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Abstract. The principal optical observable emission re-
sulting from ionospheric modification (IM) experiments is
the atomic oxygen red line at 630 nm, originating from the
O(1D–3P) transition. Because the O(1D) atom has a long ra-
diative lifetime, it is sensitive to collisional relaxation and
an observed decay faster than the radiative rate can be at-
tributed to collisions with atmospheric species. In contrast
to the common practice of ignoring O-atoms in interpreting
such observations in the past, recent experimental studies on
the relaxation of O(1D) by O(3P) have revealed the dominant
role of oxygen atoms in controlling the lifetime of O(1D) at
altitudes relevant to IM experiments. Using the most up-to-
date rate coefficients for collisional relaxation of O(1D) by O,
N2, and O2, it is now possible to analyze the red line decays
observed in IM experiments and thus probe the local iono-
spheric composition. In this manner, we can demonstrate an
approach to remotely detect O-atoms at the altitudes relevant
to IM experiments, which we call remote oxygen sensing by
ionospheric excitation (ROSIE). The results can be compared
with atmospheric models and used to study the temporal, sea-
sonal, altitude and spatial variation of ionospheric O-atom
density in the vicinity of heating facilities. We discuss the
relevance to atmospheric observations and ionospheric heat-
ing experiments and report an analysis of representative IM
data.
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1 Introduction

It has been a prime goal of optical aeronomy to make re-
mote measurements of atmospheric emissions and deduce
the atomic and molecular composition of the region being
observed. A pre-eminent ionospheric emission, observed
at all latitudes is that of the O(1D–3P) oxygen red lines at
630.0 and 636.4 nm. Because O(1D) is metastable with re-
spect to radiation, with a radiative lifetime of∼110 s (Fis-
cher and Saha, 1983; Fischer and Tachiev, 2004; Sharpee
and Slanger, 2006), its loss is controlled by collisions with
atmospheric species at altitudes below 300 km. Therefore,
a time-resolved measurement of its loss rate would provide
information on the atmospheric composition, assuming that
the relevant kinetic parameters are known. Ionospheric heat-
ing or ionospheric modification (IM) by high-power radio-
frequency waves has been carried out for many years at vari-
ous sites. It is a well known fact that in such experiments the
O(1D) density is enhanced in the heated region (Bernhardt,
1988, 1989, 1991; Stubbe, 1996; Gurevich, 1997; Gustavs-
son, 2001, 2002; Kosch, 2007; Pedersen, 2008). The tem-
poral evolution of the return to equilibrium in these exper-
iments provides information on collisional loss, where the
significant collider species are molecular nitrogen and oxy-
gen atoms, the latter predominating above∼200 km.

Until recently, the lack of reliable information on the col-
lisional role of O-atoms has often led to the assumption that
the red line decay was controlled by collisions with N2. Re-
cent laboratory measurements at SRI International have es-
tablished that the removal rate coefficients for O(1D)+N2 and
O(1D)+O are comparable and therefore O atoms play a sig-
nificant role in the ionospheric O(1D) decay (Closser, 2005;
Kalogerakis, 2005, 2006; Slanger, 2006). Thus, measuring
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Table 1. Rate coefficients for O(1D) relaxation by O(3P).

Rate coefficient,k (cm3 s−1) Method Reference

(8.0±7.0)×10−12 Observation-Modeling Abreu et al. (1986)
Rate coefficient insignificant Observation-Modeling Link and Cogger (1988)
1×10−11 (1000 K) Theory Yee et al. (1990)
6.9×10−12 (1000 K) Theory Sun et al. (1992)
7.8×10−12 (1000 K) Theory Jamieson et al. (1992)
9.2×10−13 (750 K) Observation Sobral et al. (1992)
Rate coefficient insignificant Observation-Modeling Semeter et al. (1996)
(2.2±0.6)×10−11 (300 K) Experiment Kalogerakis et al. (2006)

the red line decay following ionospheric excitation should
provide a measure of the local O-atom density, assuming that
the contribution of N2 is known.

