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Abstract: This paper presents a simple nonlinear data-based modelling approach for predicting the beach 

profile volume at Duck, North Carolina, USA. The state-dependent parameter form of the general transfer 

function (SDP TF) model is used to describe nonlinearity influencing these morphological data in two case 

examples. Case 1 investigates the nonlinearity associated with the dependency of wave forcing on the 

preceding beach volume. Case 2 investigates the ability to model the variables within the well known 

diffusion equation for beach volume using this data-based approach. The results of this study show that the 

SDP TF approach can be used successfully to develop statistically robust models for describing nonlinearity 

in beach morphological systems. Furthermore, these models are shown to predict the beach volumes over 

both short (1 month ahead) and long (2 years ahead) time periods, and thus show great potential for 

practical applications in coastal zone management and engineering.
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Revision Notes for: CENG-D-07-00160

 “Non-Linear Transfer Function Modelling of Beach Morphology at 

Duck, North Carolina” submitted by Y. Gunawardena, S. Ilic, 

H. N. Southgate and R. Romanowicz

Dear Prof. Burcharth

We thank you and the two reviewers for their constructive comments and suggestions. 

We have fully taken on board all suggested revisions, we believe these will further 

improve the manuscript. The following addresses all comments made by the two 

reviewers in detail. Please note that the revised figures are enclosed within the 

manuscript as these were generated using MatlabTM, and hence could not be saved 

separately as image files. 

Best regards

yohama

Comments from “Reviewer 1”

Specific Comments

C1. “Clarify position of profiles along coast (including position of Pier).”

We welcome the suggestion of the reviewer. This has been clarified by including a 

location map (Figure 1) of the beach profiles (Profiles 58, 62, 188 and 190) and the 

FRF pier at Duck.

C2. “Clear explanation of the 'volume' discussed in the paper”

We agree with the reviewer and apologise for the confusion. We have clarified that 

the beach profile volume per unit metre of shoreline were computed by integrating the 

beach profile data between 75 m and 700 m, which extend well beyond the average 

position of the depth of closure at Duck (latter is at the 4 m depth at ~410 m cross-

shore) to the 7 m depth (page 10). 

C3. “Applying Eq.(6) and a straight and parallel coastline is present, no interaction 

between the profiles should occur. That calls for equal 'volumes' in the 3 profiles; but 

the 'volume' depends [see also ii)] e.g. on the position of the reference line. Please 

clarify this point.” 

Detailed Response to Reviewers
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Here, is our explanation for this comment, which is summarised in the revised paper

(page 10). Although the bathymetric contours at Duck are parallel at times, this is not 

always the case (Miller et al., 1983; Plant et al., 1996; Miller and Dean, 2007) because 

of longshore differences in the morphology of profiles on either side of the pier. As 

seen in Figure 2 of the revised manuscript, alongshore volume differences between 

northerly and southerly profiles occur, particularly post 1991. Reversed migration 

directions of the nearshore sand bars on either side of the FRF pier (Plant et al., 1999),

longshore rhythmic sand bars and sand waves (Lippmann and Holman, 1990; Plant 

and Holman, 1996; Miller and Dean, 2007a,b), and extended periods of shore-oblique 

waves generating unidirectional longshore sediment transport (Miller et al., 1983; 

Keen et al., 2003) have been observed to contribute to the alongshore variability at 

Duck. Furthermore, as the beach profile data used in the present study extend beyond 

the average position of the depth of closure, gains/losses in beach volume (Figure 2) 

are expected to be predominantly influenced by longshore processes as cross-shore 

processes would mainly influence the redistribution of sediment within the profile. 

This is further verified in Case 1, where it is found that the volumes are best 

correlated with the longshore component of the wave energy flux. Hence, the 

application of Equation 8 in the revised manuscript (i.e. Equation 6 in the original 

manuscript) to model the volume interaction between profiles (Case 2) is valid.  

C4. “… make clear what is meant with the 'normalised wave energy (U)'.”

We welcome the suggestion of the reviewer and apologise for not having defined this 

earlier. U in the original manuscript was a normalised wave energy term (given as U 

= H2×sinθ for conditions when θ was larger and smaller than 0o relative to the FRF 

pier; and U = H2 for θ=0o, i.e. shore-normal wave directions) that was used in the 

companion paper (Gunawardena et al., 2008). This variable was used (by 

Gunawardena et al. (2008)) as the wave forcing term or TF model input to develop a 

linear TF model for predicting the beach volume; the results of which were compared 

with those of the nonlinear SDP TF model (which also used U) in Case 1 of the

original manuscript. However, following recommendations made by the reviewers to 

the companion paper (i.e. Gunawardena et al., 2008), further tests were carried out to 

investigate the linear TF relation between other wave forcing variables (e.g. monthly 

average cross-shore and longshore components of the wave energy flux [as defined in 

Komar (1998)], as well as the sum of these 2 components) and the beach volumes. As 
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expected, these tests showed that the beach volume was best correlated to the monthly 

average longshore component of the wave energy flux. This variable was therefore 

used in linear TF models presented in the companion paper. Hence, for consistency of 

the comparison with these linear TF model results, the latter wave forcing variable 

(defined as P in the revised manuscript) was also used for the SDP TF modelling in 

Case 1 of the present study. In the revised manuscript, we clarify that the monthly 

average alongshore component of the wave energy flux ( P ) is defined by (as in 

Komar (1998)): 

bbgb CgHP  cossin
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where:   is density of water; g  is acceleration due to gravity; bH , b , gC  are the 

significant wave height, wave approach angle and wave group velocity under 

breaking-wave conditions, which were computed using a linear wave transformation 

model (Gunawardena, 2008). The values of P (units of m3/s) computed are 

normalised by the g8
1 term (pages 10 and 11). 

Minor Comments on Text

The reviewer recommended improvements to the text in some places. These 

recommendations were pointed out in a copy of the original manuscript, which was 

posted to us. In general, we agree with these minor comments and have revised the 

manuscript’s text accordingly. These include:

C1. “Page 1 in title: “Non-linear …” should be Nonlinear”

The text has been revised such that “nonlinear…” is used throughout.

C2. “Page 1 in Abstract: meaning of SDP TF”

The text was slightly modified to define the meaning of SDP TF (i.e. state-dependent 

parameter transfer function). 

C3. “Page 11, line 21: ‘… (erosion or accretion) …’ is the wrong indication: better: 

‘eroded or accreted’, as for e.g. erosion takes place during 1994-1999. In that period 

the SDP are far from constant.”
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We agree with the reviewer, and have taken this into consideration while interpreting 

the new results of Case 1 (i.e. the results of Case 1 are different to those in the original 

manuscript due to the use of the monthly average longshore component of the wave 

energy flux P) on pages 12 to 14. 

C4. “Page 12: Lines 22-23: ‘The SDPs estimated were then used to calculate the 

effective proportion of the wave forcing input, which  directly influences the beach 

profile volume.’ Quite unclear what happens here, is the effective input = wave 

forcing input x SDP?”

We apologise that this was not clear. In the revised manuscript, we clarify this point, 

i.e. effective input = original input variable × SDP (page 8). 

C5. “Page 13: Typo:   UVf k 1  should be   kUVf k 1 ”

This term has been corrected accordingly to   kPVf k 1  as shown in page 13.

C6. “Page 15: ‘That is, in the case of the linear model, the beach volume lags behind 

the wave forcing input U  (original data) by 8 months.’ Is this discussed in 

companion paper?”

Yes, the time-lags identified using the linear TF modelling approach are discussed in 

detail in this companion paper (Gunawardena et al., 2008) as well as in the lead 

author’s PhD thesis (Gunawardena, 2008), which has now been examined and 

approved. 

C7. “In Fig. 6, the forecast U data have been used. What happens if real U data are 

used? Can probably be found in Figure 4 but at quite a different scale.”

We have modified Figure 8 of the revised manuscript (Figure 4 in the original 

manuscript) to now compare the beach volumes forecast using the SDP TF model 

identified for Case 1 and the linear TF model in Gunawardena et al. (2008) using 

forecast data for P, as well as the model validation of the SDP TF model using known 

P data for (2-year long period) 2001-2003. As discussed on page 16, although both 

linear and nonlinear models capture the overall long-term trend in the data well, the 

nonlinear model performs best as it forecasts some of the shorter-term variability in 
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the volumes (like in the case of the model validation) and consequently has smaller 

RMS errors (Table 1).

C8. “pg 23: Define *  in Equation 14”

We apologise for this. We now clarify on page 22 that *  is the wave approach angle 

in the water depth, *h  (= 8 m depth). 

C9. “pg 23: Values of s = 2 are too small, suggest a value of 2.65”

We changed the value of the sediment specific gravity (s) to 2.65 as suggested by the 

reviewer. However, this does not significantly change the values of the longshore 

sediment diffusivity term, G or the TF model results. 

C10. “pg 25: typo: ‘that’ should be ‘than’” 

This was corrected.

C11. “pg 27: In validation period (5 years), the volume on Profile 62 is estimated 

with the help of measured volumes on Profiles 58 and 188. So the method can be used 

to fill out some missing data in one profile using actual data from adjacent profiles”.

We appreciate this suggestion by the reviewer and have included it on page 28 using 

the following text: “The model could also be used for data-processing to fill gaps in 

volume data of a given profile by considering those of adjacent profiles”.

C12. “Typos in Reference list”

These have all been corrected. 
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Comments from “Reviewer 2”

General Comment:

C1. “The paper is potentially useful as a description of a new application of a well 

established model-identification approach. It is mainly clear but wordy and too 

reiterative, and would benefit from shortening. Examples are p.25, the last few lines 

of p.26 and first few of p.27, and the first few of p.28. I recommend revision of the 

whole paper, aiming for conciseness.”

We welcome the suggestion of the reviewer and have edited the text in the above 

specified pages and lines, as well as the rest of the document, to avoid repetition and 

make the revised manuscript shorter and more concise. Despite the added 

explanations included in response to both reviewers’ comments/suggestions, the word 

count of the revised manuscript is reduced to 7,925 (compared to the 8,180 word 

count of the original manuscript).

Technical Comments:

C1. (a) “On p.11, referring to Fig. 1, the SDP (not SDPs) is said to "vary at an 

approximately constant rate" at beach volumes below about 2250 m^3/m. In fact it is 

initially flat then goes smoothly negative before returning to near zero. Whether the 

near-zero value is credible and whether the deviation to about -50 corresponds to a 

significant amount of non-linearity is not examined. If it does not, it needs to be 

established whether the subsequent change to about -180 implies significant non-

linearity….”

