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Summary: The random walk Metropolis (RWM) is one of the most common Markov Chain

Monte Carlo algorithms in practical use today. Its theoretical properties have been exten-

sively explored for certain classes of target, and a number of results with important practical

implications have been derived. This article draws together a selection of new and existing

key results and concepts and describes their implications. The impact of each new idea on

algorithm efficiency is demonstrated for the practical example of the Markov modulated Pois-

son process (MMPP). A reparameterisation of the MMPP which leads to a highly efficient

RWM within Gibbs algorithm in certain circumstances is also developed.
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1 Introduction

Markov chain Monte Carlo (MCMC) algorithms provide a framework for sampling from

a target random variable with a potentially complicated probability distribution π(·) by

generating a Markov chain X(1),X(2), . . . with stationary distribution π(·). The single most

widely used sub-class of MCMC algorithms is based around the random walk Metropolis

(RWM).

Theoretical properties of RWM algorithms for certain special classes of target have been in-

vestigated extensively. Reviews of RWM theory have, for example, dealt with optimal scaling

and posterior shape (Roberts and Rosenthal, 2001), and convergence (Roberts, 2003). This

article does not set out to be a comprehensive review of all theoretical results pertinent to

the RWM. Instead the article reviews and develops specific aspects of the theory of RWM

efficiency in order to tackle an important and difficult problem: inference for the Markov

modulated Poisson process (MMPP). It includes sections on RWM within Gibbs, hybrid

algorithms, and adaptive MCMC, as well as optimal scaling, optimal shaping, and conver-

gence. A strong emphasis is placed on developing an intuitive understanding of the processes

behind the theoretical results, and then on using these ideas to improve the implementation.

All of the RWM algorithms described in this article are tested against data sets arising from

MMPPs. Realised changes in efficiency are then compared with theoretical predictions.

Observed event times of an MMPP arise from a Poisson process whose intensity varies

with the state of an unobserved continuous time Markov chain. The MMPP has been

used to model a wide variety of clustered point processes, for example requests for web

pages from users of the World Wide Web (Scott and Smyth, 2003), arrivals of photons from

single molecule fluorescence experiments (Burzykowski et al., 2003; Kou et al., 2005), and

occurences of a rare DNA motif along a genome (Fearnhead and Sherlock, 2006).

In common with mixture models and other hidden Markov models, inference for the MMPP
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is greatly complicated by a lack of knowledge of the hidden data. The likelihood function

often possesses many minor modes since the data might be approximately described by a

hidden process with fewer states. For this same reason the likelihood often does not appoach

zero as certain combinations of parameters approach zero and/or infinity and so improper

priors lead to improper posteriors (e.g. Sherlock, 2005). Further, as with many hidden

data models the likelihood is invariant under permutation of the states, and this “labelling”

problem leads to posteriors with several equal modes.

This article focusses on generic concepts and techniques for improving the efficiency of RWM

algorithms whatever the statistical model. The MMPP provides a non-trivial testing ground

for them. All of the RWM algorithms described in this article are tested against two sim-

ulated MMPP data sets with very different characteristics. This allows us to demonstrate

the influence on performance of posterior attributes such as shape and orientation near the

mode and lightness or heaviness of tails.

Section 2 introduces RWM algorithms and then describes theoretical and practical measures

of algorithm efficiency in terms of both convergence and mixing. Next the two main theo-

retical approaches to determining efficiency are decribed, and the section ends with a brief

overview of the MMPP and a description of the data analysed in this article. Section 3 in-

troduces a series of concepts which allow potential improvements in the efficiency of a RWM

algorithm. The intuition behind each concept is described, followed by theoretical justifi-

cation and then details of one or more RWM algorithms motivated by the theory. Actual

results are described and compared with theoretical predictions in Section 4, and the article

is summarised in Section 5.
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2 Background

In this section we introduce the background material on which the remainder of this article

draws. We describe the random walk Metropolis algorithm and a variation, the random

walk Metropolis-within-Gibbs. Both practical issues and theoretical approaches to algorithm

efficiency are then discussed. We conclude with an introduction to the Markov modulated

Poisson process and to the data sets used later in the article.

2.1 Random walk Metropolis algorithms

The random walk Metropolis (RWM) updating scheme was first applied in Metropolis

et al. (1953) and proceeds as follows. Given a current value of the d-dimensional Markov

chain, X, a new value X∗ is obtained by proposing a jump Y∗ := X∗ − X from the pre-

specified Lebesgue density

r̃ (y∗;λ) :=
1

λd
r

(

y∗

λ

)

, (1)

with r(y) = r(−y) for all y. Here λ > 0 governs the overall size of the proposed jump and

(see Section 3.1) plays a crucial role in determining the efficiency of any algorithm. The

proposal is then accepted or rejected according to acceptance probability

α(x,y∗) = min

(

1,
π(x + y∗)

π(x)

)

. (2)

If the proposed value is accepted it becomes the next current value (X′ ← X+Y∗), otherwise

the current value is left unchanged (X′ ← X).

The acceptance probability (2) is chosen so that the chain is reversible at equilibrium with

stationary distribution π(·). In this article the transition kernel, that is the combined process

of proposal and acceptance/rejection that leads from one element of the chain (x) to the

next, is denoted P (x, ·).
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An intuitive interpretation of the above formula is that “uphill” proposals (proposals which

take the chain closer to a local mode) are always accepted, whereas “downhill” proposals

are accepted with probability exactly equal to the relative “heights” of the posterior at the

proposed and current values. It is precisely this rejection of some “downhill” proposals which

acts to keep the Markov chain in the main posterior mass most of the time.

We now describe a generalisation of the RWM which acts on a target whose components

have been split into k sub-blocks. In general we write X = (X1, . . . ,Xk), where Xi is the

ith sub-block of components of the current element of the chain. Starting from value X, a

single iteration of this algorithm cycles through all of the sub-blocks updating each in turn.

It will therefore be convenient to define the shorthand

x
(B)
i := x′

1, . . . ,x
′
i−1,xi,xi+1, . . . ,xk

x
(B)∗
i := x′

1, . . . ,x
′
i−1,xi + y∗

i ,xi+1, . . . ,xk ,

where x′
j is the updated value of the jth sub-block. For the ith sub-block a jump Y ∗

i is proposed

from symmetric density r̃i(y;λi) and accepted or rejected according to acceptance probability

π
(

x
(B)∗
i

)

/π
(

x
(B)
i

)

. Since this algorithm is in fact a generalisation of both the RWM and of

the Gibbs sampler (for a description of the Gibbs sampler see for example Gamerman and

Lopes, 2006) we follow for example Neal and Roberts (2006) and call this the random walk

Metropolis-within-Gibbs or RWM-within-Gibbs. The most commonly used random walk

Metropolis within Gibbs algorithm, and also the simplest, is that employed in this article:

here all blocks have dimension 1 so that each component of the parameter vector is updated

in turn.

Even though each stage of the RWM-within-Gibbs is reversible, the algorithm as a whole is

not. Reversible variations include the random scan RWM-within-Gibbs, wherein at each

iteration a single component is chosen at random and updated conditional on all the other

components.
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Convergence of the Markov chain to its stationary distribution can be guaranteed for all of

the above algorithms under quite general circumstances (e.g. Gilks et al., 1996).

2.2 Algorithm efficiency

Adjacent elements of an MCMC Markov chain are correlated and the sequence of marginal

distributions converges to π(·). Two main (and related) issues arise with regard to the

efficiency of MCMC algorithms: convergence and mixing.

2.2.1 Convergence

In this article we will be concerned with practical determination of a point at which a chain

has converged. The method we employ is simple heuristic examination of the trace plots for

the different components of the chain. Note that since the state space is multi-dimensional it

is not sufficient to simply examine a single component. Alternative techniques are discussed

in Chapter 7 of Gilks et al. (1996).

Theoretical criteria for ensuring convergence (ergodicity) of MCMC Markov chains are ex-

amined in detail in Chapters 3 and 4 of Gilks et al. (1996) and references therein, and will

not be discussed here. We do however wish to highlight the concepts of geometric and poly-

nomial ergodicity. A Markov chain is geometrically ergodic with stationary distribution

π(·) if

||P n(x, ·)− π(·)||1 ≤ M(x) rn (3)

for some positive r < 1 and M(·). Here ||F (·)−G(·)||1 denotes the total variational distance

between measures F (·) and G(·) (see for example Meyn and Tweedie, 1993). Efficiency of a

geometrically ergodic algorithm is measured by the geometric rate of convergence, r, which

over a large number of iterations is well approximated by the second largest eigenvalue of
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the transition kernel (the largest eigenvalue being 1, and corresponding to the stationary

distribution π(·)). Geometric ergodicity is usually a purely qualitative property since in

general the constants M(x) and r are not known. Crucially for practical MCMC however

any geometrically ergodic reversible Markov chain satisfies a central limit theorem for all

functions with finite second moment with respect to π(·). Thus there is a σ2
f <∞ such that

n1/2
(

f̂n − Eπ [f(X)]
)

⇒ N(0, σ2
f) (4)

where ⇒ denotes convergence in distribution. The central limit theorem (4) guarantees not

only convergence of the Monte Carlo estimate (5) but also supplies its standard error, which

decreases as n−1/2.

