
Research Directions in Distributed Systems.

Paul McKee, Ian Marshall, and Ian Henning

Summary
This article considers the technical characteristics of current distributed systems
technology as exemplified by CORBA. In the context of large-scale globally distributed
applications, potential problems are highlighted, and areas for further research and
development are suggested.

1. Introduction

Distributed computing systems have been proposed as a viable technology for the
provision of highly scaleable, high performance applications. A specific example of this
is the World Wide Web. This operates over a heterogeneous combination of computing
platforms and communication networks. Interoperability is assured via standard
protocols, IP at the network layer and HTTP at the application layer. In a more general
sense, the aim of producing a generic platform to support the needs of a large proportion
of distributed application developers has been the goal Object Management Group
(OMG) and realised in their Common Object Request Broker Architecture (CORBA)
specifications. Here the object oriented (OO) software engineering approach has been
combined with the remote procedure call (RPC) to produce a ‘software bus’. The
approach attempts to provide a set of common services for application developers whilst
hiding a great deal of the complexity which distribution brings. Services are accessed via
API’s described via a common interface definition language (IDL). A number of products
are now maturing supported on a range of target platforms which offers good prospects
for heterogeneous interworking.

There is no doubt that CORBA represents an excellent attempt to solve a very difficult set
of problems. However the increasing use of networks such as the Internet to support
seamless applications between people, communities, and businesses serve to form a set of
changing requirements which suggest further developments may well be necessary.
Electronic business for example is likely to be a key application area. Use in such an
environment spanning diverse computing, organisational and business enterprises will
fuel the demand for the sharing of information and resources. As with the WWW, such
applications are expected to become Global in extent. For use in such environments,
some of the characteristics required of a supporting distributed platform are likely to be;
• service guarantees covering performance, transactions, and security
• support for mobility both of the client and server parts of the application code
• management for performance, reliability and growth
• an ability to support the location of objects and resources from a global ‘pool’
• a series of distributed information stores to reduce network traffic

This list is by no means exhaustive, and it must be noted that new applications and
technologies will no doubt appear and add to it.

In this paper we consider the suitability of existing technology to meet some of these
evolving requirements in the context of large scale, globally distributed applications. Our
aim is to highlight some of the issues and so to stimulate debate and research. In
particular in section 2 we discuss the characteristics of existing distributed operating
systems using CORBA as the exemplar1. We consider some of key areas of
communications styles, support for interworking, scalability, mobility, management, and
security. Our analysis suggests some significant limitations for large scale and multi-
enterprise use, and these are highlighted. Potential solutions are identified and future
directions for research highlighted.

2. Systems issues

Distributed computing systems are becoming increasingly important in the realisation of
distributed applications. There are number of commercial offerings in this area
particularly CORBA from the OMG [2], DCOM from Microsoft [3], and RMI from Sun
[4].

JAVA RMI offers the advantage of being tightly coupled to the Java language system, but
as such is a closed system that locks users into a single language technology. New
languages offering features not found in Java will emerge, and will be unable to
interoperate with existing systems. However, in recognition of the need for cross
language interoperation Java RMI can make use of the IIOP protocol to link with
CORBA. Therefore it can be classed alongside CORBA in any comparison.

DCOM is attractive because it works with all Microsoft products and MS are the
dominant operating systems supplier. However the standard is not well documented,
unstable and proprietary to one manufacturer, although bindings are available for modern
languages.

The current state of the art is more fittingly represented by CORBA [1]. It is language
independent, produced by an international committee composed of representatives from
industry, often advised by academia, and is designed to support a range of high-level
services. The architecture involves communication through an object request broker
(ORB) which provides a mechanism for transparently communicating client requests to
target object implementations. However identifying CORBA as representative of the
state-of-the-art does not mean that this will become the dominant system in the
marketplace, Microsoft has much commercial leverage.

1 Although reference is made to CORBA, many of the same comments are applicable to
most existing distributed operating systems.

In this section we focus on a number of key aspects of distributed systems (CORBA) with
the aim of identifying weaknesses, we then attempt to suggest some solutions.