We welcome the reviewer’s comment and suggestion. We apologise for the confusion 

in our interpretation of the results. In general, the RT
2 value associated with the SDP 

relationship reflects on how well-defined this relationship is. The RT
2 value of 0.3 

corresponding to the estimated SDP relationship in Figure 1 of the original manuscript 

indicated that this nonlinearity was relatively well-defined. The strength of the SDP 

nonlinearity is reflected by the degree of variation of the SDP gain with respect to the 

state variable. The SDP relationship in Figure 1 (of the original manuscript) indicated 

the presence of nonlinearity (as shown by the variation of the SDP gain with volume),

and was further interpreted to indicate stronger nonlinearity for profile volumes > 

2250 m3 because the slope of this relationship increased (negatively) for these high 
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volumes showing increased variability of the SDP gain. During lower volume 

conditions, although some variation in the SDP gain with volume was observed, the 

results were interpreted to indicate weaker nonlinearity or approximately linear 

behaviour. Nevertheless, in predicting the beach volumes, the SDP TF model

incorporates all conditions of the SDP relationship (whether strongly or mildly 

nonlinear). This is in fact a key advantage of the SDP TF modelling approach as it 

enables prediction of the beach response when there is no clear separation between 

conditions or timescales for linear and nonlinear behaviour.

In Section 3.1 (pages 12-13) the revised manuscript, we have clarified the 

above on the basis of the new SDP relationship estimated between the longshore 

component of the wave energy flux (P) and beach volume (now Figure 3). The 

corresponding RT
2 value of 0.5 indicates that the SDP relationship estimated in the 

revised paper is well defined. The general variability of the SDP gain over the whole 

range of volumes considered indicates nonlinearity under all morphological 

conditions represented by these beach volumes. However, the variability of the SDP 

gain increases at volumes > 2270 m3 (as illustrated by the increased negative gradient 

of the SDP relationship in Figure 3), which suggests that the nonlinearity becomes 

stronger when the profile volume are high. This is also shown in Figure 4, where the 

largest magnitudes of the SDP gain correspond to the 1990-1997 period when the 

beach volume was high (> 2270 m3). By contrast, the SDP gain values corresponding 

to the 1985-1990 and 1997-2001 periods, which are associated with lower volumes (< 

2270 m3), are low and show less variation with beach volume in Figure 3. Thus, these 

results indicate that the strength of the nonlinearity varies depending on the 

morphological state (increased/reduced volume) of the profile (discussed in detail on 

pages 12-14).

C1. (b) “ …We do not know at this point what the form of the model is and how U 

enters it…”

We appreciate the reviewers comment for clarity in defining the model explored in 

Case 1, and therefore this is explained in the revised manuscript on page 11. In Case 

1, the SDP TF modelling approach was adopted to investigate the state-dependency of 

the longshore component of the wave energy flux P  (i.e. model input) on the 

preceding beach volume (i.e. state variable). The TF model parameters associated 

with P  at a given time-step were made to vary with time as a function of the beach 
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volume at the previous time-step. The equation below (i.e. Equation 5 in the revised 

manuscript) shows the SDP TF model form used for this analysis. The SDP 

relationship illustrated in Figure 3 of the revised manuscript is estimated on the basis 

of this equation. 




 k
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zVB
V
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1
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1

where: V  is the monthly beach volume per unit of shoreline (m3) (model output); k  is 

the kth discrete-time sample (months); P  is the monthly average longshore component 

of the wave energy flux (m3/s) (model input);   represents the pure time delay ( t

time units) associated with P ; ),( 1
1


 zVB k  is the numerator TF polynomial 

comprising the SDP gain that varies with time as a function of 1kV , which is the state 

variable;  )( 1zA  is the denominator TF polynomial comprising constant parameters.

C1. (c) “We do not even know what U is. The introduction of U on p. 10 says that 

"beach volume was best related to ...contributions  of the normalised wave energy (U) 

(defined using...)". That sentence is impossible to construe. Has U got two 

components?  How is U related to wave height and direction? Is U daily, monthly ..?”

Again, we agree with the reviewer and apologise for any confusion. As discussed 

previously, the wave forcing term U that was used in the original manuscript has been

replaced with P, which is the monthly average longshore component of the wave 

energy flux (defined above). The computation of P is explained in detail in the revised 

manuscript on pages 10 and 11.

C2. “The last complete sentence on p.17 is vague and is contradicted by Fig. 6. Is the 

comment meant to refer to Fig. 4, and what fluctuations are being referred to?”

In the revised manuscript we clarify that, although both linear TF and nonlinear SDP 

TF models predict the long-term volume trend well, the latter model also predict the 

short-term volume fluctuations occurring about this long-term trend, particularly 

during periods of high beach volume. This is seen in Figure 6 and 8 of the revised 

manuscript and is now discussed in detail on pages 13 to 17.   

C3. “Keeping the autoregressive (AR) parameter constant prevents the model from 

tracking changes in dominant time constant and may instead cause spurious variation 
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in the numerator parameter. The erosion and deposition mechanisms discussed 

suggest variations in speed of response which demand a varying AR parameter. They 

also suggest differences in dynamics according to the direction of change, not 

apparently considered in devising the model or interpreting the results.”

This is a fair comment. However, variation of both the numerator and denominator 

parameters of the TF model makes the model unstable, resulting in poor estimation of 

the model parameters. Hence, in the present study, the parameters of only the 

numerator TF polynomial are made state-dependent and time-varying for representing 

the input nonlinearities associated with P and beach volume in Case 1, and the 

volumes of Profiles 58 and 188 and the longshore diffusivity G in Case 2. 

Nonlinearity in natural systems has been predominantly studied in the past in the form 

of ‘input nonlinearities’ as it enables reliable estimation of the model parameters (e.g. 

Lees (2000) and Young (2000)), and for the same reason this approach was adopted in 

this study. Furthermore, we consider the results obtained using this approach 

satisfactory because (as discussed in detail on pages 12-13 of the revised manuscript), 

the estimated SDP gain does in fact effectively describe variation in the speed of the 

profile’s volume response as well as the direction of volume change (i.e. accretion or 

erosion). This is illustrated in Figure 4 of the revised manuscript, where it is seen that 

the time-variation of the magnitude of the SDP gain imitates that of the beach volume. 

For example, the long-term increase in volume between 1990 - 1994 corresponds to a 

similar long-term increase in the SDP gain magnitude, while the more rapid decrease 

in volume between 1995 - 1997 is associated with a similarly rapid reduction in the 

SDP gain magnitude. In addition, an increase or decrease in the SDP gain magnitude 

is predominantly associated with increases (accretion) and decreases (erosion), 

respectively, in beach volume. In the revised paper (page 18), we mention that further 

research may be carried out to investigate if having state-dependent parameters for the 

denominator TF polynomial instead alters these results. 

C4. “It is remarkable that the exact antiphase behaviour of the parameters in Figs. 8

and 9 has not been noticed, and more remarkable as it is plain in Fig. 10 that they

add to unity at every point in time, to a good approximation. This has implications

which should be fully discussed.”

We appreciate the reviewer’s comment and have expanded the discussion of the SDP 

gains illustrated in Figures 11, 12 and 13 of the revised manuscript (i.e. Figures 8, 9
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and 10 in the original manuscript) to address these issues. The opposing patterns 

observed in the variability of the SDP gains in Figures 11 and 12 of the revised 

manuscript characterise the contrasting relationships between the volumes of Profile 

62 and those of Profiles 58 and 188. That is, the positive SDP gain associated with 

Profile 58 indicates that the volumes of this profile are positively related to those of 

Profile 62 (i.e. volume increases on Profile 62 are linked with volume increases on 

Profile 58, and vice versa). By contrast, the SDP gain associated with Profile 188 is 

positive or negative at varied times, the latter which indicates that the volumes of this 

profile are negatively related with those of Profile 62 (i.e. volume increases on Profile 

62 are linked with volume decreases on Profile 188 and vice versa) at particular 

periods of time. These contrasting relationships are further illustrated in Figure 10, 

where it is seen that increased volumes on Profiles 58 and 62 during certain periods 

coincide with significantly reduced volumes on Profile 188, and vice versa (e.g. Dec 

1984 – Sep 1986, Dec 1986 – Feb 1987, 1989 – 1990, 1992 – 1997). This alongshore 

difference in the morphology of northerly and southerly profiles has also been 

observed by Miller and Dean (2007a) via the analysis of shoreline data at Duck. In the 

revised manuscript, we also clarify that the estimated SDP gains associated with 

Profiles 58 and 188 are normalised such that their summation at each kth time-step is 1

while representing weights for relating the volumes of these two profiles to those of 

Profile 62. In general, the SDP gain associated with Profile 58 has larger magnitudes

(closer to 1) than those estimated for Profile 188, indicating that the former has a 

more dominant influence in characterising the volume of Profile 62. This can be 

expected as Profile 62 is located at a closer proximity to Profile 58 (~ 100 m apart) 

than Profile 188 (~ 1000 m apart). 

C5. “We are not told anything about how to interpret the numerical value of the YIC, 

or why the SDP values are sorted by value of the state variable.”

We appreciate the suggestion made by the reviewer. A discussion of the YIC and its 

interpretation are summarised in the revised manuscript on pages 8 and 9. Sorting the 

SDP values with respect to the state variable is generally done in order to ensure 

optimal estimation of these parameters using the SDP TF algorithms in CAPTAIN 

(Young, 1984; 2005; CRESS, 2004). However, since this is a technical detail related 

to the SDP TF model identification algorithms, it was omitted from the revised paper 

as we felt it is not essential to mention this. 
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Minor Comments

C1. “p.4: how can you have "a ...relationship between a system input and an 

INDEPENDENT state variable"? Independent of what? Also on p.6, "completely 

independent" does not make sense.”

We apologise for any confusion. By ‘independent variable’ we meant any system 

variable other than the input or output variables. We clarify this in the revised paper 

by saying: “… e.g. a state-dependent relationship between the input and any other 

system variable” (page 4).

C2. “p.4: "physical dynamics" - are non-physical dynamics possible?”

We’ve taken on board the reviewer’s comment. The text was modified to state: “… 

physical mechanisms…” instead (page 4).

C3. “It would help if you said on p. 6 that subscripts denote time (of regular 

samples).”

The definition of k to denote the kth discrete-time sample is included in the revised 

manuscript (page 6). 

C4. “p.6: 3 lines before end, don't use "inputs" when you mean other things (outputs,

etc.) too.”

We agree with the reviewer. The text has been modified accordingly to clarify this. 

That is: “ k  is a noise term that accounts for uncertainty in the model (e.g. due to 

measurement noise, unmeasured inputs and uncertainty in the model)” (on page 6).