When the second largest eigenvalue is also 1 a Markov chain is termed polynomially er-

godic if

||P n(x, ·)− π(·)||1 ≤M(x) n−r

Clearly polynomial ergodicity is a weaker condition than geometric ergodicity. Central limit

theorems for polynomially ergodic MCMC are much more delicate; see Jarner and Roberts

(2002) for details.

In this article a chain is referred to as having “reached stationarity” or “converged” when

the distribution from which an element is sampled is as close to the stationary distribution

as to make no practical difference to any Monte-Carlo estimates.

An estimate of the expectation of a given function f(X), which is more accurate than a

naive Monte Carlo average over all the elements of the chain, is likely to be obtained by

discarding the portion of the chain X0, . . . ,Xm up until the point at which it was deemed to

have reached stationarity; iterations 1, . . .m are commonly termed “burn in”. Using only the

remaining elements Xm+1, . . . ,Xm+n (with m+n = N) our Monte Carlo estimator becomes

f̂n :=
1

n

m+n
∑

m+1

f(Xi) (5)
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Convergence and burn in are not discussed any further here, and for the rest of this section

the chain is assumed to have started at stationarity and continued for n further iterations.

2.2.2 Practical measures of mixing efficiency

For a stationary chain, X0 is sampled from π(·), and so for all k > 0 and i ≥ 0

Cov [f(Xk), f(Xk+i)] = Cov [f(X0), f(Xi)]

This is the autocorrelation at lag i. Therefore at stationarity, from the definition in (4),

σ2
f := lim

n→∞
nVar

[

f̂n

]

= Var [f(X0)] + 2
∞
∑

i=1

Cov [f(X0), f(Xi)]

provided the sum exists (e.g. Geyer, 1992). If elements of the stationary chain were inde-

pendent then σ2
f would simply be Var [f(X0)] and so a measure of the inefficiency of the

Monte-Carlo estimate f̂n relative to the perfect i.i.d. sample is

σ2
f

Var [f(X0)]
= 1 + 2

∞
∑

i=1

Corr [f(X0), f(Xi)] (6)

This is the integrated autocorrelation time (ACT) and represents the effective number of

dependent samples that is equivalent to a single independent sample. Alternatively n∗ =

n/ACT may be regarded as the effective equivalent sample size if the elements of the chain

had been independent.

To estimate the ACT in practice one might examine the chain from the point at which it is

deemed to have converged and estimate the lag-i autocorrelation Corr [f(X0), f(Xi)] by

γ̂i =
1

n− i

n−i
∑

j=1

(

f(Xj)− f̂n
)(

f(Xj+i)− f̂n
)

(7)

Naively, substituting these into (6) gives an estimate of the ACT. However contributions

from all terms with very low theoretical autocorrelation in a real run are effectively random

noise, and the sum of such terms can dominate the deterministic effect in which we are
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interested (e.g. Geyer, 1992). For this article we employ the simple solution suggested in

Carlin and Louis (2009): the sum (6) is truncated from the first lag, l, for which the estimated

autocorrelation drops below 0.05 . This gives the (slightly biassed) estimator

ACTest := 1 + 2
l−1
∑

i=1

γ̂i. (8)

Given the potential for relatively large variance in estimates of integrated ACT howsoever

they might be obtained (e.g. Sokal, 1997), this simple estimator should be adequate for

comparing the relative efficiencies of the different algorithms in this article. Geyer (1992)

provides a number of more complex window estimators and provides references for regularity

conditions under which they are consistent.

A given run will have a different ACT associated with each parameter. An alternative

efficiency measure, which is aggregated over all parameters is provided by the Mean Square

Euclidean Jump Distance (MSEJD)

S2
Euc :=

1

n− 1

n−1
∑

i=1

∣

∣

∣

∣x(i+1) − x(i)
∣

∣

∣

∣

2

2
.

The expectation of this quantity at stationarity is referred to as the Expected Square Eu-

clidean Jump Distance (ESEJD). Consider a single component of the target with variance

σ2
i := Var [Xi] = Var [X ′

i], and note that E [X ′
i −Xi] = 0, so

E
[

(X ′
i −Xi)

2
]

= Var [X ′
i −Xi] = 2σ2

i (1− Corr [Xi, X
′
i])

Thus when the chain is stationary and the posterior variance is finite, maximising the ESEJD

is equivalent to minimising a weighted sum of the lag-1 autocorrelations.

If the target has finite second moments and is roughly elliptical in shape with (known)

covariance matrix Σ then an alternative measure of efficiency is the Mean Square Jump

Distance (MSJD)

S2
d :=

1

n− 1

n−1
∑

i=1

(

x(i+1) − x(i)
)t

Σ−1
(

x(i+1) − x(i)
)

,
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Figure 1: Trace plots ((a), (c), and (e)) and corresponding autocorrelation plots ((b), (d), and

(f)), for exploration of a standard Gaussian initialised from x = 0 and using the random walk

Metropolis algorithm with Gaussian proposal. Proposal scale parameters for the three scenarios

are respectively (a) & (b) 0.24, (c) & (d) 2.4, and (e) & (f) 24.

which is proportional to the unweighted sum of the lag-1 autocorrelations over the principal

components of the ellipse. The theoretical expectation of the MSJD at stationarity is known

as the expected squared jump distance (ESJD).

Figure 1 shows trace plots for three different Markov chains. Estimates of the autocorrelation

from lag-0 to lag-40 for each Markov chain appear alongside the corresponding traceplot.

The simple window estimator for integrated ACT provides estimates of respectively 39.7,

5.5, and 35.3. The MSEJDs are respectively 0.027, 0.349, and 0.063, and are equal to the

MSJDs since the stationary distribution has a variance of 1.
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2.2.3 Assessing accuracy

An MCMC algorithm might efficiently explore an unimportant part of the parameter space

and never find the main posterior mass. ACT’s will be low therefore, but the resulting

posterior estimate will be wildly innaccurate. In most practical examples it is not possible

to determine the accuracy of the posterior estimate, though consistency between several

independent runs or between different portions of the same run can be tested.

For the purposes of this article it was important to have a relatively accurate estimate of

the posterior, not determined by a RWM algorithm. Fearnhead and Sherlock (2006) detail

a Gibbs sampler for the MMPP; this Gibbs sampler was run for 100 000 iterations on each

of the data sets analysed in this article. A “burn-in” of 1000 iterations was allowed for, and

a posterior estimate from the last 99 000 iterations was used as a reference for comparison

with posterior estimates from RWM runs of 10 000 iterations (after burn in).

2.2.4 Theoretical approaches for algorithm efficiency

To date, theoretical results on the efficiency of RWM algorithms have been obtained through

two very different approaches. We wish to quote, explain, and apply theory from both and

so we give a heuristic description of each and define associated notation. Both approaches

link some measure of efficiency to the expected acceptance rate - the expected proportion of

proposals accepted at stationarity.

The first approach was pioneered in Roberts et al. (1997) for targets with independent

identically distributed components and then generalised in Roberts and Rosenthal (2001) to

targets of the form

π(x) =

d
∏

1

Ci f(Cixi).

The inverse scale parameters, Ci, are assumed to be drawn from some distribution with a
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given (finite) mean and variance. A single component of the d dimensional chain (without

loss of generality the first) is then examined; at iteration i of the algorithm it is denoted

X
(d)
1,i . A scaleless, speeded up, continuous time process which mimics the first component of

the chain is defined as

W
(d)
t := C1X

(d)
1,[td],

where [u] denotes the nearest integer less than or equal to u. Finally, proposed jumps are

assumed to be Gaussian

Y(d) ∼ N
(

0, λ2
dI
)

.

Subject to conditions on the first two deriviatives of f(·), Roberts and Rosenthal (2001)

show that if E [Ci] = 1 and E [C2
i ] = b, and provided λd = µ/d1/2 for some fixed µ (the

scale parameter but “rescaled” according to dimension) then as d→ ∞, W
(d)
t approaches

a Langevin diffusion process with speed

h(µ) =
C2

1µ
2

b
αd where αd := 2Φ

(

−1

2
µI1/2

)

. (9)

Here Φ(x) is the cumulative distribution function of a standard Gaussian, I := E
[

((log f)′)2]

is a measure of the roughness of the target, and αd corresponds to the acceptance rate.

Bédard (2007) proves a similar result for a triangular sequence of inverse scale parameters

ci,d, which are assumed to be known. A necessary and sufficient condition equivalent to (11)

below is attached to this result. In effect this requires the scale over which the smallest

component varies to be “not too much smaller” than the scales of the other components.

