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Abstract

This thesis is divided in two distinct parts. In the first part we are concerned

with developing new statistical methodology for drawing Bayesian inference for

partially observed stochastic epidemic models. In the second part, we develop a

novel methodology for constructing a wide class of semi−parametric time series

models.

First, we introduce a general framework for the heterogeneously mixing stochas-

tic epidemic models (HMSE) and we also review some of the existing methods of

statistical inference for epidemic models. The performance of a variety of centered

Markov Chain Monte Carlo (MCMC) algorithms is studied. It is found that as

the number of infected individuals increases, then the performance of these al-

gorithms deteriorates. We then develop a variety of centered, non−centered and

partially non−centered reparameterisations. We show that partially non−centered

reparameterisations often offer more efficient MCMC algorithms than the centered

ones.

The methodology developed for drawing efficiently Bayesian inference for HMSE

is then applied to the 2001 UK Foot-and-Mouth disease outbreak in Cumbria.

Unlike other existing modelling approaches, we model stochastically the infectious

period of each farm assuming that the infection date of each farm is typically
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unknown. Due to the high dimensionality of the problem, standard MCMC algo-

rithms are inefficient. Therefore, a partially non−centered algorithm is applied for

the purpose of obtaining reliable estimates for the model’s parameter of interest.

In addition, we discuss similarities and differences of our findings in comparison

to other results in the literature.

The main purpose of the second part of this thesis, is to develop a novel class of

semi−parametric time series models. We are interested in constructing models for

which we can specify in advance the marginal distribution of the observations and

then build the dependence structure of the observations around them. First, we

review current work concerning modelling time series with fixed non−Gaussian

margins and various correlation structures. Then, we introduce a stochastic pro-

cess which we term a latent branching tree (LBT). The LBT enables us to allow for

a rich variety of correlation structures. Apart from discussing in detail the tree’s

properties, we also show how Bayesian inference can be carried out via MCMC

methods. Various MCMC strategies are discussed including non−centered param-

eterisations. It is found that non−centered algorithms significantly improve the

mixing of some of the algorithms based on centered reparameterisations. Finally,

we present an application of this class of models to a real dataset on genome

scheme data.
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5.26 Posterior distribution for the 4th divergence time points assuming a
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Chapter 1

Introduction

1.1 Motivation

During the last two decades, sampling-based methods for performing Bayesian

inference have been widespread. The need for considering realistic models to

adequately explain particular phenomena has lead to inferential problems which

involve multidimensional analytically intractable integrations. However, such in-

tegrations can be easily managed by using Monte Carlo methods which are par-

ticularly appropriate within this framework, (see for example, Smith and Roberts,

1993). Suppose, we have a probability density π(x), corresponding to some ran-

dom variable, X and a function f of interest. It is often the case that we might

be interested in evaluating integrals of the following form:

Eπ(f) =

∫

x

f(x)π(x) dx (1.1)

Suppose that π(x) is multidimensional and analytical calculations are impossible.

However, we are able to draw a sequence of values, Xi, such that Xi are identically

and independently distributed (i.i.d.) with density π. Then it is true that

E

[
1

n

n∑

i=1

f(Xi)

]
= Eπ(f) (1.2)

1
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and by the strong law of large numbers if we take n to be large enough we could

approximate the desired expectation by:

1

n

n∑

i=1

f(Xi) ≈ Eπ(f) (1.3)

Furthermore, we might also use the Central Limit Theorem (CLT), given that π

admits a variance for the function f(x), say σ2, to see how accurate this estimate

might be:
1
n

∑n
i=1(f(Xi) − Eπ(f))

σ
√
n

∼ N(0, 1) (1.4)

Therefore, the computational challenge which has to be faced is how to draw sam-

ples from π which will be used in (1.3). Techniques which attempt to draw directly

from π(x) have been shown to have limited applicability. Instead, a large collec-

tion of powerful, iterative computational algorithms which are general and easy

to implement, have found a great success within the statistical community since

early 1990s. These methods are known as Markov Chain Monte Carlo (MCMC)

and the main idea goes back to 1953 in the particle Physics literature (Metropolis

et al., 1953). Then it was generalised in statistical context by Hastings (1970).

Nevertheless it is much later with Gelfand and Smith (1990) that the statistical

community became aware of the potential of MCMC for Bayesian inference. Since

then, the use of Bayesian methods for applied statistical modelling has increased

rapidly.

MCMC methods enable us to draw a sequence Xn, n = 1, 2, . . ., which although

neither independent nor identically distributed, still satisfies (1.3). The idea behind

MCMC is the following: for a given distribution π, on an arbitrary state space X ,

construct a Markov chain with the same state space and stationary distribution π.

Then under mild conditions, a Markov chain’s sample path Xn is an approximate

and dependent random sample from π. Asymptotic results ensure for instance,
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distributional convergence of the realisations, i.e.

Xn
d→ π

where
d→ denotes the convergence in distribution. In addition, they ensure consis-

tency of “ergodic averages”, for any integrable scalar function f ,

1

n

n∑

i=1

f(Xi) →
∫

X

f(x)π(x) dx, as n→ ∞, almost surely

The dependence among the simulated values plays a very significant role in terms

of the efficiency of an MCMC algorithm. The “ergodic averages” such as in (1.3)

can become very unstable and converge very slowly to their strong limited values

in the presence of very high serial correlation in the {Xn} series.

Therefore, the motivation behind this thesis is to provide a general methodology

for constructing efficient MCMC algorithms so as to reduce the serial dependence

and obtain more reliable results.

1.2 Structure of the Thesis

This thesis is divided into two discrete parts. The first part is mainly concerned

with drawing Bayesian inference for stochastic epidemic models. The focus is

to construct and analyse a class of non−centered parameterisations which can

improve the speed of the convergence of the Gibbs sampler (see Section 1.6.1

for definition) and other related MCMC algorithms. This part consists of three

chapters and which are outlined below.

• Chapter 2. In this chapter, we will first explain why understanding the

spread of an infectious disease is an important issue in order to prevent major

outbreaks. We will also provide a historical background on deterministic and

stochastic models which have been used throughout the literature. We shall
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briefly review the previous work in epidemic modelling by mainly focusing

on the general stochastic epidemic model and describing existing approaches

for drawing classical (frequentist) and Bayesian inference for its associated

parameters.

Furthermore, we introduce a more general and realistic model to capture the

dynamics of infectious diseases. We will demonstrate how standard methods

can be applied for inferential purposes and also show via an illustrative ex-

ample that they can be problematic in some cases. Therefore, we will mainly

focus how to develop a class of centered and non−centered reparameterisa-

tions in order to obtain more robust and efficient algorithms.

• Chapter 3. This chapter is mainly concerned with modelling the 2001 UK

Foot-and-Mouth (FMD) outbreak from a fully Bayesian perspective. First,

we will refer to the previous work on modelling the FMD outbreak and then

adopting the methodology presented in Chapter 2 we will focus on describing

the transmission’s dynamics of the disease. Moreover, we will compare our

findings with those presented in the literature already.

• Chapter 4. In the final chapter of Part I, we discuss various extensions of

methods and applications for partially observed stochastic epidemics. This

chapter also includes a first attempt to provide a real-time risk assessment

tool for a potential Avian Influenza outbreak in the poultry industry of the

UK.

In the second part of the thesis we introduce a wide class of semi−parametric

time series models based on an underlying stochastic process, which we term la-

tent branching tree. The motivation behind this chapter is to develop a general

methodology to construct time series with pre-specified marginal distributions of

the observations and build the correlation structure around them. The structure

of this chapter is as follows:
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• Sections 5.1, 5.2, 5.3. In the beginning of this chapter we will briefly

review the literature on constructing time series models with fixed margins

outside the Gaussian context with a specific correlation structure. Then, we

present some motivating examples of time series that we will be interested

in modelling via our class of models.

• Sections 5.4, 5.5, and 5.6. In these sections, the construction of a latent

branching tree based on diffusions is given and the general properties of the

tree are discussed. We will refer to the nature of realisations obtained via

the proposed stochastic process by focusing on their marginal distribution

and their corresponding dependence structure.

• Sections 5.7 and 5.8. We show how we can simulate a latent branching tree

exactly without the need of discretisation of the diffusions processes which

are chosen to build the tree. We demonstrate how Bayesian inference can

be conducted for the parameters of interest via MCMC methods. Moreover,

we describe in detail alternative MCMC strategies, including non−centered

parameterisations, so as to improve the efficiency of the standard algorithms.

• Sections 5.10 and 5.11. In these sections we first present a simulation

study to illustrate the performance of the proposed class of models. Then

we apply our methodology to analyse some real genome scheme data.

• Sections 5.13 and 5.12. Finally, we summarize the advantages of the

proposed methodology and also discuss further extensions regarding gener-

alisations of the existing methods and also extensions which are motivated

by real applications.

1.3 Bayesian Inference

In this section we will describe the fundamentals of Bayesian inference. A rigorous

and a more detailed approach can be found in Bernardo and Smith (1994).
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1.3.1 Bayes’ Theorem

Bayesian inference, similarly to likelihood inference, requires a sampling model

that produces the likelihood, the conditional distribution of the data given the pa-

rameters. Then, the Bayesian approach will additionally place a prior distribution

on the model parameters. The likelihood and the prior are then combined using

Bayes theorem to derive the posterior distribution. The posterior distribution is

the conditional distribution of the (unknown) parameters, denoted by θ given the

data, denoted by Y . All Bayesian inference arises from the posterior distribution.

Adopting a Bayesian approach, a prior distribution is assigned to θ and we are

interested in deriving explicitly or sampling from the posterior distribution of θ,

π(θ|Y ). In the case of a continuous state space, the posterior turns out to be:

π(θ|Y ) =
π(θ)L(Y |θ)∫

θ
π(θ)L(Y |θ) dθ

(1.5)

We refer to this formula as the Bayes’ theorem. The integral in the denominator

is essentially a normalising constant and its calculation has traditionally been a

severe obstacle in Bayesian computation. In Section 1.6, we will demonstrate how

we can avoid its calculation using MCMC methods. In terms of a discrete state

space the integral is substituted with a sum over the sample space of θ. In this

thesis we are mainly concerned with continuous state spaces and therefore in the

rest of this chapter we omit the corresponding results for the discrete state spaces.

Bayes’ theorem can be used sequentially. Suppose that we have collected two

independent data samples, Y1 and Y2.

π(θ|Y1,Y2) ∝ L(Y1,Y2|θ)π(θ)

∝ L(Y2|θ) × L(Y1|θ) × π(θ)

∝ L(Y2|θ) × π(θ|Y1)

In other words, this means that we can obtain the full posterior of θ given the full
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dataset by first evaluating π(θ|Y1) and then treating it as a prior for the second

dataset Y2. Thus, we have a natural setting when the data arrive sequentially over

time.

1.3.2 Priors

The choice of the prior distribution has drawn a considerable attention in the

Bayesian community (see for example, Bernardo and Smith, 1994). In this section

we briefly present some of the most popular approaches for choosing the priors.

Additionally to the priors we mention here there exist the so called elicited priors,

created using an experts opinion. However, elicitation methods go beyond the

scope of this thesis and we shall not give more details here.

It is possible to select a distribution which is conjugate to the likelihood, that is,

one that leads to a posterior belonging to the same family as the prior. Morris

(1983) showed that exponential families, where likelihood functions often belong,

do in fact have conjugate priors, so that this approach will typically be available in

practice. The great advantage of such a prior is that can be more computationally

convenient than others.

In many practical situations prior information about θ is not available. Therefore,

the need of specifying non-informative priors is essential. In other words, we

would like to define a prior distribution π(θ) that contains very little information

about the parameter of interest, θ and argue that the information contained in the

posterior about it, comes almost entirely from the data. Summarizing, we should

always choose a prior for the parameter of interest very carefully.

1.3.3 Posterior Distribution

Having obtained the posterior distribution for the parameters of interest we have

all the information that the data contain for the parameters. A natural first step

is to plot the density function to visualise the current state of our knowledge. In



CHAPTER 1. INTRODUCTION 8

addition, we can obtain summaries of our posteriors which can give us all the

information that can be obtained using a frequentist approach to inference. In

this section we will mention the most commonly used in practice, point estimation

and interval estimation.

Point estimation is readily available through π(θ|Y ). The most commonly used

location measures are the mean, the median and the mode of the posterior distri-

bution since they all have appealing properties. Depending on the shape of the

posterior distribution one of the aforementioned measures can be used.

In the case of a continuous parameter space Θ, a 100 × (1 − α)% credibility set

for θ is a subset of Θ which satisfies the following:

1 − α ≤ P(C|Y ) =

∫

C

π(θ|Y ) dθ (1.6)

where integration is replaced by summation for discrete components of the param-

eter.

One of the most attractive credibility sets, is the highest posterior density region

defined as:

C = {θ ∈ Θ : π(θ|Y ) ≥ q(α)} (1.7)

where q(α) is the largest constant satisfying π(C|Y ) ≥ 1 − α. This credibility set

consists of the most likely θ values. Nevertheless, it can be hard to compute such

integrals analytically and therefore numerical methods should be applied. On the

other hand, a much easier and commonly used approach is to calculate the equal

tail credibility set by simply taking the α/2− and 1 − α/2− quantiles of π(θ|Y )

which equals to the highest posterior density set for symmetric unimodal densities.