2.1 Communication styles

One of the overall goals of distributed object oriented computing is that from the
programmers viewpoint there should be no essential distinction between objects that
share an address space, and objects that are on two machines with different architectures
located on different continents. In a conventional distributed operating system an
embedded communication infrastructure is provided to support inter-object interaction. In
CORBA, as in most other distributed operating systems, the complexity of the
communication infrastructure has been hidden from the application designer who
therefore has no control over the choice of mechanism. In practice most CORBA
implementations only provide a single mechanism with a limited range of interaction
styles. In order to communicate between objects (or programmes) at different locations
the programmer uses procedure calls to a set of interfaces declared in a common interface
definition language. This approach enables programmers to create distributed systems
without needing to learn about networking, since procedure calls are a natural part of all
programmes. The programmer writes exactly the same code for any type of call, and
relies upon the system to take care of delivery.

CORBA is based on the use of remote procedure calls (RPC) [5]. RPC systems are
intended to make cross address space function calls look like local function calls.
Applying this within the object oriented programming model allows papering over not
just the marshalling of parameters and the un-marshalling of results, but also the location
and connection to the target objects. There is thus a single paradigm of object use and
communication no matter what the location of the objects might be. Whether a given
objects invocation is local or remote is purely a function of the implementation of the
objects being used, and could easily change from one invocation to another if no user
defined state is stored. This approach will prove effective in many situations. However,
there are many cases where the default communication mechanisms will lead to poor
performance. In such cases it would be better to encourage programmers to acquire
sufficient knowledge to make a more appropriate choice, and provide the tools to enforce
the choice as part of the distributed operating system.

Figure 1 depicts a hypothetical situation where a rich mixture of communication styles
would be appropriate. In this simple example the performance of the underlying
infrastructure may well vary considerably, for example loss and latency cannot be
predicted if the Internet is used between enterprises. For time critical applications this
may prove problematic. Latency may even be an issue over high performance networks in
some demanding cases. In a wider context both computer and telecommunications
networks are migrating towards a multi-service paradigm where variable degrees of
quality of service will be available. Such capabilities should be made available to the
application programmer to use as befits the situation. Moving up from the low-level
infrastructure the interaction styles between objects may also vary. Simple connection

oriented communication may be adequate in many circumstances but a connectionless
‘fire and forget’ service with delivery guarantees may also be useful.

Figure 1 Examples of different communication styles; type 1: unicast across enterprise
boundaries, type 2: multicast to communicate with multiple objects associated with a
session, and type 3: low delay, low latency messaging.

In general there are differences between distributed and centralised programmes as a local
member function call and a cross continent object invocation are clearly not the same.
One of the main differences concerns concurrency. A centralised programme typically
has a single thread of control. When centralised programmes do support concurrent
execution the threads communicate using shared data supported by monitors or
semaphores to allow synchronisation or mutual exclusion. A distributed programme on
the other hand is always multi-threaded. Whether more than one thread is simultaneously
active depends on the original motivation for distribution. In a conventional client server
model a single conceptual thread passes between servers and interactions almost always
follow a request-reply model. This type of application is well suited to the conventional
interaction style supported by CORBA and other current distributed operating systems,
and the use of the underlying communication mechanism can be very efficient (in a good
CORBA implementation). However, where distribution has been used to exploit
parallelism in the task and spread the processing load over multiple processors, it will
normally be more effective to use a message based interaction style. Messages enable
programmers to invoke remote objects without waiting for the response (and wasting
local processor cycles). If the distributed operating system does not support more than

user

1 1

1

2
3

Enterprise A
Enterprise B

Enterprise C

r

Com

}
 serve
munication
paths

one interaction style programmers are forced to model those they require in terms of the
dominant model, this is often error prone and obscures the programmers original intent.

It should be clear by now that a range of communication options may well prove
essential. Typical examples of these might include one to one; one-many, broadcast;
streamed or message based; connection or connectionless; synch or asynch, delay/jitter
sensitive/insensitive, reliable/unreliable, secure, authenticated etc. From an application
programmers viewpoint it would be an advantage to be able to more appropriately
engineer methods of communication to match a variety of environmental conditions. In
this section we consider the CORBA communication infrastructure, and review some of
the alternative approaches that are emerging.