The second technique (e.g. Sherlock and Roberts, 2009) uses expected square jump distance

(ESJD) as a measure of efficiency. Exact analytical forms for ESJD (denoted S2
d) and

expected acceptance rate are derived for any unimodal elliptically symmetric target and any

proposal density. Many standard sequences of d-dimensional targets (d = 1, 2, . . . ), such as

the Gaussian, satisfy the condition that as d→∞ the probability mass becomes concentrated

in a spherical shell which itself becomes infinitesimally thin relative to its radius. Thus the
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random walk on a rescaling of the target is, in the limit, effectively confined to the surface of

this shell. Sherlock and Roberts (2009) show that if the sequence of targets satisfies such a

“shell” condition, and a slightly stronger condition is satisfied by the sequence of proposals

then as d→∞
d

k
(d)
x

2S
2
d(µ)→ µ2 αd with αd(µ) := 2Φ

(

−1

2
µ

)

. (10)

Here αd is the limiting expected acceptance rate, µ := d1/2λdk
(d)
y /k

(d)
x , and k

(d)
x and k

(d)
y are

the rescalings appropriate for the target and proposal sequences so that the spherical shells

to which the mass converges both have radius 1. For target and proposal distributions with

independent components, such as are used in the diffusion results, k
(d)
x = k

(d)
y = d1/2, and

hence (consistently) µ = d1/2λd.

A further condition is required on the triangular sequence of inverse scale parameters of the

axes of the elliptical target
maxi c

2
i,d

∑d
i=1 c

2
i,d

→ 0 as d→∞ (11)

Theoretical results from the two techniques are remarkably similar and as will be seen, lead

to identical strategies for optimising algorithm efficiency. It is worth noting however that

results from the first approach apply only to targets with independent components and

results from the second only to targets which are unimodal and elliptically symmetric. That

they lead to identical strategies indicates a certain potential robustness of these strategies

to the shape of the target. This potential, as we shall see, is born out in practice.

2.3 The Markov Modulated Poisson Process

Let Xt be a continuous time Markov chain on discrete state space {1, . . . , d} and let ψ :=

[ψ1, . . . , ψd] be a d-dimensional vector of (non-negative) intensities. The linked but stochas-

tically independent Poisson process Yt whose intensity is ψXt is a Markov modulated Poisson
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Figure 2: Two 2-state continuous time Markov chains simulated from generator Q with q12 =

q21 = 1; the rug plots show events from an MMPP simulated from these chains, with intensity

vectors ψ = (10, 30) (upper graph) and ψ = (10, 17) (lower graph).

process - it is a Poisson process whose intensity is modulated by a continuous time Markov

chain.

The idea is best illustrated through two examples, which also serve to introduce the notation

and data sets that will be used throughout this article. Consider a two-dimensional Markov

chain Xt with generator Q with q12 = q21 = 1. Figure 2 shows realisations from two such

chains over a period of 10 seconds. Now consider a Poisson process Yt which has intensity 10

when Xt is in state 1 and intensity 30 when Xt is in state 2. This is an MMPP with event

intensity vector ψ = [10, 30]t. A realisation (obtained via the realisation of Xt) is shown as

a rug plot underneath the chain in the upper graph. The lower graph shows a realisation

from an MMPP with event intensities [10, 17]t.

It can be shown (e.g. Fearnhead and Sherlock, 2006) that the likelihood for data from an

MMPP which starts from a distribution ν over its states is

L(Q,Ψ, t) = ν ′e(Q−Ψ)t1Ψ . . . e(Q−Ψ)tnΨe(Q−Ψ)tn+11. (12)

Here Ψ := diag(ψ), 1 is a vector of 1’s, n is the number of observed events, t1 is the time
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from the start of the observation window until the first event, tn+1 is the time from the last

event until the end of observation window, and ti (2 ≤ i ≤ n) is the time between the i− 1th

and ith events. In the absence of further information, the initial distribution ν is often taken

to be the stationary distribution of the underlying Markov chain.

The likelihood of an MMPP is invariant to a relabelling of the states. Hence if the prior is

similarly invariant then so too is the posterior: if the posterior for a two dimensional MMPP

has a mode at (ψ1, ψ2, q12, q21) then it has an identical mode at (ψ2, ψ1, q21, q12). In this

article our overriding interest is in the efficiency of the MCMC algorithms rather than the

exact meaning of the parameters and so we choose the simplest solution to this identifiablity

problem: the state with the lower Poisson intensity ψ is always referred to as State 1.

2.3.1 MMPP data in this article

The two data sets of event times used in this article arose from two independent MMPP’s

simulated over an observation window of 100 seconds. Both underlying Markov chains have

q12 = q21 = 1; data set D1 has event intensity vector ψ = [10, 30] whereas data set D2 has

ψ = [10, 17].

As might be expected the overall intensity of events in D2 is lower than in D1. Moreover

because the difference in intensity between the states is so much larger in D1 than in D2

it is also easier with D1 than D2 to distinguish the state of the underlying Markov chain,

and thus the values of the Markov and Poisson parameters. Further, in the limit of the

underlying chain being known precisely, for example as ψ2 →∞ with ψ1 finite, and provided

the priors are independent, the posteriors for the Poisson intensity parameters ψ1 and ψ2 are

completely independent of each other and of the Markov parameters q12 and q21. Dependence

between the Markov parameters is also small, being O(1/T ) (e.g. Fearnhead and Sherlock,

2006).
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In Section 4, differences between D1 and D2 will be related directly to observed differences

in efficiency of the various RWM algorithms between the two data sets.

3 Implementations of the RWM: theory and practice

This section describes several theoretical results for the RWM or for MCMC in general.

Intuitive explanation of the principle behind each result is emphasised and the manner in

which it informs the RWM implementation is made clear. Each algorithm was run three

times on each of the two data sets.

3.1 Optimal scaling of the RWM

Intuition: Consider the behaviour of the RWM as a function of the overall scale parameter

of the proposed jump, λ, in (1). If most proposed jumps are small compared with some

measure of the scale of variability of the target distribution then, although these jumps will

often be accepted, the chain will move slowly and exploration of the target distribution

will be relatively inefficient. If the jumps proposed are relatively large compared with the

target distribution’s scale, then many will not be accepted, the chain will rarely move and

will again explore the target distribution inefficiently. This suggests that given a particular

target and form for the jump proposal distribution, there may exist a finite scale parameter

for the proposal with which the algorithm will explore the target as efficiently as possible.

These ideas are clearly demonstrated in Figure 1 which shows traceplots for a one dimen-

sional Gaussian target explored using a Gaussian proposal with scale parameter an order of

magnitude smaller (a) and larger (c) than is optimal, and (b) with a close to optimal scale

parameter.
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Theory: Equation (9) gives algorithm efficiency for a target with independent and identical

(up to a scaling) components as a function of the “rescaled” scale parameter µ = d1/2λd

of a Gaussian proposal. Equation (10) gives algorithm efficiency for a unimodal elliptically

symmetric target explored by a spherically symmetric proposal with µ = d1/2λdk
(d)
y /k

(d)
x . Ef-

ficiencies are therefore optimal at µ ≈ 2.38/I1/2 and µ ≈ 2.38 respectively. These correspond

to actual scale parameters of respectively

λd =
2.38

I1/2d1/2
and λd =

2.38 k
(d)
x

d1/2k
(d)
y

.

The equivalence between these two expressions for Gaussian data explored with a Gaussian

target is clear from Section 2.2.4. However the equations offer little direct help in choosing

a scale parameter for a target is neither elliptical, nor possesses components which are i.i.d.

up to a scale parameter. Substitution of each expression into the corresponding acceptance

rate equation, however, leads to the same optimal acceptance rate, α̂ ≈ 0.234. This justifies

the relatively well known adage that for random walk algorithms with a large number of

parameters, the scale parameter of the proposal should be chosen so that the acceptance rate

is approximately 0.234. On a graph of asymptotic efficiency against acceptance rate (e.g.

Roberts and Rosenthal, 2001), the curvature near the mode is slight, especially to its right,

so that an acceptance rate of anywhere between 0.2 and 0.3 should lead to an algorithm of

close to optimally efficiency.

In practice updates are performed on a finite number of parameters; for example a two di-

mensional MMPP has four parameters (ψ1, ψ2, q12, q21). A block update involves all of these,

whilst each update of a simple Metropolis within Gibbs step involves just one parameter. In

finite dimensions the optimal acceptance rate can in fact take any value between 0 and 1.

Sherlock and Roberts (2009) provide analytical formulae for calculating the ESJD and the

expected acceptance rate for any proposal and any elliptically symmetric unimodal target. In

one dimension, for example, the optimal acceptance rate for a Gaussian target explored by a

Gaussian proposal is 0.44, whilst the optimum for a double exponential target (π(x) ∝ e−|x|)

explored with a double exponential proposal is exactly α̂ = 1/3. Sherlock (2006) considers
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several simple examples of spherically symmetric proposal and target across a range of di-

mensions and finds that in all cases curvature at the optimal acceptance rate is small, so

that a range of acceptance rates is nearly optimal. Further, the optimal acceptance rate is

itself between 0.2 and 0.3 for d ≥ 6 in all the cases considered.