Nevertheless, this is not the case for highly skewed distributions.
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1.4 Bayesian Inference for Missing Data Prob-

lems

Let Y denote the observed data, X the missing data and θ the parameters in the

model. The statistical models considered in this thesis share a common structure:

the distribution of (Y ,X) is specified and depends on the parameter θ. Never-

theless, only Y is observed, and therefore X is treated as missing data. The pair

of (X,Y ) is often known as the augmented or complete data. The term “missing

data” can either be interpreted as data which for some reason we failed to collect

or data which are not available to us. On the other hand, in many cases, especially

in models with latent variables, random effects, or hidden stochastic processes, we

would never be able to observe X.

By adopting a Bayesian approach, the conditional distribution of the parameter

(in a continuous state space) given the observed data is given up to proportionality

as follows:

π(θ|Y ) ∝ π(θ)

∫

X

π(Y ,X|θ) dX (1.8)

This means that in order to perform posterior inference for θ we need to find

the marginal distribution of the observed data given the parameters. In practice,

in many complex statistical models used nowadays, for example in econometrics,

geostatistics and engineering, the integral
∫

X
π(Y ,X|θ) dX is neither analytically

or numerically feasible.

Nevertheless, powerful iterative sampling schemes have been developed which al-

low us to sample from the joint posterior (θ,X) by sampling iteratively the two

conditionals X|Y , θ and θ|X,Y . This methodology is known as data augmenta-

tion (see Tanner and Wong, 1987) and is described in detail in Section 1.6.2. Once

samples have been obtained from the joint distribution, π(θ,X), then sampling

based posterior inference for θ (or X) can be easily performed using Monte Carlo

methods as for example in Ripley (1987), Gelfand and Smith (1990) and Smith
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and Roberts (1993).

1.5 Conditional Independence

We say that two variables X and θ are independent, and we write X⊥θ, when any

information received for θ does not alter uncertainty about X, see Dawid (1979):

π(X|θ) = π(X)

The concept of conditional independence is very important in this thesis. The

centered and the non−centered parameterisations which are introduced in 2 and 5

are defined in terms of the conditional independence structure they impose between

the missing data and the parameters.

Following Dawid (1979) who develops the theory of conditional independence in

the statistical context, the random variables Y and θ are said to be conditionally

independent given another variable X, when they are independent in their joint

distribution conditional on X = x, for any value of x. That is

π(Y, θ|X) = π(Y |X)π(θ|X).

Marginally though, when X is unknown Y and θ could be dependent. The condi-

tional independence is often expressed in terms of factorisation of the joint density

of X, Y, θ. A compact and illustrative way of expressing conditional independence

statements is by means of graphical models and such an approach is often adopted

in this thesis. See Whittaker (1990) for an introduction to graphical modelling.
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1.6 Markov Chain Monte Carlo Methods

Markov chain Monte Carlo methods are employed to (approximately) draw samples

from a specific distribution π say, which is often called as target distribution. π

is typically multidimensional and in the application we will be concerned in this

thesis, is the joint posterior distribution of the parameters and the missing data

in a hierarchical model.

In this section we will present the main idea and review some well known MCMC

algorithms. There is a vast literature about the theory, methodology, implementa-

tion and applications of MCMC. Currently available texts on the subject include,

for, example Gilks et al. (1996), Tanner (1996), Robert and Casella (1999) and

Roberts and Tweedie (2006).

We shall briefly describe some of the MCMC algorithms most relevant for our

purposes. For more details, we refer to the aforementioned books for details. The

main idea behind MCMC methods has already been mentioned; for a given target

distribution π, MCMC methods construct a Markov chain {Xn} which has π as an

invariant measure. Mild conditions ensure that π is also a limiting distribution of

the chain, whatever the initial value X0. Such Markov chains, are called ergodic.

Most of the MCMC algorithms used in practice satisfy the condition which ensure

convergence to the invariant distribution π. An essential task in designing an

MCMC algorithm is to ensure that π is invariant which is mostly achieved using

the idea of reversibility.

From a statistical perspective, the convergence in distribution of the Markov chain

to π is exploited to estimate expectations under the invariant measure. More

details about convergence results can be found in Roberts and Tweedie (Chapter

8, 2006). In Bayesian analysis, π is a posterior distribution and most inference

problems come down to calculating expectations, (see for example, Gelfand and

Smith, 1990). Therefore MCMC is a very powerful tool for posterior inference,

although it can be easily applied outside the Bayesian context.
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Having ensured the convergence to stationarity, the question which is of interest, is

the speed at which an MCMC algorithms converges. This practically determines

how much time we should “run” the chain before the simulated values are assumed

to be drawn from π. A related concern is the dependence among the simulated

values. Even if we start at stationarity by sampling X0 ∼ π, the Markov chain

will generate exact but dependent samples from π. High dependence among the

sample can often lead in very slow convergence of the ergodic average estimates

to the expectations under π. The effect of the dependence among the sample is

discussed in more detail in Section 1.10.

1.6.1 Gibbs Sampler

The Gibbs sampler decomposes the state space X as X1 × X2 × · · ·Xk, k > 2

and simplifies a complicated multi-dimensional simulation into a collection of k

smaller dimensional which are often more manageable. Often, X = Rd, Xi = Rri

and
∑

i ri = d. The factorisation of the space is usually naturally suggested by

the statical model which is considered. We adopt the following notation; we write

x = (x(1), . . . , x(k)) for an element of X where denote by x(i) ∈ Xi, for all 1 ≤ i ≤ k.

Also denote by x(−i) for the vector produced by excluding the ith component from

the vector x.

x(−i) =
(
x(1), . . . , x(i−1), x(i+1), . . . , x(k)

)

We also follow the same notational conventions for the random variable X ∼ π.

The conditional distribution X (i)|X(−i) = x(−i) for all i = 1, . . . , k is denote by

πi
(
·|x(−i)

)
.

The Gibbs sampler which samples from π is implemented as shown below.
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The Deterministic Scan Gibbs Sampler

1. Choose X0;

2. Set n = 0;

3. Repeat the following steps:

Set i = 1;

While i < k + 1

{

Sample X
(i)
n+1 ∼ πi

(
·|x(−i)

)
, where

x(−i) =
(
X

(1)
n+1, . . . , X

(i−1)
n+1 , X

(i+1)
n , . . . , X(k)

n

)

i = i + 1

}

n = n+ 1

The above scheme is also referred to as the deterministic scan (DS) Gibbs sampler

because of the way the algorithms visits each of the k components. It creates a

Markov chain on X with transition kernel P which is the composition of k kernels,

P (i), i = 1, . . . , k. In particular, if z, w ∈ X we define

P (i)(z, dw) =





πi
(
dw(i)|x(−i)

)
, for w(−i) = x(−i)

0, otherwise

and PDS = P (k)P (k−1) · · ·P (1). There are alternative updating schemes (see for

example, Roberts and Sahu, 1997) which we describe below.
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The random scan (RS) Gibbs sampler at each iteration chooses one of the k com-

ponents to update. Therefore its transition kernel can be written as

PRS =
P (1) + · · ·+ P (k)

k
.

The RS Gibbs sampler can be implemented as follows:

The Random Scan Gibbs Sampler

1. Choose X0;

2. Set n = 0;

3. Repeat the following steps:

Sample I from U({1, 2, . . . , k});

Sample X
(I)
n+1 ∼ πi

(
·|x(−I)

)

Set X
(j)
n+1 = X

(j)
n , for j 6= I;

n = n+ 1

It can be checked that each P (i) is reversible with respect to π, from which easily

follows that π invariant for either the composition, as in the DS or the mixture as in

the RS Gibbs sampler of the P (i)’s; see for example Theorem 3.4.2 and Proposition

3.3.3. of Roberts and Tweedie (2006).

Apart from the RS and DS, there exist some other variation of the Gibbs sampler;

the random permutation Gibbs sampler chooses at each iteration a permutation

of the components, and updates the components according to that permutation.

Note that this preserves reversibility. Another natural way to make the Gibbs

sampler reversible is to carry out two iterations of the Gibbs sampler, the second

one being implemented with the order of the other components reversed. Note that

by applying this algorithm, the kth component is update twice successively, at the
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end of the first iteration and the beginning of the second. The resulting algorithm

is called reversible Gibbs sampler. The implementation of this kind of the latter

algorithms is straightforward; see for example Roberts and Tweedie (Section 2.2.2,

2006).

1.6.2 The Two-Component Gibbs Sampler (Data Augmen-

tation)

The data augmentation was originally developed by Tanner and Wong (1987) for

finding fixed point solutions to integral equations which appear in statistical in-

ference and it can be viewed as the stochastic analogue to EM algorithm (see

Dempster et al., 1977). It is most often used to obtain samples from the joint dis-

tribution of X =
(
X(1), X(2)

)
say, by sampling from the conditional distributions.

Such a scheme has a similar structure with the Gibbs sampler with Gelfand and

Smith (1990) showing that the latter is at least as efficient as the former. Follow-

ing the standard practice in the literature (see for example, Liu et al., 1994, Meng

and van Dyk, 2001), we will identify in this thesis the data augmentation with the

two-component Gibbs sampler.

Data augmentation is by far the most widely adopted computational method for

performing modern Bayesian analysis of missing data problems. The target distri-

bution is the joint posterior of the missing data X and the parameters θ. By con-

struction, simulation from the conditional distributions π(θ|X, Y ) and π(X|θ,Y )

are tractable and more feasible than simulation from the marginal distribution of

the parameters given the observed data, π(θ|Y ). Note that there are many cases

where the latter is not even available in closed form due to the integration in (1.5).

Therefore we use the two-component Gibbs sampler which update X and θ, to

obtain samples from π(θ,X|Y ).
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1.6.3 The Metropolis-Hastings Algorithm

The Metropolis algorithm (Metropolis et al., 1953) manages to sample π, at least

approximately, in a way which does not require the knowledge of its normalisation

constant. In this section we will describe the more general Metropolis−Hastings

algorithm introduced by Hastings (1970). It is generally believed that most of

the MCMC algorithms can be considered as a special case of this algorithm. We

denote by πu the un-normalised density on Rd with respect to d-Lebegue measure,

µLebd . Also assume that is possible to carry out simulations of a Markov chain with

transition density q(X, ·) with respect to the same measure. Such a transition

density, called proposal density does not need to have any connection with πu,

although its choice is important since it can actually influence the efficiency of the

resultant Markov chain.

The Metropolis-Hastings algorithms proceeds as follows. An initial starting value

X0 is chosen; then given the current state of the chain, Xn = x, a candidate value

Yn+1 = y is generated according to the proposal density q(Xn, ·). The generated

values is then accepted with probability α(x, y) , given by:

α(x, y) =





min
(
πu(y)
πu(x)

q(y,x)
q(x,y)

, 1
)
, if πu(x)q(x, y) > 0

0, if πu(x)q(x, y) = 0

If the candidate value is accepted, then we set Xn+1 = y, otherwise if it is not

accepted, we set Xn+1 = x. It easy to see that the Markov chain induced by such

an algorithm has transition law P with densities

p(x, y) = q(x, y)α(x, y), x 6= y

with respect to µLebd and with probability of remaining at the same value equal to

r(x) =

∫
q(x, y)(1 − α(x, y)) dy.
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The algorithm is implemented as follows:

The Metropolis Hastings Algorithm

1. Choose X0;

2. Set n = 0;

3. Repeat the following steps:

Sample Yn+1 ∼ q(Xn, ·);

Sample Un+1 ∼ U(0, 1);

If Un+1 ≤ α(Xn, Yn+1) then

Set Xn+1 = Yn+1;

Else

Set Xn+1 = Xn;

n = n+ 1

It can be easily proven (see for example, the Lemma 2.4.1. of Roberts and Tweedie,

2006) that the algorithm ensures reversibility of the chain with respect to π, i.e.

satisfies the detailed balance

π(x)p(x, y) = p(y)p(y, x).

We should note that any α(·, ·) which satisfies the following equation

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x)

can be used. A class of algorithms which have other accept/reject rules can

be found in Peskun (1973). However, it turns out that the accept/rule of the

Metropolis-Hastings algorithm optimises the proportion of ultimately accepted
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moves. Therefore, it is also optimal in the sense of minimising the asymptotic

variance of any ergodic average moment estimator (see for example Peskun, 1973,

Tierney, 1998, Roberts and Tweedie, 2006).

The framework of the Metropolis-Hastings algorithm is very general since it does

not impose any restriction on the choice of q(·, ·). Therefore, we will proceed by

describing some special cases of this algorithm which have draw much attention in

the literature. The simplest possible choice of for the proposal distribution chooses

q(·, ·) to be independent of its first argument:

q(x, y) = q(y)

and therefore we can write the accept/reject ratio as

α(x, y) = min

(
πu(y)

πu(x)

q(x)

q(y)
, 1

)
.

This is algorithm is called Independence Sampler and it is clear that by taking q(·)

to be proportional to πu()̇ the algorithm reduces to i.i.d. sampling from π.

The algorithm which was essentially introduced in Metropolis et al. (1953) is known

as Symmetric Random walk Metropolis. The proposal distribution is of the follow-

ing form

q(x, y) = q (|x− y|)

and reveals states that is a function of the distance between x and y. In this case

the accept/reject ratio reduces to

α(x, y) = min

(
πu(y)

πu(x)
, 1

)

The accept/reject mechanism can be interpreted as follows. We accept all moves

which increase πu but reject moves which decrease π. Thus, the algorithm biases

the random walk by moving towards modes of π more often that moving away



CHAPTER 1. INTRODUCTION 19

from them (Roberts and Tweedie, 2006). This algorithm became one of the most

widely used MCMC methods due to the fact that is extremely easy to implement.

