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Abstract 1 

Radon is a powerful tracer of stream-aquifer interactions. However, it is important 2 

to consider the source and behaviour of radon in groundwater when interpreting 3 

observations of river radon in relation to groundwater discharge. Here we characterise 4 

the variability in groundwater radon concentrations in the riparian zone of a Chalk 5 

catchment. Groundwater 222Rn (radon) concentrations were determined in riparian 6 

zone boreholes at two sites in the Lambourn catchment, Berkshire, UK, over a two 7 

year period. In addition, borehole core material was analysed for 226Ra (radium) and 8 

to determine radon emanation. Radon and radium concentrations and radon emanation 9 

were found to change with depth and temporal variations in groundwater radon 10 

concentrations were found at different scales. The abundance of radium and 11 

emanation of radon increased nearer the surface leading to greater groundwater radon 12 

concentrations. It is shown that seasonal changes in water table elevation can to lead 13 

to variable radon concentrations in groundwater as zones of radon production become 14 

hydraulically active. Groundwater radon concentrations in shallow piezometers were 15 

found to respond to both seasonal changes in the water table and individual rainfall 16 

events. Riparian sources of radon can be variable and are therefore potentially 17 

influential in the radon signals observed in rivers and should be properly characterised 18 

when interpreting river radon inputs. 19 

 20 
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1. Introduction 1 

Groundwater-river water interactions are of great importance in groundwater 2 

dominated catchments such as those found in Chalk areas. The conditions under 3 

which groundwater will maintain river flow and the interactions between these bodies 4 

of water must be understood to allow effective catchment management. Groundwater 5 

makes up one third of public water supplies in England and Wales, with 6 

approximately half of this coming from Chalk aquifers (Downing, 1993).  The 7 

importance of Chalk catchments for water supply, as well as their ecological and 8 

amenity value, means that competing pressures on groundwater abstraction and river 9 

flows must be balanced.  10 

Tracers are an important tool in the study of interactions between ground and river 11 

waters and enable the understanding of transport and mixing processes between water 12 

bodies. Tracers allow the identification and quantification of flow paths and 13 

estimation of the mixing ratios of water bodies, if sufficiently different chemical 14 

signatures can be identified for each end member. 15 

Radon is a radioactive noble gas produced by the decay of radium that has been 16 

widely used as a tracer in groundwater studies. There are three naturally occurring 17 

isotopes of radon: 219Rn, 220Rn and 222Rn. Here we are concerned only with the 222Rn 18 

isotope, as the others have short half lives (t½ < 1 minute) which preclude them from 19 

the methods of analysis used here. 222Rn (t½ = 3.82 days) is the daughter of 226Ra and 20 

both are members of the 238U decay series. From here on the term ‘radon’ refers solely 21 

to the 222Rn isotope. The terms ‘parent’ and ‘daughter’ are used to describe the 22 

decaying and the resulting nuclides respectively.  23 

Uranium is present in different mineral phases of all rock types at varying 24 

concentrations (Ball et al., 1991). Differences in the abundance and distribution of 25 
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minerals, and therefore uranium and radium, lead to differences in radon production 1 

and emanation between geological units. Emanation describes amount of radon 2 

produced by decay of radium released from a material, in this case that which escapes 3 

the rock matrix into solution in the saturated zone of an aquifer. Emanation may be 4 

referred to as a rate if measured as the activity of radon released from a material per 5 

unit time or as a coefficient, which reflects the proportion of radon produced by 6 

radium that is released from a material. Radon emanation and the processes involved 7 

are discussed comprehensively in Osmond and Ivanovich (1992) and Porcelli and 8 

Swarzenski (2003). Radon is chemically and biologically inert and so in the saturated 9 

zone of an aquifer there are no sources other than the decay of 226Ra and no sinks 10 

other than its own radioactive decay. The chemical and physical characteristics of 11 

radon make it a potentially powerful tracer in the study of groundwater-river water 12 

interactions.  13 

Radon has several advantages over other natural and anthropogenic tracers. As a 14 

gas, radon is readily lost from river water to the atmosphere, where concentrations are 15 

negligible by comparison. The enrichment of radon in groundwater with respect to 16 

surface waters means that it is easily detectable in zones of groundwater discharge 17 

and subsequent degassing to the atmosphere allows the detection of successive 18 

groundwater inputs to a river. Sample collection and analysis requires relatively 19 

simple field and laboratory techniques and analysis by liquid scintillation 20 

spectrometry can be automated allowing for high sample throughput (Pates and 21 

Mullinger, 2007). 22 

In a closed system, 222Rn will reach radioactive equilibrium with its parent 226Ra. 23 

Radioactive equilibrium occurs when the activity of the daughter nuclide is equal to 24 

that of its parent, which is reached after approximately five daughter half-lives. The 25 
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3.82 day half life of radon means that equilibrium with a radium source will be 1 

achieved in approximately 20 days. Previous studies of radon in groundwaters have 2 

shown that its presence in solution is usually in excess of any dissolved radium 3 

(summarised in Osmond and Cowart, 1992). Therefore, the majority of dissolved 4 

radon must have been produced by decay of solid-phase radium and then released into 5 

groundwater via emanation processes. Due to radon’s short half-life and the tendency 6 

for concentrations to evolve towards equilibrium with its parent, we can assume that 7 

radon in groundwater is mostly derived from the recent flow path and not solution 8 

phase radium from historic flow paths. Radon is, therefore, indicative of the 9 

immediate geological environment unlike other solutes which may be transported 10 

over greater distances.  11 

Radon has been applied to the tracing of groundwater inputs into rivers and oceans 12 

(e.g. Burnett et al., 2006; Cook et al., 2003; Genereux et al., 1993; Hamada, 1999; Lee 13 

and Kim, 2006; Swarzenski et al., 2007) and in investigations of groundwater-river 14 

water interactions (e.g. Bertin and Bourg, 1994; Hoehn and von Gunten, 1989; 15 

Macheleidt et al., 2002; Schubert et al., 2004). These studies have usually sampled a 16 

number of groundwater monitoring wells in a catchment or aquifer and utilised either 17 

the mean or most reasonable single values as representative of catchment waters, i.e. a 18 

constant source term to the river is assumed (Cook et al., 2003; Ellins et al., 1990; 19 