C5. “2 lines after (3) it seems there are n+m+1 state variables, yet the dynamical

order is only n: explain.”

This was a typo, which has been corrected in the revised paper (pages 6 and 7) as 

shown below. 

  n
knkkk zvazvazvazvA   )(...)()(1, 2

2
1

1
1

  m
kmkkkk zwbzwbzwbwbzwB   )(...)()()(, 2

2
1

10
1

where:  mnpz p ...2,1,   denotes the ‘backward shift’ time operator (defined as 

nkk
n yyz 

  ); kv  and kw  are the state variables; niai ,...2,1,   and mjb j ,...1,0, 
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are the time-varying TF model parameters known as the state-dependent parameters

(SDP), which vary as functions of the state variables. In the two above equations,

there are only two state-variables (i.e. v  and w ) and the orders of the numerator and 

denominator TF polynomials are m and n, respectively.

C6. “p.7, line 4 from end: "more efficient" - than what?”

We apologise for the confusion. The text has been revised for clarification (on page 

7). 

C7. “References to early papers on optimal smoothing (from the 1960's and 1970's) 

are needed on line 4 of p.8 to avoid the impression that FIS originated in 2000.”

This comment is taken on board and references to earlier TF literature (Young, 1984; 

1985) are included in the revised manuscript (page 8).

C8. “p.8 middle "Data on" is redundant.”

The word ‘Data’ was omitted from the relevant text.

C9. “p.11, line 3 before sec. 3.1: in what sense is it "statistically optimal"?”

We now clarify on page 8 that an optimal SDP TF model is identified and estimated 

on the basis of two statistical criteria namely, the coefficient of determination (RT
2) 

and the Young Information Criterion (YIC). Hence, the words “statistically optimal” 

were omitted from the text.

  

C10 “p.13, middle: explain "a [1 1 0] structure".”

We clarify in the revised manuscript that a TF model comprising a [1 1 0] structure 

consists of a 1st order numerator TF polynomial, a 1st order denominator TF 

polynomial and a zero time-delay (page 13, an example of the general TF model 

structure is also explained on page 7).

C11. “p.14, lines 3, 4 after (5): explain "a linear ... weights". Are you thinking of

transforming the ARMA model into an MA model?”

We apologise for any confusion. We clarify on page 14 that, Equation 7 in the revised 

manuscript (i.e. Equation 5 in the original manuscript) shows that successive beach 

volume differences at Duck are nonlinearly related to the longshore component of the 
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wave energy flux via time-varying state-dependent parameters, which characterise the 

nonlinear dependence of P  on the preceding beach volume.

C12. “p.14, middle: is the validation in simulation mode (as it should be), i.e. with

V sub k-1 from the model, not measured?”

Yes, model validation was carried out in simulation mode, where the volumes 

predicted by the SDP TF model at each time-step were used for the model validation 

at the next time-step. This is clarified in the revised manuscript (page 14).

C13. “p.16, line 6 of sec. 3.3: U forecast from Sept. 2001 data?”

We apologise for any confusion in the text. It is clarified (page 16) that P

corresponding to a 2-year period between September 2001 and September 2003 is 

forecast using the Dynamic Harmonic Regression model on the basis of P  data for 

the January 1985 - August 2001 period. The DHR model forecasts are generated by 

extrapolating the long-term trend and periodicity identified in the observed P  data 

(corresponding to January 1985 - August 2001 period) into the 2-year period ahead. 

C14. “p.18, line 10 from end: "small"?”

The text was reworded to state “low” instead (page 18).

C15. “p.18, last sentence: this is odd, as the beach is at a research facility and

there are data for at least 25 years.”

Although alongshore differences in beach morphology at Duck have been commented 

on by several authors, there is limited literature on the detailed study of the influences 

of wave direction and/or longshore sediment transport on morphology over long time 

periods (e.g. interannual or decades) since Miller et al. (1983). Since submitting the 

original manuscript, we came across the study by Miller and Dean (2007b), who 

analysed the correlation between wave direction (by considering the longshore 

component of the wave energy flux) and longshore shoreline variability. The latter is 

now referenced in the revised manuscript.

C16. “Right-hand side of (12) needs normalizing.”

The transfer function representation of the diffusion equation formulated by Equation 

14 in the revised manuscript (i.e. Equation 12 in the original manuscript) has been 
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normalised such that it can be compared with the SDP TF model (Equation 15 in 

revised manuscript) investigated in Case 2. 

C17. “The use of z-transform notation is unnecessary anywhere in the paper and 

should be avoided.”

For consistency with past and present literature on TF models and the companion 

paper, the z-1 time operator (defined on page 7) is used within the manuscript for 

defining the SDP TF modelling approach. However, when discussing the model 

results, this operator is used to expand the model equations as shown by Equations 7 

and 18 (on pages 14 and 25, respectively).  

  

C18. “The sentence "In this analysis..." on p.21 is contradicted by "Here, only..."

on p.22.”

We appreciate this comment by the reviewer. The text has been modified accordingly 

to improve clarity and conciseness (page 21).

C19. “p.26, line 3 before (15): what errors? One s.d.? 2 s.d.? 6 s.d.?”

The standard errors associated with these TF model parameters are defined as = 2 × 

standard deviation of the estimated parameters. This is clarified on page 25. 

C20. “Much of sec. 5 merely reiterates earlier comments. It should be much 

shortened.”

We have taken on board the reviewer’s suggestion and made the conclusions shorter 

and more concise (Section 5). 

C21. “Do we really need all 15 of the references with Young as sole or first author?”

The number of references in which Young is the first or sole author has been reduced

by omitting 4 of these references. Only references that are directly relevant to the 

revised manuscript are included. 

C22. “If Fig. 2 is to appear in black and white, the bottom plot will need to be larger 

for legibility. Similarly Figs. 3, 4, 7, 11”

The clarity of the figures has been improved. See Figures 4, 5, 6, 7, 8, 10 and 14 in 

the revised manuscript.  
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Typos and Minor Grammatical Errors

C1. “pp.2, 3: Birkemeier”

The spelling of ‘Birkemeier’ throughout the thesis has been checked and corrected.

C2. “p.2 foot: linearly”

This typo has been corrected (i.e. ‘linearly’ used instead of ‘linear’)

C3. “p.6: delete "in" on 2nd line after (1)”

The word ‘in’ has been deleted

C4. “p.7 middle: italics n, m”

‘n’ and ‘m’ are presented is italics (page 7). 

C5. “p.9: Hermite”

Capital ‘H’ was used in the word ‘Hermite’ (page 9).

C6. “p.9: do you mean + or - 6 standard errors, and is the standard error normalised 

by sqrt(number of samples) or not?”

We have clarified that the ‘standard errors’ associated with the model parameters is = 

2 × standard deviation of parameter estimates (page 9). Furthermore, in the present 

study, the maximum range of errors associated with the model parameters are 

represented by (±6 × standard errors) (Young pers comm) (page 9). 

C7. “p.9, line 5 from end: cover, encompass, as data is plural”

The text has been revised accordingly (i.e. ‘cover’ is used instead of ‘covers’ and 

‘encompass’ is used instead of ‘encompasses’) (page 9).

C8. “p.10, line 7: replace ‘in the’ by ‘by’.”

The above typo is corrected as suggested (page 10).

C9. “p.10, line 7 of sec. 3: replace "being...model" by "the model being linear"”

The text has been reworded accordingly (i.e. “..the latter TF model being linear …” is 

used instead) (now on page 4).
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C10. “p.12, middle: replace "a relatively fewer number of" by "fewer"”

The above suggestion has been made (page 13). 

C11. “p.15, middle: delete "relatively". Also on p.26, line 5.”

The word ‘relatively’ has been omitted from the relevant text.

C12. “p.19, line 3 before (6): one author.”

This typo has been corrected (page 19).

C13. “p.22, line 8: delete "on"”

The word ‘on’ has been deleted.

C14. “p.23, line 2 after (14) move "group" to after "wave"”

This typo has been corrected (i.e. ‘..wave group…’ is used) (page 22).

C15. “p.24, line 5 from end: delete "number of"”

These words have been omitted from the text (pages 23 and 24).

C16. “p.25, line 2: a new paragraph at "As' would help.”

The original text in Section 4.1 has been reworded and made shorter to improve 

clarity and conciseness. Paragraphs are introduced to improve readability as well.

C17. “p.29, line 4: replace "than" by "to"”

The reviewer’s suggestion was carried out (page 28).

C18. “p.31, line 4: "comprising" is not the right word.”

We agree with the reviewer. The word ‘exhibiting’ is used instead of ‘comprising’

(page 29).

C19. “p.36: acute accents are missing from evolution, Journees, Energies”

Acute accents are included on the specified words.

C20. “Fig. 2 caption: 2001, not 1999.”
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The caption of Figure 4 in the revised paper (i.e. Figure 2 in original manuscript) was 

corrected as pointed out by the reviewer. 

C21. “Fig. 6 caption: past participle of "forecast" is "forecast"”

This typo has been corrected in the caption of Figure 8 in the revised manuscript (i.e.

Figure 6 in original manuscript).
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Abstract

This paper presents a simple nonlinear data-based modelling approach for

predicting the beach profile volume at Duck, North Carolina, USA. The state-dependent 

parameter form of the general transfer function (SDP TF) model is used to describe 

nonlinearity influencing these morphological data in two case examples. Case 1

investigates the nonlinearity associated with the dependency of wave forcing on the 

preceding beach volume. Case 2 investigates the ability to model the variables within 

the well known diffusion equation for beach volume using this data-based approach. 

The results of this study show that the SDP TF approach can be used successfully to 

develop statistically robust models for describing nonlinearity in beach morphological 

systems. Furthermore, these models are shown to predict the beach volumes over both 

* Manuscript
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short (1 month ahead) and long (2 years ahead) time periods, and thus show great 

potential for practical applications in coastal zone management and engineering. 