In the accept/reject ratio, only πu(·) is involved while the proposal densities do

not take any part at all. Therefore many calculations can be avoided. Possibly,

the most popular proposal for performing a RWM is typically of this form:

q(x, y) ≡ N(x, σ2)

where σ is considered as a scaling factor chosen by the user to optimise algorithm

performance; see for example Roberts et al. (1997).

Finally, the-so-called Multiplicative Random walk Metropolis offers an attractive

alternative to the RWM when the state space is in the positive half line. Such an

algorithm can be considered as a logarithmic random walk algorithm, in the sense

that is equivalent to the RWM with a N(0, σ2) proposal distribution and target

distribution obtained by a logarithmic transformation of the original target. The

proposed move is to a random multiple of the current state. Thus, from the current

state, x, we propose a candidate value y = z exp (U) where, U ∼ N(0, σ2). The

accept/reject ratio turns out to be:

α(x, y) = min

(
πu(y)

πu(x)

y

x
, 1

)
.

It can be illustrated via simulations that such an algorithm can behave much more

efficiently by having frequent short excursions into the tail of the target density

especially in comparison of the RWM which has rare but lengthy excursions.

1.6.4 Metropolis within Gibbs

The Metropolis within Gibbs, also known as componentwise updating algorithm,

is a hybrid of the Gibbs sampler and the Metropolis-Hastings algorithm and is used

extensively in this thesis. Suppose that the state space is factorised as X = X1×X2
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and we would like to use Gibbs sampler to obtain samples from π. Nevertheless,

it is often the case that either or both of the conditional distributions πi
(
·|x(−i)

)

are of standard form so as to easily simulate from. The Metropolis within Gibbs

algorithm replaces the direct simulation by a Metropolis-Hastings step which has

πi
(
·|x(−i)

)
as the invariant distribution.

It is reasonable to assume that the ease in the implementation of the Metropolis

within Gibbs over the Gibbs sampler comes at the expense of speed of conver-

gence. Introduction of the Metropolis steps can have severe negative impact on

the convergence rate of the algorithm (see for example, Sections 4.3 and 6.12.2

of Papaspiliopoulos, 2003). Nevertheless, there are Metropolis within Gibbs algo-

rithms which perform better than the “pure” Gibbs; see examples and references

in Section 2.7 of Roberts and Tweedie (2006).

The Metropolis-Hastings algorithm becomes very relevant when considering miss-

ing data problems where the space is factorised in terms of the parameters θ and

the missing data X. In many complex models it is hard to design a Metropolis-

Hastings algorithm for the joint distribution of X and θ. On the other hand,

the full conditional distribution of π(θ|X,Y ) is often available in closed form and

Gibbs sampler can be used straightforward to draw samples from it, while the

conditional of π(X|θ, Y ) is not and therefore a Metropolis-Hastings algorithm is

necessary. Thus, we resort to the Metropolis within Gibbs sampler which can be

generalised to the case where X = X1, . . . ,Xk, with k > 2 and implemented as

follows:
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The Metropolis within Gibbs Algorithm

1. Choose X0;

2. Set n = 0;

3. Repeat the following steps:

Set i = 1;

While i < k + 1;

{

Update X
(i)
n+1 according to πi

(
·, x(−i)

)
, where

x(−i) =
(
X

(1)
n+1, . . . , X

(i−1)
n+1 , X

(i+1)
n , . . . , X(k)

n

)

i = i + 1

}

n = n + 1

1.7 Hierarchical Models and Parameterisations

All Bayesian models can be viewed as hierarchical models, since we typically as-

sume that the distribution of the observed data Y depends on some unobserved

random quantities X whose distribution depends on other random quantities θ.

The distribution of θ depends on other quantities which can be assumed either

random or known. An important property of this kind of model, as described

above, is the conditional independence between Y and θ given X.
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PSfrag replacements

θ X Y

Figure 1.1: The graphical model of the centered reparameterisation

We term the parameterisation in terms of X and θ as the centered parameterisation

(CP), due to the fact that the missing data are centered between the observed data

and the parameters. Suppose instead, that we can find X̃ and some function h(·, ·)

such that X = h(X̃, θ) and X̃ is a priori independent of θ. We term (X̃, θ) the

non−centered parameterisation (NCP) and its graphical model is given in Figure

1.2

PSfrag replacements θ

X Y

X̃

Figure 1.2: The graphical model of the non− centered reparameterisation

In both parts of this thesis, we are concerned with constructing NCP for missing

data problems which share the aforementioned structure. Our goal is to find a

reparameterisation to improve the performance of the Metropolis within Gibbs

algorithm when it is slow under a CP.

1.8 Basics of Lèvy Processes

Lévy processes play an important role in the second part of this thesis. Therefore

it is convenient to introduce, informally, some basic concepts and definitions at

this early stage. A stochastic process x(t), t ≥ 0 where x(0) := 0 almost surely, is

called a Lèvy process if it has independent and stationary increments, i.e. x(t +
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s)− x(t), t, s > 0, is independent of the history of the process up to time t and its

distribution depends only on the separation s (see for example Sato, 1999).

A simple Lévy process is the Poisson process, a stochastic process which finds

applications in diverse areas of science such as physics, teletraffic modelling and

biology. A counter is introduced which counts the number of occurrences from

a starting point, and set x(t) to be the number of occurrences in the interval

(0, t]. We assume that occurrences in disjunct intervals are independent of each

other. In addition, the distribution of the increments does not change in time,

i.e. the process x(t) is said to have stationary increments. Finally, the number of

occurrences after time t follows the probability function

P (x(t) = x) = exp{−λt}(λt)x

x!

where λ is the intensity of the occurrences. In other words, the number of occur-

rences at time t, x(t) is Poisson distributed with rate λt.

Another example of a Lèvy process is the Brownian motion. In its standard form,

x(1) ∼ N(0, 1), but more generally we can have x(1) ∼ N(0, σ2). The increments

of this process are Gaussian

x(t + s) − x(t) ∼ N(0, sσ2)

a property which can be used to simulate values from this process; for instance,

Figure 1.3 shows a standard Brownian motion path on [0, 1] which has been sim-

ulated by splitting time in small intervals and simulating from the corresponding

increments. It can be shown that the Brownian motion is the only Lèvy process

with almost sure continuous sample path (see for example, Feller, 1971).

Finally, a Gamma process which is specified by x(1) ∼ Ga(α, β) is another example

of Lévy process. The increments are also Gamma distributed

x(t + s) − x(t) ∼ Ga(αs, β).
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This is a pure jump process, a feature shared by all Lèvy processes with positive

increments. The Gamma process has an infinite number of jumps in any bounded

interval of time, but only a finite number of them are non−negligible size; see

Section 5.8 of Papaspiliopoulos (2003) for more details.
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x(
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Figure 1.3: A path in [0, 1] of a standard Brownian motion. It has been
simulated by discretising time in intervals of length 0.001 and simulating from

the corresponding increments of the process

1.9 Non−Centered Parameterisations for

Bayesian Hierarchical Models

In the first part of this thesis, we are mainly concerned with developing and con-

structing a framework for applying NCP parameterisation for partially observed

stochastic epidemic models so as to improve the efficiency of the existing centered

algorithms. An extensive account of the second part refers to methods of drawing

inference via MCMC methods. We will show that in some cases a NCP can signif-

icantly perform better than the corresponding centered. Therefore, in this section

we will review the basic concepts of the non−centered methodology; we refer to
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Papaspiliopoulos (2003) and Papaspiliopoulos et al. (2003) for more details.

1.9.1 Motivation

Convergence of the MCMC algorithms, particularly when using Gibbs sampler

or related techniques, depends crucially on the parameterisation adopted for the

unknown quantities. A centered parameterisation is a very natural framework for

both a modelling and interpretation perspective; that is to use θ,X. Thus an

algorithm for sampling from the joint posterior distribution of θ and X which we

will consider them as parameters and missing data respectively, given the observed

data Y can be implemented as follows:

Centered Algorithm

1. Update θ by drawing samples from the conditional

distribution π(θ|X, Y );

2. Update X by drawing samples from the conditional

distribution π(X|θ, Y ).

In many complex hierarchical models, the full conditional distribution of the pa-

rameters given the missing data is of a standard form and Gibbs sampler can

be applied. On the other hand, the conditional distribution of the missing data

given the parameters it is not of an easy form and therefore a Metropolis-Hastings

algorithm is essential; that is the Metropolis within Gibbs algorithm.

Figure 1.1 reveals the a priori dependence between X and θ and in many contexts

this dependence is very strong. The presence of data tends to reduce the effect of

that dependence, but the efficiency of the centered algorithm will depend crucially

on this. The motivation behind non−centering is to find an alternative parame-

terisation (X, θ) → (X̃, θ) where the new missing data X̃ is a priori independent
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of θ. The corresponding MCMC algorithm can be implemented then as follows:

Non−Centered Algorithm

1. Update θ by drawing samples from the conditional

distribution π(θ|X̃, Y );

2. Update X by drawing samples from the conditional

distribution π(X̃|θ, Y ).

Although a Gibbs step may be feasible for drawing samples from π(θ|X) under

a CP, this might be not the case under a NCP. In other words, the conditional

distribution of the parameters θ could be not of a standard form and therefore

a Metropolis-Hastings step is needed. This leads to a significant computational

edge in favour of CP. Nevertheless, as Papaspiliopoulos et al. (2003), we also

believe that there is an important role of the NCP in many contexts especially

in hierarchical models where the latent process is relatively weakly identified by

the data. In addition NCP have much to offer when there exists high a priori

dependence between the missing data and the model’s parameters.

1.9.2 Rates of Convergence of the Gibbs Sampler

In this section we will focus on the rate of convergence of the Gibbs sampler

for the two different parameterisations within the Gaussian context. Following

Papaspiliopoulos et al. (2003), let Z = (Z1, Z2) denote a random variable with

density π, partitioned into two components, Z1, Z2 of arbitrary dimension. A two-

component Gibbs sampler on π under the parameterisation (Z1, Z2) iterates the

following procedure.

1. Sample Z1 from the conditional distribution of Z1|Z2



CHAPTER 1. INTRODUCTION 27

2. Sample Z2 from the conditional distribution of Z2|Z1

It is beyond the scope of this thesis to discuss rates of convergence of algorithms;

see Roberts and Tweedie (2006) for a recent summary. Nevertheless, when the

two-component Gibbs sampler can be implemented, there exist a complete theory

which we will very briefly describe. Denote by L2 the set of all real functions f ,

f : Z → R, which are square-integrable with respect to π, i.e.

L2 :=

{
f :

∫

Z

(f(z))2π(z) dz <∞
}

(1.9)

Similarly, we define:

L2
0 =

{
f ∈ L2 :

∫

Z

f(z)π(z) dz = 0

}
(1.10)

Let P n(x, ·) denote the distribution of the two-component Gibbs sampler after n

iterations, where x denotes an arbitrary starting value for the (Z1, Z2) pair. The L2

rate of convergence, denoted by ρ, is understood as the rate at which expectations

of arbitrary square-integrable functions f ∈ L2
0 converge to their stationary values

as n → ∞ according to the L2 norm. The L2 norm for any signed measure µ

non-singular with respect to π is defined as

||µ||2L2 =

∫ (
dµ

dπ

)2

dπ. (1.11)

Amit (1991) observed the L2 distance from stationarity decays as A(x)b(n)ρn for

some function b(n) which varies slower than an exponential function. The rate

ρ ≤ 1 is defined as

ρ1/2 = sup corr (f(Z1), g(Z2)) (1.12)

where the supremum is taken with respect to all real-valued non-constant functions

f and g which have finite variances under π. Amit (1991) also showed that other

norms, such as total variation distance, have this rate at least for a large class of
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plausible target distributions.

As Papaspiliopoulos et al. (2003) point out, it has been long recognised that the

correlation structure of the target distribution determines the convergence behav-

ior of the Gibbs sampler; see Hills and Smith (1992) and Gelfand et al. (1995).

Equation 1.12 is of little practical use, since in general it is not possible to evalu-

ate the supremum; nevertheless, an important exception is for Gaussian target π

where supremum of the kind appearing in 1.12 are achieved exclusively by linear

functions. In addition, for Gibbs samplers with larger number of components,

it is impossible to find an explicit statement similar to Equation 1.12 which re-

lates the rate of convergence of the algorithm to the target distribution correlation

structure.

1.9.3 Rates of Convergence for CP and NCP for a Normal

Hierarchical Model.

In this section, we refer to the results obtained by Roberts and Sahu (1997) where

in the case of a Gaussian target distribution explicit formulae are available for

rates of convergence of the sampler, in terms of target distribution correlation

matrix. Following Papaspiliopoulos et al. (2003) we will consider the following

Normal Hierarchical model written as

Yi = Xi + σyεi,

Xi = θ + σxzi, i = 1, . . . , m (1.13)

Here, εi and zi are standard Normal random variables, θ is assigned a uniform

improper prior and the variances are considered to be known. The parameterisa-

tion (θ,X), where X = (X1, . . . , Xm) is known as centered parameterisation; see

Gelfand et al. (1995).

The name non−centered parameterisation was originally used for the NHM in
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Gelfand et al. (1995). In this context the NCP writes the model as

Yi = X̃i + θ + σyεi,

X̃i = σxzi, i = 1, . . . , m (1.14)

Note that X̃ = (X̃i, . . . , X̃m) and θ are a priori independent but conditionally on

the data, they are dependent. In this example, Gibbs sampling can be applied

very easily in this context using either the CP or the NCP and therefore we are

interested in assessing the performance of the sampler under these two different

parameterisations.