Genereux and Hemond, 1990). Cook et al. (2006) took account of spatial variability 20 

of radon production within a river reach due to changes in geology while Genereux 21 

and Hemond (1990) distinguished between vadose zone water and saturated zone 22 

water from the soil and bedrock horizons.  23 

Recent work (Mullinger et al., 2007) has shown that temporal as well as spatial 24 

variation of radon in groundwater inputs can occur. Mullinger et al. used radon to 25 
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develop an understanding of some of the controls on groundwater inputs to the Pang 1 

and Lambourn Chalk catchments in South-East England. In the Pang catchment 2 

temporally variable radon concentrations in spring discharges exerted a strong 3 

influence over river radon concentrations. In the Lambourn, the modelled radon 4 

concentration in groundwater entering the river varied over time and appeared to 5 

reflect local flow accretion. Grapes et al. (2006) observed that river stage in the 6 

Lambourn was closely related to local groundwater levels and the Lambourn’s 7 

alluvial aquifer. The water table immediately adjacent to the river was generally 0.2-8 

0.4 m higher than the river stage, with no flow in the river when the water table falls 9 

below the level of the river bed (Grapes et al., 2005). Changes in radon inputs are 10 

thought to be indicative of connectivity with the alluvial aquifer located in the river 11 

valley.  Therefore, it is hypothesised that changes in the level of the local water table 12 

have an impact on the source of radon being supplied to the river in the Lambourn. 13 

This hypothesis is the focus of the present study. 14 

Groundwater studies of radon in the Chalk of the UK have previously focused on 15 

deep groundwaters. Sampling has typically been from public supply boreholes for the 16 

purpose of investigating bulk aquifer properties (e.g. Low, 1996; Younger and Elliot, 17 

1995). Observations by Low at public supply boreholes in the Chalk of East Anglia, 18 

UK showed temporal variations in groundwater radon concentrations of up to 3 Bq l-1 19 

in individual boreholes and a range of 3.5 to 9 Bq l-1 across the different sites. A large 20 

recharge event was shown to significantly lower groundwater radon concentrations 21 

across several boreholes. Low suggests that lower radon concentrations occur during 22 

times of recharge.  23 

Another example of temporal changes in groundwater radon concentrations is 24 

found in a study of spring water derived from the Mendip Hills near Bristol (Andrews 25 
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and Wood, 1972). Andrews and Wood (1972) observed generally higher radon 1 

concentrations during periods of higher rainfall in water from two springs discharging 2 

from the Carboniferous Limestone of the Mendips. The studies by Low (1996) and 3 

Andrews and Wood (1972) show that, despite differences in the systems being 4 

observed, temporal changes in groundwater radon can exist under different 5 

hydrological conditions.   6 

The source and behaviour of radon in groundwater are important factors in 7 

interpreting observations of river radon in relation to stream-aquifer interactions. In 8 

this paper we concentrate on the spatial and temporal variations that exist in the 9 

groundwater system only. The aims of this work are to characterise spatial variability 10 

in the sources of radon relevant to groundwater-river interactions, i.e. the groundwater 11 

and aquifer immediately adjacent to the river, to understand temporal changes in 12 

groundwater radon in this zone and to add to the relatively sparse data that exits on 13 

radon in Chalk catchments.  14 

 15 

2. Site description 16 

The Lambourn is a groundwater dominated Cretaceous Chalk catchment 17 

(Bradford, 2002) located in West Berkshire, UK (Fig. 1). The outcropping solid 18 

geology is almost entirely Chalk with minor Palaeogene deposits overlying the lower 19 

catchment and significant drift deposits in the river valley (Allen et al., 1997).  20 

Groundwater dominated catchments are often, but not exclusively, characterised 21 

by stable flow conditions with a high base flow index as well as stable temperature 22 

and chemistry signals (Sear et al., 1999). The base flow index in the Lambourn is 0.96 23 

(Grapes et al., 2005) and Neal et al. (2004) observed stable Ca, Mg and Sr profiles 24 

along the length of the perennial river channel. Stable physical and chemical 25 



 8

parameters in catchments of this type mean that many natural tracers are of limited 1 

use due to the homogeneity of water in the aquifer and river. As well as its importance 2 

as a water source, the River Lambourn is of high ecological value as recognised by its 3 

designation as a Site of Special Scientific Interest. The Lambourn catchment itself has 4 

a topographical catchment area of 234 km2 (Griffiths et al., 2006) and is a tributary of 5 

the River Kennet, which in turn flows into the River Thames. 6 

This paper focuses on the results of investigations carried out at two borehole 7 

installations in the Lambourn valley at Maidencourt Farm (MCT) and East Shefford 8 

(ESF) (Fig. 1). The study sites are located approximately halfway down the length of 9 

the catchment, where boreholes with nested piezometer arrays have been drilled in the 10 

riparian zone. Drilling took place in June 2004 and at each site five boreholes were 11 

installed, each with two piezometers screened at different depths. Inset diagrams in 12 

Fig. 1 show the layout of each site with respect to the river channel. The nomenclature 13 

of the boreholes is described by the site initials (MCT or ESF) followed by a number 14 

(1-5), which relates to the individual boreholes shown in Fig. 1 and Fig. 2, and a 15 

second number (1 or 2), which defines the piezometer, piezometer 1 being the deeper 16 

and piezometer 2 the shallower. E.g. MCT4-2 describes the shallow piezometer in 17 

borehole 4 at Maidencourt Farm. The piezometers at these sites range in depth from 18 

1.6 to 12.5 m bgl, with screened sections 0.8 m in length. At each site, four of the 19 

boreholes are located in the alluvial plain close to the river and an additional deeper 20 

borehole at each site (MCT1 and ESF1) is located further from the river on an 21 

adjacent hill slope with both piezometers in these boreholes being located in the 22 

Chalk rather than the alluvium (Fig. 2). A common lithology is found at these 23 

borehole sites. From 0 to 0.5 m there is a layer of stony / gravely soil below which 24 

alluvial material is found mixed with marl and flint gravels to approximately 4 m. 25 
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This alluvial layer is very heterogeneous between boreholes, with some sandy and 1 

clayey layers found amongst chalky soils, and tends to be 0.5-1 m thicker at East 2 

Shefford. From 4 to 10 m is predominantly weathered Chalk and below 10 m the 3 

Chalk becomes more consolidated. The hill slope boreholes (MCT1 and ESF1) have a 4 

soil layer (~ 0.5 m) overlying weathered Chalk.  5 

 6 

3. Methods 7 

Routine borehole sampling was carried out between January 2005 and May 2006. 8 

This involved collecting triplicate samples from each piezometer on an approximately 9 

monthly basis. Additional sampling was also carried out at the end of 2006 to monitor 10 

the response of groundwater radon concentrations to rainfall events.  11 

Groundwater samples were taken from piezometers using a submersible pump 12 

fitted with a suitable length of hose and the pump inlet positioned in the middle of the 13 

screened section. First the piezometer was purged of three times the volume of the 14 

screened section to remove any water that may have been residing there for some 15 

time. Then 5 litres water were carefully pumped to a bucket from which a standard 16 