In this report, we present the relevant background to this
approach, explore selected existing data sets from represen-
tative IM sites, determine the O-atom densities implied from
the observed decays, and discuss the validity and relevance of
this approach as a remote sensing technique for ionospheric
O-atom densities.

2 Collisional relaxation of O(1D) by atmospheric
species

The atmospheric species relevant to collisional relaxation of
O(1D) in the upper atmosphere are N2, O2, and O(3P). Given
the rapid change of the O-atom density in the mesosphere
and lower thermosphere and the fact that O(3P) is the most
abundant atmospheric species above 170 km, it is critical to
reliably establish the role of O atoms.

N2 efficiently relaxes O(1D) to its O(3P) ground state. Rel-
atively recent NASA/JPL (Sander, 2003) and IUPAC rec-
ommendations (Atkinson, 2002) gave essentially the same
value for the rate coefficient of O(1D) relaxation by N2:
(2.6±1.0)×10−11 cm3 s−1 at 298 K (2σ). However, a set of
studies by Ravishankara and coworkers (Ravishankara 2002)
measured a value of (3.1±0.3)×10−11 cm3 s−1 at 295 K
(2σ). This work was checked and compared in several lab-
oratories (Ravishankara, 2002; Blitz, 2004; Dunlea, 2004;
Strekowski, 2004) and has lately become the new NASA/JPL
recommended value (Sander, 2006). As the temperature is
increased to 1000 K, the value of the rate coefficient de-
creases by approximately 20% (Ravishankara, 2002; Dunlea,
2004). For altitudes below 200 km, N2 is primarily responsi-
ble for collisional relaxation of O(1D).

Fast energy transfer from O(1D) to O2 relaxes O(1D) to
O(3P) and generates theυ=0 andυ=1 levels of the O2(b16+

g )

state. This process has a rate coefficient with a value of
(3.95±0.4)×10−11 cm3 s−1 (Sander, 2006). The role of
molecular oxygen in the collisional relaxation of O(1D) is

rather modest and limited to lower altitudes because of its
relatively low atmospheric abundance.

As already mentioned, the interaction of O(1D) with O(3P)
had not been investigated in the laboratory until recently, de-
spite its overall importance in influencing the energy flow
in the upper atmosphere. Theoretical calculations (Yee,
1990; Jamieson, 1992) and deduced values for the rate co-
efficient from atmospheric observations (Abreu, 1986; So-
bral, 1992) differ by more than an order of magnitude. Ta-
ble 1 presents a list of previous studies that have inves-
tigated the O(1D)+O(3P) interaction. Theoretical calcula-
tions (Yee, 1990) and some observations (Abreu, 1986)
of altitude profiles for the atomic oxygen red line emis-
sion have indicated that O(3P) atoms play an important
role in relaxing O(1D) (with a rate coefficient of approxi-
mately 1×10−11 cm3 s−1). Nevertheless, other investigators
(Link, 1988, 1989; Solomon, 1989) interpret and model at-
mospheric observations without invoking the relaxation of
O(1D) by O(3P). Semeter et al. (1996), in their analysis of
the Release Experiments to Derive Airglow Inducing Reac-
tions (RED AIR), concluded that quenching by O(3P) con-
tributes very little to the depopulation of the nascent O(1D),
with a value of zero giving the best fit to the RED AIR
observations. Results of ionospheric heating experiments
have been interpreted in terms of O(1D) quenching by N2
alone, with a minor contribution by O2 (Hernandez, 1972;
Sipler, 1972; Bernhardt, 1988, 1989). It has only been rel-
atively recently that O-atom quenching has been seriously
considered as an important process in the heating experi-
ments (Bernhardt, 2000; Gustavsson, 2001). In retrospect,
the problems caused by ignoring the role of oxygen atoms
were foreshadowed by the conclusion that if N2 is the only
quencher, then the rate coefficient for O(1D) quenching by
N2 is 9×10−11 cm3 s−1 (Hernandez, 1972), a value that we
now know is unreasonably large. This is not the only exam-
ple where the rate coefficient for O(1D)+N2 has been largely
overestimated in order to explain the IM observations (e.g.,
Sipler, 1972, 1974). From Table 1, it becomes clear that
quantification of the red line emission has not been consis-
tent in previous aeronomical studies.
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In recent experiments on O(1D)+O(3P) at SRI Interna-
tional, we exploited the capabilities of our fluorine laser facil-
ity to measure the rate coefficient for collisional deactivation
of O(1D) by O(3P) at room temperature. No other laboratory
measurement of the rate coefficient of this process was avail-
able in the literature previously. In the experiments, a small
amount of molecular oxygen mixed with helium carrier gas is
photodissociated by the 157-nm output of the fluorine laser,
generating O(1D) and O(3P) in equal amounts. The tempo-
ral evolution of the O(1D) concentration can be monitored
by detection of the 630-nm emission, and that of the O(3P)
concentration can be monitored by two-photon laser-induced
fluorescence (LIF). The results show that O(1D) relaxation
by O(3P) has a rate coefficient of (2.2±0.6)×10−11 cm3 s−1