We would like to consider sampling from the joint posterior distribution of X and

θ of the model which appears in Equation 1.13 using a Gibbs sampler. Since this

is a multivariate Gaussian distribution we can explicitly evaluate the rate of L2

convergence, denoted by ρc, using the results from Roberts and Sahu (1997); see

also Roberts and Tweedie (2006),

ρc = 1 − κ

where

κ =
σ2
x

σ2
x + σ2

y

.

Note that since (σ2
x + σ2

y)
−1 = 1/var(θ|Y ) and 1/var(θ|X,Y ) = 1/var(θ|X) the

expression for κ can be also written as

κ =
(σ2

x + σ2
y)

−1

(σ2
x)

−1

which is the ratio of observed by augmented information for θ under the CP.

Within this context, 1 − κ is the Bayesian fraction of missing information in the

sense defined by Rubin (1987). The relationship between observed and augmented

information and rates of convergence of algorithms was noted first in a very general
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framework for the EM algorithm, (see for example Meng and van Dyk, 1997) but

can be translated to the data augmentation methodology in this specialised linear

model context (Sahu and Roberts, 1999). Therefore, the CP will perform well

when κ → 1, i.e. when the data are relatively very informative in the sense that

the observed data contain almost as much information about the parameter as the

augmented.

In the case of a NCP and when a Gibbs sampler is used, the L2 rate of convergence,

denoted by ρnc, turns out to be:

ρnc = κ.

When the one parameterisation produces very slow mixing for the Gibbs sampler

the other will be performing very well. For this model with flat priors assumed

the relative performance of the CP and the NCP can be derived explicitly since

ρnc = 1 − ρc. Not that this relation does not hold when proper priors are used.

1.9.4 General Framework for Non-Centered Parameterisa-

tions

The NCP for the NHM enable us to formulate a general framework for constructing

non−centered parameterisations to a much more general context. Specifically, we

find X̃i which is a priori independent of θ and from which Xi can be constructed

via a deterministic function:

Xi = h(X̃i, θ).

Within the Gaussian context under a NCP, it is easy to identify h(·, ·) as h(Xi, θ) =

θ + X̃i. For the general model presented in the graphical model in Figure 1.1

although such a function h(·, ·) always exists, it is not unique. However, it can

be difficult to identify such a function h which is analytically sufficiently tractable

to use. A commonly used technique to find an appropriate function h is via the
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inverse CDF method.

From the experience in the NHM context, Papaspiliopoulos et al. (2003) argue

that we would expect an NCP to be more effective than its CP rival when X is

poorly identified by the data and remains highly correlated with θ.

1.9.5 Partially Non−Centered Algorithms

Motivated by the results of Section 1.9.2, we know that the CP is the optimal

algorithm where the relative observation error σy/σx tends to zero. On the other

hand, the NCP is optimal when this error tends to infinity, i.e. the absence of

any data (Papaspiliopoulos et al., 2003). Therefore, we would like to construct an

algorithm that will take into account the quantity of observation present in the

observed the data. Consider the following parameterisation for the NHM:

Yi = ωθ + X̃ω
i + σyεi

X̃ω
i = (1 − ω)θ + σxzi

where i = 1, . . . , m and ω ∈ [0, 1]. This parameterisation is called partially

non−centered (PNCP). It can be easily seen that

X̃ω
i = (1 − ω)Xi + ωX̃i

where Xi and X̃i as defined (1.13). Obviously, if ω = 0 (ω = 1), then the above

reparameterisation is just the CP (NCP). Since the joint posterior distribution

of X̃ω =
(
X̃ω

1 , . . . , X̃
ω
m

)
and θ remains Gaussian, the rate of convergence of the

corresponding Gibbs sampler under this parameterisation can be derived and taken

from Papaspiliopoulos (2003) is equal to

ρωpnc =
ω − (1 − κ)2

ω2κ+ (1 − ω)2(1 − κ)
(1.15)
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Note that ρωpnc = 0 for ω = 1 − κ which suggests that the PNCP algorithm can

be tuned appropriately to produce IID samples by setting ω = 1 − κ.

Partial non−centering can be used for many models outside the Gaussian context.

Papaspiliopoulos et al. (2003) indicate that there is no unique way of defining a

continuum of partial non−centering strategies. Nevertheless, they note that often

there will be a natural one suggested by the model structure.

Concluding, we should bring to attention that outside the Gaussian context it is

rare that pure Gibbs sampling can be applied in conjunction with the PNCP and

therefore appropriate Metropolis within Gibbs strategies will be necessary.

1.10 Quantification of the Algorithm’s Efficiency

Suppose, we have a probability density π(x), corresponding to some random vari-

able, X and a function f of interest. We have already explained in Section 1.1

that often in Bayesian statistics we are interested in evaluating expectations of the

following form:

Eπ(f) =

∫

x

f(x)π(x) dx. (1.16)

It has been described in Section 1.6 how various MCMC algorithms allow us to

draw a sequence {Xn, n = 1, 2, . . .} which although neither independent nor iden-

tically distributed still satisfies the following:

f̂n =
1

n

n∑

i=1

f(Xi) ≈ Eπ(f) (1.17)

Nevertheless, as Sokal (1996) points out that the key difficulty, is that the succes-

sive draws X1, X2, . . . might be very strongly correlated. Therefore the variance

of the estimates produced from Monte Carlo simulation based on these samples

may be much higher than “static” Monte Carlo, i.e. the case of i.i.d. samples. In

this section we describe some useful measures in order to assess the efficiency of

MCMC algorithms. Following Sokal (1996) we are interested in deriving measures
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which could quantify the efficiency of an MCMC algorithm.

For a stationary chain, X1 is sampled from π(·) and therefore for all k > 0 and

m ≥ 0:

cov(f(Xk), f(Xk+m)) = cov(f(X1), f(Xm))

which is the autocovariance at lag m. Also, because of stationarity,

var(f(Xi)) = σ2(f), i = 1, . . . , n.

The variance of the estimator f̂n can be calculated as follows:

var(f̂n) =
1

n2
var

(
n∑

i=1

f(Xi)

)

=
1

n2

(
n∑

i=1

var(f(Xi)) + 2
n−1∑

i=1

cov(f(Xi), f(Xi+1))

+ 2
n−2∑

i=1

cov(f(Xi), f(Xi+2)) + . . .

)

=
1

n2

(
n∑

i=1

var(f(Xi)) + 2(n− 1)cov(f(X1), f(X2))

+ 2(n− 2)cov(f(X1), f(X3)) + . . .)

=
σ2(f)

n

(
1 + 2

n−1∑

i=1

(
1 − i

n

)
cov(f(X1), f(Xi))

var(f(X1))

)

=
σ2(f)

n

(
1 + 2

n−1∑

i=1

(
1 − i

n

)
corr(X1, X1+i)

)
(1.18)

Equation 1.18 should be compared with the corresponding equation for uncorre-

lated random variables which turns out to be σ2(f̂n) = σ2(f)/n. The difference is

the factor in the bracket of (1.18) which is defined as the integrated autocorrelation

time (IAT):

τint = 1 + 2

n−1∑

i=1

(
1 − i

n

)
cov(f(X1), f(Xi))

var(f(X1))
(1.19)
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Often, we are interested in the limit as n→ ∞ and therefore IAT becomes:

τ̃int = 1 + 2
∞∑

i=2

corr(X1, Xi). (1.20)

IAT represents the effective number of dependent samples that is equivalent to

a single independent sample. On the other hand, the quantity n/τ̃int may be

considered as the effective equivalent sample size if the elements of the chain had

been independent.

In order to estimate IAT in practice, we could examine the chain from the point

at which is seemed to have converged and estimated the correlation at lag i as

follows:

γ̂i =
1

n− i

n−i∑

j=1

(
f(Xj) − f̂n

)(
f(Xj+i), f̂n

)
.

Then substituting the estimated autocorrelations in (1.20) gives an estimate of the

IAT. Nevertheless, it is difficult to obtain precise estimation of the autocorrelation

function at lag i when i is typically large, since when i is large, corr(f(X1), f(Xi))

adds a constant amount of noise. Therefore, an accurate estimation of τ̃int is

typically a hard task.

An other practically important issue is how can we be make sure that convergence

has been reached. Note, that the theory says for large n the resulting values of the

chain, say Xn, Xn+1, . . ., is an approximate sample from the target distribution. In

practice, the problem is to determine what a “large” n means. There are a number

of diagnostic tests proposed in the literature (see for example Brooks and Gelman,

1998, Brooks and Roberts, 1999, Cowles and Carlin, 1996, and the refererences

therein) that provide us with different indicators on the stationarity of the chain.

However, none of these tests can actually guarantee convergence. Throughout

this thesis, we investigate the “trace”, a plot of the history, of the chain for long

(typically a few hundreds of iterations) runs. All the results reported in this thesis

are based on chains that appear to have converged.



Part I

Efficient Bayesian Inference for

Partially Observed Stochastic

Epidemics

35



Chapter 2

Bayesian Inference for Stochastic

Epidemic Models

2.1 Introduction

Understanding the spread of an infectious disease is a highly crucial issue in order

to prevent major outbreaks of an epidemic. Human infections such as influenza,

malaria and HIV are still major causes of morbidity and mortality worldwide.

In 2001, the UK experienced a range of severe economic and social effects of a

Foot-and-Mouth (FMD) epidemic. It is also remarkable the threat that governed

humanity when a new infection, Severe Acute Respiratory Syndrome (SARS), was

spreading speedily across the world in the spring of 2003. More recently, many Eu-

ropean countries have suffered from the Highly Pathogenic Avian Influenza (HPAI)

disease which affected their poultry industries. For both FMD and SARS, consid-

erable transmission of the disease had already taken place even before the danger

had been noticed. Therefore, the available control strategies need to be imposed

rapidly so as to effectively stop the spread of the infection. A detailed and careful

understanding of the basic theory of epidemic models is essential so as to enable

us to develop successful policies.

36
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This chapter is concerned with methods for drawing inference for epidemic models

using Markov Chain Monte Carlo (MCMC) methodology. First, we will explain

why models are important in epidemic theory (2.1.1). Then we will provide a

review of the history of epidemic modelling by discussing simple deterministic and

stochastic models, focusing on their differences and similarities (Section 2.1.2).

We will refer to previous work on epidemic modelling and concentrate on the

stochastic model which has drawn a considerable attention within the literature,

the general stochastic epidemic (GSE) (Section 2.1.4). The GSE will be the basis of

the model we introduce in Section 2.2. Furthermore, we demonstrate that standard

MCMC algorithms often lead to inadequately-mixing Markov chains (Section 2.6)

and that more efficient algorithms are required. These algorithms are based on

non−centered parameterisations and are presented in Sections 2.4 and 2.5.

2.1.1 The Need for Epidemic Models

The analysis of outbreak data can be more effective when it is based on a model

for the actual process which generates the data. Models could be used to provide

a better understanding of the transmission dynamics, the infection process, and

the epidemiologically quantities of interest. The suitability of the model and the

validity of the assumptions on which it is mainly based, depend on the purpose

for which it was constructed.

A number of reasons exists for using epidemic models of historical incidence

data. Such an analysis can be useful for diseases which occur due to re-emerging

pathogens as described in a review by Ferguson et al. (2003). This is of particu-

lar interest at the moment because the world recently has faced the danger of a

Highly Pathogenic Avian Influenza disease. Ducatez et al. (2006) and Enserink

(2006) discuss multiple introduction of the disease in Nigeria and how could this

result to transmission of the disease to Europe. The world also experienced a

SARS outbreak in 2003, see for example Riley et al. (2003) and Lipsitch et al.
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(2003), with significant impacts to the public health (Anderson et al., 2004). Two

years earlier, in 2001, the UK suffered a Foot−and−Mouth epidemic which had

a rather significant economic impact on the areas which were affected (Bennett

et al., 2001).

When an epidemic model is fitted to a data set and is found to provide an adequate

description of the mechanism which has generated the data, we can make use of

the fitted model in several ways. In general, apart from providing estimates for

the parameters of interest which are largely responsible for driving the dynamics

of the disease, models also have the ability to answer questions which refer to the

progress of the disease based on the current state of the outbreak. The FMD in

2001 is one of the cases which illustrates that models could also be applied for real

time use (see for example, Ferguson et al., 2001a,b, Keeling et al., 2001, Morris

et al., 2001).

In addition, epidemic models play an important role in determining the effect of

different control strategies. One of the major strengths of epidemic models is their

capability to predict where the disease is likely to spread next. This can guide

the conduction of effective control policies to prevent a major spread. It can also

suggest optimal plans for controlling a future outbreak by adopting vaccination

strategies; see for example in the context of Food and Mouth (Keeling et al., 2003,

Tildesley et al., 2006). It is therefore important to construct a model for which

we can draw inference regarding its unknown quantities so as to be able to give

answers to important scientific questions regarding the underlying processes of an

outbreak.

2.1.2 Historical Background

Mathematical modelling of infectious diseases has a long history; see for example

Bailey (1975). The first approach to epidemic modelling is generally taken to be a

paper by Daniel Bernoulli on the prevention of an infectious disease, namely small-
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pox, by inoculation. The analysis which was performed then by Bernoulli can be

found in Daley and Gani (1999, Sec. 1.1). Nevertheless, as Bailey (1975) points

out, it was another hundred years before the physical basis for the cause of the

infectious disease became well-established. One of the earliest studies of epidemic

modelling was introduced in a paper by Hamer (1906). The author, assumed that

the probability of a new infection in the next discrete time step is proportional

to the product of the number of susceptibles and the number of infectives. A few

years later, Ross (1916, 1917a,b) translated this “mass action principle” or “homo-

geneous mixing” to the continuous time setup. The first complete mathematical

model for the spread of an infectious disease which received attention in the lit-

erature was a deterministic one, introduced by Kermack and McKendrick (1927).