600 ml bottle was filled and sealed under the water surface to exclude any air. A 17 

further three screened section volumes were removed between samples, with triplicate 18 

sampling used to ensure that the radon concentrations measured were representative 19 

and had stabilised after purging. 20 

Dissolved radon concentrations were determined by liquid scintillation 21 

spectrometry (LSS) according to Pates and Mullinger (2007). Samples were extracted 22 

using 20 ml of toluene, with a 10 ml aliquot being combined with the scintillation 23 

cocktail Ultima Gold LLT (PerkinElmer) in a low-potassium glass vial before 24 

counting for 60 minutes on a Packard Tri-Carb 3170 liquid scintillation counter. 25 
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Borehole radon concentrations are means of triplicate samples and errors are standard 1 

deviations of the triplicate results. This method is hereafter referred to as the 2 

“Toluene” method.  3 

To verify the results of the Toluene analyses an additional method (ASTM, 1998) 4 

was used. Ten millilitre samples of borehole water were taken from an overflowing 5 

funnel attached to the pump outlet using a disposable syringe. These samples were 6 

injected into pre-weighed glass scintillation vials containing the water-immiscible 7 

scintillation cocktail Ultima Gold F (PerkinElmer), which were then counted (as 8 

above) with no further processing. This method of analysis was the only one 9 

employed in event sampling due to the logistics of collecting and analysing samples 10 

over the observation period. Results for these analyses are for single samples; the 11 

errors quoted are the result of propagated counting and analytical errors. In all cases 12 

the relative errors of radon analysis by both methods are less than 10 %. Field trials of 13 

these radon analysis methods found highly reproducible results between replicate 14 

sample analyses. Relative standard deviations of 5.2 % (n = 25) and 2.3 % (n = 19) 15 

were obtained for the ASTM and Toluene methods respectively (see Pates and 16 

Mullinger (2007) for a detailed discussion on the analytical errors and reproducibility 17 

of both radon analysis methods used). 18 

Cores retained from the borehole drilling were analysed for radium content. Sub-19 

samples of 200-500 g were taken from the borehole core material at approximately 20 

one metre intervals from two boreholes at each site to a depth of 5 m. MCT2, MCT5, 21 

ESF3 and ESF5 were selected as providing the most continuous profiles of recovered 22 

core material. Samples were dried in an oven at 60 °C to constant mass, ground and 23 

homogenised using a tungsten carbide Tema mill and then passed through a 250 µm 24 

mesh sieve. Radium was analysed by gamma spectrometry; 20 grams of sample was 25 
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pressed into a pellet and sealed in polycarbonate petri dishes using an epoxy resin. 1 

These were then left for at least 30 days to allow 214Pb to reach secular equilibrium 2 

with 226Ra before counting by gamma spectrometry. Radium concentrations (Bq kg-1 3 

of dry sample) were calculated from the 214Pb 352 keV photopeak with errors derived 4 

from counting statistics (Currie, 1968) and errors in sample size.  5 

Estimates of radon emanation from borehole core material were made by slurrying 6 

approximately 60 g of sample material, prepared as for radium analysis, in a 60 ml 7 

glass bottle with deionised water. The bottle was then filled to the brim with deionised 8 

water and sealed to exclude any air by a plastic screw cap with a PTFE faced sealing 9 

disc. The mass of rock sample and volume of water added was measured by weighing 10 

the sample bottle at each step. At least 30 days were allowed for radon to reach 11 

equilibrium concentrations in the water. Ten millilitres of water was then extracted 12 

from the bottle and analysed for radon content via the ASTM (1998) method giving 13 

results as Bq l-1. This concentration was then used to calculate the radon emanation 14 

(ERn) from each rock sample in Bq kg-1 using equation (1). 15 

M
VRn

E w
Rn

⋅
=

][
, (1)

where [Rn] is the concentration of dissolved radon in the sample bottle (Bq l-1), Vw is 16 

the volume of water (litres) and M is the mass of the rock sample (kg). Results of 17 

emanation measurements are presented as Bq kg-1 of dry sample material and are 18 

means of triplicate analyses, errors are standard deviation of triplicate analyses. 19 

Emanation coefficients were then calculated using equation (2). 20 

][Ra
E

E Rn
coeff = , (2)

 21 
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where Ecoeff is the emanation coefficient and [Ra] the concentration of radium in the 1 

rock sample (Bq kg-1).  2 

To estimate the density and porosity at these borehole sites, retained complete 3 

core samples (10 cm in diameter) from each piezometer depth were sectioned into 5 4 

cm sub-samples. These sections were then hydrated at 20 ºC under pressure (max. 4 5 

bar) to ensure maximum saturation before weighing. The cores were then oven dried 6 

at 60 ºC until constant mass was reached. The porosity was calculated by mass 7 

difference from the volume of water lost after drying and the density was calculated 8 

from the dry sample mass and sample volume. Errors in porosity and density 9 

estimates are calculated by the propagation of errors in the measurement of sample 10 

size and mass. 11 

From the results of radon emanation, porosity and density measurements the 12 

following equation was used to calculate the theoretical radon concentration of 13 

groundwater ([Rn]gw in Bq l-1) that would be in equilibrium with the local rock. 14 

ρφRngw ERn =][ , (3)

where ERn is the emanation of radon from a sample (Bq kg-1), ρ is density (kg dm-3) 15 

and φ  is porosity.  16 

Slug tests were carried out to measure the hydraulic conductivity of each 17 

piezometer and a number of the deeper piezometers at each site were equipped with 18 

pressure sensors (PS2100, Greenspan; HOBO U-20-001-01 series, Onset Computer 19 

Corp. and miniTROLL, In-Situ Inc.). These sensors were set to log at 15 minute 20 

intervals in order to monitor the changes in local hydraulic head. At least three repeat 21 

measurements were made of hydraulic conductivity and results presented are the 22 

mean and standard deviation of these measurements. 23 
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River flow at each borehole site was measured using a handheld acoustic Doppler 1 

flow meter (SonTek FlowTracker). Surveys were carried out following the guidance 2 

of the relevant British Standard (ISO748:2000, 2000) and Environment Agency R&D 3 

