes around four
days of standard Monte Carlo simulation to obtain
comparable statistics close to the boundary of at-
traction.

We explain the underlying principle of the
method in Sec. 2, testing it by application to a very
simple equilibrium stochastic system where all the
results are already known. Then, in Sec. 3 we apply
it to two much-studied non-equilibrium systems and
compare the numerical results with the correspond-
ing theoretical predictions. Finally, we summarise
our conclusions in Sec. 4.

2. THE FAST MONTE CARLO SIMULA-
TIONS TECHNIQUE
To illustrate the technique, we consider an over-

damped Brownian particle moving in a bistable
Duffing potential U(x) = —2%/2 + 2*/4. The cor-
responding Langevin equation is

& =—U'(z) +£(), (1)

where £(t) is zero-mean white Gaussian noise with
intensity D and moments

(€(1)) =0, {€(1)£(0)) = 2D4(1).

The form of the probability distribution is com-
pletely defined by the potential U(z), and is of the
Boltzmann type p(z) < exp(—=U(z)/D). As in the
case of a non-equilibrium system (where the prob-
ability distribution is not defined by a potential) a
standard Monte Carlo technique can be used to de-
duce p(z). Numerical integration of the Langevin
equation (1), assuming the system to be located
initially at one of the potential minima x,,, gives
the discrete probability distribution p(z), peaked
at x,,. The potential can be deduced as ®(x) o
—Dln p(x). If the noise intensity is very small, the
system fluctuates in a close vicinity of x,, and large
deviations from it are extremely rare. The conven-
tional Monte Carlo method cannot be used to study
the dynamics of optimal escape paths, or the prop-
erties of the probability distribution far from the
potential minima: the statistics required cannot in
practice be collected within a realistic time when
the noise intensity is within the range of interest,
i.e. small but finite. We have overcome this problem
by starting from the distribution already obtained
near .

We fix two probability levels p; and py, lying
well within the region where the numerical p is ac-
curate, with py < p; corresponding to two levels
in the potential ®; and ®, and two coordinates x;
and zs, as shown in Fig. 1. We require the levels
pi and py to be fairly different, such that the corre-
sponding x; and x; are sufficiently separated: the
distance between them must exceed v/ Dh, where h
is the integration time step used in the Monte Carlo
simulation, and must also exceed the discretization
step Az in the discrete probability distribution. All
simulations were carried out following the proce-
dure described by Mannella [2000].

The next simulation step is started from the
level ®; (putting the system at = z; as its ini-
tial condition). If the system starts to evolve along
a fluctuational trajectory (towards the boundary of
attraction) we just follow its natural dynamics ac-
cording to (1) and collect the statistics for building
the probability distribution in a usual way. If the
system starts with a relaxation trajectory (towards
Zm), Oor when it crosses the boundary z; due to re-
laxation some time later, we stop the simulation
and reinject the system back to the initial state x;.



In this way we simulate the full dynamics of the sys-
tem at higher levels of the potential ®(z) > ®; (in
the region of coordinate space x > x; for this par-
ticular case). Thus, in the subsequent simulation
step we follow only those fluctuations that have al-
ready attained a certain level in the potential ®;,
without waiting for this exponentially slow event to
happen. In this way, a new piece of the probability
distribution is built with a time saving ~ exp ®;/D
compared to a simulation starting from the poten-
tial minimum z,,. The upper curve of Fig.1 shows
the new piece of the potential ®5(x), as computed.
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Fig. 1: The first (®1(x), lower curve) and second
(Po(x), upper curve) pieces of the inferred poten-
tial ®(x) for the system (1) with D = 0.005. The
discontinuity in the gradient of ®o(x) near x; is an
artefact due to a boundary effect in the calculation
of the discrete probability distribution. To avoid this
problem &1 (x) and ®o(x) are merged at the point x5
and the initial part of ®2(x) is discarded. We nor-
malize ®1(xz) choosing ®1(x,,) = 0, and each suc-
cessive piece of ®(x) is normalized in order to match
with the previous one at the point where they join.
Inset: The inferred potential ®(x) for the system
(1) with D = 0.005. The new technique (circles)
1s compared with standard Monte Carlo simulations
(bold line) and with the Duffing potential U(x) (thin
line).