We shall briefly describe the main features of this model in Section 2.1.2.1.

2.1.2.1 Deterministic Models

First, consider a closed population (i.e. there are neither births nor deaths nor

immigration) of size N + a and assume that at time t = 0 there are a initially

infected individuals. Such an assumption of a closed population is reasonable for

epidemics which occur in a time relative to the change in the population. At any

given point time each individual i is in one of the three states: i) Susceptible ii)

Infected iii) Removed.

The only transitions which we allow, are the following: from susceptible to infected

and from infected to removed. Therefore an individual is called susceptible if they

do not have the disease but are susceptible to infection, infected if they have got the

disease and able to infect other (susceptibles). We assume that at the end of their

infectious period, they become removed either by death or immunity, i.e. cannot

infect any other susceptibles. In general they do not take part in the epidemic any

longer.

Denote by Xt, Yt and Zt the number of susceptibles, infected and removed individ-



CHAPTER 2. EPIDEMICS 40

S I R

Figure 2.1: The three transition states of an individual.

uals respectively at time t ≥ 0. It is sufficient for describing the epidemic to keep

track of (Xt, Yt, Zt) since for all t the following equality holds: Xt+Yt+Zt = N +a.

The model is then defined by the following set of differential equations:

dXt

dt
= −βXtYt

dYt
dt

= βXtYt − γYt

dZt
dt

= γYt

(2.1)

with initial state (X0, Y0, Z0) = (x0, y0, 0). The factor βXtYt is a crucial non−term

indicating that infections occur at high rate only when there are many susceptibles

and infectives. It follows from the above equation that dX/dZ = −(β/γ)X. So,

Xt = x0 exp {−θZt}

and hence

Yt = N − Zt −Xt = N − Zt − x0 exp {−θZt}

where θ = β/γ. Kermack and McKendrick (1927) showed that the number of in-

fectives Yt is increasing unless x0 > 1/θ. That is, there will be a growing epidemic.

This observation is known as the threshold result, i.e. different behavior of the

epidemic will occur depending on whether x0 > 1/θ or not. Another important

observation is that as t → ∞ then Zt → Z∞ < N where Z∞ is the solution of

Z = N − x0 exp {−θZ}. In other words, this a very important property which

states that not everyone becomes infected. Summarizing, we should note that

many of the epidemic models used today have this general epidemic model as
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their basis.

2.1.2.2 Stochastic Models

Stochastic epidemic models were also being developed early in the 20th century

along deterministic ones. McKendrick (1926) was the first to propose a stochastic

version of the general epidemic model. However, at that time, there was more

interest in discrete−time models and this model did not receive much attention.

A model which attracted more attention that time was the chain-binomial model

proposed of Reed and Frost in lectures in 1928 (Wilson and Burke, 1942, 1943).

In the standard Reed−Frost model, given the numbers Xt, Yt of the susceptibles

and infectives at time t, Yt+1 has a binomial distribution with index Xt and mean

Xt(1 − p)Yt and Yt+1 = Xt −Xt+1. In consequence, individuals are assumed to be

infective for a single time unit and in that time they can make an infectious contact,

independently and with probability p, with any member of the population who is

susceptible. This means that the number of potentially infectious contacts scales

with the population size. Since the Reed−Frost model is only usually applied

to small populations, this is not a problem. However, there have been various

modifications to the Reed−Frost model which refer to the number of contacts and

the probability that a susceptible escapes the infection by a single infective (see

for example, Dietz and Schenzle, 1985).

The stochastic models began to draw more attention and be analyzed more ex-

tensively in the late 1940’s. Then, Bartlett (1949) studied the stochastic version

of the model introduced by Kermack and McKendrick (1927) and since then, the

amount of effort put into modelling infectious disease has blown out.

2.1.2.3 Deterministic or Stochastic?

Disease spread is an inherently stochastic phenomenon and there are a number

of arguments why a stochastic model should be preferable to a deterministic one.
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Real life epidemics, can either go extinct with a small number of individuals who

became infected during the outbreak, or end up with a significant proportion

of the population having contracted the disease. It is therefore, only stochastic

models that can capture this behavior and the probability of each event occurred.

Moreover, stochastic models allow us to intuitively define them since they can

naturally capture the infection process between different individuals.

Isham (2005) claims that the general view in the past seems to have been that

a deterministic model gives an average behaviour of a corresponding stochastic

system at least asymptotically and that for large populations using a stochastic

model, which is more difficult to analyse than a deterministic one, there is little

to be gained. However, it is now widely accepted that both deterministic and

stochastic models have their strengths and can accommodate good understanding

of the underlying process (see for example Isham, 2005). We should note that it is

often the case to observe a disease outbreak with an atypical behavior even in the

case for large populations. Nevertheless, even if they show an average behaviour

care needs to be taken when we are interested in prediction (Isham, 1991, 1993).

Isham (2005) also indicates that one of the most noticeable changes of the last

fifteen years has been the increased acceptance by biologists of the important

role that mathematical modelling has to play in providing solutions of many of

their most difficult problems. Moreover, they noticed that such models need to

incorporate intrinsic stochasticity in many ways.

Similarly, the stochastic effects become more important when we are interested in

determining effective control strategies or answering questions regarding recurrence

and extinction of infections. It is known (see for example, Isham, 2005) that with a

deterministic epidemic model with open population (i.e. allow for births, deaths,

or/and immigration) if in the beginning of the epidemic R0 > 1, the infection

never completely dies out. In contrast, a stochastic epidemic model may fade out

completely when it reaches a state where there is a single infective and moreover

it is in any case to die out eventually unless there is an external source of infection
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(Isham, 2005). Taking into account the above arguments, in this thesis, we will

only focus on stochastic epidemic models.

2.1.3 Previous Work on Epidemic Modelling and Inference

There exists a comprehensive literature on deterministic and stochastic epidemic

modelling and in this section we will only mention some of the main books on

epidemic modelling and a series of papers which have drawn attention over the

years. We have already mentioned in Section 2.1.2 the work in epidemic modelling

in its early stages. Most such work prior to 1975 is contained in Bailey (1975)

where the author presents an account of both deterministic and stochastic models.

He also also illustrates the use of a variety of model using simulated data but also

applications to real data.

Becker (1989) is mainly concerned with the statistical analysis of infectious dis-

ease data. The author deals with chain-binomial models with and without random

effects as well as with other stochastic models in continuous time incorporating ob-

servable and latent infectious periods. He also makes use of the theory of stochastic

processes and in particular, the theory of martingales to provide non−parametric

methods of inference. Anderson and May (1991) model the spread of the disease for

several situations and give many practical applications, but unlike Bailey (1975),

they only focus on deterministic models. The six− months epidemics workshop

which took place in 1993 in the Isaac Newton Institute in Cambridge, resulted in

three collections of papers edited by Grenfel and Dobson (1995), Mollison (1995),

Isham and Medley (1996).

In addition, the book by Daley and Gani (1999) offers an introduction to stochas-

tic epidemic modelling as well as several historical remarks for both deterministic

and stochastic models. Two recent books which have received considerable at-

tention are i) the monograph by Andersson and Britton (2000) and ii) the book

by Diekmann and Heesterbeek (2000). The former provides in the first part an
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introduction to stochastic modelling while in the second, the authors discuss some

basic statistical analysis for stochastic epidemic models. In the latter the authors

focus their interest only in deterministic models which they apply in real data.

Although there is an extensive list of monographs on the modelling side of epi-

demics, however, there does not exist a monograph concerned with the progress

over the years on the inference of stochastic epidemics. Becker and Britton (1999)

present a nice review of statistical methodology for the analysis of outbreak data

prior 1999. They also indicate that due to the increase of computing power the last

two decades modern statistical methods offered a suitable framework for analysing

effectively outbreak data using realistic models. There also exists a variety of

review papers of epidemic models for particular diseases such as smallpox and

Foot-and-Mouth; see for example Ferguson et al. (2003) and Keeling (2005). Since

1999 there have been many papers concerned with more complicated models than

those described in Sections 2.1.2.1 and 2.1.2.2. However, we postpone the discus-

sion of the work on such kind of models for Section 2.2.

2.1.4 The General Stochastic Epidemic Model (GSE)

In this section we describe the principles and the basic assumptions of the most

well studied stochastic model, the−so−called general stochastic epidemic (GSE).

We adopt a similar notation as the one adopted for the deterministic SIR model.

A closed population (i.e. no births/deaths/imigration) of size N + a is considered

and we assume that at time t = 0 there are α initially infected individuals. The in-

fectious periods of different individuals are independent and identically distributed

according to some random variable D, which can have any arbitrary but specified

distribution. In addition, we assume that the epidemic is observed up to a certain

time, say T . Denote by nI ≤ N and nR ≤ N , the number of individuals who got

infected and removed by time T respectively. In general, nI ≤ nR ≤ N .

The epidemic process (Xt, Yt) is Markov if and only if the infectious period has the
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lack-of-memory property. This is the special (Markovian) case where the infectious

periods follow an Exponential distribution. Such a model is known as the general

stochastic epidemic (GSE). Then, the process (Xt, Yt) can be fully described in

terms of continuous time Markov chains with the following transition rates:

(i, j) → (i− 1, j + 1) : βXtYt

(i, j) → (i, j − 1) : γYt

while the transition probabilities turn out to be:

P[Xt+δt −Xt = −1, Yt+δt − Yt = 1 | Ht] = β ·Xt · Yt · δt+ o(δt)

P[Xt+δt −Xt = 0, Yt+δt − Yt = −1 | Ht] = γ · Yt · δt+ o(δt)

P[Xt+δt −Xt = 0, Yt+δt − Yt = 0 | Ht] = 1 − β ·Xt · Yt · δt− γ · Yt · δt+ o(δt)

where Ht is the sigma-algebra generated by the history of the process up to time t,

i.e. Ht = σ{(Xs, Ys) : 0 ≤ s ≤ t}, with H0 = σ{X0 = N , Y0 = α)} specifying the

initial conditions. Therefore, the probability of an infection or a removal at the

time interval [t+ δt) are βXtYt+o(δt) and γYt+o(δt) respectively. The correction

term o(δt) becomes negligible for small δt, i.e. o(δt)
δt

→ 0 as δt→ 0.

The form of the transition probabilities show that the probability of infection at

time t is proportional to the total number of infectives and susceptibles at time

t. The constant of proportionality, β, is referred to as the infection rate. The

transition probability of a removal shows that the length of the infectious periods

are independent, identically distributed exponential random variables with mean

1/γ, and therefore γ is referred as the removal rate for each individual. The

epidemic continues until there are no more infected individuals left circulating in

the population which will happen almost surely in finite time (Ball, 1983).

An extensive discussion of the properties of deterministic and stochastic versions

of the SIR model is given by Bailey (1975); update for many variations of the
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standard SIR model can be found for example in Andersson and Britton (2000) and

Diekmann and Heesterbeek (2000). Furthermore, the dynamics of deterministic

and stochastic SIR models in discrete time are analysed and compared in Allen

and Burgin (2000).

2.1.5 Final Size of the Epidemic and The Basic Reproduc-

tion Number [R0]

Before presenting any statistical issues which refer to the general stochastic epi-

demic model, we concentrate to the most important measures in stochastic epi-

demic modelling; the final size of epidemic and the basic reproduction number R0.

In this section we will briefly describe these useful epidemiological quantities.

2.1.5.1 Final Size Distribution

The final size the epidemic, say Z, is simply defined as the number of initially

susceptible individuals that ultimately become infected. For θ ≥ 0, let φ(θ) =

E[exp {−θD}] be the moment generating function of the infectious period D and

let pk be the probability that the final size of the epidemic is equal to k, 0 ≤ k ≤ n.

Ball (1986) proved that

l∑

i=1

((
N−k
l−k

))
pk

(
φ
(
λ(N−l)

N

))k+m =

(N
l

)
, 0 ≤ k ≤ n (2.2)

Note that an alternative definition of GSE assumes that during their infectious

period, an individual makes contacts with each of the susceptibles at times given

by the points of a homogeneous Poisson process with intensity λ/N .

The system of equations in 2.2 is triangular in the pk’s and hence, in principle, it

is easy to calculate the final size probabilities recursively, i.e. p0, then p1, p2 and so

on. Nevertheless, problems often occur in some specific circumstances such as ex-

treme values for the parameters, even for small populations. When an Exponential
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infectious period is assumed, Bailey (1975) has derived a different set of equations

for the final size of probability that has better numerical stability. However, the

Laplace transformation methods which are applied to the forward equations of

the Markovian epidemic process do not generalize for a non-Markovian setup.

Recently, Demiris and O’Neill (2006) employed multiple precision arithmetic to

surmount this numerical problems. They also concluded that the branching pro-

cess approximations as used to calculate the probability of an epidemic taking off

was found to be effective, even for small numbers of initial susceptibles.

2.1.5.2 R0 and the Threshold Result

The following definition is taken from Heesterbeek and Dietz (1996):

R0 is the expected number of secondary infections produced by a typical

infected individual during its entire infectious period in a population

consisting of susceptibles only.

In the GSE model, a typical individual can be any of the infectives since the model

assumes homogeneous mixing and will, on average, be infectious for time 1/γ.

Then, the number of susceptibles infected by one infective per unit time is βN .

Hence the total number of infections produced by one infective, is equal to βN /γ.

In the case of the deterministic SIR model, the parameter γ can be interred as the

reciprocal of the infectious period. In general, for an arbitrary infectious number,

D, the basic reproduction ratio is defined as follows:

R0 = βN · E[D].