Sherlock and Roberts (2009) also weaken the “shell” condition of Section 2.2.4 and consider

sequences of spherically symmetric targets for which the (rescaled) radius converges to some

random variable R rather than a point mass at 1. It is shown that, provided the sequence

of proposals still satisfies the shell condition, the limiting optimal acceptance rate is strictly

less than 0.234. Acceptance rate tuning should thus be seen as only a guide, though a guide

which has been found to be robust in practice.

Algorithm 1 (Blk): The first algorithm (Blk) used to explore data sets D1 and D2 is a

four dimensional block updating RWM with proposal Y ∼ N(0, λ2I) and λ tuned so that

the acceptance rate is approximately 0.3.

3.2 Optimal scaling of the RWM within Gibbs

Intuition: Consider first a target either spherically symmetric, or with i.i.d. components,

and let the overall scale of variability of the target be η. For full block proposals the optimal

scale parameter should beO
(

η/d1/2
)

so that the square of the magnitude of the total proposal

is O(η2). If a Metropolis within Gibbs update is to be used with k sub-blocks and d∗ = d/k

of the components updated at each stage then the optimal scale parameter should be larger,

O
(

η/d
1/2
∗

)

. However only one of the k stages of the RWM within Gibbs algorithm updates

any given component whereas with k repeats of a block RWM that component is updated k

times. Considering the squared jump distances it is easy to see that, given the additivity of

square jump distances, the larger size of the RWM within Gibbs updates is exactly canceled

by their lower frequency, and so (in the limit) there is no difference in efficiency when
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compared with a block update. The same intuition applies when comparing a random scan

Metropolis within Gibbs scheme with a single block update.

Now consider a target for which different components vary on different scales. If sub-blocks

are chosen so as to group together components with similar scales then a Metropolis within

Gibbs scheme can apply suitable scale paramaters to each block whereas a single block

update must choose one scale parameter that is adequate for all components. In this scenario,

Metropolis within Gibbs updates should therefore be more efficient.

Theory: Neal and Roberts (2006) consider a random scan RWM within Gibbs algorithm

on a target distribution with i.i.d. components and using i.i.d. Gaussian proposals all

having the same scale parameter λd = µ/d1/2. At each iteration a subset (of size dcd) of the

components is chosen at random and updated as a single block. It is shown (again subject

to differentiability conditions on f(·)) that the process W
(d)
t := X

(d)
1,[td] approaches a Langevin

diffusion with speed

hc(µ) = 2cµ2Φ

(

−1

2
µ(cI)1/2

)

.

The optimal scaling is therefore larger than for a standard block update (by a factor of c−1/2)

but the optimal speed and the optimal acceptance rate (0.234) are identical to those found

by Roberts et al. (1997).

Sherlock (2006) considers sequential Metropolis within Gibbs updates on a unimodal ellip-

tically symmetric target, using spherical proposal distributions but allowing different scale

parameters for the proposals in each sub-block. The k sub-blocks are assumed to correspond

to disjoint subsets of the principal axes of the ellipse and updates for each are assumed

to be optimally tuned. Efficiency is considered in terms of ESEJD and is again found to

be optimal (as d → ∞) when the acceptance rate for each sub-block is 0.234. For equal

sized sub-blocks, the relative efficiency of the Metropolis within Gibbs scheme compared to
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k optimally scaled single block updates is shown to be

r =
1
k

∑

c2i
(

1
k

∑

1

c2i

)−1 , (13)

where c2i is the mean of the squares of the inverse scale parameters for the ith block. Since r

is the ratio of an arithmetic mean to a harmonic mean, it is greater than or equal to one and

thus the Metropolis within Gibbs step is always at least as efficient as the block Metropolis.

However the more similar the blocks, the less the potential gain in efficiency.

In practice, parameter blocks do not generally correspond to disjoint subsets of the principal

axes of the posterior or, in terms of single parameter updates, the parameters are not gen-

erally orthogonal. Equation 13 therefore corresponds a limiting maximum efficiency gain,

obtainable only when the parameter sub-blocks are orthogonal.

Algorithm 2 (MwG): Our second algorithm (MwG) is a sequential Metropolis within

Gibbs algorithm with proposed jumps Yi ∼ N(0, λ2
i ). Each scale parameter is tuned

seperately to give an acceptance rate of between 0.4 and 0.45 (approximately the optimum

for a one-dimensional Gaussian target and proposal).

3.3 Tailoring the shape of a block proposal

Intuition: First consider a general target with roughly elliptical contours and covariance

matrix Σ, such as that shown in Figure 3. For simplicity we visualise a two parameter

posterior but the following argument clearly generalises to any number of dimensions. It

seems intuitively sensible that a “tailored” block proposal distribution with the same shape

and orientation as the target will tend to produce larger jumps along the target’s major

axis and smaller jumps along its minor axis and should therefore allow for more efficient

exploration of the target.
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Figure 3: Contour plot for a two dimensional Gaussian density with σ2
1 = σ2

2 = 1 and correlation

ρ = 0.95.

Theory: Sherlock (2006) considers exploration of a unimodal elliptically symmetric target

with either a spherically symmetric proposal or a tailored elliptically symmetric proposal in

the limit as d → ∞. Subject to condition (11) (and a “shell”-like condition similar to that

mentioned in Section 2.2.4), it is shown that with each proposal shape it is in fact possible to

achieve the same optimal expected square jump distance. However if a spherically symmetric

proposal is used on an elliptical target, some components are explored better than others and

in some sense the overall efficiency is reduced. This becomes clear on considering the ratio

r, of the expected squared Euclidean jump distance for an optimal spherically symmetric

proposal to that of an optimal tailored proposal. Sherlock (2006) shows that for a sequence

of targets, where the target with dimension d has elliptical axes with inverse scale parameters

cd,1, . . . , cd,d, the limiting ratio is

r =
limd→∞

(

1
d

∑d
i=1 c

−2
d,i

)−1

limd→∞
1
d

∑d
i=1 c

2
d,i

.

The numerator is the limiting harmonic mean of the squared inverse scale parameters, which

is less than or equal to their arithmetic mean (the denominator), with equality if and only if

(for a given d) all the cd,i are equal. Roberts and Rosenthal (2001) examine similar relative
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efficiencies but for targets and proposals with independent components with inverse scale

parameters C sampled from some distribution. In this case the derived measure of relative

efficiency is the relative speeds of the diffusion limits for the first component of the target

r∗ =
E [C]2

E [C2]
.

This is again less than or equal to one, with equality when all the scale parameters are equal.

Hence efficiency is indeed directly related to the relative compatibility between target and

proposal shapes.

Furthermore Bédard (2008) shows that if a proposal has i.i.d. components yet the target

(assumed to have independent components) is wildly asymmetric, as measured by (11), then

the limiting optimal acceptance rate can be anywhere between 0 and 1. However even at

this optimum, some components will be explored infinitely more slowly than others.

In practice the shape Σ of the posterior is not known and must be estimated, for example by

numerically finding the posterior mode and the Hessian matrix H at the mode, and setting

Σ = H−1. We employ a simple alternative which uses an earlier MCMC run.

Algorithm 3 (BlkShp): Our third algorithm first uses an optimally scaled block RWM

algorithm (Algorithm 1), which is run for long enough to obtain a “reasonable” estimate of

the covariance from the posterior sample. A fresh run is then started and tuned to give an

acceptance rate of about 0.3 but using proposals

Y ∼ N(0, λ2Σ̂).

For each data set, so that our implementation would reflect likely statistical practice, each

of the three replicates of this algorithm estimated the Σ matrix from iterations 1000-2000

of the corresponding replicate of Algorithm 1 (i.e. using 1000 iterations after “burn in”). In

all therefore, six different variance matrices were used.
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3.4 Improving tail exploration

Intuition: A posterior with relatively heavy polynomial tails such as the one-dimensional

Cauchy distribution has considerable mass some distance from the origin. Proposal scalings

which efficiently explore the body of the posterior are thus too small to explore much of the

tail mass in a “reasonable” number of iterations. Further, polynomial tails become flatter

with distance from the origin so that for unit vector u, π(x + λu)/π(x)→ 1 as ||x||2 →∞.

Hence the acceptance rate for a random walk algorithm approaches 1 in the tails, whatever

the direction of the proposed jump. The algorithm therefore loses almost all sense of the

direction to the posterior mass.

Theory: Roberts (2003) brings together literature relating the tails of the posterior and the

proposal to the ergodicity of the Markov chain and hence its convergence properties. Three

important cases are noted

1. If π(x) ∝ e−s||x||2, at least outside some compact set, then the random walk algorithm

is geometrically ergodic.

2. If the tails of the proposal are bounded by some multiple of ||x||−(r+d)
2 and if π(x) ∝

||x||−(r+d)
2 , at least outside some compact set, then the algorithm is polynomially er-

godic with rate r/2.

3. If π(x) ∝ ||x||−(r+d)
2 , at least for large enough x, and the proposal has tails q(x) ∝

||x||−(d+η)
2 (0 < η < 2) then the algorithm is polynomially ergodic with rate r/η.