Technical Report W4 (Ramsbottom et al., 1997) to provide discharge data with an 4 

accuracy of ± 10 %. Rainfall was measured by means of a tipping bucket rain gauge 5 

located at East Shefford. 6 

 7 

4. Results 8 

The results of groundwater radon sampling at Maidencourt Farm and East 9 

Shefford in Table 1 and Table 2 respectively. Mean radon concentrations and the 10 

maximum and minimum observed concentrations are given for each piezometer. The 11 

results of hydraulic conductivity measurements, as well as porosity and density 12 

estimates made from borehole core material recovered from each screened section, are 13 

also given. Table 3 shows the results of radium and radon emanation measurements 14 

for borehole core material. 15 

 16 

4.1 Spatial variability 17 

The water table is usually deeper at Maidencourt Farm than at East Shefford 18 

during the study period (Fig. 3a). There is also greater variation observed in the water 19 

table at Maidencourt Farm compared to East Shefford. Over the monitoring period the 20 

water table varied by 0.8 m at Maidencourt Farm and by 0.2 m at East Shefford. 21 

Maidencourt Farm is the perennial head of the River Lambourn during late summer, 22 

low flow conditions (Grapes et al., 2006). 23 

As a result of the deeper water table and its variation during the sampling period 24 

samples were not obtained from MCT2-2. It was also not possible to obtain samples 25 
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from MCT4-2 due to the low hydraulic conductivity (Table 1) at this piezometer 1 

preventing purging and sampling on a reasonable time scale. The results from each 2 

sampled borehole show consistently low radon concentrations in water samples from 3 

the deeper piezometers, located in weathered Chalk, with means of between 1.1 and 4 

1.8 Bq l-1 and a maximum range of 0.6 Bq l-1 in MCT4-1 (Table 1).  5 

There are differences between the observed radon concentrations in the shallower 6 

piezometers MCT3-2 and 5-2. MCT3-2 has elevated radon concentrations relative to 7 

all other sampled piezometers at Maidencourt Farm including MCT5-2, which is at a 8 

similar depth and located on the opposite river bank. Radon in MCT3-2 switches 9 

between two relatively stable concentrations of approximately 5 and 7 Bq l-1 (Fig. 4a) 10 

during the sampling period while MCT5-2 remains stable at between 1.2 and 1.8 Bq 11 

l-1 (Table 1). Geological logs indicate that the cores from these piezometers consisted 12 

of sandy gravel material, which at MCT5-2 is mixed with some Chalk.  13 

At East Shefford a similar vertical distribution of groundwater radon 14 

concentrations (Table 2) is observed as at Maidencourt Farm. The piezometers deeper 15 

than 4 m bgl have low and stable mean groundwater radon concentrations from 1.1 to 16 

2.2 Bq l-1 with ranges of 0.7 Bq l-1 in ESF3-1 and 5-1. ESF4-1 is the shallowest of the 17 

‘deep’ piezometers (3.9 m bgl) and has a mean radon concentration of 3.3 Bq l-1. 18 

ESF3-2, 4-2 and 5-2 all have relatively high mean groundwater radon concentrations 19 

(> 10 Bq l-1), comparable to MCT3-2 (Fig. 4). ESF2-2 has low groundwater radon 20 

concentrations compared with piezometers of similar depths and locations at ESF and 21 

may be considered analogous in this respect to MCT5-2. As with MCT5-2 it is the 22 

only piezometer in the flood plain on its respective side of the river (Fig. 1). Overall it 23 

is found that the shallower piezometers at East Shefford have higher groundwater 24 
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radon concentrations than those found in the shallower piezometers at Maidencourt 1 

Farm.  2 

Radium concentrations in core samples retained from drilling at Maidencourt 3 

Farm reflect the trend seen in groundwater radon concentrations, with greater values 4 

being observed nearer the surface (Fig. 5a). Radium concentrations in borehole core 5 

material are generally within the range 4.4-14.1 Bq kg-1 with a notable exception in 6 

the upper most sample from MCT2 of 39.4 ± 1.3 Bq kg-1. Core material from MCT2-7 

2 has a very high radium concentration, which is associated with a clayey region 8 

identified in the geological log of this borehole. There is a general increase in radium 9 

concentration with decreasing depth of sample. There is clear heterogeneity in radium 10 

across both sites in the top few meters of each alluvial aquifer borehole. The mixture 11 

of clay, gravel, flint material mixed to varying degrees with Chalk leads to differences 12 

in radium concentration between the borehole core samples.  13 

Emanation coefficients from borehole core material ranges from 0.05-0.23 with a 14 

single high value at 0.37 corresponding to the upper most sample from MCT2, where 15 

a high radium concentration was also found (Fig. 5b). There is a general increase in 16 

emanation with decreasing depth, similar to that observed in the core radium and 17 

groundwater radon data. These emanation results broadly reflect the range found in 18 

other emanation studies. The emanation from a wide range of rock and soil types has 19 

been investigated by Baretto et al. (1972) with other studies looking at limited rock 20 

and soil types (Andrews and Wood, 1972; Bonotto and Andrews, 1997; Misdaq and 21 

Amghar, 2005; Przylibski, 2000; Rama, 1991). No studies have been found in the 22 

literature for Chalk and soils of the type investigated here. Soils and heavily 23 

weathered material have high and variable emanation coefficients, typically between 24 
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0.1 and 0.6. Consolidated rocks usually have much lower emanation, between 0.01 1 

and 0.2, with higher values for less consolidated materials.  2 

  The mean porosity and density measured in recovered core sections from the two 3 

borehole sites are 39 % (range 24-47 %, standard deviation 8 %) and 1.7 g cm-3 (range 4 

1.5-2.2 g cm-3, standard deviation 0.2) respectively. From these data and the radon 5 

emanation results, estimates of equilibrium groundwater radon concentrations were 6 

made as described in equation (3) (Fig. 5c, errors calculated from propagation of 7 

errors in emanation, porosity and density measurements). For comparison the mean 8 

observed radon concentrations in each piezometer to a depth of 6 m bgl are shown in 9 

Fig. 5d (error bars show standard deviation of observations from each piezometer). 10 

These results are comparable with the observed data, with the exception of the high 11 

radon value obtained for the upper most sample of MCT2 associated with the high 12 

radium and emanation values. No groundwater radon samples were available from 13 

MCT2-2 for comparison with the high estimated value, due to the low water table at 14 

this site during the study period (Fig. 2a).  15 

Hydraulic conductivities of the measured piezometers at both sites range from 0.4 16 

to 156.2 m d-1. The lowest hydraulic conductivity occurs at MCT4-2 where its low 17 

conductivity and close proximity to the water table led to slow recovery from 18 

pumping and prevented radon sampling. There is no observed relationship between 19 

the depth and the hydraulic conductivity at each of the piezometers, although there are 20 

a limited number of samples to compare below seven metres.  21 

 22 

4.2 Temporal variability 23 

Deep piezometers (below 4 m bgl) at both borehole sites exhibit relatively low 24 

radon concentrations, which are stable over time (Table 1 and Table 2). There is some 25 