Prior to the introduction of the messaging specification [6], CORBA provided three
communication models:

• Synchronous two-way: in this model a client request is forwarded to a target object
and the client then waits for a response. While it is waiting the client thread that
invoked the request is blocked and cannot perform any other processing. This
behaviour results in unsatisfactory performance for constrained applications.

• One way: A one-way invocation is composed of only request with no response. The
original intention was to use one way calls over unreliable transport protocols such as
the user datagram protocol UDP. The addition of one-way invocations promises only
best effort semantics, thus the ORB need not report an error if the one way fails. This
interaction mode was not clearly defined by the OMG and there may be variations
between different vendor implementations. However, most ORBs implement one-way
calls over TCP as required by the standard IIOP protocol specification, and is thus not
non-blocking. Moreover the mechanism is inherently unreliable, and a reliable one-
way call is often needed at both transport and request level.

• Deferred synchronous: A client sends a request to a target object and then continues
its own processing. The client ORB does not block the calling thread until the
response arrives, instead the client can either later poll to see if the target object has
returned a response, or it can perform a separate blocking call to wait for the response.
The deferred synchronous request model can only be used with the dynamic
invocation interface DII, which is both difficult to implement and slow.

Thus essentially CORBA only offers one communication method, which is a uni-cast
method. Similar observations may be made of the DCOM communications structure that
is based on the DCE RPC.

One way in which the performance of large scale distributed systems can be improved is
the removal of the assumption that all function calls must be dealt with in the same way
[7]. In a large-scale network latency must be taken into account; obviously a local
member function call and one that crosses continents will be quite different. To do this a
platform is required which provides a communications architecture capable of supporting
multiple communication styles between objects over multiple Transport Protocols. These

styles must include support for reliable asynchronous and multi-cast communication.
Thus the Developer would be enabled to define a task or network specific interaction
style, and would not be restricted to the current ‘one size fits’ all method.

The one size fits all approach to communication currently used in CORBA is being
challenged by a number of initiatives from both industry and universities. For example
Win Sock version 2 which includes support for multiple protocols on a plug-in or pile-on
basis, offers Transport Protocol independence allowing the user to choose the protocol by
the services they provide, and includes support for multi-point and multi-cast
communication [8]. ILU from Xerox [9] also includes support for multiple protocols, and
can reasonably be expected to influence the approach of the IETF HTTP NG working
group in which Xerox are represented. In the CORBA world the Orbacus ORB [10]
includes support for different protocols. Approaches typified by Flexi-Net from ANSA
[11] and the Regent framework from Imperial College [12] introduce even greater
flexibility by allowing dynamic protocol stack assembly, even at run-time. This added
flexibility allows the user to make optimum use of advanced network capabilities as they
become available. It further allows options such as compression and encryption only
when they are required, which can produce a consequent improvement in efficiency. The
availability of these flexible protocol choices would in no way replace the standard RPC,
these would still be available for use in applications where performance was not
paramount, but for performance critical applications the extra flexibility would be a great
benefit.

2.2 Support for inter working

Future large-scale distributed systems will contain machines of every type, with the
broadest range of operating systems and network connections possible. The machines will
possess different architectures, and will be programmed using different programming
languages. Applications will consist of collaborations between objects supplied by
different parties, co-operating to achieve the desired end result. A designer will specify
the objects that comprise a system. Some of the objects may be specified by a third party,
and may not be located and bound into the system until run-time. In this scenario, the
designer will need to specify his functional and non-functional expectations of the object
in such a way that the specification can be used at run-time to check whether an
appropriate object has been located. The object provider must also specify the functional
and non-functional properties of his object in such a way that they can be unambiguously
checked at run-time.