Thus posterior distributions with exponential or lighter tails lead to a geometrically er-

godic Markov chain, whereas polynomially tailed posteriors can lead to polynomially ergodic

chains, and even this is only guaranteed if the tails of the proposal are at least as heavy as

the tails of the posterior. However by using a proposal with tails so heavy that it has infinite

variance, the polynomial convergence rate can be made as large as is desired.
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Algorithm 4 (BlkShpCau): Our fourth algorithm is identical to BlkShp but samples

the proposed jump from the heavy tailed multivariate Cauchy. Proposals are generated by

simulating V ∼ N(0, Σ̂) and Z ∼ N(0, 1) and setting Y∗ = V/Z. No acceptance rate

criteria exist for proposals with infinite variance and so the optimal scaling parameter for this

algorithm was found (for each dataset and Σ̂) by repeating several small runs with different

scale parameters and noting which produced the best ACT’s for each data set.

Algorithm 5 (BlkShpMul): The fifth algorithm relies on the fact that taking logarithms

of parameters shifts mass from the tails to the centre of the distribution. It uses a random

walk on the posterior of θ̃ := (logψ1, logψ2, log q12, log q21). Shape matrices Σ̂ were estimated

as for Algorithm 3, but using the logarithms of the posterior output from Algorithm 1. In

the original parameter space this algorithm is equivalent to a proposal with components

X∗
i = Xi e

Y ∗

i and so has been called the multiplicative random walk (see for example

Dellaportas and Roberts, 2003). In the original parameter space the acceptance probability

is

α(x,x∗) = min

(

1,

∏d
1 x

∗
i

∏d
1 xi

π(x∗)

π(x)

)

.

Since the algorithm is simply an additive random walk on the log parameter space, the usual

acceptance rate optimality criteria apply.

A logarithmic transformation is clearly only appropriate for positive parameters and can

in fact lead to a heavy left hand tail if a parameter (in the original space) has too much

mass close to zero. The transformation θ̃i = sign(θi) log(1 + |θi|) circumvents both of these

problems.

3.5 Combining algorithms

Intuition: Different MCMC algorithms may have different strengths and weaknesses. For

example algorithm A(1) may efficiently explore the tails of a distribution whereas algorithm
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A(2) might efficiently explore the body. In such circumstances a hybrid algorithm which

alternates iterations from A(1) and A(2) should combine the strengths of both, with efficiency

in a given portion of the posterior no worse than half that of the more efficient algorithm. A

similar argument applies when two algorithms are each efficient at exploring a different type

of posterior (e.g. relatively heavy tailed and relatively light tailed). In this case alternating

iterations from the algorithms produces a hybrid algorithm which is robust to the type of

posterior.

Theory: Consider the inner product

< ν1, ν2 >:=

∫

dx
ν1(x)ν2(x)

π(x)
, (14)

and the associated L2 norm, ||ν||2 :=< ν, ν >1/2. To avoid technical detail, we restrict

attention to distributions ν(·) which are absolutely continuous with respect to π(·) and for

which the L2 norm with respect to (14) exists: Eπ

[

|dν/dπ|2
]

< ∞. We also assume that

each transition kernel (A,A(1), A(2), and A∗) has a discrete spectrum; a more general theory

exists and can be found used in the context of MCMC in Roberts and Rosenthal (1997), for

instance.

Within the simplified framework described above, it is shown in Appendix A that from

initial distribution ν, for any reversible MCMC kernel A with stationary distribution π(·)

and second largest eigenvalue β2,

∣

∣

∣

∣νAk − π
∣

∣

∣

∣

2
≤ βk2 ||ν − π||2 .

Since
∣

∣

∣

∣νAk − π
∣

∣

∣

∣

1
≤
∣

∣

∣

∣νAk − π
∣

∣

∣

∣

2
this demonstrates geometric ergodicity as defined in Sec-

tion 2.2.1.

Next consider two MCMC algorithms A(1) and A(2) with stationary distribution π(·) and

second largest eigenvalues β
(1)
2 and β

(2)
2 . Let A∗ be a combination algorithm which alternates

iterations from A(1) and A(2). Of course A∗ is not, in general, reversible; nonetheless it can
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also be shown (see Appendix A) that

∣

∣

∣

∣

∣

∣
ν (A∗)k − π

∣

∣

∣

∣

∣

∣

2
≤
(

β
(1)
2 β

(2)
2

)k

||ν − π||2 .

Thus the bound on geometric convergence rate for A∗ is at worst the geometric mean of the

bounds on the convergence rates of its two component algorithms. The result generalises to

the sequential combination of any n algorithms.

Instead of alternating A(1) and A(2), at each iteration one of the two algorithms could be

chosen at random with probabilities 1− δ and δ. Combining the triangle inequality with the

first result in this section, for this mixture kernel A∗∗

||νA∗∗ − π||2 =
∣

∣

∣

∣(1− δ)
(

νA(1))− π
)

+ δ
(

νA(1))− π
)
∣

∣

∣

∣

2
≤ ((1−δ)β1+δβ2) ||ν − π||2 . (15)

The geometric convergence rate for this (reversible) kernel, A∗∗ is clearly at most (1−δ)β1 +

δβ2. Practical implementation of such a mixture kernel is illustrated in the next section in

the context of adaptive MCMC.

3.6 Adaptive MCMC

Intuition: Algorithm 3 used the output from a previous MCMC run to estimate the

shape Matrix Σ. An overall scaling parameter was then varied to give an acceptance rate of

around 0.3. With adaptive MCMC a single chain is run, and this chain gradually alters its

own proposal distribution (e.g. changing Σ), by learning about the posterior from its own

output. This simple idea has a major potential pitfall, however.

If the algorithm is started away from the main posterior mass, for example in a tail or a

minor mode, then it initially learns about that region. It therefore alters the proposal so that

it efficiently explores this region of minor importance. Worse, in so altering the proposal the

algorithm may become even less efficient at finding the main posterior mass, remain in an

unimportant region for longer and become even more influenced by that unimportant region.
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The acceptance rate for each proposal is chosen so that its stationary distribution is π(·).

However since the transition kernel is continually changing, potentially with the positive

feeback mechanism of the previous paragraph, this is not sufficient to guarantee that the

overall stationary distribution of the chain is π(·). Roberts and Rosenthal (2007) give a very

simple adaptive MCMC scheme on a discrete state space for which the resulting stationary

distribution is not the intended target.

A simple solution to this stationarity problem is so called finite adaptation wherein the

algorithm is only allowed to evolve for the first n0 iterations, after which time the transition

kernel is fixed. Such a scheme is equivalent to running a shorter “tuning” chain and then

a longer subsequent chain (e.g. Algorithm 3). If the tuning portion of the chain has only

explored a minor mode or a tail this still leads to an inefficient algorithm. We would prefer

to allow the chain to eventually correct for any errors made at early iterations and yet still

lead to the intended stationary distribution. It seems sensible that this might be achieved

provided changes to the kernel become smaller and smaller as the algorithm proceeds and

provided the above-mentioned positive feedback mechanism can never pervert the entire

algorithm.

Theory: At the nth iteration let Γn represent the choice of transition kernel; for the

RWM it might represent the current shape matrix Σ and the overall scaling λ. Denote

the corresponding transition kernel PΓn(x, ·). Roberts and Rosenthal (2007) derive a set

of two conditions which together guarantee convergence to the stationary distribution. A

key concept is that of diminishing adaptation, wherein changes to the kernel must become

vanishingly small as n→∞

sup
x

∣

∣

∣

∣PΓn+1(x, ·)− PΓn(x, ·)
∣

∣

∣

∣

1

p−→ 0 as n→∞.

A second containment condition considers the ǫ-convergence time under repeated application

of a fixed kernel, γ, and starting point x,

Mǫ(x, γ) := inf
n

{

n ≥ 1 :
∣

∣

∣

∣P n
γ (x, ·)− π(·)

∣

∣

∣

∣

1
≤ ǫ
}

,

27



CRiSM Paper No. 09-16, www.warwick.ac.uk/go/crism

and requires that for all δ > 0 there is an N such that for all n

P (Mǫ(Xn,Γn) ≤ N | X0 = x0,Γ0 = γ0) ≥ 1− δ.

The containment condition is, in general, difficult to check in practice; some criteria are

provided in Bai et al. (2009).

Adaptive MCMC is a highly active research area at present, and so when considering specific

schemes, we confine ourselves to adaptations relating to posterior shape and scaling. Roberts

and Rosenthal (2009) describe an adaptive RWM algorithm for which the proposal at the

nth iteration is sampled from a mixture of adaptive and non-adaptive distributions

Y ∼







N
(

0, 1
d
2.382Σn

)

w.p. 1− δ

N
(

0, 1
100d

I
)

w.p. δ.

Here δ = 0.05 and Σn is the variance matrix calculated from the previous n − 1 iterations

of the scheme. Changes to the variance matrix are O(1/n) at the nth iteration and so the

algorithm satisfies the diminishing adaptation condition. Haario et al. (2001) show that

a similar adaptive scheme with Y ∼ N
(

0, 1
d
2.382Σn + ǫ2I

)

(for fixed ǫ > 0) is ergodic

provided both the target density and its support are bounded.