In more complicated models, the definition of R0 is not straightforward and care

is required to define an appropriate measure.

We shall describe why R0 is such a significantly important measure in epidemics.

First, recall the deterministic SIR model as presented in Section 2.1.2.1 and that
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the number of infectives Yt increases as long as the number of initial susceptibles

in the population x0 = N is greater than the quantity γ/β (Kermack and McK-

endrick, 1927). In other words, this is equivalent to the inequality that R0 > 1.

This reveals the significance of R0. If R0 ≤ 1 then the latter condition cannot

be met and therefore only a minor outbreak can result and R0 is considered as

threshold parameter . With an infection for which R0 > 1 a population will be

protected from epidemic outbreaks as long as the number of susceptibles is kept

below the threshold by vaccination.

The threshold behavior of the stochastic SIR model for large populations (Whit-

tle, 1955, Williams, 1971, Bailey, 1975, Andersson and Britton, 2000) is generally

speaking analogous to that of the deterministic model. Intuitively, if the initial

number of infectives, α, is small then during the early stages of the epidemic in

a large population, essentially all the contacts of infectives are with susceptibles

and a branching process approximation is appropriate (see also for example, Ball,

1983). We should make clear that such results are exactly valid only asymptot-

ically, typically as the population size becomes infinite. Although the branching

approximation idea has a long history, Ball and Donnelly (1995) used a coupling

argument to investigate how the approximation improves as the population tends

to infinity.

Specifically, in a population of infinitely many susceptibles, if R0 ≤ 1 then, with

probability one, only a finite number of susceptibles will become infected (i.e.

minor outbreak). If R0 > 1 there is a positive probability that infinitely many

susceptibles will become infected (i.e. major outbreak). We should bring to at-

tention that, for finite populations, corresponding definitions of major and minor

outbreaks are more difficult to define. Nevertheless, it is broadly true, an epidemic

is either very likely will die out with minor impact or else might end up with a

large proportion of susceptibles getting infected. Depending on the value of R0 and

whether is greater or smaller than one, then its value, approximately, will indicate

which of the two situations is more likely. Therefore, it now becomes clear why R0



CHAPTER 2. EPIDEMICS 49

is so important in epidemic theory since also implies the amount of effort needed

to prevent an epidemic.

2.1.6 The Likelihood of GSE for Different Model Setups

As it has been already mentioned, one reason for modelling epidemics is to draw

conclusions about particular diseases. In this section, we examine the important

area of drawing inference about the model parameters. A formal statistical analysis

has an essential role to play in bridging the gap between the mathematical theory

and public health. Statistical inference uses the likelihood function.

In this section, we describe in detail the various model setups for the GSE which

have been used throughout the literature. For each of the presented model setups

we derive the likelihood of the observed data given the (unknown) parameters β

and γ. First, we refer to the setup adopted by many researchers (see, for example,

Bailey and Thomas, 1971, O’Neill and Roberts, 1999). Then, we review the the

considerable amount of work on epidemics related with martingales which has

been presented over the last two decades (Becker, 1989). Finally, we present an

alternative setup which has been recently proposed in the literature (Britton and

O’Neill, 2002, Neal and Roberts, 2005).

2.1.6.1 Bailey and Thomas’ Setup

We adopt the following notation by letting τ = (τ1, τ2, . . . , τnR
), where τ1 = 0,

to denote the (ordered) successive removal times observed during [0, T ]. In other

words, τi refers to the ith removal time. Denote by φ1 the initial infection time

and φ = (φ2, . . . , φnI
) the remain successive infection times during (φ1, T ). If

the initial infective does not manage to infect any other susceptible by the time

is removed (i.e. τ1) then the epidemic is ceased. Therefore, in order to obtain
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epidemics with nI ≥ 2 the following constraints are imposed:

φi−1 < φi < τi−2 for i = 3, . . . , nI . (2.3)

Because of the homogeneous mixing, the epidemic can be fully described by track-

ing the number of infected and removed individuals at each time point without

the need of knowing which individual got infected or removed.

If we consider the order of the successive events which occur during the epidemic

(infections or/and removals) and take into account the memoryless property of the

exponential distribution, we can easily derive the likelihood as follows:

f(τ ,φ|β, γ, φ1) ∝
nR∏

j=1

γYτ−j ·
nI∏

j=2

βXφ−j
Yφ−j · exp

{
−
∫ T

φ1

(βXtYt + γYt) dt

}
(2.4)

where the notation φ−
j denotes the left hand limit, so for example Yφ−j

denotes

the lim↑φj
(Ys), or in other words the time immediately prior to φj. Note that the

products
∏nR

j=1 γYτ−j and
∏nI

j=2 βXφ−j
Yφ−j depend on the infection times φ1, . . . , nI

due to the terms Xφj
− and Yφ−j . This form of the likelihood in (2.4) is also given

in Britton and O’Neill (2002), O’Neill and Becker (2001), O’Neill and Roberts

(1999).

2.1.6.2 A Setup Based on Martingales

Becker (1989), Rida (1991) and Andersson and Britton (2000) have used a setup

based on counting processes using the theory of martingales. Their approach is

based on constructing a suitable martingale from the epidemic process {(Xt, Yt) :

t ≥ 0} and use the powerful tools from martingale theory to draw inference for

the parameters of interest.

Suppose that a random process is followed continuously over time beginning at

time t = 0. Denote by Ht the history of the process up to time t. A martingale is
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a random process M = {Mt, t ≥ 0} such that for every t ≥ 0:

1. the value of Mt is determined by Ht;

2. E[|Mt|] <∞;

3. E[(M(u) | Ht] = Mt, for all u ≥ t.

The first and the second property of a martingale are always satisfied. The for-

mer because of the model specification and the latter because we deal with the

epidemics in finite populations and with finite infection rates (Becker, 1989). We

refer to the third one as the martingale property which requires that the expected

change, over time, in the value of a martingale is always unbiased. It is easy to see

that E[Mt | H0] = M0 for all t ≥ 0. When M0 ≡ 0 we have E[Mt] = 0 for every

t ≥ 0 and we refer to M as a zero mean martingale.

We are interested in martingales which arise from counting processes. A counting

process N = {Nt, t ≥ 0} is a random process which counts the occurrence of

certain events over time, Nt being the number of events occurring in the time

interval (0, t]. We set N0 = 0 and take N to be continuous on the right as its

jump point. Denote by dNt the number of events occurring in the time interval

(t+dt) and by Ht the history of N and other processes up to time t. In stochastic

epidemic models we are often concerned with those counting processes:

P[dNt = 1 | Ht] = At dt

P[dNt = 0 | Ht] = 1 − At dt

where At is the intensity process of N which is often a random process. Denote by

Nt = X0−Xt the number of individuals infected in [0, t) and Rt = N−Xt−Yt which

holds for any t. At this stage, we assume that the initial condition is known, i.e.

the total number of initially infected and susceptibles, X0 = x0, Y0 = y0, R0 = r0.
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Then, the intensity process of N is given by:

At = βt(y0 +Nt)(x0 −Nt).

Proposition 1 Define the process M , by Mt := Nt−
∫ t

0
Axdx. This is a zero-mean

martingale with respect to the history H.

Proof :

First note that M0 = 0. Let x be a value such that t < x < u, then

E[dNx | Ht] = E[E[dNx | Hx] | Ht]

= E[Axdx | Ht]

Divide by dx and letting dx→ 0 we get:

d

dx
E[Nx | Ht] = E[Ax|Ht]

If we integrate both sides with respect to x from t to u:

∫ u

t

d

dx
E[Nx | Ht]dx =

∫ u

t

E[Ax | Ht]dx

E[Nu|Ht] −Nt = E

[∫ u

t

Axdx|Ht

]

which gives the desire result

E[Mu | Ht] = Mt.

�

Becker (1989) and Rida (1991) express the infection rate as β = λ/N for some

λ > 0. In other words we could look at the proportion of susceptibles at time

t, X̃t = Xt/N . This allows us to interpret the infections occurring, as points
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of a homogeneous Poisson process with rate β. The transition probabilities with

respect to β can be written as follows:

P(dNt = 1, dRt = 0 | Ht) = β · X̃t · Yt dt+ o(dt)

P( dNt = 0, dRt = 1 | Ht) = γ · Yt dt+ o( dt)

P( dNt = 0, dRt = 0 | Ht) = 1 − β · X̃t · Yt dt− γ · Yt dt + o( dt)

Assume that a realization of the general epidemic is completely and continuously

observed up to its end. Then by using counting process theory (eg Andersen et al.,

1993) we obtain the log−likelihood, also given in Becker and Britton (1999, Section

2.1.2), as follows:

logL(β, γ) ∝
∫ T

0

(
log {βX̃uYu} dNu − βX̃uYu + log {γYu} dRu − γYu du

)
(2.5)

2.1.6.3 An Alternative Setup

Britton and O’Neill (2002) and Neal and Roberts (2005) have adopted a rather

different setup which we shall describe in this section. We label the individuals

who got infected during the epidemic as i = 1, . . . , nI and those we did not as

i = nI + 1, . . . ,N . We assign to each of them their infection (Ii) and removal (Ri)

time respectively, assuming that Ii = ∞, for i = nI +1, . . . ,N , for the individuals

who did not get infected during the epidemic. We label the initial infective k,

such that Ik < Ij for all j 6= k. We proceed with the following definition of the

infectious pressure that a susceptible individual gets from the current infectives:

Definition 1 A susceptible individual j when it becomes infected gets individual-

specific infectious pressure β from (an infected) individual i if and only if

Ii < Ij < Ri
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Therefore the total infectious pressure which is subjected to individual j when it

becomes infected is equal to Pj:

Pj =
∑

i∈Yj

β

where Yj = {i : Ii < Ij < Ri}

The likelihood can be broken into two independent parts: i) the infectious L1 and

the ii) removal L2 part.

Infectious part: Denote by S the total person-to-person infectious pressure dur-

ing the course of the epidemic:

S =

nI∑

i=1

N∑

j=1

β ((Ri ∧ Ij) − (Ij ∧ Ii))

= β

nI∑

i=1

N∑

j=1

((Ri ∧ Ij) − (Ij ∧ Ii))

= β · A

where A =
∑nI

i=1

∑N
j=1 (Ri ∧ Ij − Ii ∧ Ij). The infection component can be then

written:

L1 =

nI∏

i=1,i6=k

(
∑

j∈Yi

β

)
× exp {−S} (2.6)

Removal part: The infectious period for an individual, i say, is Ri − Ii. The

contribution to the likelihood is given by this exponential: γ exp {−γ(Ri − Ii)}.

So, if we consider every individual who got infected, we then get L2:

L2 =

nR∏

i=1

γ exp {−γ(Ri − Ii)} (2.7)

Combining (2.6) and (2.7) we get the likelihood of the data given the model pa-
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rameters:

f (I,R|β, γ) = L1 × L2

=

nI∏

i=1,i6=k

(
∑

j∈Yi

β

)
× exp {−βA}

× γnR exp

{
−

nR∑

i=1

γ(Ri − Ii)

}
(2.8)

It is easy to check that (2.4) and (2.8) are identical. This alternative setup was used

in Britton and O’Neill (2002) and Neal and Roberts (2005). The great advantage of

it, is that it allows us to write the integral
∫ T
Ik
XtYt dt as

∑nI

i=1

∑N
j=1(Ri∧Ij−Ij∧Ii).

From a practical point of view, in order to evaluate that integral, it needs to

be discretised by a transformation into a sum over the successive events of the

epidemic whilst such a discretisation is substituted by the double sum S using the

alternative setup.

Comparisons to the Bailey and Thomas’ setup

There exist many differences between the alternative and the Bailey and Thomas’

setup. We will refer to the latter as the ’original’ setup.

First, the main difference relies on the fact that within the alternative setup each

individual in the population are labeled and are also associated with them are the

corresponding infection and removal times. In other words, each pair (Ii, Ri) refers

to the infection and removal time of the individual labeled as i. On the other hand,

within the context of the original setup, the individuals are not labeled at all and

each pair (φi, τi) refers to the ith, in sequential order, infection and removal time

respectively.

Moreover, the alternative setup is necessary when modelling heterogeneously mix-

ing populations, while the original setup is only suitable for homogenously mixing

populations. Finally, the alternative setup allows us to implement non−centered

reparameterisations which are introduced in Sections 2.4 and 2.5.
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2.1.7 Likelihood−Based Inference for Complete Data

Having obtained the likelihood of the observed data given the model parameters,

considering three different model setups, we first show how the frequentist ap-

proach provides estimates for the infection and removal rate of the GSE as well

as with their corresponding standard errors. Then, we also adopt a Bayesian ap-

proach since it allows coherent incorporation of prior information which can be

either experts’ opinion or information on previous disease outbreaks. Inference

for the basic reproduction number, R0, is also presented in this section within the

classical and Bayesian framework. Note, that throughout this section we make the

unrealistic assumption that we fully observe the epidemic, i.e. the actual infection

and removal times of the individual as well as the order of these events.