Everything in CORBA is represented as a service that is accessed via an interface
specified in IDL, commonly referred to as an API. Interworking in CORBA is based on
invoking standard APIs using a standard message Protocol GIOP [13]. In most cases this
maps onto a set of wire protocols via IIOP. Should the user wish to inter-work with a
non-CORBA system a translation bridge must be supplied that will translate message
formats, location information, transmission protocol etc, and act in a bi-directional way to

translate any response. The example in table 1 illustrates some problems that can arise
with this approach. An IDL specification describes the syntax of an object’s interface,
including parent classes, exceptions, attributes and operation signatures. Unfortunately,
the meaning of the interface is only defined for a particular context, and the context does
not form part of the interface specification. In other words the interface does not specify
the objects behaviour (i.e. its functional and non-functional properties). In practice, when
developers are co-located, and objects are being developed concurrently this may not
seem a problem. However, when the developers are separated by organisation, location
or time, it can lead to great difficulties since a full specification of behaviour may not
exist, and even if it does it may not be correct. If selection of an object is to be performed
automatically at run-time the problem is even worse, since any specification must be
machine readable. Clearly an API based exclusively on IDL will not guarantee
interoperability. Since APIs are normally considered to be the programming interface
only and not the associated specification we could say that APIs do not guarantee
interoperability, they merely facilitate it by providing a template for programmers. APIs
are thus necessary but not sufficient.

Interface Definition Subtract(float a, float b) return float r , string ERR

Inputs Returned value Comments

a =15 b=10 r = 5 As expected

a =15 b =10 r = -5 Subtract subtracts a from b

a=15 b =10 Err = parameter out of
range

Either neg returns not allowed
Or max size of a or b exceeded

a =15 b =10 r = 5 but on 10th
invocation Err =
server out of memory

Function is allocating memory
and not releasing it

a = 15 b =10 r = 5 but response only
returned after 3min
wait

Process is running at very low
priority

a =15 b = 10 r = 5 then next time
r = -5

Version change in subtract

Table 1. Potential problems with API's

If we refer to table 1 all of the identified problems may be alleviated by access to a
complete, manual based, specification. However, we must determine that we are using the
correct manual for the object instance we are currently operating on. In automated
scenarios a manual would in any case be unavailable since human readable manuals are
not normally machine readable. To avoid these problems every object in the system
should have its properties precisely defined in an appropriate language. To facilitate
automated usage the language should be strongly typed, with fully enumerated variables

(i.e. like a protocol specification). The definition should include items like the objects
dependencies on other objects, the resource requirements of the object, the permitted
parameter ranges, the intended semantics of the parameters, the quality of service offered
etc. as required by the complexity of the object being described. This definition must be
tightly associated with each instance of every object, as it will contain much information
that is instance specific. One possible solution would be to use containers (like XML or
Opendoc) and embed the definition into the top level container as object metadata. Not
only would this tie the object to its specification (metadata), it would also provide a
standardised metadata query interface.

Given access to a precise strongly typed description of an object, it is relatively
straightforward to provide high-level programmatic interfaces to a wide range of network
protocols, without affecting the interoperabilty of the protocol. Because the protocols are
simple the correctness of their operation may be proved formally. Any system that
provides an endpoint for such a protocol can communicate with any other system
implementing the same protocol using the well defined vocabulary of messages defined
by the protocol. Thus, a promising approach for the future could be to base the services of
a distributed processing environment on a rich set of protocols with proven operation and
so increase the potential for successful inter-working. Rather than develop a confusing
array of distributed services, which don’t interwork well (as has happened in CORBA),
future distributed operating systems should exploit protocol based development wherever
possible.

There is already some progress in this general direction based on the CORBA meta-object
facility and protocols are being developed as a part of HTTP-NG [14], ILU from Xerox
[15] and JINI from SUN [16].

2.3 Scalability

In the context of a future large scale distributed system scalability may be simply stated as
the ability to add applications, users and computing nodes to the system whilst
maintaining the specified level of service. Obviously adding users will eventually require
the addition of extra machines as will the addition of extra applications, but the scalability
requirement means that the required performance can be regained by adding computing
power. Architecturally the system must avoid any system function whose performance
degradation depends on the number of system users.

Even though a central tenet of distribution is scalability, within CORBA retains a reliance
on centralised information stores for such things as the name service, the trading service
and implementation repositories. It must be acknowledged that the implementation
repository has a somewhat mixed effect: it is advantageous that only the objects that are
in use are live. Nevertheless in all three cases the centralisation of data represents a
potential performance bottleneck and a single point of failure. There are architectures
described for the Federation of both trading and naming services that assume the

existence of some form of centralised intelligence in the system which requires the user to
specify the connection graph and search order.