Choice of the overall scaling factor 2.382/d follows directly from the optimal scaling limit

results reviewed in Section 3.1, with I = 1 or k
(d)
x = k

(d)
y . In general therefore a different

scaling might be appropriate.

Algorithm 6 (BlkAdpMul): Our adaptive MCMC algorithm is a block multiplicative

random walk which samples jump proposals on the log-posterior from the mixture

Y ∼







N (0, m2Σn) w.p. 1− δ

N
(

0, 1
d
λ2

0I
)

w.p. δ.

Here δ = 0.05, d = 4, and Σn is estimated from the logarithms of the posterior sample to

date. A few minutes were spent tuning the block multiplicative random walk with proposal
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variance 1
4
λ2

0I to give at least a reasonable value for λ0 (acceptance rate ≈ 0.3), although

this is not stricly necessary.

The overall scaling factor for the adaptive part of the kernel was allowed to vary according

to the following scheme.

1. An initial scaling was set to m0 = 2.38/d1/2 and an adaptation quantity ∆ = m0/100

was defined.

2. Proposals from the adaptive part of the mixture were only allowed once there had been

at least 10 proposed jumps accepted.

3. If iteration i was from the adaptive part of the kernel then m was altered:

• If the proposal was rejected then m← m−∆/i1/2.

• If the proposal was accepted then m← m+ 2.3 ∆/i1/2.

Step 2 ensures a sufficient number of different parameter values to calculate a sensible co-

variance matrix (note that with three or fewer acceptances, rows of the covariance matrix

are not even linearly independent). Step 3 leads to an equilibrium acceptance rate of 1/3.3.

Changes to m are scaled by i1/2 since they must be large enough to adapt to changes in

the covariance matrix yet small enough that an equilibrium value is established relatively

quickly. As with the variance matrix, such a value would then only change noticeably if

there were consistent evidence that it should.

3.7 Utilising problem specific knowledge

Intuition: All of the above techniques apply to RWM algorithms on any posterior. However

algorithms are always applied to specific data sets with specific forms for the likelihood and
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prior. Combining problem specific knowledge with techniques such as optimal scaling and

shape adjustmet can often markedly improve efficiency. In the case of the MMPP we define a

reparameterisation based on the intuition that for an MMPP with ψ1 ≈ ψ2 the data contain

a great deal of information about the average intensity but relatively little information about

the difference between the intensities. With this reparameterisation the posterior for data

set D2 may then be very efficiently sampled using a Metropolis within Gibbs algorithm.

Theory: For a 2 dimensional MMPP define an overall transition intensity, stationary

distribution, mean intensity at stationarity, and a measure of the difference between the two

event intensities as follows

q := q12 + q21 , ν :=
1

q
[q21, q12]

t , ψ := νtψ and δ :=
(ψ2 − ψ1)

ψ
. (16)

Let tobs be the total observation time. If the Poisson event intensities are similar, δ is small,

and Taylor expansion of the log-likelihood in δ (see Appendix B) gives

l(ψ, q, δ, ν1) = n logψ − ψtobs + 2δ2ν1ν2f(ψt, qt) + δ3ν1ν2(ν2 − ν1)g(ψt, qt) +O(δ4) (17)

for some f(·, ·) and g(·, ·). Consider a reparameterisation from (ψ1, ψ2, q12, q21) to (ψ, q, α, β)

with

α := 2δ (ν1ν2)
1/2 and β := δ(ν2 − ν1). (18)

Parameters ψ; q and α; and β (in this order) capture decreasing amounts of variation in

the log-likelihood and so, conversely, it might be anticipated that there be corresponding

decreasing amounts of information about these parameters contained in the likelihood. Hence

very different scalings might be required for each.

Algorithm 7 (MwGRep): A Metropolis within Gibbs update scheme was applied to the

reparameterisation (ψ, q, α, β). A multiplicative random walk was used for each of the first

3 parameters (since they are positive) and an additive update was used for β. Scalings for

each of the four parameters were chosen to give acceptance rates of between 0.4 and 0.45.
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Algorithm 8 (MwGRepCau): Our final algorithm is identical to MwGRep except that

additive updates for β are proposed from a Cauchy distribution. The Cauchy scaling was

optimised to give the best ACT over the first 1000 iterations.

4 Results

Each RWM variation was tested against data sets D1 and D2 as described in Section 2.3.1.

For each data set, each algorithm was started from the known “true” parameter values and

was run 3 times with 3 different random seeds (referred to as Replicates 1-3). All algorithms

were run for 11000 iterations; a burn in of 1000 iterations was sufficient in all cases.

Priors were independent and exponential with means the known “true” parameter values.

The likelihood of an MMPP with maximum and minimum Poisson intensities ψmax and

ψmin and with n events observed over a time window of length tobs, is bounded above by

ψnmaxe
−ψmintobs. In this article only MMPP parameters and their logarithms are considered

for estimation. Since exponential priors are employed the parameters and their logarithms

therefore have finite variance, and geometric ergodicity is guaranteed.

The accuracy of posterior simulations is assessed via QQ plot comparison with the output

from a very long run of a Gibbs sampler (see Section 2.2.3). QQ plots for all replicates

were almost entirely within their 95% confidence bounds. Figure 4 shows such plots for

Algorithms 1-3 on data set D2 (Replicate 1). In general these three combinations produced

the least accurate performance yet even in these cases there is little reason to doubt that

ACT’s represent each algorithm’s exploration of the true posterior rather than a tail or minor

mode. The first replicate of Algorithm 4 on D2 also showed an imperfect fit in the tails.

This, and the replicate’s uncharacteristically high ACT’s arise directly from an excursion

lasting for about 500 iterations, in which the Markov chain became stuck in a minor mode
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with ψ1 ≈ 7, ψ2 ≈ 14, q12 ≈ 3, q21 ≈ 0.3.

The integrated ACT was estimated for each parameter and each replicate using the final 10

000 iterations from that replicate. Calculation of the likelihood is by far the most compu-

tationally intensive operation and is performed four times for each Metropolis within Gibbs

iteration (once for each parameter) and only once for each block update. To give a truer

indication of overall efficiency the ACTs for each Metropolis within Gibbs replicate have

therefore been multiplied by four. Table 1 shows the mean adjusted ACT for each algo-

rithm, parameter, and data set. for each set of three replicates most of the ACTs lay within

20% of their mean, and for the exceptions (Blk and BlkShpCau for data sets D1 and D2, and

BlkShp and BlkShpMul for data set D2) full sets of ACTs are given in Table 2 in Appendix

C.

In general all algorithms performed better on D1 than on D2 because, as discussed in Section

2.3.1 data set D1 contains more information on the parameters than D2; it therefore has

lighter tails and is more easily explored by the chain.

As might be expected, the simple block additive algorithm using Gaussian proposals with

variance matrix proportional to the identity matrix (Blk) performs relatively poorly on both

data sets. In absolute terms there is much less uncertaintly about the transition intensities

q12 and q21 (both are close to 1) than in the Poisson intensities ψ1 (10) and ψ2 (17 for D1

and 30 for D2) since the variance of the output from a Poisson process is proportional to

its value. The optimal single scale parameter necessarily tunes to the smallest variance and

hence explores q12 and q21 much more efficiently than ψ1 and ψ2.

Overall performance improves enormously once block proposals are from a Gaussian with

approximately the correct shape (BlkShp). The efficiency of the Metropolis within Gibbs

algorithm with additive Gaussian updates (MwG) lies somewhere between the efficiencies of

Blk and BlkShp but the improvement over Blk is larger for data set D1 than for data set
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Figure 4: QQ plots for algorithms Blk, MwG, and BlkShp on D2 (Replicate 1). Dashed lines are

approximate 95% confidence limits obtained by repeated sampling from iterations 1000 to 100 000

of a Gibbs sampler run; sample sizes were 10 000/ACT, which is the effective sample size of the

data being compared to the Gibbs run.
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D1 D2

Algorithm ψ1 ψ2 log (q12) log (q21) ψ1 ψ2 log (q12) log (q21)

Blk 66 126 15 19 176 175 80 70

MwG* 22 22 33 33 103 90 114 99

BlkShp 13 18 13 15 46 25 37 36

BlkShpCau 19 32 25 24 63 50 56 38

BlkShpMul 13 17 13 15 33 26 22 16

BlkAdpMul 12 12 14 14 20 20 17 23

MwGRep* 13 14 32 44 20 23 23 21

MwGRepCau* 14 15 37 42 24 233 25 23

Table 1: Mean estimated integrated autocorrelation time for the four parameters over three

independent replicates for data sets D1 and D2. *Estimates for MwG replicates have been

multiplied by 4 to provide figures comparable with full block updates in terms of CPU time.

D2. As discussed in Section 2.3.1 the parameters in D1 are more nearly independent than

the parameters in D2. Thus for data set D1 the principal axes of an elliptical approximation

to the posterior are more nearly parallel to the cartesian axes. Metropolis-within-Gibbs

updates are (by definition) parallel to each of the cartesian axes and so can make large

updates almost directly along the major axis of the ellipse for data set D1.