2.1.7.1 The Classical Approach

Given a model setup, by differentiating the likelihood (either 2.4 or 2.5 or 2.8) it is

straightforward to derive maximum likelihood estimates (MLE) for the parameters

of interest, β and γ (see also Becker, 1989, Chapter 7.3)

β̂ =
nI − 1

∫ T
I1
XtYt dt

or β̂ =
nI − 1

∑nI

i=1

∑N
j=1(Ri ∧ Ij − Ij ∧ Ii)

(2.9)

γ̂ =
nR∫ T

I1
Yt dt

or γ̂ =
nR∑nR

i=1(Ri − Ii)
(2.10)

Rida (1991) derives asymptotic normality and consistency for the estimators given

in (2.9) and (2.10) as the size of the total population N tends to ∞. Note that

these estimators also correspond to the results from Andersson and Britton (2000,

Section 9.2). By differentiating the first derivative of the likelihood with respect

to β and γ, the corresponding standard errors turn out to be:
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σβ̂ =
β̂√
nI − 1

(2.11)

σγ̂ =
γ̂√
nR

. (2.12)

Having obtained estimates and standard errors of the MLE estimates we are also

able to obtain (approximate) confidence intervals by Normal approximation.

Estimating The Basic Reproduction Ratio [R0]

We have already seen how crucial the basic reproduction number R0 for an epi-

demic is (see Section 2.1.5.2) and therefore we are interested in providing inference

for it. Becker (1989) proposed a martingale method of moments to derive a formula

to estimate R0 where only final size data are available in the case of homogeneous

mixing, i.e. common infection rate β as in the SIR model:

R̂0 =
1

nR

N−nI+1∑

i=N−1

1

i
(2.13)

and the corresponding error turns out to be:

σ̂R0 =
1

nR

√√√√
(

N−nI+1∑

i=N−1

1

i2

)
− nR · R̂0

2
(2.14)

Nevertheless, Becker (1989) does not deal in much detail with the extreme case

that everybody gets infected during the epidemic, i.e. nI = N . However, Hoehle

(2003) proposed to insert a correction term due to infectivity wasted as nobody is

susceptible anymore.

It is interesting to see that the estimation of R0 relies only on final size data and

does not depend on the infection times. So even, if the infections are not observed

which usually the case then inference forR0 can be still drawn. Intuitively, (see also

the definition of R0 in Section 2.1.5), if there is a large outbreak, in the sense that
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a large proportion of the initially susceptible individuals contracted the disease,

then even with the absence of temporal data (i.e. infection/removal times), we

could guess that R0 should be quite large. On the other hand, if there is a minor

outbreak, then R0 will be quite small.

2.1.7.2 The Bayesian Approach

A Bayesian approach can be adopted to incorporate such available information

before seeing the data. We adopt the setup by Bailey and Thomas (1971) (see

Section 2.1.6.1) and assign (conjugate) Gamma prior distributions for β and γ

with the following probability density functions:

β ∼ Ga(λβ, νβ)

π(β) ∝ βλβ−1 exp {−λββ}

and

γ ∼ Ga(λγ, νγ)

π(γ) ∝ γλγ−1 exp {−λγγ}

We apply Bayes theorem by multiplying the priors and the likelihood and get the

posterior distribution of β and γ given the data (infection and removal times):

π(β, γ|I,R) ∝ βλβ+nI−2 exp

{
−β
(∫ T

φ1

XtYt dt+ νβ

)}

× γλγ+nR−1 exp

{
−γ
(∫ T

φ1

Yt dt + νγ

)}
(2.15)

The two parameters are a posteriori conditionally independent and therefore their

posterior distributions are given by:

π(β|I,R) ≡ Ga

(
λβ + nI − 1, νβ +

∫ T

φ1

XtYtdt

)
(2.16)
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π(γ|I,R) ≡ Ga

(
λγ + nR, νγ +

∫ T

φ1

Ytdt

)
(2.17)

Having obtained π(β|I,R) and π(γ|I,R) it is very straightforward to construct

credibility intervals or get point estimates such as medians and means. Identical

results will be obtained by adopting a different model setup such as those in

Sections 2.1.6.2 and 2.1.6.3.

Drawing Inference for The Basic Reproduction Ratio [R0]

The basic reproduction ratio R0 is defined as βN /γ. Therefore we could obtain its

posterior distribution by transformation. On the other hand, an easier approach,

is to draw samples from each of the posteriors (2.16) and (2.17) and by dividing

the two samples and then we get posterior samples of π(R0|I,R).

2.1.8 Inference for Partially Observed Epidemics

In general, inference problems for disease outbreak data are complicated and often

their statistical analysis requires the development of problem-specific methodology.

There are many reasons that make such an analysis awkward. First, there are often

various levels of inherent dependence that we should take into account. Naturally,

the more realistic the model is, the more complex becomes and its analysis gets

harder. For instance, if we assume an epidemiologically plausible distribution for

the infectious periods, such as Gamma or Weibull instead of the mathematically

convenient Exponential, an additional level of dependence is induced. Further-

more, although it is relatively easy to define a stochastic epidemic model, there is

often a very large number of ways that can result in the same outcome. The above

statements are in contrast with the usual independence assumption that underlies

many standard statistical methods.

One of the most difficult problems that needs to be overcome when analysing
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disease outbreak data, is the fact that such data are incomplete in many different

ways. In general, the epidemic process is rarely fully observed. From an inference

point of view, it would be desirable to observe the times at which an individual

gets infected (infection time), who infected them, as well as the times at which the

individual ended its infectious period (removal time). In practice, only the times

at which an individual is detected are observed and seldom the infection times are

known. Moreover, it is often the case, that neither the infection nor the removal

times are available and only the number of the individuals who contracted the

disease out of the total size of the initial susceptible population is known. Such

data, are usually routinely collected surveillance data.

This section reviews the existing methods of how the classical and the Bayesian

approach tackle the lack of detailed observed data to make statistical inference

about the infection and the removal rate of the GSE feasible.

2.1.8.1 The Classical Approach Based on Martingale Methods

We have already showed that in terms of a fully observed epidemic and using

counting process theory (e.g. Andersen et al., 1993), we can derive MLEs (see

Section 2.1.7). However, in this section we focus on estimating the infection (β

or λ) and the removal rate (γ) in the absence of the infection times. When the

epidemic is partially observed, then the likelihood cannot be written in closed form

(Becker and Britton, 1999). Bailey (1975, pg.118) provided methods of estimation

based on approximations of certain recursive formulae defining the likelihood or

rely on large population approximation.

On the other hand, tools from martingale theory can be used with the method of

moments to obtain estimates with explicit expression (Becker, 1979). By making

use of the optional sampling theorem, Becker (1979) provides an estimator for the

infection rate β:

β̂T =
N
∑NT

i=1 1/(N + 1 − i)
∫ T
0

I{X−
s > 0}Ys− ds

(2.18)
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where Xs and Ys denote the number of susceptibles and infectives at time s.

Rida (1991) provides an asymptotically equivalent estimator of (2.18). The nu-

merator can be approximated by −N log 1 −NT/N for large N . In addition, if at

least one susceptible remains at the end of the epidemic, i.e. XT > 0 then

∫ T

0

I{X−
s > 0}Ys− ds =

NT∑

i=1

VN(i) +

a∑

j=1

V−j

where VN(i) are the lengths of the infectious periods of the NT infected individuals

and the V−j are the infectious periods of the a initial infectives and get

β̃ =
−N · log

{
1 − NT

N

}
∑NT

i=1 VN(i) +
∑a

j=1 V−j
(2.19)

As Rida (1991) points out, when only the removal times are observed then neither

(2.18) nor (2.19) can be used and the inference for β (or λ) becomes very hard (if

not impossible). However, if we let

Ê(V ) =

∑NT

i=1 VN(i) +
∑a

j=1 V−j

N(T ) + a

be an estimate of the mean duration of the infectious period, then:

µ̂(τ) = λ̂(τ)Ê(V ) =
− log (1 −N(T )/N )

(N(T ) + a)/N (2.20)

An approximate variance of this estimator is given as follows:

var(µ̂(T )) ≈ N
N(T )(N −N(T ))

+
(µ̂(T ))2

N(T ) + a
(2.21)

Note that µ̂(T ) provides an estimate for the basic reproduction number R0 while

var(µ̂(T )) represents its approximate variance. Such an estimate is a similar but

an alternative to the one described in Section 2.1.7.1.

Although, estimation of R0 is important, inference for the infection or the re-
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moval rate is also of interest. Becker and Britton (1999) present the idea of back-

projection which is now widely used and known as data augmentation technique.

They observe that, if there is a way from the available data (removal process /

removal times) to construct the unobserved realization infection process, we can

then plug in the reconstructed process into the explicit expressions (2.9) and (2.10)

and get the maximum likelihood estimates.

We assume that infections occur according to a non-homogeneous Poisson process

with intensity λt at time t. Then

E(Nt) =

∫ t

0

λx dx = Λt.

Hence, if we consider that at first stage Nt can be approximated by its expectation,

E(Nt), then an estimate Λ̂t of Λt for all t, will allows us to (approximately) estimate

the unobserved process Nt. Then, Xt, Yt can be reconstructed by Xt = X0 − Λ̂t

and Yt = Y0 +Λ̂t−Rt. The removal process is independent of the infection process

and has intensity

µt =

∫ t

0

λt−u dFD(u) (2.22)

where D is the duration of the infectious period and FD is the corresponding

distribution function. In general, is assumed that {Rt} is an observed Poisson

process with intensity function µt and FD(u) is assumed to be known from past

studies. Becker and Britton (1999, Section 7.2) indicate that (2.22) is the basis

of the method of the back-projection and refer to the several approaches which

have been used to obtain an estimate of λt. Some of them are basically based

on assumptions of some of the quantities of interest to be known, as in Becker

and Hasofer (1997) where they reconstruct the infection process Yt assuming the

removal rate γ is given.

Concluding, the review paper by Becker and Britton (1999) also makes the point

that the proposal to reconstruct the infection process and the use of the “complete”

data to draw inference for the parameters, is in the spirit of data augmentation
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methods which are appropriate for missing data problems. The Bayesian analysis

and the recent advances of Markov chain Monte Carlo methodology offer a natural

framework to analyze data which fall in this context (eg Tanner and Wong, 1987)

without the need of making any kind of approximation or unrealistic assumptions.

2.1.8.2 The Bayesian Approach using MCMC methods

The first approaches on MCMC methods for stochastic epidemic models are in

O’Neill and Roberts (1999) and Gibson and Renshaw (1998). In this section we

fully describe how we can apply Bayesian inference and Markov Chain Monte

Carlo algorithms to draw inference for the parameters of interest. By the time

T when we observe the epidemic, either it might have ceased or it will be still

in progress. Therefore, if the epidemic is still in progress there might have been

infected individuals which we haven’t observed by that time T .

We adopt the setup by Bailey and Thomas (1971) (see Section 2.1.6.1) and there-

fore the infection times φ = (φ1, . . . , φnI
) are treated as unknown parameters

which need to be imputed. Then, a prior for the initial infection time needs to be

specified, as well as for the β and γ. Following O’Neill and Roberts (1999) we as-

sign (conjugate) Gamma priors with parameters (λβ, νβ) and (λγ, νγ) respectively.

Note that a-priori the model parameters (β and γ) are independent. Recall that

we set the first removal time τ1 = 0, and therefore first, for the initial infection

time −φ1 an Exponential prior with mean 1/δ is assumed and secondly φ2 < 0

otherwise the epidemic will cease.

π(β) ∼ Ga(λβ, νβ)

π(γ) ∼ Ga(λγ, νγ)

−φ1 ∼ Exp(δ)

By adopting the original setup described in Section 2.1.6.3 and multiplying the

likelihood in (2.4) and the priors we get the posterior distribution of the parameters
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and the missing data given the removal times:

π(β, γ,φ|τ ) ∝ π(β) · π(γ) · π(−φ1) · L(φ, τ |β, γ)

∝
nR∏

i=1

γYτ−i ·
nI∏

j=2

βXφ−j
Yφ−j · exp

{
−
∫ T

φ1

(βXtYt + γYt) dt

}

× βλβ−1 exp {−βνβ} × γλγ−1 exp {−γνγ} (2.23)

It is straightforward to derive the full conditional posterior distributions for each

of the model parameters and the initial infection time:

π(β|γ,φ, τ ) ≡ Ga

(
λβ + nI − 1, νβ +

∫ T

φ1

XtYtdt

)

π(γ|β,φ, τ ) ≡ Ga

(
λγ + nR, νγ +

∫ T

φ1

Ytdt

)

π(−φ1|β, γ,φ−1, τ ) ≡ Exp (βN + γ + δ)

π(φj|φ−j, β, γ, φ1, τ ) ∝
n∏

i=1

Yτ−j

m∏

j=2

Xφ−j
Yφ−j exp

{
−
∫ T

φ1

(βXtYt + γYt) dt

}

O’Neill and Roberts (1999) pointed out that sampling directly from π(φj|φ−j, τ , β, γ)

for j = 2, . . . , nI is problematical and therefore they proposed a Metropolis Hast-

ings step instead. In general, the following MCMC scheme can be applied.
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Metropolis within Gibbs Sampling Scheme

(Repeat the following steps)

1. Start the chain with initial values:β0, γ0,φ0;

2. Update β by using Gibbs Sampler and drawing from

π(β|γ,φ);

3. Update γ by using Gibbs Sampler and drawing from

π(γ|β,φ);

4. Update φ1 by using Gibbs sampler and drawing from

π(φ1|β, γ,φ−1);

5. Choose one of the three moves with equal probability:

• Move an infection time, or

• Remove an infection time, or

• Add a new infection time.