 17

temporal variation in radon concentrations in the piezometers located in the alluvial 1 

plain. The consistency in replicate samples and the common patterns of variation in 2 

boreholes ESF3 to ESF5 indicates that this variation is not simply a result of sample 3 

scatter (Fig. 4). MCT3-2 switches between approximately 5 and 7 Bq l-1, increasing 4 

between 21 July 2005 and 29 September 2005 and decreasing between 16 March 5 

2006 and 4 May 2006. During both periods when switching occurs the riparian zone 6 

water table is falling or rising between the limits of 0.8 and 1.1 m bgl, c.f. study 7 

period range of 0.6-1.4 m bgl (Fig. 3a). The fall in the water table also results in the 8 

source of the Lambourn migrating downstream of Maidencourt Farm, which is why 9 

no river flow is recorded at this site between August 2005 and June 2006 (Fig. 3b). 10 

The shaded areas in Fig. 3b and Fig. 4a show that the change in radon concentration 11 

in MCT3-2 coincides with the no-flow period in the river at Maidencourt Farm. 12 

At East Shefford, piezometers ESF3-2, 4-2 and 5-2 show changes in radon 13 

concentrations (Fig. 4b-d), but without the distinct periods of stability observed in 14 

MCT3-2. During this period there is little movement in the depth of the riparian zone 15 

water table at East Shefford, which varies between 0.6 and 0.8 m bgl, and the changes 16 

in radon concentrations do not indicate a relationship with seasonal groundwater 17 

movements. Additional higher resolution sampling was undertaken to help understand 18 

the observed temporal variations in groundwater radon at East Shefford. 19 

From higher resolution sampling of groundwater radon during rainfall events it 20 

can be seen that short term responses occur at East Shefford. Two sampling periods 21 

took place in October and November 2006, during which rainfall events were 22 

captured (Fig. 6). The October event is early in the recharge period and the water 23 

table at ESF3 is 0.78 m bgl, while in November groundwater has recovered to 0.68 m 24 

bgl.  25 
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A total of 17.2 mm of rain fell on 11 October (Fig. 6a) contributing to a 7 cm head 1 

response in ESF3-1 between 07:00 and 18:00 (Fig. 6b), followed by a steady 2 

recession period. There is a subtle response in groundwater radon concentrations to 3 

this input of water with decreases of 1.5 Bq l-1 in ESF3-2 and 2 Bq l-1 in ESF4-2 (Fig. 4 

6c). The radon concentration in the shallow piezometers then increases during the 5 

recession in groundwater level. The magnitude of variation in deeper piezometers 6 

makes the responses to rainfall more difficult to discern. 7 

On the morning of 28 November 16 mm of rain fell (Fig. 6d) and this event 8 

resulted in a 10 cm head response in ESF3-1 (Fig. 6e). Here the radon concentrations, 9 

monitored only in ESF3 on this occasion, show a response of 2 Bq l-1. Less of the 10 

recession curve was captured by post event sampling and so it is not clear whether 11 

radon concentrations in ESF3-2 recovered fully after this event. 12 

Although only small differences in radon concentrations are found in the first 13 

event the simultaneous response of piezometers ESF3-2 and ESF4-2 indicates that the 14 

observations are a response to rainfall. This hypothesis is then further supported by 15 

the observations during the second event, which show significant differences in pre- 16 

and post-event radon concentrations. The greater radon response in the November 17 

event is likely to be due to the shallower depth of the water table providing more rapid 18 

connection of the infiltrating water to the aquifer and also to the greater intensity of 19 

rainfall, which can be seen in the hydraulic head response. 20 

 21 

5. Discussion 22 

5.1 Spatial Variability 23 

From the analysis of groundwater and borehole core samples it can be seen that 24 

groundwater radon concentrations are related to the abundance of radium and 25 
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differences in emanation with depth. The increased abundance of radium and 1 

emanation of radon near the surface results in a distinctive vertical groundwater 2 

profile in the riparian zone. It is also shown that measurements of radium 3 

concentration and radon emanation can give good indicative estimates of the 4 

distribution of groundwater radon concentrations that may be found at a site. The 5 

results reflect the types of deposit found in the vertical profile and the degree of 6 

weathering in the near surface. The alluvial gravels and sediments in the river valley 7 

are materials remaining after the erosion of the overlying Palaeogene deposits and the 8 

insoluble fraction of sediments co-deposited when the Chalk was formed. These 9 

insoluble sediments, containing clays and other fine material, tend to be higher in 10 

radium than the carbonate matrix of the Chalk due to their mineral composition and 11 

also their adsorption properties, which allows for accumulation of parent nuclides on 12 

surfaces (Bonotto and Andrews, 1993; Osmond and Cowart, 1992).  13 

The higher radon concentrations in groundwaters from the shallow riparian 14 

piezometers at East Shefford compared with Maidencourt Farm may be due to the 15 

thicker alluvial deposits found at East Shefford, providing a larger radon source, and 16 

the elevated water table allowing dissolution of radon from nearer the surface.  17 

The heterogeneity of groundwater radon concentrations found in the shallow 18 

piezometers of riparian zone boreholes indicates that spatial variation can occur in 19 

near-surface groundwater inputs to surface waters. Therefore, contributions to stream 20 

radon from this type of system may vary along the course of a river. In river reaches 21 

where there is significant interaction of groundwater with alluvial deposits in the river 22 

corridor, such as in the Lambourn Valley, the variation in groundwater radon could be 23 

used to identify contributions to stream flow from the near-surface and deeper 24 

groundwaters depending upon the concentration of radon in the input water. It is also 25 
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shown that measurements of radium concentration and radon emanation can give 1 

good indicative estimates of the distribution of groundwater radon concentrations that 2 

may be found at a site. 3 

  4 

5.2 Temporal Variability 5 

At Maidencourt Farm the temporal trend of radon in MCT3-2 is to switch between 6 

two relatively stable concentrations (Fig. 4a), suggesting that the changes occurring at 7 

this site are due to the seasonal changes in the water table (Fig. 3). When flow in the 8 

river at Maidencourt Farm stops, the radon concentration in groundwater of MCT3-2 9 

increases. This shows that there is a dynamic equilibrium between the radium source 10 

and groundwater radon in the vicinity of MCT3-2. The controls on this relationship 11 

are not known but may come from changes in water table elevation activating 12 

different radon sources.  13 

There is relatively little variation in the water table at East Shefford compared to 14 