Centralisation is not the only scalability issue in CORBA. The communication protocol in
CORBA is also inefficient [17] giving rise to a high message overhead on certain
operations, such as trading using dynamic properties. Use of the security and transaction
services also expands the size of messages, particularly when a transaction or security
relationship spans a number of objects. The message grows at each step with the
inclusion of transaction or security context information. The management of connections
is undefined in the CORBA specification, each IIOP connection requires a TCP
connection, and if the TCP connection fails the IIOP session cannot be recovered. The use
of increasing numbers of API's in CORBA also affects scalability, every time a new
service is added, additional API's [18] are introduced adding to an already heavy ORB
implementation.

In order to improve the scalability of future distributed systems we must remove the need
for any form of centralised information repositories and reduce the impact of adding
additional services that further complicate the operating system. It would be desirable if
an element of information locality could be included in any search for a service, as this
would reduce communications overhead. It would also be desirable if information
location were handled locally, and largely independently. One way of achieving this
would be the use of structured multicasts to announce and request object information. The
use of hop count limits or time to live limitations would maintain network usage at
reasonable levels. This multicast approach is currently used in SUN's JINI platform in the
discovery and join part of the specification. Softwired's IBUS [19] also uses multicast
technology. Multicast is used extensively in existing group management systems such as
HORUS and ENSEMBLE [20].

A recent IETF submission involving Microsoft, Inktomi, RealNetworks and SUN for a
Web Proxy Auto-discovery protocol [21] proposes an escalating strategy of resource
discovery, based on existing internet protocols, to find a nearby web proxy server. Using
simple, functional and efficient mechanisms resource discovery is used to obtain
information for the automatic configuration of web clients. Combining local discovery
mechanisms with a cache overlay to store information could effectively distribute the
information discovery overhead. The caches can also share information between them
using cache digests as proposed by Rousskov [22], increasing the knowledge of the
system.

There will be a requirement for any practical system to access and mix objects that are
part of different existing systems in different locations. Therefore the concept of a
universal set of globally unique names becomes important. This allows named objects in
different systems to be treated in a common way. The scalability of a global naming
system will also be greatly improved following the work on URC's and URN's at the
W3C [23].

 2.4 Mobility

One of the requirements for any large scale distributed system will be an increased level
of support for mobility both of users and terminal equipment. The future user may
reasonably expect to log onto any terminal anywhere in the world and be able to access
their normal range of applications. To ensure that they continue to receive an acceptable
quality of service, processes may need to be relocated closer to the point of use.
Developments in mobile access technologies and mobile terminals will mean that a wide
variation in access bandwidth and end terminal capabilities must be catered for together
with the interference and fading problems that may be encountered over wireless links.

In common with all distributed operating systems CORBA hides the network from the
developer, consequently it provides no support for such non-reliable networks and
services. Location transparency is not always a desirable property as there are many
instances when location based information would be very useful to mobile users, and
information describing the location of events such as failures and load peaks would aid
the management of large scale distributed systems. Moving objects without breaking
references is also problematic. If we consider servers formed by the collaboration of
several different processes every object must register with an object adapter, which acts
as an interface between the implementation and the ORB. It is also responsible for
managing object references, call handling, and registration of the objects with the
implementation repository. In order to move the server all objects registered with the
object adapter must move together, they must register with the new repository giving rise
to potential consistency and scalability problems. A footprint is left in the old repository,
which again impacts the potential scalability and causes poor performance.

Adding support for mobility to a distributed operating system will require a number of
fundamental changes to the conventional model as typified by CORBA. One of the design
cornerstones of distributed systems is location transparency, but in order to efficiently
support mobile users and code it is desirable to selectively choose to implement location
transparency or not. It will also be necessary to resolve the requirements from any request
in terms of choosing between objects or an identical object if closer. This will of course
require a more complete meta-data description of each object to aid in the resolution of
this choice. Another aid to the support of mobility in distributed systems would be the use
of a stateless programming model for server objects again helping to resolve the
fundamental "same or identical" object question.