(2σ) at room temperature (Closser, 2005; Kalogerakis, 2005,
2006). This value is larger by at least a factor of two than
any previous estimate, whether from theory or observations.
Theoretical calculations (Jamieson, 1992) indicate that the
value of the rate coefficient at 1000 K is larger by approx-
imately 25% than that at 300 K. Laboratory experiments to
study O(1D)+O(3P) at elevated temperatures relevant to the
lower thermosphere are planned for the future.

The magnitude of the rate coefficient indicates that relax-
ation of O(1D) by O(3P) is a fast process and must be taken
into account in atmospheric models. Contrary to the analysis
of Link and Cogger (1988), where it was concluded that the
O(1D)+O(3P) reaction was unnecessary to explain thermo-
spheric O(1D) photochemistry, it is now clear that this is in
fact the most important loss process for O(1D) over a large
altitude range: from 200 km, below which N2 quenching be-
comes dominant, up to 300 km, above which radiation begins
to dominate. Quite remarkably, the atmospheric implication
of the O(1D)+O(3P) rate coefficient is that at least 50% of
the O(1D) removal occurs by collisions with O(3P) at an al-
titude of∼250 km (radiation and N2 contribute∼25% each)
and at least 15% of the O(1D) removal occurs by collisions
with O(3P) as high as 400 km (radiation accounts for the re-
maining∼85%). Figure 1 summarizes the picture that has
emerged for O(1D) relaxation in the upper atmosphere. The
atmospheric composition and temperature profiles are gener-
ated using the MSIS-E-90 atmospheric model (Hedin, 1991).
The contributions of O2 and N2 in O(1D) relaxation were cal-
culated based on the published rate coefficients and their tem-
perature (altitude) dependence (Ravishankara, 2002; Blitz,
2004; Dunlea, 2004; Sander, 2006). We note that for the
rate coefficient for O(1D) relaxation by O(3P), we have used
the SRI laboratory result at room temperature with a tem-
perature dependence as predicted by theoretical calculations
(Jamieson, 1992). Other calculations for this process per-
formed on different potential energy curves have shown the
same trend in the temperature dependence (Saxon, 1977;
Yee, 1990). To the best of our knowledge, no experimen-
tal information is available on the temperature dependence
of O(1D) relaxation by O(3P).

Fig. 1. Calculated relative contribution to O(1D) loss as a func-
tion of altitude by O (solid black line), O2 (solid grey line), N2
(dashed grey line) and radiative decay (dotted grey line). These
four processes are assumed to be the only pathways for O(1D) re-
laxation. The atmospheric composition is based on the MSIS-E-90
model (Hedin, 1991).

3 Results from ionospheric modification experiments
and discussion

Typical altitudes probed by IM experiments are in the range
250–300 km. From Fig. 1, it becomes clear that if we use
lifetime and altitude data collected during an IM experiment
we can determine whether a consistent picture emerges from
the atmospheric models. Given the relatively low abundance
of electrons or other ionized species, it is reasonable to as-
sume that neutral species have the dominant role in the re-
laxation of O(1D). The observed rate of decay for O(1D) can
be expressed as:

τ−1
= τ−1

R + kO [O(3P)] + kN2[N2] + kO2[O2], (1)

whereτ is the observed O(1D) lifetime as a function of alti-
tude in the IM measurement,τR is the O(1D) radiative life-
time,kO , kN2, andkO2 are the rate coefficients for collisional
relaxation of O(1D) by O(3P), N2, and O2, and [O(3P)], [N2],
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Fig. 2a. Observed O(1D) lifetime values as a function of altitude
for representative IM experiments.

and [O2] are the local O(3P), N2, and O2 densities, respec-
tively.