Maidencourt Farm (Fig. 3a) and no seasonal changes in groundwater radon are 15 

observed in the shallower piezometers at East Shefford. However, shorter time scale 16 

changes in groundwater radon concentrations of the order of weeks were observed at 17 

East Shefford during the routine sampling period (January 2005 to May 2006, Fig. 4b- 18 

d).  19 

From greater temporal resolution event sampling (October and November 2006) it 20 

can be seen that rainfall events have a rapid impact on the concentration of radon in 21 

the shallowest groundwaters (Fig. 6). The precise time of response is not captured in 22 

the samples taken and so estimates of the groundwater radon concentrations between 23 

samples are indicated by the interpreted response lines. The effect of infiltration of 24 

low radon event water is observed as deep as 3 metres below ground level and 25 
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approximately 2.5 m below the water table, demonstrating relatively rapid subsurface 1 

mixing. The effects of greater rainfall intensity and the shallower water table at East 2 

Shefford in November lead to a greater event response in the groundwater radon 3 

concentration than in October. 4 

Following the October event, reductions in radon concentrations of 18 and 12 % 5 

are observed in ESF3-2 and 4-2, respectively. In November, radon concentrations 6 

decrease by 19 % in ESF3-2 following rain. Assuming that infiltrating water has a 7 

zero radon concentration, mixing of between 12 and 19 % event water with existing 8 

groundwater is implied at these sites for the events observed. These values could be 9 

considered a minimum degree of mixing as it assumes that the event water contains 10 

no radon when it reaches the saturated zone. In reality it is likely to have accumulated 11 

some dissolved radon as a result of dissolution of radon in soil gas during transit 12 

through the unsaturated zone. The accumulation of radon by recharge water will 13 

depend partially upon the mechanism of recharge and water movement through the 14 

unsaturated zone at these sites (e.g. direct recharge by new rain water via fracture 15 

flow vs. displacement of existing unsaturated zone water via a piston flow 16 

mechanism, see Ireson et al., 2006).  17 

Estimates of the time it would take for groundwater radon to recover to pre-event 18 

concentrations were made. The recovery time was estimated as the time taken to reach 19 

95 % of the pre-event radon concentration, assuming a quasi-steady state system, 20 

where the pre-event groundwater is in equilibrium with its source and the 21 

accumulation of radon post event is governed by radioactive ingrowth (Andrews and 22 

Wood, 1972; Hoehn et al., 1992). Ingrowth of radon is calculated by the equation,  23 

)1(0

t

t eAA λ−−= , (4)
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where At is the groundwater radon concentration (Bq l-1) at time t, A0 is the pre-event 1 

groundwater radon concentration (Bq l-1) and λ is the radioactive decay constant (t-1). 2 

Recovery of radon concentrations from these rainfall events is calculated to take 3 

between 5 and 7 days, depending on the piezometer and event. This is a theoretical 4 

maximum time for recovery to occur. Rapid recovery of pre-event radon 5 

concentration is observed in the October event where groundwater radon regains pre-6 

event concentrations less than 30 hours from the time of first rainfall. If radon 7 

recovery continues at the rate seen during recession of the second rainfall event then 8 

the groundwater will return to pre-event radon concentration within 48 hours. 9 

Groundwater radon concentrations recover more quickly than is predicted by 10 

radioactive ingrowth, emphasising that this is not a closed system. Speculation on the 11 

driving mechanism for this rapid recovery is not possible from this data set. 12 

Unlike at East Shefford short time scale variations in groundwater radon 13 

concentrations are not seen in the routine monitoring data from Maidencourt Farm. It 14 

may be that the greater depth of unsaturated zone at Maidencourt protects the 15 

groundwater from such rapid and significant responses to rainfall events.  16 

Mullinger et al. (2007) proposed that the variations in modelled radon inputs to the 17 

Lambourn could be caused by changes in the radon concentration of groundwater 18 

feeding the river. The data presented here shows that consistently higher radon 19 

concentrations are found in groundwater nearer the surface of the alluvial aquifer. It is 20 

hypothesised that the fluctuations in the water table provide a changing source of 21 

radon in groundwater that may be discharged to a river. To examine the impact of 22 

changing water table elevation on radon concentrations in groundwater discharges, a 23 

trendline was fitted to the observed groundwater radon data using a linear regression 24 

method to provide a relationship with depth (equation (5)). 25 
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-1.234.19114][ dRn = , (5)

where [Rn] is groundwater radon concentration (Bq l-1) and d is depth (m). Fig. 5d 1 

shows the groundwater radon concentrations estimated by equation (5) against mean 2 

observed radon concentrations (R2 = 0.65). By integrating over a given depth range 3 

the net radon concentration of groundwater discharges can be estimated. This has 4 

been done for three example depth ranges, assuming an aquifer base of 3, 5 and 10 m 5 

bgl and an equal contribution of groundwater from each depth. One metre has been 6 

used as the upper limit of integration in all cases, as extrapolation of the relationship 7 

beyond this to shallower depths could not be justified given the rate of increase in 8 

radon concentration increase that would result from the derived relationship. Results 9 

of this exercise are shown in Fig. 7a, which shows the estimated radon concentration 10 

of discharging groundwater for a given water table depth. 11 

By combining the above approach with observed water table data from Fig. 3a, the 12 

variation in groundwater radon concentration over time has been estimated for an 13 

aquifer depth of 5m (Fig. 7b). Result ranges are 4-6 Bq l-1 for MCT3 and 5.3-6.2 Bq 14 

l-1 for ESF3, the greater variation in water table at Maidencourt Farm being reflected 15 

in the estimated radon concentration. These results could be viewed as a lower limit 16 

for variation in discharge radon concentrations due to the assumption of equal 17 

contribution from each depth. Exponential mixing of groundwaters in shallow 18 

unconfined systems leads to shorter residence times of shallower groundwaters (Cook 19 

and Böhlke, 2000). Therefore, groundwater discharges may be made up by a greater 20 

proportion of shallower groundwater, which will increase the mean concentration of 21 

discharge water. The conceptual model in Fig. 7c illustrates how movement of the 22 

water table could result in changes in radon concentrations of groundwater entering a 23 

river. As the water table rises it interacts more with the near-surface zone where radon 24 
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production is highest, leading to a higher mean groundwater radon concentration. This 1 