This selective inclusion of functionality is, as previously mentioned, available in the
layered protocol stacks built for the REGENT system from Imperial College. The
specification for Winsock 2 also includes a number of layered constructs for specifying
quality of service and it would be interesting to determine if the same approach would
allow selective transparency.

2.5 Management

In a future large-scale distributed platform that, as previously described, supports mobility
the location of objects and users will be dynamic. In this section we are principally
concerned with management of the objects running on the platform. The management of
applications will be a concern of the application developer. We are therefore interested in
the issues surrounding the location, activation, use and movement of objects within the
platform. The system needs to evolve in response to changing requirements, and we also
need to be able to describe how objects should respond to their changing environment.
This may be achieved using policies. Policies describe possible behaviour options, and
constraints on use of the options, and are often expressed as obligations, authorisations
and prohibitions.

In almost all commercial CORBA implementations there is little support for
management. Tool support is lacking and there are very few standard interface
specifications that allow management to be added on. Available management is
centralised and proprietary, it has a monolithic architecture and consequently will not
inter-work across different vendor implementations. Problems are also encountered with
the exact specification of management rules in a CORBA system. One of the first
challenges any management system needs to tackle is that of the CORBA infrastructure
itself because it will be a large object based system. To achieve this it seems reasonable
that the rules and policies should be objects. However when we come to manage the
running system the rules and policies will be attributes of the system objects and may
need to be handled purely as text strings. This fundamental dichotomy needs to be
resolved.

The management of future large-scale distributed systems must be decentralised. The
network delays and congestion involved in communicating information to any centralised
management entity make this approach unattractive. A key challenge for any distributed
management scheme will be how to manage the scheme, as it will be a large distributed
application too. Many of the management functions will need to be devolved locally, and
may be autonomous. To achieve this local policies will be needed for all objects in the
system, both hardware and software, to determine their action when faced with events.
This policy set may form part of the meta-data associated with every object. It would also
be desirable to devolve application management to the end user of that application
wherever possible, thus spreading the management overhead, and allowing each user of
the system to have an essentially unique solution. This in many ways mirrors the current
work on active networks allowing users to inject code into the network to achieve a
greater degree of application customisation. The description of management policies is
still very much a topic of active research, as is the local implementation of policies. On
any particular node in the system there will be policies relating to the nodes actions and
policies relating to the objects actions. The overall behaviour from such a composite
collection of local policies will need to be understood.

2.6 Security

Use of existing CORBA implementations between enterprises presents a range of
problems depending upon the particular Firewall implementation. IIOP can use any port
and these interactions are bi-directional which can be difficult with application layer
firewalls. The object communication end point in the IOR contains information about the
host and port for the communication, and betrays the LAN based origins of CORBA.
Tunnelling over HTTP is possible but this potentially compromises the security of the
firewall. Servers are also highly vulnerable to ill-formed requests that cause stability
problems. Overall there is a lack of a credible solution that limits the applicability of
CORBA in the commercial world.

Another impact of the existing IDL based approach to interface specification, is the lack
of any additional information regarding the source, reliability and resource requirements
of any object offering that interface. A more complete description of the object is
required. To illustrate this we can use an example from Active Networks, where third
party code is intended to run on network nodes. If the resource requirements of the code
are available as a specification, and these limits are breached, the object is clearly faulty
and may be terminated. This enables code to be run without an onerous testing
requirement. The additional resource usage data would also be useful in the support of
mobility, as it would be useful to know if a node could support the demands of an object,
before the object is moved to that node. Performance management would also be helped
by such a facility.