Keywords: Beach, Volumes, Duck, Nonlinear Transfer Functions, Forecasting

1. Introduction

Prediction of beach morphology remains a challenge due to the complexity of 

the driving hydrodynamic and sediment transport processes operating on various 

temporal and spatial scales. Inherent interactions between evolving morphological 

features, such as sand bars, with external forcing factors often generate nonlinear 

feedback mechanisms. For example, nearshore sand bars have a significant influence on 

the location of wave breaking and the distribution of wave height in the surf zone 

(Thornton and Guza, 1983; Lippmann and Holman, 1990). Changes in the sand bar 

position or shape will alter wave breaking (and sediment transport) patterns across the 

profile. Consequently, as the beach profile responds to wave forcing, alterations in the 

sediment transport patterns may suppress or reinforce further morphological changes

(Plant et al., 2001). Thus, the response of the beach profile can be nonlinearly related to

external forcing conditions (e.g. Lippmann and Holman, 1990; Lippmann et al., 1993;

Plant et al., 2001). However, previous studies have shown that the beach profile

response can also be linearly related with forcing. For example, Kraus et al. (1991), 

Larson and Kraus (1992; 1994) and Larson et al. (2000) derived linear relationships 

between nearshore bar properties and the beach elevation, and various simple 

hydrodynamic variables. In another example, Lee et al. (1995; 1998) and Birkemeier et 

al. (1999) observed that the nearshore profile volume increased linearly in response to 
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groups of high-energy storms. However, these typical linear responses do not occur 

consistently through time (Birkemeier et al., 1999; Larson et al., 2003). The latter 

authors concluded that the beach profile response may be linearly or nonlinearly related 

with forcing operating on varied spatial and temporal scales depending on the preceding 

profile configuration and the forcing conditions. Hence, in developing numerical models 

for predicting beach morphology, it is important to distinguish between the extent of 

linear and nonlinear behaviour that influences the system.

Process-based models have been used with varied success for predicting

morphological changes (De Vriend, 1991). Hence, alternative modelling approaches, of 

which an important category encompasses data-based or data-driven models, have been 

adopted in various situations. Data-based models are statistical models whose entire 

structure and associated parameters are determined directly from the objective analysis 

of observational data. Prior assumptions on the governing processes are kept to a 

minimum. Several linear (examples mentioned in Gunawardena et al. (2008)) and 

nonlinear (e.g. artificial neural networks (ANN) (Kingston et al., 2000; Pape et al., 

2006) and nonlinear complex empirical orthogonal functions (Ruessink et al., 2004; 

Rattan et al., 2005)) data-based modelling techniques have been used in the past to 

study beach morphology. 

Transfer function (TF) models have been used over the past two decades in 

numerous data-based modelling applications to study linear and nonlinear stochastic 

dynamic systems in the fields of environmental science, ecology, engineering and social 

science (e.g. Young, 1993b; 2000; 2005). These models adopt a systems approach to

define the input-output relationship of a studied system (Young, 1993b; 2005). The 

classical linear constant parameter TF modelling approach has been discussed in detail 
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by Gunawardena et al. (2008), who used this approach to investigate and predict the 

linear response of the profile volume at Duck to different wave forcing variables. 

Although this linear model successfully predicts the long-term volume trends, it does

not account for nonlinear interactions between the beach response and hydrodynamic 

conditions. As discussed above, examination of nonlinear interactions is important as 

they cause variations in the wave forcing-beach morphology relationship under different 

morphological conditions. Such nonlinear behaviour may be modelled using the 

nonlinear state-dependent parameter (SDP) (Young, 2000; 2005) form of the TF model. 

In this form, the nonlinearity of the system’s input-output relationship is objectively

identified by investigating its dependency on other system variable(s) (known as state 

variables). The identified nonlinearity is characterised within the model via state-

dependent parameters, which vary with time as a function of the state variable(s). In 

this manner, the SDP TF model can be used to examine and predict dynamic nonlinear 

‘state-dependent’ relationships between different system variables.

One of the most attractive features of the SDP TF modelling approach is that the 

nonlinearity is localised to a specific physical mechanism of the system (e.g. a state-

dependent relationship between the input and any other system variable). Furthermore, 

dynamic properties of the system, such as time-lags between the input and output

variables, are automatically identified. Thus, unlike many of the above mentioned 

nonlinear data-based modelling techniques, SDP TF models are not solely used for 

prediction but also provide useful insights into physical mechanisms of the studied 

system. The SDP TF modelling approach is further enhanced by powerful statistical 

methods used for model identification and estimation (Young, 1984; 2000). These 

methods enable simple, parametrically-efficient TF models that are characterised by an 
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optimum number of parameters to be identified in a quick, objective and efficient 

manner. The SDP TF modelling approach has been used in several practical 

applications. An example of this includes, estimation and prediction of the nonlinearity 

in rainfall-flow processes, which results in similar rainfall rates producing different rates 

of river flow due a dependence on the preceding catchment conditions (e.g. wetness) 

(Young and Beven, 1994; Fawcett, 1999; Lees, 2000; Young, 2000; 2003).

In this study, the nonlinear SDP TF modelling approach is adopted to develop 

simple nonlinear data-based models for predicting the beach profile volume at Duck, 

North Carolina in two separate cases. Beach volume is used as a proxy for the nearshore 

profile morphology as it is commonly used in coastal management for characterising the 

overall morphological state of coastal systems (e.g. Kroon et al., 2007). In Case 1, the

nonlinearity in the monthly beach volume response to monthly average wave forcing

resulting from morphological feedback is investigated. Here, the model parameters 

associated with the wave forcing term are made to vary as a function of the beach 

volume itself. The results obtained are compared with those of the linear TF modelling 

approach adopted by Gunawardena et al. (2008) with the aim of determining the extent 

to which the linear and nonlinear TF models explain and forecast the beach volume 

response. In Case 2, the SDP TF approach is used to model the nonlinear volume 

response of a given beach profile in relation to those of adjacent profiles. Here, the 

variables within the diffusion equation by Pelnard-Considère (1956) for beach volumes 

are related using the SDP TF modelling approach. In this way, the ability of the latter 

approach to model the concept of morphological diffusion in a data-based sense is 

investigated, while also predicting the beach volumes.

Section 2 of this paper provides a detailed description of the nonlinear SDP TF 
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modelling approach adopted in this study. The data employed in this study are also 

briefly discussed in this section. Section 3 presents the results for Case 1, where the 

nonlinearity between the beach volume and wave forcing is investigated. In Section 4, 

the results from Case 2, where beach volume is modelled in relation to the Pelnard-

Considère (1956) equation, are presented. Section 5 summarises the conclusions of this 

paper.

2. Methodology

2.1 Nonlinear State-Dependent Parameter TF Models

Equation 1 shows the general discrete-time form of a single input-single output 

SDP TF model (Young, 2000; 2005).

kk
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Here, ky  is the observed output variable and ku  is the observed input variable; 

where k  denotes the kth discrete time sample.   represents the pure time delay ( t

time units) associated with the input variable that accounts for a time delay between a 

change in the input and observation of its initial effect on the output. k  is a noise term 

that accounts for uncertainty in the model (e.g. due to measurement noise, unmeasured 

inputs and uncertainty in the model). The preliminary application of the SDP TF model 

in this study excludes this noise term and therefore, this term is omitted from the model 

equations in the rest of the paper. ),( 1zvA k  and ),( 1zwB k  are the dynamic 

polynomials of the SDP TF model, which are formulated by: 

  n
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where:  mnpz p ...2,1,   denotes the ‘backward shift’ time operator (defined as 

nkk
n yyz 

  ); kv  and kw are the state variables; niai ,...2,1,   and mjb j ,...1,0,  are 

the time-varying TF model parameters known as state-dependent parameters (SDP), 

which vary as functions of the state variables. The numbers of ‘a’ and ‘b’ parameters (n, 

m) define the order of the above TF polynomials. The values of the ‘a’ and ‘b’

parameters as well as the values of n, m and δ are objectively identified from the data

during the TF model calibration. The triad [n m δ] is generally used to describe the TF 

model structure. For example, a triad [1 2 5] represents a TF model comprising a 1st

order ),( 1zvA k polynomial, 2nd order ),( 1zwB k  polynomial and a time delay of 5 

discrete-time steps. In cases where the nonlinearity is assumed to be associated only 

with the input variable, the parameters of only the ),( 1zwB k polynomial are made

state-dependent while those of the ),( 1zvA k  polynomial remain constant (i.e. 

),( 1zvA k becomes n
n zazazA   ...1)( 1

1
1 ). The SDP TF model is then said to 

account only for an input nonlinearity. In such cases, the numerator SDP can be used to 

transform the input variable, such that it can be related to the output variable via a linear 

TF model (Young et al., 1996; Lees, 2000). Time-variation of the parameters of both 

numerator and denominator TF polynomials can result in model instability and poor 

parameter estimation. Consequently, the former ‘input nonlinearity’ approach has been 

predominantly used in the past for SDP TF modelling in natural systems (e.g. Lees 

(2000), Young (2000)), and is therefore adopted for this study.

The SDP TF model algorithms within the CAPTAIN toolbox (CRESS, 2004) were

employed in the present study. The following outlines the steps adopted during
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calibration and validation of suitable SDP TF models for characterising the input 

nonlinearities studied in Cases 1 and 2. 

1. Estimation of the state-dependent parameters (SDP) using the recursive Fixed 

Interval Smoothing (FIS) algorithms (Young, 1984; 1985; 2000). These time-

variable parameter estimation methods allow for rapid (state-dependent) 

parametric changes (Young, 2000) and hence can handle nonstationary data. The 

estimated SDP act as a ‘gain’, which either enhances or suppresses the effect of 

the input variable, and is therefore also referred to as the SDP gain. The SDP 

gain and the state variable are plotted (e.g. Figure 3) or tabulated to provide a 

nonparametric estimation (i.e. in the format of a look-up table) of the state-

dependency influencing the input variable (which defines the input nonlinearity). 

2. Transform the input variable by multiplying it with the corresponding SDP gain 

to obtain the effective proportion of the input (i.e. effective input) that can be 

linearly related to the output variable. In this way, the input nonlinearity is 

incorporated via the effective input. 

3. Identify and estimate an optimum linear TF model between the effective input

and the output variable using the Simplified Recursive Instrumental Variable

(SRIV) algorithms (Young, 1984; 1985). The selection of the most appropriate 

linear TF model is based on two statistical criteria, namely the coefficient of 

determination (RT
2) and the Young Information Criterion (YIC). RT

2 provides a 

measure of the goodness of fit of the model based on the relative measure of the 

variances of the model errors and the observed data (Young, 1993a). In general, 

the closer its value is to unity, the better is the model fit. YIC provides a measure 

of both the goodness of fit of the model and the efficiency of the model 
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parameters (Young, 1993a). It is based on minimising the sum of the total 

variance of all model residuals and the error variance associated with each 

model parameter. The more negative the YIC value, the better defined are the 

parameter estimates. 

4. Model Validation: For purposes of validating the SDP TF model (and 

forecasting), the SDP gain corresponding to the validation (or forecast) period 

need to be estimated. For this, a shape-preserving interpolant based on the 

piecewise cubic Hermite interpolating polynomial in MatlabTM is fitted to the 

SDP gain vs state variable relationship produced during model calibration. The 

SDP gain associated with the state variable data corresponding to the validation 

period are estimated from this interpolant curve. The corresponding input data 

are then transformed using this SDP gain and used within the calibrated model.