Figure 2a presents examples of existing IM data sets from
EISCAT (Gustavsson 2001), HAARP (Pedersen, 2008), Plat-
teville (Sipler and Biondi, 1972), and SURA (Bernhardt,
2000). These experiments probe an extensive range of iono-
spheric altitudes from 200 km to 350 km. Reliable knowl-
edge of the altitude of the induced optical emissions has
been problematic for many of the older data sets since the
beginning of IM experiments in the late 1960s. Recent im-
provements in data analysis techniques, as well as the avail-
ability of modern optical monitoring infrastructure networks
near EISCAT and HAARP have enabled a more accurate de-
termination of the optical emission intensity distribution as
a function of altitude (Gustavsson, 2001; Pedersen, 2008).
The most extensive data set is the recent study from HAARP
(Pedersen, 2008), which covers a large range of altitudes
(200–350 km).

In Fig. 2b, the observed O(1D) lifetimes for the HAARP
data set are compared with model calculations using Eq. (1).
The atmospheric composition (i.e., [N2], [O2], and [O]) is
estimated using the MSIS-E-90 model for conditions spe-
cific to the HAARP data set (4 February 2005, 04:00 UT,
62.4◦ N, 145◦ W, F10.7=80.7, ap=3.1). We use the best avail-
able rate coefficients for O(1D) relaxation by N2 and O2 as
described in the previous section. We use three different val-
ues of the rate coefficient for O(1D)+O(3P): kO=0 cm3 s−1

(no relaxation by O atoms),kO=2.5×10−12 cm3 s−1, and

Fig. 2b. Observed and calculated O(1D) lifetimes for the HAARP
data set (solid black circles). The solid grey line, dashed grey line,
and solid black line represent the calculated values, as deduced from
Eq. (1), for different values ofkO . The black dotted lines accompa-
nying the black solid line reflect the range of lifetime values calcu-
lated for an estimated 15% uncertainty in the rate coefficients.

kO=2.5×10−11 cm3 s−1 (based on the value of our room-
temperature experimental study adjusted for thermospheric
temperatures at 200–350 km). The solid black circles rep-
resent the O(1D) lifetimes reported in the HAARP data set
(Pedersen, 2008). The solid grey line, dashed grey line, and
solid black line present the calculated values, as deduced
from Eq. (1), forkO=0 cm3 s−1 , kO=2.5×10−12 cm3 s−1,
andkO=2.5×10−11 cm3 s−1, respectively. The black dotted
lines accompanying the black solid line reflect the range of
lifetime values calculated for an estimated 15% uncertainty
in the rate coefficients. No adjustable parameter is used
in any of the calculations presented in the figure. Clearly,
the best agreement between calculated and observed life-
times occurs forkO=2.5×10−11 cm3 s−1. As already shown
in Fig. 1, collisional relaxation of O(1D) by oxygen atoms
is expected to play the most important role in the altitude
range 200–300 km, with radiative decay dominating above
∼300 km and, relaxation by molecular nitrogen taking over
below∼200 km. However, the observed O(1D) decay rates
in the range 200–250 km in the IM experiments shown are
consistently smaller than the calculated ones. One limitation
at the lower altitudes is that the temporal resolution of the
measurements is comparable (or worse in some cases) to the
O(1D) effective lifetime. Below, we briefly discuss some rel-
evant effects that may be the cause for this discrepancy.
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Fig. 3. O-atom number density as a function of altitude, determined
from the observations by Pedersen et al. (2008) at HAARP. The
dashed line reflects the reported lifetime uncertainty and the thick
solid line represents the MSIS-E-90 atmospheric model.