3. Conclusions

It can be seen from the examples discussed in this paper that current distributed operating
systems work well for small/medium-scale distributed applications operating over
reliable, and well dimensioned network and computing infrastructures. However
weaknesses are exposed when consideration is given to very large-scale applications, and
particularly to their use over wide area networked systems exhibiting a diverse range of
inter-system capabilities and performance characteristics. Although many of the examples
in this paper have been developed with reference to CORBA, similar observations may be
made for the other candidate systems. Having discussed some of the weaknesses of
current systems we identify areas for research to allow the development of distributed
operating systems that will be useful for some of the future large-scale applications.
Characteristics of such systems will include;
• greater flexibility in the task specific choice of communication style
• autonomous or local management with increased end user participation
• greater support for mobility of users and code
• objects will have an associated meta data description
Inter working will be based on provably correct simple protocols, files will be stored
close to the originator and cached everywhere else, and such a cache hierarchy will be

used for information discovery. Over all such a system should be dynamic and responsive
to events.

In order to be able to achieve this vision future research priorities in distributed systems
must include;
• providing a range of protocols in dynamic stacks
• support for different communication styles such as multicast
• location of objects and resources using local mechanisms
• local mechanisms for management and policy definition
• a language capable of unambiguously describing both functional and non-functional

attributes of the objects in the system.

Building distributed systems is difficult, and existing products such as CORBA and
DCOM offer significant benefits. But building global distributed systems is very hard.
There are significant problems with existing systems and we need fresh approaches which
embody more flexibility and allow less ‘isolation’ from the capabilities of the underlying
hardware and network.

References

1. John Bates, "The State of the Art in Distributed and Dependable Computing", A
CaberNet Sponsored Report, October 1998.

2. www.omg.org
3. www.microsoft.com/com/dcom.asp
4. www.java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmi-title.doc.html
5. www12.w3.org/History/1992/nfs_dxcern_mirror/rpc/doc/Introduction/Abstract.html
6. Douglas C. Schmidt and Steve Vinoski, Programming Asynchronous Method

Invocations with CORBA Messaging, C++ Report, SIGS, Vol. 11, No 7 2, February,
1999

7. Jim Waldo, Geoff Wyant, Ann Wollrath, Sam Kendall, "A Note on Distributed
Computing" Sun Microsystems Laboratories Inc, TR-94-29, November 1994

8. www.sockets.com/winsock2.htm
9. http://pubweb.parc.xerox.com/hypertext/ilu/index.html
10. http://www.ooc.com/ob/
11. http://www.jungle.bt.co.uk/projects/ansa/
12. http://outoften.doc.ic.ac.uk/~np2/regent/regent.html
13. http://www.mitre.org/research/domis/reports/UNO.htm
14. http://www.w3.org/Protocols/HTTP-NG/
15. http://www.parc.xerox.com/istl/projects/http-ng/
16. http://java.sun.com/products/jini/specs/index.html
17. http://www.cs.wustl.edu/~schmidt/corba-research-performance.html
18. http://www.objectwatch.com/issue14.htm
19. http://i-gate.softwired.ch/products/ibus/
20. http://simon.cs.cornell.edu/Info/Projects/Ensemble/index.html
21. http://eggplant.rte.microsoft.com/wpad//

http://www.omg.org/
http://www.microsoft.com/com/dcom.asp
http://www.java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmi-title.doc.html
http://www.sockets.com/winsock2.htm
http://pubweb.parc.xerox.com/hypertext/ilu/index.html
http://www.ooc.com/ob/
http://www.jungle.bt.co.uk/projects/ansa/
http://outoften.doc.ic.ac.uk/~np2/regent/regent.html
http://www.mitre.org/research/domis/reports/UNO.htm
http://www.w3.org/Protocols/HTTP-NG/
http://www.parc.xerox.com/istl/projects/http-ng/
http://java.sun.com/products/jini/specs/index.html
http://www.cs.wustl.edu/~schmidt/corba-research-performance.html
http://www.objectwatch.com/issue14.htm
http://i-gate.softwired.ch/products/ibus/
http://simon.cs.cornell.edu/Info/Projects/Ensemble/index.html
http://eggplant.rte.microsoft.com/wpad//

22. http://squid.nlanr.net/Cache/CacheDigest/
23. http://www.w3.org/Addressing/Addressing.html

http://squid.nlanr.net/Cache/CacheDigest/
http://www.w3.org/Addressing/Addressing.html

	Summary
	1. Introduction
	2.3 Scalability
	2.5 Management
	2.6 Security