The FIS and SRIV algorithms provide estimates of the standard errors (i.e. 2 × 

standard deviation) associated with the model parameters. In this study, the maximum

range of errors associated with the SDP TF model parameters are represented by (±6 × 

standard errors) (Young pers comm). 

2.2. Data  

Data collected by the Field Research Facility (FRF) at Duck, North Carolina, 

operated by the Coastal Engineering Research Centre of the U.S. Army Engineer 

Waterways Experiment Station (FRF, 2003), are used in this study. The data used here 

cover a 20.3-year period between May 1983 and September 2003 and encompass: beach 

profile surveys corresponding to two pairs of profiles located north (Profiles 58 and 62) 

and south (Profiles 188 and 190) of the FRF pier at Duck (Figure 1); and significant 
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wave height (Hs), peak period (Tp), wave direction (θ), water level (WL) and surge (S) 

measurements measured at the 8 m and 17 m depths. The beach data cover the cross-

shore distance from the lower dune region (75 m) to 700 m and encloses the active 

portion of the profile (i.e. average position of depth of closure (4 m depth) ≈ 410 m, 

Larson and Kraus (1994)). Time series of volume per unit metre of shoreline for each of 

the above mentioned profiles were computed by integrating these beach data to the 7 m 

depth (illustrated in Figure 2). As these data extend beyond the average position of the 

depth of closure, changes in beach volume are expected to be predominantly influenced

by longshore processes (as cross-shore processes would mainly influence the 

redistribution of sediment across the profile). Alongshore volume differences between 

northerly and southerly profiles are seen in Figure 2, particularly post 1991 (discussed 

in detail in Gunawardena (2008)). The wave data were also processed to generate 

regularly sampled time series of monthly average significant wave height, wave 

direction and peak period. Further details of the above data and the generated times 

series are discussed by Gunawardena et al. (2008). 

3. Case 1: Nonlinear SDP TF Modelling of the Beach Volume Response 

to Wave Forcing

Taking into consideration that the beach data used in this study extend well 

beyond the closure depth, the monthly beach volumes at Duck are, as expected, best 

related to the monthly average alongshore component of the wave energy flux ( P )

defined by Equation 4 (as in Komar (1998)).

bbgb CgHP  cossin
8

1 2 





 (4)
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where:   is density of water; g  is acceleration due to gravity; bH , b , gC  are 

the significant wave height, wave approach angle and wave group velocity under 

breaking-wave conditions, which were computed using a linear wave transformation 

model (Gunawardena, 2008). Here, the SDP TF modelling approach was adopted to 

investigate the state-dependency of P on the preceding beach volume (i.e. input 

nonlinearity associated with P ). The TF model parameters associated with P at a 

given time-step are made to vary with time as a function of the beach volume at the 

previous time-step (i.e. preceding beach volume is made the state variable). Equation 5 

shows the SDP TF model form used in this analysis.




 k

k
k P

zA

zVB
V

)(

),(
1

1
1 (5)

where: V  is the monthly beach volume per unit of shoreline (m3) (model 

output); P  is the monthly average longshore component of the wave energy flux 

(normalised using 8
1 ,   and g  to have units of m3/s) (model input); k  and   are as 

defined in Equation 1; ),( 1
1


 zVB k  is the numerator TF polynomial comprising the SDP 

gain that varies with time as a function of the state variable, 1kV ;  )( 1zA  is the 

denominator TF polynomial comprising constant parameters. For comparability with the 

linear TF model results of Gunawardena et al. (2008), the first 15 years of the monthly 

beach volume and P time series, starting from January 1985, were used in the 

calibration of a suitable SDP TF model. The remaining 2 years (2001-2003) of data 

were used to validate the model. In this paper, only those results corresponding to 

Profile 62 are presented. 
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3.1 Investigation of the Input Nonlinearity and Prediction of Beach Volume

Figure 3 shows the SDP gain (estimated on the basis of Equation 5) that defines

the nonlinear state-dependency between the wave forcing input  P  and state variable 

(preceding beach volume) for Profile 62. The corresponding RT
2 value of 0.5 indicates 

that this SDP relationship is well defined. In general, the strength of the identified 

nonlinearity is reflected by the degree of variation of the SDP gain with respect to the 

state variable. The variability of the SDP gain in Figure 3 over the whole range of 

volumes considered indicate the occurrence of this nonlinearity under all morphological 

conditions represented by the beach volumes. However, the variability of the SDP gain 

increases at volumes > 2270 m3 (as shown by the increased negative gradient of the 

SDP relationship in Figure 3), which suggests that the nonlinearity becomes stronger 

during high profile volumes. This is also shown in Figure 4, where the largest SDP gain 

magnitudes correspond to 1990 - 1997 when the beach volume was > 2270 m3. By 

contrast, low SDP gain values correspond to the 1985 - 1990 and 1997 - 2001 periods, 

which are associated with lower volumes (< 2270 m3). Thus, these results indicate that 

the strength of the nonlinearity varies depending on the morphological state (high/low

volume) of the profile. 

From Figure 4, it is also seen that the time-variation of the SDP gain magnitude 

imitates that of beach volume. For example, the long-term increase in volume between 

1990 - 1994 corresponds to a similar long-term increase in the SDP gain magnitude,

while the more rapid decrease in volume between 1995 - 1997 is associated with a 

similarly rapid reduction in the SDP gain magnitude. Furthermore, increases and 

decreases in the SDP gain magnitude are predominantly associated with accretional and 

erosional events, respectively. Hence, the estimated SDP gain effectively accounts for 
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variations in the speed of the profile’s volume response as well as its direction of 

change (i.e. accretion or erosion). The widened standard error boundaries associated 

with the SDP gain for low (< 2120 m3) and high (2470 m3) volumes in Figure 3 reflect 

the higher uncertainty associated with these parameter values. This is due to the fewer 

data points corresponding to these low and high values of volume in the calibration data 

set.

The SDP gain was then used to calculate the effective proportion of the wave 

forcing input P (i.e. SDP gain × P ) that  directly influences the profile volume. Figure 

5 compares the time series of beach volume (output) and P  (input) with the resulting 

effective input. As observed here, the effective input significantly differs from the 

original P  data. The effective input was then related to the beach volume using the 

linear TF modelling approach. Based on the RT
2 (= 0.816) and YIC (= -6.05) values, a 

TF model comprising a [1 1 0] structure (i.e. 1st order numerator and denominator TF 

polynomials and a zero time-delay, respectively) was found to have the best-fit. This 

model explains a large proportion (81.6%) of the beach volume variance and has a low 

root-mean-square (RMS) error of 61.1 m3. As seen in Figure 6, this model very 

efficiently describes the long-term trend in the data while also capturing some short-

term fluctuations, particularly during periods of larger beach volume (> 2270 m3).

Equation 6 represents this identified linear TF model.

  kk PVf
z

V k 


  11897.01

222.0
(6)

where: V , P and k are as defined in Equation 5 ;  1kVf  represents the time-

varying SDP gain;   kPVf k 1  represents the effective input, which incorporates the 

estimated input nonlinearity. The predominantly negative SDP gain values (Figures 3
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and 4) and the positive coefficient of the numerator term in Equation 6 indicate that, in 

general, P  forms a negative relationship with the beach volume. Equation 6 can be 

expanded to its difference-time form (Equation 7) by simple cross multiplication and the 

application of the 1z  operator. 

  kkk PVfVV k   1222.0897.0 1 (7)

(using the same notation as Equation 6 above)

Equation 7 shows that successive beach volume differences at Duck are 

nonlinearly related to the longshore component of the wave energy flux via time-

varying state-dependent parameters that characterise the nonlinear dependence of P on 

the preceding volume. It should be noted that the value of P  at a given time-step 

represents the average wave conditions over the 1 month period prior to the 

corresponding profile survey and hence by default is associated with a lag of 1 month.

The SDP TF model was validated using observed P  data for the 2-year period 

between September 2001 and September 2003. Here, volumes predicted by the model at 

each time-step were used for the model validation at the next time-step (i.e. simulation 

mode). Figure 3 shows the shape-preserving interpolant fitted to the SDP relationship

for estimating the SDP gains corresponding to the latter period. As seen here, this

interpolant curve reproduces the nonlinear state-dependency very well (RMS error of 

interpolated SDP = 0.59). Figure 6, shows the model output of beach volume produced

for this validation period. The model fit is associated with a low RMS error of 72.1 m3

and explains the longer-term patterns in the data very well. The model also does well in 

capturing some of the short-term events such as the peak in volume during April 2001. 
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3.2 Comparison of Nonlinear SDP and Linear Constant Parameter TF models

Figure 6 and Table 1 compare the results of the linear TF model previously

identified for Profile 62 by Gunawardena et al. (2008) and the SDP TF model estimated 

above. As seen in Figure 6, in general, both linear and nonlinear TF models describe the 

longer-term trend in the data very well. However, the latter also captures short-term 

changes such as the accretional events (volume peaks) during 1990 – 1991 and 1992 -

1996. The nonlinear model typically performs better than the linear model for volume 

predicting during periods when the volumes are larger than 2270 m3. The linear model, 

however, provides a better prediction of the longer-term volume trend than the 

nonlinear model for the low volume period between 1985 - 1988. The improved overall 

predictions provided by the nonlinear model are reflected by its higher RT
2 value, lower 

YIC value and lower RMS model calibration and validation errors.

It should also be noted that there are differences in the time delays associated 

with the linear and nonlinear models (Table 1). That is, in the case of the linear model,

the beach volume lags behind the wave forcing input P  (original data) by 8 months

(discussed in Gunawardena et al. (2008)). In contrast, the nonlinear model (Equations 6 

and 7) is not associated with a time delay. The latter was confirmed using a cross-

correlation test between the effective input of P and the beach volume of Profile 62, 

which showed that the maximum correlation (= 0.45) for time-lags between 0 to 12 

months occurred at the zero time-lag. These differences may be explained by the 

different system dynamics represented by these models. That is, while the linear model 

considers only the linear relationship between the volume and P , the nonlinear model

also accounts for the effects of morphological feedback on this relationship. This is 

discussed further in Section 3.4. 
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3.3 Forecasting Beach Volume using the Nonlinear SDP TF Model

In using the above SDP TF model for forecasting the beach volume at the kth

time-step, data on the preceding beach volume and wave conditions ( P ) at the (k-1)th

time-step are required. Generally, wave conditions can be forecast more easily than 

morphological data. In this study, the Dynamic Harmonic Regression (DHR) model 

(Young et al., 1999) was used to forecast P  corresponding to a 2-year period between 

September 2001 and September 2003. This was done on the basis of extrapolating the 

long-term trend and periodicity identified by the DHR model for the observed P  data 

(corresponding to January 1985 - August 2001) to the latter 2-year period

(Gunawardena et al., 2008). Figure 7 shows P  forecast by the DHR model for this 

period. The forecasts follow the observed data closely and have relatively small errors 

(RMS error = 0.66 m3/s). The beach volume was then computed using Equation 7, 

where at each kth time-step the beach volume forecast for the (k-1)th time-step was used 

as the state variable in calculating the beach volume at the kth time-step. Figure 8 

compares the resulting beach volume forecasts with those obtained using the linear TF 

model adopted by Gunawardena et al. (2008) as well as the SDP TF model validation. 