For the heavy tailed posterior of data set D2 we would expect block updates resulting from

a Cauchy proposal (BlkShpCau) to be more efficient than those from a Gaussian proposal.

However for both data sets Cauchy proposals are slightly less efficient than Gaussian propos-

als. It is likely that the heaviness of the Cauchy tails leads to more proposals with at least

one negative parameter, such proposals being automatically rejected. Moreover Σ̂ represents

the main posterior mass, yet some large Cauchy jump proposals from this mass will be in

the posterior tail. It may be that Σ̂ does not accurately represent the shape of the posterior

tails.
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Multiplicative updates (BlkShpMul) make little difference for D1, but for the relatively heavy

tailed D2 there is a definite improvement over BlkShpAdd. The adaptive multiplicative

algorithm (BlkAdpMul) is slightly more efficient still, since the estimated variance matrix

and the overall scaling are refined thoughout the run.

As was noted earlier in this section, due to our choice of exponential priors the quantities

estimated in this article have exponential or lighter posterior tails and so all the non-adaptive

algorithms in this article are geometrically ergodic. The theory in Section 3.4 suggests ways

to improve tail exploration for polynomially ergodic algorithms and so, strictly speaking,

need not apply here. However the exponential decay only becomes dominant some distance

from the posterior mass, especially for data set D2. Polynomially increasing terms in the

likelihood ensure that initial decay is slower than exponential, and that the multiplicative

random walk is therefore more efficient than the additive random walk.

The adaptive overall scaling m showed variability of O(0.1) over the first 1000 iterations

after which time it quickly settled down to 1.2 for all three replicates on D1 and to 1.1 for all

three replicates on D2. Both of these values are very close to the scaling of 1.19 that would

be used for a four dimensional update in the scheme of Roberts and Rosenthal (2009). The

algorithm similarly learnt very quickly about the variance matrix Σ, with individual terms

settling down after less than 2000 iterations, and with exploration close to optimal after less

than 500 iterations. This can be seen clearly in Figure 5 which shows trace plots for the first

2000 iterations of the first replicate of BlkAdpMul on D2.

The adaptive algorithm uses its own history to learn about d(d+1)/2 covariance terms and a

best overall scaling. One would therefore expect that the larger the number of parameters, d,

the more iterations are required for the scheme to learn about all of the adaptive terms and

hence reach a close to optimal efficiency. To test this a data set (D3) was simulated from a

three-dimensional MMPP with ψ = [10, 17, 30]t and q12 = q13 = q21 = q23 = q31 = q32 = 0.5.

The following adaptive algorithm was then run three times, each for 20 000 iterations.
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Figure 5: Trace plots for the first 2000 iterations of BlkAdpMul on data set D2 (Replicate 1).

Algorithm 6b (BlkAdpMul(b)): This adaptive algorithm is identical to BlkAdpMul

(with d = 9) except that no adaptive proposals were used until at least 100 non-adaptive

proposals had been accepted, and that if an adaptive proposal was accepted then the overall

scaling was updated with m ← m + 3 ∆/i1/2 so that the equilibrium acceptance rate was

approximately 0.25.

Figure 6 shows the evolution of four of the forty six adaptive parameters (Replicate 1). All

parameters seem close to their optimal values after 10 000 iterations, although covariance

parameters appear to be still slowly evolving even after 20 000 iterations. In contrast,

exploration of the posterior is close to its final optimum after only 1500 iteration as can be

seen in trace plots of the first 4000 iterations of the same replicate (Figure 7). This behaviour

was repeated across the other two replicates, indicating that, as with the two-dimensional

adaptive and non-adaptive runs, even a very rough approximation to the variance matrix

improves efficiency considerably. Over the full 20 000 iterations, all three replicates showed a

definite multimodality with λ2 often close to either λ1 or λ3, indicating that the data might
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Figure 6: Plots of the adaptive scaling parameter m and three estimated covariance parameters

Var [ψ1], Var [q12], and Cov [ψ1, q12] for BlkAdpMul(b) on data set D3 (Replicate 1).

reasonably be explained by a two dimensional MMPP. In all three replicates the optimal

scaling settled between 0.25 and 0.3, noticeably lower than Roberts and Rosenthal (2009)

value of 2.38/
√

9. With reference to Section 3.1 this is almost certainly due to the roughness

inherent in a multimodal posterior.

The reparameterisation of Section 3.7 was designed for data sets similar to D2, and on this

data set the resulting Metropolis within Gibbs algorithm (MwGRep) is at least as efficient

as the adaptive multiplicative random walk. On data set D1 however exploration of q12 and

q21 is arguably less efficient than for the Metropolis within Gibbs algorithm with the original

parameter set. The lack of improvement when using a Cauchy proposal for β (MwGRepCau)

suggests that this inefficiency is not due to poor exploration of the potentially heavy tailed

β. Further investigation in the (ψ, q, α, β) parameter space showed that for data set D1

only q was explored efficiently; the posteriors of ψ and β were strongly positively correlated

(ρ ≈ 0.8), and both ψ and β were strongly negatively correlated with α (ρ ≈ −0.65).
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Figure 7: Trace plots for the first 4000 iterations of the first replicate of BlkAdpMul(b) on data

set D3.
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Posterior correlations were small |ρ| < 0.3 for all parameters with data set D2 and for all

correlations involving q for data set D1.

The optimal scaling for the one-dimensional additive Cauchy proposal in MwGRepCau was

approximately two thirds of the optimal scaling for the one-dimensional additive Gaussian

proposal in MwGRep. In four dimensions the ratio was approximately one half. These ratios

allow the Cauchy proposals to produce similar numbers of small to medium sized jumps to

the Gaussian proposals.

5 Discussion

We have described the theory and intuition behind a number of techniques for improving the

efficiency of random walk Metropoplis algorithms and tested these on two data sets generated

from Markov modulated Poisson processes (MMPPs). Some implementations were uniformly

successful at improving efficiency, whilst for other’s success depended on the shape and/or

tails of the posterior. All of the underlying concepts discussed here are quite general and

easily applied to statistical models other than the MMPP.

Simple acceptance rate tuning to obtain the optimal overall variance term for a symmetric

Gaussian proposal can increase efficiency by many orders of magnitude. However with our

data sets, even after such tuning, the RWM algorithm was very inefficient. The effectiveness

of the sampling increased enormously once the shape of the posterior was taken into account

by proposing from a Gaussian with variance proportional to an estimate of the posterior

variance. For Algorithms 3, 4 and 5 the posterior variance was estimated though a short

“training run” - the first 1000 iterations after burn-in of Algorithm 1.

As expected, use of the “multiplicative random walk” (Algorithm 5), a random walk on

the posterior of the logarithm of the parameters, improved efficiency most noticeably on

39



CRiSM Paper No. 09-16, www.warwick.ac.uk/go/crism

the posterior with the heavier tails. However, contrary to expectation, even on the heavier

tailed posterior an additive Cauchy proposal (Algorithm 4) was, if anything, less efficient

than a Gaussian. Tuning of Cauchy proposals was also more time-consuming since simple

acceptance rate criteria could not be used.

Algorithm 6 combined the successesful strategies of optimal scaling, shape tuning, and trans-

forming the data, to create a multiplicative random walk which learned the most efficient

shape and scale parameters from its own history as it progressed. This adaptive scheme was

easy to implement and was arguably the most efficient algorithm for each of the data sets.

A slight variant of this algorithm was used to explore the posterior of a three-dimensional

MMPP and showed that in higher dimensions, such algorithms do take longer to discover

close to optimal values for the adaptive parameters. These runs also confirmed the finding

for the two dimensional MMPP that RWM efficiency improves enormously with knowledge

of the posterior variance, even if this knowledge is only approximate. For a multimodal

posterior such as that found for the three-dimensional MMPP it might be argued that a dif-

ferent variance matrix should be used for each mode. Such “regionally adaptive” algorithms

present additional problems, such as the definition of the different regions, and are discussed

further in Roberts and Rosenthal (2009).

Metropolis within Gibbs updates performed better when the parameters were close to or-

thogonal, at which point they were almost as efficient as an equivalent block updated with

tuned shape matrix. The best Metropolis within Gibbs scheme for data set D2 arose from a

new reparameterisation devised specifically for the two dimensional MMPP with parameter

orthogonality in mind. On D2 this performed nearly as well as the best scheme, the adaptive

multiplicative random walk.

The adaptive schemes discussed here provide a significant step towards a goal of completely

automated algorithms. However, as already discussed, for d model-parameters, a posterior

variance matrix has O(d2) components. Hence the length of any “training run” or of the
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adaptive “learning period” increases quickly with dimension. For high dimension it is there-

fore especially important to utilise to the full any problem specific knowledge that is available

so as to provide as efficient a starting algorithm as possible.
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A Convergence rates, eigenfunctions, and intuition

To avoid technical details we present theory in a simplified framework where the MCMC

kernels have discrete spectra, and consider only distributions for which the L2 norm resulting

from the inner product (14) exists. We first motivate (14).