The merging of the two pieces of the inferred
potential (the original ®q(z) and the new ®y(x))
at x5 can be effected in a unique way. Continu-
ing this procedure, the probability distribution and
the corresponding potential can be built, step by
step, for the whole region of interest. The inset
in Fig. 1 shows the resultant potential, built from
13 such pieces between the minimum at z,, = —1
and the maximum at x = 0. It coincides closely
with the Duffing potential U(z) itself. The poten-
tial ®(x) is thus inferred within a region of coor-
dinate space that is inaccessible in a conventional

simulation (shown as bold curve for comparison).
The advantage of our new technique is immediately
evident. We stress that, in the simulations, no a
priori knowledge of the dynamics was required.
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Fig. 2: The whole inferred ®(x,t) for the system
(2) for A =01, Q =1, D = 0.005. Two lines
are the lines of constant probability found after the
first step of simulations. The corresponding levels of
probability were chosen as ®; = 3D and &y = 5D.

Essentially the same procedure can be applied
to a two dimensional system. The main differ-
ence is that, instead of identifying two boundary
points z; and zf, we need to identify two bound-
ary lines of constant probability. One line is for
staring simulations from, and another one is a ref-
erence line for matching together different pieces of
the probability distribution (see Fig.2 for clarifica-
tion). In turn, this implies that we should consider
the reinjection location probability (RLP) along the
“lower” boundary line corresponding to p;. Starting
from the second step of the simulations, the system
should be reinjected back according to the RLP af-
ter it relaxes across the boundary. We emphasize
that the RLP is not the same as the probability
distribution p(x), which is constant on the bound-
ary line. The RLP is an additional important mea-
sure which describes local discrete dynamics in the
neighborhood of the boundary line. It is a distri-
bution along the boundary of how often the system
crosses the boundary.

The principle of detailed balance that applies in
equilibrium systems provides a symmetry that can
be used to reinject the system back at the bound-
ary level, without any need to compute the RLP.
For non-equilibrium systems, however, detailed bal-
ance does not apply and so the procedure cannot be
used. The RLP must be considered separately (and
calculated explicitly) for the particular system be-
ing investigated. It can be obtained from an anal-
ysis of the finite difference equation corresponding
to the model. In the limit of small integration time



step the probability to cross the boundary is pro-
portional to the diffusion-related term in the finite
difference equation. Then the RLP is simply pro-
portional to the projection of the vector orthogonal
to the boundary onto the coordinate affected by the
noise £. It can also be computed numerically.

3. APPLICATION TO NON-EQUILIBRIUM
SYSTEMS
As a first example of a non-equilibrium system,
consider the periodically-driven overdamped Duff-
ing oscillator

& =—-U'(z) + AcosQt + £(t). (2)
We infer ®(x,t) as —D In p(x,t). This quantity cor-
responds to the theoretical “global minimum of the
modified action” in the Hamiltonian theory of large
fluctuations [Bandrivskyy et al., 2003] and, in the
limit D — 0, it becomes the non-equilibrium po-
tential.

d(x)
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Fig. 3: A time section of the inferred ®(x,t = 4.1)
for the system (2) with A = 0.1, Q = 1, and dif-
ferent noise intensities: D = 0.005 (diamonds);
D = 0.01 (circles); and D = 0.02 (triangles). The
theoretical predictions are shown by full lines for fi-
nite noise intensities, and by dashed line for D = 0.
Inset: oscillations of ®(z,t) at the boundary of at-
traction for different noise intensities.