As seen here, although both linear and nonlinear models capture the overall long-term 

trend in the data well, the nonlinear model performs best as it forecasts some of the 

shorter-term variability in the volumes (like in the case of the model validation) and 

consequently has smaller RMS errors (Table 1). 

3.4 Discussion of Model Results

The estimated SDP relationship shows an overall nonlinearity and further 

suggests that the nonlinearity is strongest during high volume conditions (> 2270 m3). 
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Analysis of beach profile data showed that, during periods of high volume, the profiles

comprise two well-developed nearshore bars as shown in Figure 9 (also discussed in 

Gunawardena (2008)). Previous studies have shown that these nearshore bars at Duck 

interact with driving forces to generate nonlinear feedback mechanisms (Lippmann and 

Holman, 1990; Lippmann et al., 1993; Plant et al. 2001). The stronger nonlinearity 

identified in this study for periods of increased beach volume is thus inferred to be 

associated with these nonlinear bar mechanisms.

The SDP TF modelling approach describes the beach volume response to P under 

all conditions of the SDP relationship (irrespective of the occurrence of a strong or mild 

nonlinearity). Thus, a key advantage of this technique is that it enables prediction of the 

beach response when there is no clear separation between conditions and timescales for

approximately linear and/or nonlinear behaviour. Comparison of the model output and 

forecasts of the nonlinear SDP TF model with those of the linear TF model shows that 

both these models very efficiently predict the long-term trends in the data. However, the 

nonlinear model also predicts the shorter-term volume fluctuations about these trends 

during periods of increased beach volume (Figures 6 and 8). Thus, the results suggest 

that, in general:

 the dominant longer-term volume trend, which is successfully predicted by both 

linear and nonlinear models, is a direct consequence of the long-term changes in

P  (i.e. wave height and direction). 

 the shorter-term volume fluctuations occurring about this long-term trend may 

be associated with the nonlinear mechanisms of morphological feedback 

considered here (particularly during periods of increased volume).  

The time-lag associated with the linear model and the nonlinear dependence on the 
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preceding morphology incorporated by the nonlinear model both suggest that the 

longer-term beach morphology at Duck evolves at a slower rate compared to the wave 

forcing. This was also observed by Plant et al. (1999) for bar migration at Duck.

Furthermore, the negative state-dependency between P  and the beach volume 

identified in this study, and the negative linear TF relation found between these 

variables in Gunawardena et al. (2008), suggest that P is negatively related (either

linearly and/or nonlinearly) to the beach volume. Thus, in general, low magnitude 

negative values of P  (corresponding to reduced wave heights approaching from 

directions south of the FRF pier) generate volume increases. Conversely, large positive 

values of P  (corresponding to increased wave heights approaching from directions 

north of the FRF pier) are associated with decreases in volume. These results show that 

profile volume changes at Duck are associated with longshore wave processes. Similar 

observations have been made in the past by Miller et al. (1983) and more recently by 

Miller and Dean (2007b) via an analysis of longshore shoreline variability at Duck.

The short-term fluctuations in volume that remain unpredicted by both linear and 

nonlinear TF models may be attributed to: other system inputs (e.g. storm waves and/or 

surge effects); more intricate nonlinear feedback mechanisms (e.g. “destabilising”

feedback effects that result in the decay of nearshore bars under continuous non-

breaking conditions (Plant et al., 2001)); and limitations imposed by the differences in 

the sampling frequencies of the beach profile and wave data. It should also be recalled 

that the state-dependent nonlinearity investigated here is associated only with P  (i.e.

only the numerator parameters of the SDP TF model vary in time). Further research is 

required to determine if time-variation of the denominator TF model parameters instead

would alter the results of this analysis. This is beyond the scope of the present study and 
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will be considered in the future. 

4. Case 2: Nonlinear SDP TF Modelling of the Alongshore Interactions 

of the Beach Profile Volume 

In this analysis, the nonlinear SDP transfer function modelling approach is used 

to investigate the dynamic evolution of the beach profile in relation to the alongshore 

diffusion equation of Pelnard-Considère (1956) for beach volumes. The latter author

introduced the idea of modelling the planform evolution of beaches using the following 

diffusion equation:

2
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where: V is the volume of sand (m3) at an alongshore position x (m) at a given 

time t  (unit of time), and G  is the time varying sediment longshore diffusivity (m2/unit

of time) that represents the wave conditions and is given by:
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where: K  = sediment transport coefficient, bH  = breaking wave height, g = 

acceleration due to gravity,   = ratio of breaking wave height to local water depth, s = 

sediment specific gravity, p = sediment porosity, )( * Bh  = height of the active beach 

profile (closure depth, *h , and berm height, B ). Equation 8 assumes that no significant 

cross-shore exchanges of sediment occur beyond the active portion of the profile 

enclosed by the berm and closure depth. This equation can be solved in space and time, 

using analytical and/or different numerical schemes, to predict the volume V  at any 

given alongshore beach position at a given time. However, the latter requires a regular 
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spatial grid. The data-based approach adopted here provides a very simple and 

statistically efficient alternative.

Using the simplest finite difference approximations to the differential terms in 

Equation 8, shown in Equation 10, the above diffusion equation can be expanded to give 

its approximate difference-time form shown in Equation 11.
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where: jV represents the beach volume at the alongshore positions j , 1jV  and 

1jV  represent the beach volume at the alongshore positions 1j  and 1j , k  is the kth

discrete-time sample, t  is the sampling time interval and x  is the sampling interval 

between adjacent profile lines. 

By introducing the backward shift operator 1z  (where, for e.g. nkk
n VVz 

  ) in

Equation 11 to obtain Equation 12, the approximate discrete-time transfer function form 

of the diffusion equation can be presented by Equation 13.
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Equation 13 has the form of a 1st order discrete-time transfer function model

given by:
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where: )(.0 tGtb  ; ))(.2( 2
0 xtGta   and 2

1 xa   are the TF model 

parameters, jV  is the output, and 1jV  and 1jV are the inputs. The above TF model is 

nonlinear as the parameters ob  and oa are time-varying and are dependent on the 

longshore sediment diffusivity term, G .

In this analysis, the SDP TF approach is used to model the input nonlinearities 

associated with the state-dependencies of the 1jV  and 1jV  terms in Equation (14) on 

G . The objectives of this work are to: (a) investigate the ability to model the concept of 

alongshore sediment diffusion using a data-based TF approach and monthly beach 

volume data; (b) identify and estimate a statistically efficient TF model from the 

observed data that best explains this behaviour; (c) predict the beach volume of a given 

profile line. Here, the beach volume of a given profile line (say Profile 62) at the kth

time-step is used as the TF model output, while the beach volume at adjacent profile 

lines (in this case Profiles 58 and 188) at the (k-1)th time-step are used as the model 

inputs. The longshore sediment diffusivity in deep water at the (k-1)th time-step is used 

as the state variable on which the inputs, 1jV  and 1jV , are made to depend. The input 

nonlinearity associated with each of these variables is investigated individually so that 

the nonlinear contributions of adjacent profile lines on either sides of the investigated 

profile could be studied independently. The input and state variable data used within 

this model are lagged by 1 month relative to the output data. This was done in order to 

investigate the ability of predicting the volume of a given profile (at a given time) on the 

basis of the preceding volume of the adjacent profiles and the preceding wave 

conditions. Thus, the general SDP TF relation investigated here can be represented by:
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where: 62V  (output), 58V  and 188V (inputs) are the beach volume time series of 

Profiles 62, 58 and 188; )( 1zA  is the denominator TF model polynomial, while 

),( 1
1

1 
 zGB k  and ),( 1

1
2 

 zGB k  are the dynamic numerator TF model polynomials 

associated with the inputs 58V  and 188V , respectively. The numerator polynomials 

would comprise state-dependent parameters (SDP) that vary in time, depending on G

(state variable). Here, G  is the longshore sediment diffusivity in deep water, which was 

calculated using Equation 16 (Dean, 2001). The latter was used instead of the shallow 

water estimate of G  (defined in Equation 9) so that it could be used with different 

beach profiles (i.e. because it is generalised and not associated with a specific 

bathymetry). 
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The subscript ‘o’ in the above equation denotes the deep water conditions of the 

variables defined in Equation 9, while GoC  is the deep water wave group velocity, *C

and *  are the wave celerity and wave approach angle, respectively, in the water depth, 

*h  (= 8 m depth), o and o  are the azimuth of an outward normal drawn to the 

shoreline and the wave approach angle relative to the true north, respectively. The 

above deep water wave properties were computed by transforming the wave data 

measured at the 8 m and 17 m depths to deep water using linear wave theory. Values of 

s  = 2.65, p  = 0.42 (Komar, 1998) and  = 0.4 (Sallenger and Holman, 1985) were 

used in the computation of G .
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Thus, using the above approach, the variables in the diffusion equation were

related to determine a statistically efficient data-based SDP TF model that best describes 

the observed data. This approach ensures that the SDP TF model structure is determined

directly from the observed data itself, rather than fixing it a priori on the basis of the 1st

order TF approximation given in Equation 14. The results obtained by relating the 

volume of Profile 62 to the volume of Profiles 58 and 188 via the dependence on the 

deep water longshore sediment diffusivity (as seen in Equation 15) are presented here. 

The first 14 years of data (starting May 1983) (Figure 10) were used to calibrate the 

nonlinear SDP TF model between these variables. The remaining 5 years of data were 

used to validate the model. 