Proposition 1 Let P (x, dx′) be a reversible kernel with stationary distribution π(·), eigen-

functions ei(·), and associated eigenvalues βi. All of the βi are real, and with the inner
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product defined in (14), < ei(·), ej(·) >= δij.

Proof: Define

S(x, dx′) :=

(

π(x)

π(x′)

)1/2

P (x, dx′).

Since P is reversible,

π(x)P (x, dx′) = π(x′)P (x′, dx).

Divide both sides by (π(x)π(x′))1/2 to see that S(x, dx′) = S(x′, dx). Thus S is sym-

metric and consequently has real eigenvalues βi and associated eigenfunctions e∗i (·) with
∫

dx e∗i (x) e∗j (x) = δij. Now for any i,

βi e
∗
i (x

′) =

∫

dx e∗i (x) S(x, dx′) =

∫

dx e∗i (x)
π(x)1/2

π(x′)1/2
dP (x,x′).

Thus ei := π1/2 e∗i is an eigenfunction of P with eigenvalue βi. Further

δij =

∫

dx e∗i (x) e∗j (x) =

∫

dx
ei(x) ej(x)

π
=< ei, ej > .

We next motivate the idea of geometric ergodicity and show that a geometric rate of conver-

gence is given by the second largest eigenvalue, provided its value is strictly less than one.

We employ the shorthand notation for measure ρ and kernel P , ρP :=
∫

dx ρ(x)P (x, ·).

Proposition 2 Let P be a reversible kernel with stationary distribution π, eigenvalues βi

with 1 = β1 ≥ β2 ≥ β3, . . . . For initial density ρ,

||ρP − π||2 ≤ β2 ||ρ− π||2 .

Proof: Write

ρ(·) =

∞
∑

i=1

ai ei(·)

and note that, since e1 = π, a1 =< ρ, e1 >= 1. Thus

||ρ− π||2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

2

ai ei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

(

∞
∑

2

a2
i

)1/2

.
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But ρ P =
∑∞

1 ai βiei and so

||ρP − π||2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

2

ai βi ei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ β2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

2

ai ei

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= β2

(

∞
∑

2

a2
i

)1/2

.

Note that
∣

∣

∣

∣ρP k − π
∣

∣

∣

∣

2
=
∣

∣

∣

∣

(

ρP k−1
)

P − π
∣

∣

∣

∣

2
≤ β2

∣

∣

∣

∣ρP k−1 − π
∣

∣

∣

∣

2
. Iterating this procedure,

we find that
∣

∣

∣

∣ρP k − π
∣

∣

∣

∣

2
≤ βk2 ||ρ− π||2.

We finally consider two reversible kernels with the same stationary distribution, and apply

them sequentially.

Proposition 3 Let reversible kernels A(1) and A(2) both have stationary distribution π(·),

and denote their second largest eigenvalues as β
(1)
2 and β

(2)
2 respectively. Let A∗ be a combi-

nation algorithm which alternates iterations from A(1) and A(2). Then

||νA∗ − π||2 ≤ β
(1)
2 β

(2)
2 ||ν − π||2 .

Proof: First decompose the eigenfunctions of A(1) in terms of the eigenfunctions of A(2):

e
(1)
i =

∞
∑

j=1

cije
(2)
j ,

where cij =< e
(1)
i , e

(2)
j >. Denote the remaining eigenvalues of A(1) and A(2) by β

(1)
i and β

(2)
i

and expand ρ in terms of the eigenfunctions of A(1) to obtain

ρA∗ =
∞
∑

i=1

aiβ
(1)
i e

(1)
i A(2) = π +

∞
∑

i=2

aiβ
(1)
i e

(1)
i A(2) = π +

∞
∑

i=2

aiβ
(1)
i

∞
∑

j=2

cijβ
(2)
j e

(2)
j .

Therefore

||ρA∗ − π||2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

i=2

aiβ
(1)
i

∞
∑

j=2

cijβ
(2)
j e

(2)
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ β
(1)
2 β

(2)
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

i=2

ai

∞
∑

j=2

cije
(2)
j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= β
(1)
2 β

(2)
2 ||ν − π||2 .

Repeated application of this result leads to:
∣

∣

∣

∣νA∗k − π
∣

∣

∣

∣

2
≤
(

β
(1)
2 β

(2)
2

)k

||ν − π||2.
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B Reparameterisation for the 2 dimensional MMPP

A Taylor expansion of the log-likelihood of a two-dimensional MMPP with ψ1 ≈ ψ2 was

given in Section 3.7. The derivation is sketched in this appendix and further details of the

(ψ, q, α, β) reparameterisation are provided. For a fuller derivation the reader is referred to

Sherlock (2006).

For a two dimensional MMPP with stationary distribution [ν1, ν2]
t, first reparameterise to

(ψ,Ψ∗, q,Q∗) with

ψ = νtψ , Ψ = ψ(I + Ψ∗) , q = q12 + q21 , Q∗ = −1

q
Q =





ν2 −ν2

−ν1 ν1



 .

With this reparameterisation

e(Q−Ψ)ti = e−ψtie−(Q∗qti+Ψ∗

ψti)

and therefore

L(Q,Ψ, t) = ψ
n
e−ψtobsνte−(Q∗qt1+Ψ∗

ψt1)(I + Ψ∗) . . .

. . . e−(Q∗qtn+Ψ∗

ψtn)(I + Ψ∗)e−(Q∗qtn+1+Ψ∗

ψtn+1)1.

But

e−(Q∗qti+Ψ∗

ψti) = I− (Q∗qti + Ψ∗ψti) +
1

2
(Q∗qti + Ψ∗ψti)

2 + . . . .

Expand the likelihood in terms of Ψ∗ and for notational simplicity, temporarily ignore the

factor ψ
n
e−ψtobs and products of powers of ψti and qti. Since Q∗n = Q∗, terms in Ψ∗, (Ψ∗)2,

and (Ψ∗)3 are then multiples respectively of

νtQ∗a1Λ∗Q∗a21 , νtQ∗b1Λ∗Q∗b2Λ∗Q∗b31 , and νtQ∗c1Λ∗Q∗c2Λ∗Q∗c2Λ∗Q∗c41

with a1, a2, b1, b2, b3, c1, c2, c3, c4 all either 0 or 1. From their definitions

νtQ = Q1 = νtΛ∗1 = 0
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and so to third order the only non vanishing terms are quadratic terms with b1 = b3 = 0

and cubic terms with c1 = c4 = 0. Further Λ∗1 = δ[−ν2, ν1]
t is a right eigenvector of Q∗

and νtΛ∗ = δ[ν1, ν2] is a left eigenvector of Q∗, both with eigenvalues 1. Hence in the

above products the remaining powers of Q∗ have no effect: both quadratic terms evaluate

to δ2ν1ν2, and all cubic terms evaluate to δ3ν1ν2(ν2−ν1). To cubic terms in δ, the likelihood

is therefore

L(ψ, q, δ, ν1) ≈ ψ
n
e−ψtobs

(

1 + 2δ2ν1ν2f(ψt, qt) + δ3ν1ν2(ν2 − ν1)g(ψt, qt)
)

where f(·, ·) and g(·, ·) are the sums of the many product terms in the expansion of the

likelihood involving respectively two and three occurences of Λ∗. Equation (17) follows

directly after a final Taylor expansion.

Viewed in terms of the original parameters, the transformation given in Section 3.7 is

ψ :=
q21λ1 + q12λ2

q12 + q21
, q := q12+q21 , α := 2

(λ2 − λ1)(q12q21)
1/2

q21λ1 + q12λ2
and β :=

(λ2 − λ1)(q12 − q21)
q21λ1 + q12λ2

.

Its Jacobian is

∂(ψ, q, α, β)

∂(λ1, λ2, q12, q21)
=

|λ2 − λ1|(q12 + q21)
2

(q21λ1 + q12λ2)2(q12q21)1/2
.

C Runs with highly variable ACTs

Three replicates were performed for each data set and algorithm, and ACTs are summarised

by their mean in Table 1. However for certain algorithms and data sets the ACTs varied

considerably; full sets of ACTs for these replicates are given in Table 2.
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Algorithm ψ1 ψ2 log (q12) log (q21)

Blk (D1) 59,64,75 120,155,104 12,15,17 19,21,17

BlkShpCau (D1) 28,16,12 36,29,31 20,20,35 26,23,24

Blk (D2) 121,259,146 107,262,157 41,139,61 51,110,48

BlkShp (D2) 54,51,34 23,24,29 40,45,27 50,35,23

BlkShpCau (D2) 92,51,46 48,57,46 94,42,31 35,41,39

BlkShpMul (D2) 53,24,23 22,33,25 20,23,24 17,18,13

Table 2: Estimated integrated autocorrelation time for the four parameters, on three inde-

pendent replicates for Blk and BlkShpCau on data set D1 and Blk, BlkShp, BlkShpCau and

BlkShpMul on data set D2.
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