Given the observed O(1D) decay rate, we can solve Eq. (1)
to determine the O-atom density, [O], using the atmospheric
composition for [N2] and [O2], and the rate coefficient val-
ues used in the calculations of Fig. 2. Figure 3 presents the
results of this calculation for the most recent and extensive
set of IM data from HAARP (Pedersen, 2008). The solid
line presents the predictions of the MSIS-E-90 model for the
number density of oxygen atoms. As already seen in Fig. 2,
the altitude region with the best agreement with the standard
atmosphere is above approximately 250 km, with a signifi-
cant systematic deviation below 250 km.

The satisfactory agreement between predictions and ob-
servations in a broad range of altitudes supports the notion
that IM measurements can be used to probe the upper atmo-
spheric composition, and more specifically, the O-atom den-
sity. Nevertheless, the deviations at lower altitudes highlight
the need to develop a detailed understanding of several rele-
vant effects and interactions, such as the dependence on the
power of the RF radiation. Very intense fields might signif-
icantly perturb the local atmospheric composition of neutral
or ionic species. The possibility of secondary ion chemistry
and delayed production of O(1D) would increase its effective
lifetime. The geomagnetic history before IM measurements
may also influence the local atmospheric composition and
the observed emissions, as well as the geometry of excitation
for heating facilities at different latitudes (the latitude range
for the examples shown in Fig. 2 is from 49◦ N for Platteville
to 69.6◦ N for EISCAT). Of special interest are the mecha-
nism(s) generating the optical emissions (Kosch, 2007; Gus-
tavsson and Eliasson, 2008). The details of these mecha-
nisms (e.g., dependence on altitude, RF power, geomagnetic
history) are not fully understood. Systematic studies at high-

temporal resolution are needed to elucidate the role of all the
aforementioned parameters.

Understanding processes involving atomic oxygen is cru-
cial for the study of energy transfer and transport dynamics
in the upper atmosphere. Determining the O-atom density
in the upper atmosphere has been a long-standing and chal-
lenging problem. Being able to remotely sense and study
the O-atom density fluctuations, spatial distribution, seasonal
and temporal variability are important goals in the field of
aeronomy. Finally, the ability to probe ionospheric O-atom
densities is relevant to satellite drag, in view of the fact that
at IM altitudes, cf. 300 km, the O(1D) decay also provides a
measure of the total density.

4 Conclusions

Between approximately 200 km and 300 km, O atoms control
the atomic oxygen red line emission and must be taken into
account for the analysis or IM experiments. The observed
O(1D) lifetime in IM experiments provides a measure of the
local O-atom density. An analysis of existing IM data yields
good agreement between observations and the MSIS-E-90
model for altitudes above 250 km. Once the relevant details
are better understood for establishing the optimal conditions
for which IM measurements can be used as a probe for [O], it
will be possible to investigate the climatology of ionospheric
O(3P) in the vicinity of IM sites. Finally, this work highlights
the fruitful interplay and synergy between fundamental lab-
oratory measurements and field aeronomy.

Acknowledgements.This work is supported by the CEDAR Pro-
gram of the US National Science Foundation under grant no. ATM-
0737713. Work at AFRL was supported by AFOSR task 2311AS.
We are indebted to the ISEA-12 committee for the opportunity to
present our research and for their efforts in organizing a high-quality
meeting. Finally, we thank two anonymous reviewers for their com-
ments and suggestions.

Topical Editor K. Kauristie thanks two anonymous referees for
their help in evaluating this paper.

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J., Hampson, R.
F., Jenkins, M. E., Kerr, J. A., Rossi, M. J., and Troe, J.: IU-
PAC Subcommittee for Gas Kinetic Data Evaluation, Evaluated
kinetic data,http://www.iupac-kinetic.ch.cam.ac.uk/, 2002.

Abreu, V. J., Yee, J. H., Solomon, S. C., and Dalgarno, A.: The
quenching rate of O(1D) by O(3P), Planet. Space Sci., 34, 1143–
1145, 1986.

Bernhardt, P. A., Duncan, L. M., Tepley, C. A., Behnke, R. A.,
and Sheerin, J. P.: Spatial and temporal evolution of 630.0 nm
airglow enhancements during ionospheric heating experiments,
Adv. Space Res., 8, 271–277, 1988.