4.1 SDP TF Model Calibration and Prediction of Beach Volume

Figures 11 and 12 show the state-dependent parameter gains corresponding to 

the two input variables (i.e. volume of Profiles 58 and 188, respectively) estimated on 

the basis of Equation 15. These SDP gains are associated with an RT
2 value of 0.70, 

which suggests that the identified nonlinearities are well defined. As seen in Figure 11, 

at values of G < 0.2x106  m2/month, the SDP gain associated with Profile 58 initially 

decreases with increasing G  and thereafter progressively increases until G ≈ 2x106

m2/month, after which it remains approximately constant. This indicates that for 0.2x106

< G < 2x106 m2/month, the SDP gain associated with the volume of Profile 58 

increases with G . This in turn suggests that under these conditions, the effective 

contribution of the volume of Profile 58 in characterising the volume of Profile 62 

increases with the longshore sediment diffusivity. The converse is seen in Figure 12, 

where the SDP gain associated with Profile 188 initially increases with G (up to G  = 



24

0.2x106 m2/month) and thereafter decreases to exhibit negative values until G = 2x106

m2/month, after which it remains constant. This suggests that the effective contribution 

of the volumes of Profile 188 in characterising those of Profile 62 increases negatively

with increasing longshore sediment diffusivity up to G < 2x106 m2/month, beyond 

which no significant state-dependent nonlinearity is estimated. From Figures 11 and 12, 

it is seen that the standard errors associated with the estimated SDP gains increase for 

G  > 2x106 m2/month. This can be explained by the availability of fewer data points 

associated with these values of G . This also explains the relative constancy of the SDP 

vs G  relationships (i.e. decay of the state-dependent nonlinearity) at these larger values 

of G .  

Figure 13 illustrates the time variation of these SDP gains. The positive SDP 

gain associated with Profile 58 indicates that the volumes of this profile are positively 

related to those of Profile 62 (i.e. volume increases on Profile 62 are linked with volume 

increases on Profile 58, and vice versa). By contrast, the SDP gain associated with 

Profile 188 is positive or negative at varied times, the latter which indicates that the

volumes of this profile are negatively related with those of Profile 62 (i.e. volume 

increases on Profile 62 are linked with volume decreases on Profile 188 and vice versa)

at particular periods of time. These contrasting relationships between the volumes of 

Profile 62 and those of Profiles 58 and 188 are illustrated in Figure 10, where it is seen 

that increased volumes on Profiles 58 and 62 during certain periods coincide with 

significantly reduced volumes on Profile 188, and vice versa (e.g. Dec 1984 – Sep 1986,

Dec 1986 – Feb 1987, 1989 – 1990, 1992 – 1997). This explains the opposing patterns 

observed in the state-dependent relationships in Figures 11 and 12. Furthermore, the 

SDP gain associated with Profile 58 has larger magnitudes than those estimated for 
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Profile 188, suggesting that the former has a more dominant influence in characterising 

the volume of Profile 62. This can be expected as Profile 62 is located at a closer

proximity to Profile 58 (~ 100 m apart) than Profile 188 (~ 1000 m apart). It should be 

noted that the SDP gains associated with the latter two profiles are normalised during

their estimation such that their summation at each kth time-step is 1 (as seen clearly from 

Figure 13) while still representing weights for relating the volumes of these two profiles 

to those of Profile 62. 

Figure 14 shows the effective volume contributions of Profiles 58 and 188 

computed using the estimated state-dependent parameters. As seen in this figure, the

effective input associated with Profile 188 comprises increased short-term fluctuations 

and shows a significant transformation from the original volume data. In contrast, the 

effective input associated with Profile 58 is similar to the original volume time series, 

except that it comprises slightly smaller magnitudes. These effective beach volume 

inputs were then related to the volume of Profile 62 using the linear TF modelling 

approach. Equation 17 represents the SDP TF model that was identified to best fit the 

observed beach volume of Profile 62, while also having statistically reliable parameters

(YIC = -5.45). This 1st order model has a RT
2 value of 0.912, indicating that it explains a 

very large proportion (91.2%) of the variance in the volume data of Profile 62. The 

standard errors (in this case, = 2 × standard deviation) associated with the model 

parameters are enclosed within the brackets. Equation 18 represents the difference-time 

form of this model. 
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where: 62
kV , 58

kV  and 188
kV are the beach volumes of Profiles 62, 58 and 188;

 58
1kGf  and  188

1kGf represents the time-varying SDP gains associated with Profiles 

58 and 188, respectively;   58
1

58
1  kVGf k  and   188

1
188

1  kVGf k  represent the effective 

inputs associated with Profiles 58 and 188, respectively. Equation 18 shows that the

above SDP TF model defines the successive monthly volume differences of Profile 62 

as a linear combination of time-varying weighted proportions of the volumes of Profiles 

58 and 188. These weights represent the nonlinear state-dependency of the latter 

variables on the longshore sediment diffusivity.

Figure 15 compares the calibrated model output of beach volume with the 

observed data for Profile 62. As seen here, the model very effectively captures the long-

term and short-term patterns in the data with small errors (RMS error = 38 m3). The 

identified model was also validated using data for the 5 year period between September 

1998 and September 2003. The SDP gains associated with the input variables for this 

period were estimated from the interpolant curves fitted to the SDP relationships in 

Figures 11 and 12. As seen in the latter figures, these interpolant curves reproduce the 

identified state-dependent nonlinearities well (in both cases, RMS errors of interpolated 

SDP gain = 0.1). Figure 15 shows the resulting beach volume computed for this 

validation period. As seen here, the model very successfully predicts the beach volume 

(RMS error = 73 m3) for the latter period. This shows that the TF model in Equation 18, 

which was calibrated using a portion of the data set, can efficiently describe the beach 

volume over long validation periods without the re-estimation of its constant 

parameters. 
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4.2 Discussion of the SDP TF Model Results 

The above results show that the variables within the well-known diffusion 

equation by Pelnard-Considère (1956) can be successfully related using the SDP TF 

modelling approach to predict the monthly beach profile volume at Duck. Prediction of

a profile’s volume on the basis of adjacent profile volumes and the deep water 

diffusivity term indicates that volumetric changes of adjacent profiles at Duck are

related (either positively or negatively, as indicated by the estimated SDP gains). The 

latter is consistent with Miller and Dean (2007a) who also found that during certain 

periods, accretion of northerly profiles coincide with erosion of southerly profiles and 

vice versa. The results of Case 2 further suggest that the beach volumes at this site are

influenced by alongshore sediment exchanges between profiles. As these volume data 

characterise the combined net product of both short-term (1-12 months) and long-term 

(> 12 months) sediment transport processes, both shorter and longer-term volume 

changes of a given profile can be predicted using this approach.

A comparison of the data-based SDP TF model in Equation 17 and the TF 

approximation of the diffusion equation (Equation 14) shows that, even though both 

these models comprise 1st order transfer functions, they have differences. That is, while 

the latter is fully nonlinear (i.e. both numerator and denominator TF parameters vary as 

a function of G ), the former only incorporates the input nonlinearities associated with 

the state-dependency of each  input variable on G . In addition, the latter applies to data 

comprising a regular spatial (alongshore) sampling interval, x . In contrast, the 

alongshore profiles considered in the SDP TF model in Equation 17 are not equally 

spaced (i.e. x  is not constant). The results of this analysis show that, despite 

considering only the input nonlinearities, the SDP TF model explains the beach volume 
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extremely well, which demonstrates that the concept of alongshore sediment diffusion 

can be successfully modelled using this alternative approach and monthly beach and 

wave data. Furthermore, the SDP TF approach can be adopted to approximately 

represent the diffusion equation without the need of data sampled at equal spatial 

intervals. This is a key advantage of the latter approach because in practice field 

measurements are often taken at irregular intervals.

It should be noted that the TF models presented in both Cases 1 and 2 adopt the 

same assumption that profile volume changes at Duck are associated with longshore 

processes; although different variables and relationships are modelled in each case

giving different prediction results. The nonlinear SDP TF model identified in this 

section is clearly far superior in fitting the beach volume data to the linear and nonlinear 

TF models previously discussed in Section 3. However, as the former operates on the

basis of adjacent profile volumes and wave data at the previous time-step (month), the 

maximum lead-time for volume forecasts is only 1 month. Hence, unlike the linear and 

nonlinear TF models considered in Section 3, the above nonlinear SDP TF model 

cannot be used to produce longer-term predictions of beach volume, but instead 

provides one step-ahead (i.e. 1 month-ahead) predictions. Nevertheless, the simplicity,

inexpensive nature and good performance of this model make it attractive for practical 

applications requiring the prediction of the volume of different cross-shore sections of a 

beach. This model could also be used for data-processing to fill gaps in volume data of a 

given profile by considering those of adjacent profiles. 
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5. Conclusions 

In this paper, a simple data-based nonlinear SDP TF modelling approach is 

introduced for identifying and estimating dynamic nonlinearities in the context of beach 

morphology. Here, input nonlinearities associated with the dependency of system inputs 

on other system variables are explored. A key advantage of this approach is that the 

nonlinearities investigated are confined to particular system variables and are exposed, 

enabling their interpretation in terms of physical mechanisms influencing the system. 

The application of the SDP TF modelling approach is demonstrated via two case 

examples, both involving the prediction of the monthly beach profile volume at Duck, 

North Carolina. In the first of these cases, the input nonlinearity arising from the 

dependence of the longshore component of the wave energy flux on the antecedent 

beach volume is investigated. The strength of this nonlinearity is generally found to 

vary with time depending on the volume of the beach profile, and is strongest during 

periods of high volume (> 2270 m3). The resulting SDP TF model identified efficiently 

predicts the long-term volume trend (similar to a previously identified linear TF model) 

but also predicts the shorter-term volume fluctuations particularly during periods of 

high beach volume. In the second case example, the variables within the well-known 

diffusion equation (Pelnard-Considère) for beach volumes were successfully related via 

the SDP TF modelling approach to predict both the short and long-term volume 

changes. The TF models considered in these two cases can be used for both long-term 

(up to 2 years) and short-term (1 month ahead) forecasting applications, respectively. 

Furthermore, the results of this study show that monthly volumetric changes of the 

beach profiles at Duck that extend beyond the average position of the closure depth are 

predominantly related to longshore processes. 
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The SDP TF models presented in this paper may be refined further by modelling 

the associated noise term to account for uncertainty in the data and other system inputs. 