The limit of small noise intensity is of par-
ticular interest and importance in the case of
non-equilibrium systems. A sufficiently small D
gives rise to the possibility of revealing the non-
equilibrium potential

d(x) = Il)iLnO —D1n p(x),

directly through a numerical experiment. Observa-
tions of the predicted singular shape of In p(x), and
of its dependence on D, are thus of considerable
interest.

Fig. 2 shows the complete ®(z,t), constructed
from 12 such pieces, and a time section of ®(x,t)
calculated for different noise intensities together
with the results of theoretical calculations (Hamil-
tonian theory including the prefactor) [Bandrivskyy
et al., 2003] is shown in Fig. 3. The RLP in the sim-
ulations can be taken as constant if a small enough
integration time step is used in the scheme. A small
difference between the theory and the simulations
results appears for the larger noise intensities, and
then the asymptotic theory starts to break down
and becomes inapplicable.
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Fig. 4: Inferred ®(x,y) for the system (3) with
wo = 1, noise intensity D = 0.01, and n = 0.5.
The boundary of attraction (unstable limit cycle) is
shown by a bold curve.

Fig. 5: A section (x = y) of the inferred ®(A)
for the system (3) with wy = 1, noise intensity
D =0.01 and n = 0.25 (circles); and n = 0.5 (dia-
monds). Theoretical predictions are shown in each
case for D =0 (dashed curves) and D = 0.01 (full
curves).



We now consider, as a second more complicated
non-equilibrium example, the inverted Van-der-Pol
oscillator

&+ 2n(1 — )i + wiz = £(1) (3)

In order to be able to merge more easily the different
pieces of ®(x,y), we apply a coordinate transforma-
tion from z and y = & to amplitude A and phase

¢
x = Acos(¢), y=—Awgsin(g).

Tt is then possible to analyse the probability p(z,y)
in the (4,¢) coordinate space. This makes the
problem very similar to the periodically driven Duff-
ing oscillator: the only difference is the RLP which,
in the case of the Van der Pol oscillator, turns out
to be strongly modulated. It is essential for this
modulation to be taken into account when reinject-
ing the system back to the boundary of constant
probability. The complete ®(z,y) built by the Fast
Monte Carlo simulations is shown in Fig.4. Two
sections of ®(z,y), obtained from the simulations
for two different parameters 7, are compared with
the theory in Fig. 5. Here again, excellent agree-
ment is obtained between numerics and theory.

4. CONCLUSIONS
The same structure of singularities is found in both
of the non-equilibrium systems considered in this
paper. Using the fast Monte Carlo simulations
we reveal plateaus, the essentially flat regions in
the probability distribution, which can be observed
close to boundaries of attraction. They result from
a purely dynamical effect that is not associated
with the flatness of any potential. We have shown
that its origin is related to switching between dif-
ferent types of optimal fluctuational path, and it is
a general feature of non-equilibrium systems with
metastable states [Bandrivskyy et al., 2003, 2002].
The switching lines [Smelyanskiy et al., 1997] are
revealed as lines along which the “global minimum
of the modified action” ®(x) exhibits sharp bends
— corresponding to the predicted line at which the
non-equilibrium potential is non-differentiable. In
the boundary region we found the oscillations of the
probability distribution and their dependence on
noise intensity (see the inset in Fig.3) discussed in
the recent publications [Smelyanskiy et al., 1999a;
Lehmann et al., 2000; Maier and Stein, 2001]. The
noise-induced shift of the singularities and the op-
timal escape path revealed by the simulations has
stimulated a new step in the development of the
theory [Bandrivskyy et al., 2003].

It is only in the limit of extremely small noise
intensity that the singularities can be confidently
observed, so that the use of our new fast technique

is crucial to their investigation. In addition to being
fast, it preserves dynamical information. It can be
further extended to encompass higher dimensional
systems and maps, and it can readily be modified to
analyse optimal fluctuational paths, including those
that arise in the energy-optimal control problem
[Khovanov et al., 2000].
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