Bernhardt, P. A., Tepley, C. A., and Duncan, L. M.: Airglow en-
hancements during ionospheric heating experiments, J. Geophys.
Res., 94(A7), 9071–9092, 1989.

www.ann-geophys.net/27/2183/2009/ Ann. Geophys., 27, 2183–2189, 2009

http://www.iupac-kinetic.ch.cam.ac.uk/


2188 K. S. Kalogerakis et al.: Remote Oxygen Sensing by Ionospheric Excitation (ROSIE)

Bernhardt, P. A., Scales, W. A., Grach, S. M., Keroshtin, A. N.,
Kotik, D. S., and Polyakov, S. V.: Excitation of artificial airglow
by high power radio waves from the ‘SURA’ Ionospheric Heating
Facility, Geophys. Res. Lett., 18, 1477–1480, 1991.

Bernhardt, P. A., Wong, M., Huba, J. D., Fejer, B. G., Wagner, L.
S., Goldstein, J. A., Selcher, C. A., Frolov, V. L., and Sergeev, E.
N.: Optical remote sensing of the thermosphere with HF pumped
artificial airglow, J. Geophys. Res., 105, 10657–10671, 2000.

Blitz, M. A., Dillon, T. J., Heard, D. E., Pilling, M. J., and Trought,
I. D.: Laser induced fluorescence studies of the reactions of
O(1D2) with N2, O2, N2O, CH4, H2, CO2, Ar, Kr, and n-C4H10,
Phys. Chem. Chem. Phys., 6, 2162–2171, 2004.

Closser, K. D., Pejakovic, D. A., and Kalogerakis, K. S.: O(1D)
relaxation by O(3P), EOS Trans. AGU, 86(52) Fall Meet. Suppl.,
Abstract SA11A-0215, 2005.

Dunlea, E. J. and Ravishankara, A. R.: Kinetic studies of the reac-
tions of O(1D) with several atmospheric molecules, Phys. Chem.
Chem. Phys., 6, 2152–2161, 2004.

Fischer, C. F. and Saha, H.: Multiconfiguration Hartree-Fock results
with Breit-Pauli corrections for forbidden transitions in the 2p4

configuration, Phys. Rev. A, 28, 3169–3178, 1983.
Fischer, C. F. and Tachiev., G.: Breit-Pauli energy levels, lifetimes,

and transition probabilities for the beryllium-like to neon-like se-
quences, At. Data Nucl. Data Tables, 87, 1–184, 2004.

Gurevich, A. V. and Milikh, G. M.: Artificial airglow due to modi-
fications of the ionosphere by powerful radio waves, J. Geophys.
Res., 102, 389–394, 1997.

Gustavsson, B., Sergienko, T., Rietveld, M. T., Honary, F., Steen,
A., Braendstroem, B. U. E., Leyser, T. B., Aruliah, A. L., Aso, T.,
Ejiri, M., and Marple, S.: First tomographic estimate of volume
distribution of enhanced airglow emission caused by HF pump-
ing, J. Geophys. Res., 106, 29105–29123, 2001.

Gustavsson, B., Braendstroem, B. U. E., Steen, A., et al.:
Nearly simultaneous images of HF-pump enhanced airglow
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Nightglow, J. Geophys. Res., 93, 9883–9892, 1988.

Link, R. and Cogger, L. L.: Erratum: A Re-examination of the OI
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through chemical modification of the nighttime ionosphere, J.
Geophys. Res., 101(A9), 19683–19699, 1996.

Sharpee, B. D. and Slanger, T. G.: O(1D2−
3P2,1,0) 630.0, 636.4,

636.4, and 639.2 nm forbidden emission line intensity ratios
measured in the Terrestrial nightglow, J. Phys. Chem. A, 110,
6707–6710, 2006.

Sipler, D. P. and Biondi, M. A.: Measurements of O(1D) quenching
rates in the F region, J. Geophys. Res., 77, 6202–6212, 1972.

Sipler, D. P., Enemark, E., and Biondi, M. A.:, 6300-Å intensity
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