However, the fact that the prediction and forecasting performances of these models are 

good, despite these limitations, is a testament to the robustness of this method. Further 

research is required to validate the applicability of this modelling approach for 

predicting the beach morphology at other coastal sites exhibiting varied environmental 

conditions (e.g. stronger tidal influences). 
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Notation

niai ,...2,1,  denominator state-dependent parameters 

),( 1zvA k
denominator polynomial of the SDP TF model

mjbj ,...1,0,   numerator state-dependent parameters 

),( 1zwB k numerator polynomial of the SDP TF model

B berm height

GoC deep water group wave velocity

*C wave celerity in water depth, 

g acceleration due to gravity (m/s2)

G sediment longshore diffusivity (m2/unit of time) 

*h closure depth 

oH deep water wave height (m)

bH breaking wave height (m) 

sH significant wave height (m)

k discrete-time sample (months) 

K sediment transport coefficient

m order of numerator TF polynomial 

n order of denominator TF polynomial 

p porosity

2
TR coefficient of determination

s specific gravity

S surge (m)
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t time

t sampling time interval 

pT peak period (s)

u    TF input variable

U cross-shore and alongshore contributions of the normalised wave energy 

V beach profile volume per unit of shoreline (m3)

niv ki ,...2,1,,   state variables

mjw kj ,...1,0,,  state variables

WL water level (m)

x   alongshore distance (m)

x sampling interval between adjacent profile lines

y TF output variable

1z backward shift operator

o wave approach angle relative to the true north 

o azimuth of an outward normal drawn to the shoreline

 wave direction (degrees relative to the FRF pier)

 ratio of breaking wave height to local water depth

 pure time delay 

 noise term
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Table Captions

Table 1. Comparison of the linear and nonlinear TF models estimated between 

beach volume and P for Profile 62. 

Figure Captions

Figure 1. Bathymetry of the Field Research Facility at Duck showing the 

locations of Profile lines 58, 62, 188 and 190.

Figure 2 Time series of monthly beach volume at Profiles 58, 62, 188 and 190.

Figure 3. State-dependent parameters (or SDP gain) associated with the wave 

forcing term P . This SDP vs beach volume (Profile 62) relationship (red circles) 

characterises the nonparametric estimation of the input nonlinearity resulting from the 

dependence of P  on the antecedent beach volume. The standard error boundaries 

associated with the SDP gain are shown by the dotted black lines. The shape-preserving 

cubic interpolant fitted to these data, for purposes of estimating the SDP gain during 

model validation and forecasting, is also shown (black line). The corresponding SDP 

gain determined from this interpolant curve (i.e. “interpolated parameters”) are marked 

by the blue diamonds.    

Figure 4. Time-variation of the state-dependent parameters (SDP gain),

associated with P , in relation to beach volume and P data for the period between 1985 

and 2001. The SDP gain magnitude increases during periods when the beach volume is 

larger than 2270 m3 indicating stronger nonlinearity under these conditions.

Figure 5. Comparison of time series of observed beach volume of Profile 62, 

wave forcing P  and the effective nonlinear input of P . The latter represents the 

effective proportion of P  that directly influences the beach volume of Profile 62. 
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Figure 6. Comparison of the nonlinear SDP TF (Case 1) and linear TF 

(Gunawardena et al., 2008) model performance in fitting the beach volume of Profile 

62. Here, the beach volume predicted by these models during model calibration and 

validation are compared with observed data. The corresponding standard error 

boundaries estimated are represented by the respectively coloured dotted lines.  

Figure 7: DHR model output and forecasts for P . The vertical black line 

represents the start of the 2 year forecasting horizon. The errors corresponding to the 

calibrated model output and the forecasts (dotted red line) are offset by -6 m3/s. 

Figure 8. Comparison of the beach volumes forecast by the nonlinear SDP TF 

model (Case 1) and linear TF model (Gunawardena et al., 2008), and the SDP TF model 

validation results (Case 1) for Profile 62 over the 2 year period between September 

2001 and September 2003. The standard errors associated with the volume forecasts and 

model validation are presented by the respectively coloured and marked dotted lines.

Figure 9. Comparison of beach profiles during periods of high and low beach 

volume. It can be seen that the beach profile comprises two prominent nearshore bars 

during periods of high beach volume (> 2270 m3) (e.g. June 1995, September 1995, 

April 1996 and February 1997). By contrast, periods of low volume (< 2270 m3) are 

associated with a flatter beach profile and/or less well-developed sand bars (e.g. July 

1986 and September 1987). 

Figure 10. Time series of beach volume for Profiles 62, 58 and 188 and the 

longshore sediment diffusivity in deep water between 1983 and 1997. These data were 

used in the SDP TF model calibration in Case 2). 

Figure 11. State-dependent parameters (or SDP gain) associated with the volume 

of Profile 58 (red circles), fitted cubic interpolant (black line), and interpolated SDP 
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gain (used for model validation) (blue diamonds). The standard error boundaries 

associated with the SDP gain are shown by the black dotted lines. This SDP vs the 

longshore sediment diffusivity ( G ) relation characterises the nonparametric estimation 

of the input nonlinearity resulting from the dependence of the beach volume of Profile 

58 on G . 

Figure 12. State-dependent parameters (or SDP gain) associated with the volume 

of Profile 188 (red circles), fitted cubic interpolant (black line) and interpolated SDP

gain (used for model validation) (blue diamonds). The standard error boundaries 

associated with the SDP gain are shown by the black dotted lines. This SDP vs the 

longshore sediment diffusivity ( G ) relation characterises the nonparametric estimation 

of the input nonlinearity resulting from the dependence of the beach volume of Profile 

188 on G . 

Figure 13. Time variation of the state-dependent parameters associated with 

Profiles 58 and 188. 

Figure 14. Comparison of the observed beach volume of Profiles 188 and 58 

(original inputs) with the transformed effective inputs estimated via the input 

nonlinearities. Here, the observed and effective beach volume data are scaled to have a 

maximum value of 1 for comparison. It should be noted that, the effective input 

associated with Profile 188 comprises negative values at certain times (corresponding to 

the negative SDP estimated). 

Figure 15. Beach volume (Profile 62) predicted using the nonlinear SDP TF model 

(Case 2). Here, the beach volumes estimated by this model during the calibration (blue) 

and validation (red) stages are compared with the observed data. The corresponding 

standard errors are represented by the respectively coloured dotted lines.



Figure 1. Bathymetry of the Field Research Facility at Duck showing the locations of 

Profile lines 58, 62, 188 and 190.

Figure
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Figure 2 Time series of monthly beach volume at Profiles 58, 62, 188 and 190.



Figure 3. State-dependent parameters (or SDP gain) associated with the wave forcing 

term P . This SDP vs beach volume (Profile 62) relationship (red circles) 

characterises the nonparametric estimation of the input nonlinearity resulting from the 

dependence of P  on the antecedent beach volume. The standard error boundaries 

associated with the SDP gain are shown by the dotted black lines. The shape-

preserving cubic interpolant fitted to these data, for purposes of estimating the SDP 

gain during model validation and forecasting, is also shown (black line). The 

corresponding SDP gain determined from this interpolant curve (i.e. “interpolated 

parameters”) are marked by the blue diamonds.    



Figure 4. Time-variation of the state-dependent parameters (SDP gain), associated 

with P , in relation to beach volume and P  data for the period between 1985 and 

2001. The SDP gain magnitude increases during periods when the beach volume is 

larger than 2270 m3 indicating stronger nonlinearity under these conditions.



Figure 5. Comparison of time series of observed beach volume of Profile 62, wave 

forcing P  and the effective nonlinear input of P . The latter represents the effective 

proportion of P  that directly influences the beach volume of Profile 62. 



Figure 6. Comparison of the nonlinear SDP TF (Case 1) and linear TF (Gunawardena 

et al., 2008) model performance in fitting the beach volume of Profile 62. Here, the 

beach volume predicted by these models during model calibration and validation are 

compared with observed data. The corresponding standard error boundaries estimated 

are represented by the respectively coloured dotted lines.  



Figure 7: DHR model output and forecasts for P . The black vertical dotted line 

represents the start of the 2 year forecasting horizon. The errors corresponding to the 

calibrated model output and the forecasts (dotted red line) are offset by -6 m3/s. 



Figure 8. Comparison of the beach volumes forecast by the nonlinear SDP TF model 

(Case 1) and linear TF model (Gunawardena et al., 2008), and the SDP TF model 

validation results (Case 1) for Profile 62 over the 2 year period between September 

2001 and September 2003. The standard errors associated with these forecasts are 

presented by the respectively coloured dotted lines.



Figure 9. Comparison of beach profiles during periods of high and low beach volume. 

It can be seen that the beach profile comprises two prominent nearshore bars during 

periods of high beach volume (> 2270 m3) (e.g. June 1995, September 1995, April 

1996 and February 1997). By contrast, periods of low volume (< 2270 m3) are 

associated with a flatter beach profile and/or less well-developed sand bars (e.g. July 

1986 and September 1987). 



Figure 10. Time series of beach volume for Profiles 62, 58 and 188 and the longshore 

sediment diffusivity in deep water between 1983 and 1997. These data were used in 

the SDP TF model calibration in Case 2). 
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Figure 11. State-dependent parameters (or SDP gain) associated with the volume of 

Profile 58 (red circles), fitted cubic interpolant (black line), and interpolated SDP gain 

(used for model validation) (blue diamonds). The standard error boundaries associated 

with the SDP gain are shown by the black dotted lines. This SDP vs the longshore 

sediment diffusivity ( G ) relation characterises the nonparametric estimation of the 

input nonlinearity resulting from the dependence of the beach volume of Profile 58 on 

G . 
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Figure 12. State-dependent parameters (or SDP gain) associated with the volume of 

Profile 188 (red circles), fitted cubic interpolant (black line) and interpolated SDP 

gain (used for model validation) (blue diamonds). The standard error boundaries 

associated with the SDP gain are shown by the black dotted lines. This SDP vs the 

longshore sediment diffusivity ( G ) relation characterises the nonparametric 

estimation of the input nonlinearity resulting from the dependence of the beach 

volume of Profile 188 on G . 
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Figure 13. Time variation of the state-dependent parameters associated with Profiles 

58 and 188. 



Figure 14. Comparison of the observed beach volume of Profiles 188 and 58 (original 

inputs) with the transformed effective inputs estimated via the input nonlinearities. 

Here, the observed and effective beach volume data are scaled to have a maximum 

value of 1 for comparison. It should be noted that, the effective input associated with 

Profile 188 comprises negative values at certain times (corresponding to the negative 

SDP estimated). 
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Figure 15. Beach volume (Profile 62) predicted using the nonlinear SDP TF model 

(Case 2). Here, the beach volumes estimated by this model during the calibration 

(blue) and validation (red) stages are compared with the observed data. The 

corresponding standard errors are represented by the respectively coloured dotted 

lines.



Table 1. Comparison of the linear and nonlinear TF models estimated between beach 

volume and P  for Profile 62.

CalibrationModel 

Type

Model 

Structure

RT
2 YIC RMS error m3/m

Validation

(2 yrs): RMS 

error m3/m

Forecasting 

(2 yrs): RMS 

error m3/m

Linear [4 3 8] 0.67  -1.39    70.3 81.2 90.3

Nonlinear [1 1 0] 0.82   -6.05    61.1 72.0 75.9

Table