may also result in greater contributions of shallower groundwater to the river at times 2 

when the water table is elevated, which will be of higher radon concentration. 3 

 4 

6. Conclusions 5 

Consistently higher groundwater radon and borehole core radium concentrations 6 

are found near the surface (0-4 m bgl) at both East Shefford and Maidencourt Farm 7 

borehole sites, with low and stable radon concentrations at greater depths in the 8 

weathered Chalk. The groundwater radon concentrations are consistent with 9 

observations at other comparable sites in Pang and Lambourn catchments (Mullinger 10 

et al., 2007). 11 

A combination of radium abundance and radon emanation control the 12 

concentration of radon in groundwater. The enrichment of radium and greater rates of 13 

emanation in the near-surface alluvial materials influence the spatial variation of 14 

radon at these sites. High spatial variability in the hydraulic conductivities found at 15 

these sites mean that local controls will influence groundwater movement and radon 16 

concentrations in the riparian zone. 17 

Variations in radon concentrations in near-surface groundwater at East Shefford 18 

can be affected by short time scale hydrological events, whereas those at Maidencourt 19 

Farm can be influenced by seasonal variations in water table elevation. Perturbations 20 

to groundwater radon concentrations following rainfall events are relatively short-21 

lived and of the order of a few days at most in areas where the water table is very 22 

close to the surface. 23 

Observations of groundwater radon concentrations over time and the distribution 24 

of radium at the Lambourn borehole sites show that there are variable sources of 25 
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radon for groundwater that is discharged to the river. Seasonal changes in the water 1 

table can lead to a greater source of river water from near the surface of the alluvial 2 

aquifer, which is higher in radon. This may account for the observations of changing 3 

radon inputs to the river in Mullinger et al. (2007) and is illustrated by the conceptual 4 

model in Fig. 7c. 5 

These results show that there can be significant spatial and temporal variability in 6 

groundwater radon in the riparian zone. The riparian zone, due to the proximity of the 7 

river channel, has a potentially important influence on groundwater radon 8 

concentrations before discharge occurs to rivers. Therefore, it is essential that this part 9 

of the groundwater system is studied in order to properly characterise the sources of 10 

radon being discharged to rivers. 11 
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Figure captions 1 
 2 
Fig. 1  Location of the Lambourn catchment. Cross-sections locations (Fig. 2) and 3 
local topography are indicated. Insets show layout of borehole sampling sites. 4 
 5 
Fig. 2  Cross sections of (a) Maidencourt Farm and (b) East Shefford borehole sites, 6 
showing ground level, relative distance of boreholes from river, piezometer depths 7 
and water table minima and maxima during the sampling period. Insets show the full 8 
length of cross sections in Fig. 1 and indicate the extent of the enlarged sections.  9 
 10 
Fig. 3  (a) Water table in riparian boreholes in MCT3-1 and ESF3-1 (the gap in data 11 
from ESF3 is due to logger failure). (b) River flow at East Shefford and Maidencourt 12 
Farm. Shaded area indicates period of no flow at Maidencourt Farm. 13 
 14 
Fig. 4  Temporal variability of groundwater radon in the most variable boreholes 15 
(error bars show standard deviation of triplicate samples). Shaded area indicates 16 
period of no flow at Maidencourt Farm. 17 
 18 
Fig. 5  (a) Radium concentration of borehole core material (errors derived from 19 
counting statistics and errors in sample size). (b) Emanation coefficients from 20 
borehole core material (error bars show standard deviation of triplicate samples). (c) 21 
Estimated groundwater radon concentrations as calculated by equation (3) (errors 22 
calculated from propagation of errors in emanation, porosity and density 23 
measurements). (d) Observed mean groundwater radon concentrations in piezometers 24 
above 6 m bgl and trendline (equation (5)) fitted by linear regression (error bars show 25 
standard deviation of all observations from each piezometer). Hollow symbols in (a-c) 26 
represent samples associated with piezometer screened sections. Hollow symbols in 27 
(d) represent piezometer screened sections from which core material was analysed for 28 
radium and radon emanation. 29 
 30 
Fig. 6  Borehole responses to rainfall events in October and November 2006. (a) & (d) 31 
Hourly precipitation. (b) & (e) ESF3-1 water table. (c) & (f) Groundwater radon 32 
concentrations (ASTM method, errors based on counting statistics and errors in 33 
sample size). 34 
 35 
Fig. 7  (a) Estimated discharge groundwater radon concentration for a given water 36 
table depth assuming equal contributions from each depth, calculated using equation 37 
(5) with examples of contributions assuming different aquifer depths. (b) Estimated 38 
impact of water table fluctuation on groundwater radon concentration, calculated by 39 
the integration of radon over the saturated depth of aquifer down to 5 m bgl using 40 
equation (5).  (c) Conceptual model of variations in radon input to streams from an 41 
alluvial aquifer. A rise in the water table leads to groundwater occupying the zone of 42 
higher radon production in the near-surface of the riparian zone. This provides a 43 
greater source of high radon water feeding the river, resulting in seasonal changes in 44 
the input of radon to rivers.  45 
 46 



 33

Tables 1 
 2 
Table 1  Parameters observed for Maidencourt Farm boreholes. All boreholes are 3 
screened for 0.8 m, with the pump depth located at the centre of screened section. 4 
Errors in porosity and density estimates are calculated by the propagation of errors in 5 
the measurement of sample size and mass. Hydraulic conductivity results are mean 6 
and standard deviation of repeat measurements.  7 

222Rn (Bq l-1) 
Piezometer Pump depth 

(m bgl) Mean Min Max 
Porosity 

(%) 
Density 
(g cm-3) 

Hydraulic 
conductivity 

(m d-1) 
MCT1-2 5.6 1.7 1.5 1.8 45 ± 2 1.7 ± 0.1 7.7 ± 0.5 
MCT1-1 9.6 1.3 1.1 1.4 47 ± 2 1.6 ± 0.1 32.3 ± 2.6 
MCT2-2 1.6 Not sampled 34 ± 2 1.8 ± 0.1 9.9 ± 0.6 
MCT2-1 4.6 1.4 1.2 1.5 45 ± 2 1.5 ± 0.1 49.0 ± 3.3 
MCT3-2 3.0 6.1 4.7 7.2 No sample 83.2 ± 20.2 
MCT3-1 5.6 1.2 1.0 1.4 43 ± 2 1.6 ± 0.1 12.6 ± 1.4 
MCT4-2 2.4 Not sampled 29 ± 2 2.0 ± 0.1 0.4 ± 0.1 
MCT4-1 4.6 1.8 1.5 2.1 43 ± 2 1.6 ± 0.1 46.3 ± 3.8 
MCT5-2 3.5 1.5 1.2 1.8 42 ± 2 1.6 ± 0.1 5.5 ± 2.1 
MCT5-1 6.4 1.1 0.9 1.3 29 ± 2 1.9 ± 0.1 68.0 ± 4.0 

 8 
Table 2  Parameters observed for East Shefford boreholes. All boreholes are screened 9 
for 0.8 m, with the pump depth located at the centre of screened section. Errors in 10 
porosity and density estimates are calculated by the propagation of errors in the 11 
measurement of sample size and mass. Hydraulic conductivity results are mean and 12 
standard deviation of repeat measurements. 13 

222Rn (Bq l-1) 
Piezometer Pump depth 

(m bgl) Mean Min Max 
Porosity 

(%) 
Density 
(g cm-3) 

Hydraulic 
conductivity 

(m d-1) 
ESF1-2 9.6 1.6 1.4 2.1 45 ± 2 1.6 ± 0.1 No measurement
ESF1-1 12.5 1.2 1.1 1.2 43 ± 2 1.6 ± 0.1 No measurement
ESF2-2 2.6 3.1 2.3 3.6 No sample 156.2 ± 46.5 
ESF2-1 5.5 1.1 0.9 1.2 42 ± 2 1.6 ± 0.1 No measurement
ESF3-2 2.1 10.6 9.1 11.7 26 ± 2 1.8 ± 0.1 16.8 ± 1.9 
ESF3-1 4.6 2.2 1.7 2.4 44 ± 2 1.6 ± 0.1 13.2 ± 6.2 
ESF4-2 1.6 11.0 8.5 14.2 24 ± 2 2.2 ± 0.1 15.4 ± 0.4 
ESF4-1 3.9 3.3 2.6 4.6 43 ± 2 1.6 ± 0.1 5.3 ± 0.8 
ESF5-2 2.6 11.1 9.2 11.8 No sample 1.5 ± 0.4 
ESF5-1 4.5 1.5 1.2 1.9 39 ± 2 1.7 ± 0.1 32.1 ± 3.6 
 14 



 34

Table 3  Results of borehole core radium and emanation measurements. * indicates 1 
samples which are located within 0.8 m deep piezometer screened sections. 2 

 3 

Borehole 
Depth 
(m) 

Ra activity 
(Bq kg-1) 

Rn 
emanation 
(Bq kg-1) 

Emanation 
coefficient 

ESF3 1.0 13.4 ± 0.5 2.8 ± 0.2 0.21 ± 0.02 
ESF3 2.3 7.9 ± 0.4 1.2 ± 0.2 0.15 ± 0.02 
ESF3 3.1 12.0 ± 0.6 1.2 ± 0.2 0.10 ± 0.01 
ESF3 4.4* 4.9 ± 0.5 0.4 ± 0.2 0.08 ± 0.01 
ESF3 5.0 5.8 ± 0.3 0.4 ± 0.2 0.06 ± 0.01 
ESF5 1.1 13.1 ± 0.5 3.0 ± 0.2 0.23 ± 0.02 
ESF5 2.4* 13.0 ± 0.5 1.6 ± 0.1 0.13 ± 0.01 
ESF5 3.0 10.4 ± 0.5 1.2 ± 0.1 0.12 ± 0.01 
ESF5 4.3* 6.4 ± 0.5 0.3 ± 0.1 0.05 ± 0.02 
ESF5 4.8 7.5 ± 0.4 0.5 ± 0.1 0.07 ± 0.01 
MCT2 1.2* 39.4 ± 1.3 14.5 ± 1.2 0.37 ± 0.03 
MCT2 2.1 14.1 ± 0.7 3.3 ± 0.1 0.23 ± 0.01 
MCT2 2.8 6.1 ± 0.4 0.6 ± 0.1 0.10 ± 0.02 
MCT2 4.2 4.9 ± 0.5 0.4 ± 0.1 0.07 ± 0.01 
MCT2 4.9* 4.4 ± 0.4 0.6 ± 0.1 0.14 ± 0.01 
MCT5 1.1 8.4 ± 0.3 1.0 ± 0.1 0.12 ± 0.01 
MCT5 1.9 10.8 ± 0.6 1.3 ± 0.1 0.12 ± 0.01 
MCT5 3.2* 11.2 ± 0.4 1.2 ± 0.1 0.11 ± 0.01 
MCT5 4.0 6.4 ± 0.4 1.0 ± 0.1 0.16 ± 0.02 
MCT5 5.4 7.4 ± 0.5 0.4 ± 0.1 0.05 ± 0.01 

 4 
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Fig. 3  (a) Water table in riparian boreholes in MCT3-1 and ESF3-1 

(the gap in data from ESF3 is due to logger failure). (b) River flow at 

East Shefford and Maidencourt Farm. Shaded area indicates period of 

no flow at Maidencourt Farm. 
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Fig. 4  Temporal variability of groundwater radon in the most variable 

boreholes (error bars show standard deviation of triplicate samples). 

Shaded area indicates period of no flow at Maidencourt Farm. 
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 40 1 

Fig. 5  (a) Radium concentration of borehole core material (errors derived from 

counting statistics and errors in sample size). (b) Emanation coefficients from borehole 

core material (error bars show standard deviation of triplicate samples). (c) Estimated 

groundwater radon concentrations as calculated by equation (3) (errors calculated 

from propagation of errors in emanation, porosity and density measurements). (d) 

Observed mean groundwater radon concentrations in piezometers above 6 m bgl and 

trendline (equation (5)) fitted by linear regression (error bars show standard deviation 

of all observations from each piezometer). Hollow symbols in (a-c) represent samples 

associated with piezometer screened sections. Hollow symbols in (d) represent 

piezometer screened sections from which core material was analysed for radium and 

radon emanation.  
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 1 

Fig. 7  (a) Estimated discharge groundwater radon concentration for a given water table depth 
assuming equal contributions from each depth, calculated using equation (5) with examples of 
contributions assuming different aquifer depths. (b) Estimated impact of water table fluctuation on 
groundwater radon concentration, calculated by the integration of radon over the saturated depth of 
aquifer down to 5 m bgl using equation (5).  (c) Conceptual model of variations in radon input to 
streams from an alluvial aquifer. A rise in the water table leads to groundwater occupying the zone 
of higher radon production in the near-surface of the riparian zone. This provides a greater source 
of high radon water feeding the river, resulting in seasonal changes in the input of radon to rivers. 
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