Steps 2,3 and 4 are standard Gibbs sampler updates while step 5 needs more

discussion. If we assume that the epidemic is still in progress then we can:

• Add a new infection time:

We propose to add a new infection time, say φs by proposing

from U(φ1, T ). Add this infection time to the set of infections

(φ) with probability:

{
π(φ, φs|φ1, β, γ)

π(φ|φ1, β, γ)

(T − φ1)

nI + 1
∧ 1

}

• Remove a infection time:

We choose uniformly an infection time φs from the current list



CHAPTER 2. EPIDEMICS 66

of infection times and remove it from the set of infections

(φ) with probability:

{
π(φ−s, |φ1, β, γ)

π(φ|φ1, β, γ)

nR
(T − φ1)

∧ 1

}

• Move an infection time:

We choose uniformly one of the existing infection times, φs

and we propose a replacement candidate, φ′
s sampled uniformly

on (φ1, T ) and is accepted with probability:

{
π(φ−s, φ

′
s|φ1, β, γ)

π(φ|φ1, β, γ)
∧ 1

}

Note that if the epidemic is known to be complete then the only move that is

allowed is the last one, since the number of the infections must be always nI . In

addition, the same proposal in order to update (move) an infection time has also

been in used in Britton and O’Neill (2002).

Applying the above MCMC algorithm, we are in a position to draw samples from

the marginal posterior distributions of the model parameters π(β|τ ) and π(γ|τ )

and obtain point estimates or/and credibility intervals. In the following section

we are considering extensions of the GSE model and Bayesian methods of drawing

inference the parameter of interest.

In an ideal world, we would have complete observation of a single epidemic or even

better, multiple replication of it. As we have already discussed, more often, the

available information is incomplete. The classical framework provides estimates

for the basic reproduction number R0 rather for the infection and the removal

rate. On the other hand, the idea of “back−projection (Becker and Britton, 1999)

also recently known as data−augmentation, fit more naturally within the Bayesian

framework without the need of any impractical assumptions.
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2.1.9 Discussion

So far we have described in detail the GSE model, the most well studied epidemic

model. Apart from discussing its properties, researchers have also concentrated

on its limitations and assumptions in order to derive more realistic models. The

characterisation as “general”, which was given to the GSE model, seems now

inappropriate since the model has, over the years, been generalized in many ways.

In this section we refer to some of the work which is related with extensions of the

GSE.

A significant amount of effort has been put for understanding the spread of child-

hood infections, especially measles. In a basic measles model, an extra state, the

latent period is usually included in the standard SIR to obtain the SEIR model.

The individuals in the latent state (i.e. exposed) are infected but not yet infectious

such that they can infect other susceptibles. Such a model seems more appropriate

than the SIR when the incubation period of an individual is very long.

A crucial assumption of the standard SIR model is the one which refers to a closed

population. However, it often becomes improper to assume such a population

when an epidemic lasts for long period and changes in the population occur. The

properties of the SIR model with demography have been studied much in the

literature (see for example, Bailey, 1975, Andersson and Britton, 2000). However,

results for such model are more difficult to obtain than in the SIS model (Isham,

2005).

The GSE model and other variations of the SIR theme have a simple and relatively

tractable mathematical structure. The assumption of an exponentially distributed

infectious period is not epidemiologically motivated, although it makes the statis-

tical and the probabilistic analysis simpler. For instance, assuming an Exponential

infectious period, using Markov process theory we can obtain deterministic and

diffusion approximations for the whole trajectory, which are valid for large popula-

tion sizes. Andersson and Britton (2000, Chapter 5) present such results which can
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be mainly found in Ethier and Kurtz (1986, Chapter 11). In principle, any distri-

bution for modelling the infectious period of an individual which can be described

by its Laplace transform can be used (Ball, 1986); see applications on diseases with

Gamma (O’Neill and Becker, 2001) and Weibull (Streftaris and Gibson, 2004) dis-

tributed infectious periods. More specifically, researchers have also discussed the

effect of a non−Exponential distribution on the persistence of measles (Keeling

and Grenfell, 1998, 2000, Lloyd, 2001)

Concluding, the main characteristic assumption of GSE refers to homogeneously

mixing models. We argue in the following section why such models are not always

appropriate and the need of extending to non−homogeneously mixing models is

essential.

2.2 Heterogeneously Mixing Stochastic Epidemic

Models (HMSE)

We have mostly concentrated so far on models for populations of homogeneously

mixing hosts. However, such an assumption is often not realistic for a variety of

applications. Therefore, it is crucial for applied purposes to incorporate sources of

heterogeneity, without dismissing the aim of building a parsimonious model. Often,

we distinguish intrinsic heterogeneity of the individuals, for example a variation in

the susceptibility due to genetics, from heterogeneity of mixing where the infection

rate between individuals depends on their distance in the sense that an infected

individual is more likely to infect those susceptibles who are close to it rather those

who are further away.

Isham (2005, Sec 4.2) describes the different sources of variation between hosts

which could be relevant to transmission of infection. For instance, the period from

infection with HIV to diagnosis of full AIDS is known to vary with the individual’s

age Billard et al. (1990). Therefore, in such cases it could be important to model
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the age structure population. A large number of models discussed in the literature

which allow heterogeneity between the hosts are disease specific and usually focus

on the complexities of a particular infection by adopting a framework similar to

the SIR model but with a much larger state space.

Apart from assigning individuals particular covariates such as age, another ap-

proach to heterogeneity is to divide the population into groups where it is assumed

that the individual mix homogeneously within in each group. Contacts between

groups are modelled by using a mixing matrix whose elements rij specify the prob-

ability that an individual in group i will have a potentially infectious contact where

the individuals at each different group are chosen at random. More complex struc-

ture of the mixing matrices have been considered, eg. Koopman et al. (1989). In

addition, cases demography in the model such that the group sizes change over

time have also been studied (see for example, Morris, 1991, 1996).

Many researchers are concerned with the epidemics in structured populations.

Longini and Koopman (1982) have studied models in which individuals live in

households and may be infected from an infective which either belongs to the

same or to a different household and it is assumed that the disease within the

household progresses independently of the dynamics of the community. There ex-

ists a comprehensive literature for models of this kind and we shall briefly mention

a few key references. Addy et al. (1991) extend the work by Ball (1986) and Brit-

ton and Becker (2000) use the model Longini and Koopman (1982) to estimate the

critical vaccination coverage required to prevent epidemics in a population which

is partitioned into households. MCMC methods have been applied to analyse tem-

poral and final size from households outbreaks, eg. O’Neill et al. (2000). Work

on vaccination has also be done, see for example Ball and Lyne (2002) and Becker

et al. (2003).

Epidemics with two levels of mixing have recently been introduced by Ball et al.

(1997). Such a model assumes two different kind of contacts; a local and a global.

Apart from describing the infection process of such a model, the authors also briefly
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consider statistical inference for their model discuss various vaccination strategies.

Classical inference using (pseudo)likelihood methods is available (Ball and Lyne,

2006). See also the recent work by Demiris and O’Neill (2005) on how to draw

Bayesian inference for such type of models.

It is easy to realize that in real life application the individuals interact with a

number of different environments and it is practically impossible to capture every

aspect of the population structure. Lately, researchers have been concerned with

modelling the population structure through a random network structure. Britton

and O’Neill (2002) use MCMC methods to conduct Bayesian inference for a model

where individuals have social contacts according to a Bernoulli random graph.

There has been an intrinsic interest to extend such simple models to more com-

plicated to social structures, and also other networks, such as internet networks

including the-so-called scale free networks; see a review by Albert and Barabási

(2002).

Another important assumption of the models which have been discussed so far

is that they are temporally homogeneous. Nevertheless, such an assumption for

endemic diseases or epidemics which last for long periods does not seem appropri-

ate and it might be necessary to allow for time−dependent contact rates (Becker,

1989). Moreover, Hayakawa et al. (2003) extend the basic GSE in two key direc-

tions. Apart from assuming a multi-type model they also assume that the number

of susceptibles is unobserved. Then, they derive statistical inference for both the

infection rate and the size of the population.

Summarizing, although all the models outlined in this section play a significant role

in the epidemic theory and modelling, we will not attempt to explore their prop-

erties in any more detail. This thesis will attempt to focus on drawing Bayesian

inference for a general heterogeneously mixing stochastic epidemic model using

MCMC methods. Such a model is described and analysed in the remaining sections

of this chapter. In this section, first, we shall describe the model and its assump-

tions. Then, we will show how to apply modern statistical methods (MCMC) by
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extending the current available methodology of the homogeneously mixing model

to draw inference for the model parameters, such as the infection and the removal

rate.

2.2.1 Model Construction

A natural approach is to extend to a non-homogeneously mixing by assuming that

individual i makes an infectious contact with a susceptible individual j at rate βij

and remains infectious for some time which is distributed according to a random

variable D. If D ∼ Exp(γ), then such a model is equivalent to an extended GSE

with individual-specific infection rates βij. For mathematical convenience, we will

assume that

βij = β0 · hij (2.24)

where hij is a deterministic function which not only can involve any individual-

specific characteristics, such as age and sex, but also a measure of the distance

between them. The distance is incorporated in order to allow the infection rates

to decrease as this distance between the individual increases. Throughout this

section, we will assume that the function hij is fully known. In the next chapter

we consider the case where hij is associated with some unknown parameters for

which we would interested in drawing inference for them.

2.2.2 Bayesian Inference

First we should note the difference between the HMSE and the GSE regarding the

data required. The latter requires data which refer not just to the removal time

(as Bailey and Thomas’ setup, see Section 2.1.6.1), but also to which actual indi-

vidual has been removed. Therefore, we adopt the alternative setup (see Section

2.1.6.3) where each individual is associated with their infection and removal time.

In addition, for simplicity in the calculations we assume a closed population and

that there is one initial infective, a = 1. First, we derive the likelihood which can
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be broken into two independent parts: i) the infectious (L1) and the ii) removal

part (L2).

Infectious part: Denote by S the total person-to-person infectious pressure dur-

ing the course of the epidemic:

S =

nI∑

i=1

N∑

j=1

βij ((Ri ∧ Ij) − (Ii ∧ Ij))

= β0

nI∑

i=1

N∑

j=1

hij ((Ri ∧ Ij) − (Ii ∧ Ij))

= β0 ·A

where A =
∑nI

i=1

∑N
j=1 hij ((Ri ∧ Ij) − (Ii ∧ Ij)). The infection component can be

then written:

L1 =

nI∏

i=1,i6=k

(
∑

j∈Yi

βji

)
× exp {−S} (2.25)

where Yi = {j : Ij < Ii < Rj}.

Removal part: The contribution to the likelihood of the infectious period of each

of the infected individuals depends on its chosen distribution. Suppose, that each

individual i remains infectious for some time Di = Ri − Ii. Let Q be an arbitrary

but specified non-negative distribution. Let gQ(·) denote the probability density

function of Q and let ω denote the parameters governing Q. For general infectious

period Q, the contribution to the likelihood is:

L2 =

nR∏

i=1

gQ(Ri − Ii;ω) (2.26)

Combining (2.25) and (2.26) we get the likelihood of the data given the model

parameters:

f (I,R|β0, γ) = L1 × L2
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= βnI
0

nI∏

i=1,i6=k

(
∑

j∈Yi

hji

)
× exp {−β0A} ×

nR∏

i=1

gQ(Ri − Ii;ω)

In particular, we can consider Q ∼ Exp(γ) , that is, gQ(x) = γ exp {−γx} and L2

is given below:

L2 = γnR exp

{
−

nR∑

i=1

γ(Ri − Ii)

}
.

Alternatively, we can considerQ ∼ Gamma(α, γ), that is, gQ(x) = γα

Γ(α)
xα−1 exp {−γx}

and L2 turns out to be:

L2 = γαnR exp

{
−γ

nR∑

i=1

(Ri − Ii)

}
nR∏

i=1

(Ri − Ii)
α−1

Γ(α)

For illustration purposes, we shall restrict our attention to the Gamma distribution

where the shape parameter α is assumed to be known and we are focusing on

drawing inference for the scale parameter, γ. Note, that for α = 1, Q ∼ Exp(γ).

We adopt a Bayesian approach and therefore we assign (independent) conjugate

priors for β0 and γ: π(β0) ∼ Ga(λβ, νβ), π(γ) ∼ Ga(λγ , νγ). The full posterior

distribution turns out to be:

π(β0, γ, I|R) ∝
nI∏

i=1,i6=k

(
∑

j∈Yi

hji

)
× β

λβ0
+nI−1−1

0 exp {−β0(A+ νβ0)}

× γαnR+λγ−1 × exp

{
−γ
(

nR∑

i=1

(Ri − Ii) + νγ

)}

×
nR∏

i=1

(Ri − Ii)
α−1 (2.27)

The full conditional distributions the model parameters are:

π(β0|γ, I,R) ≡ Ga (nI + λβ0 − 1, νβ0 + A) (2.28)

π(γ|β, I,R) ≡ Ga

(
αnR + λγ, νγ +

nR∑

i=1

(Ri − Ii)

)
(2.29)

If the infection times (I) are known, then inference for β0 and γ is (again) straight-
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forward without the need of MCMC since the parameters are conditionally inde-

pendent. In practice, we do not observe the infection times and we need to sample

from their conditional distribution as well.

2.2.3 MCMC implementation

The techniques discussed in Section 2.1.8.2 regarding the GSE model can be easily

adopted. This section presents the various MCMC algorithms which have been

proposed in the literature (O’Neill and Roberts, 1999, Neal and Roberts, 2005) for

stochastic epidemic models and we also suggest some further modifications to this

methodology.

First, we concentrate on the choice of the target distribution. A natural choice

is the π(β0, γ, I|R). Neal and Roberts (2005) suggested to integrate the infection

rate out from the full posterior distribution π(β0, γ, I|R) and construct an MCMC

algorithm on the joint distribution of (γ, I) given the observed data R:

π(γ, I|R) =

∫

β0

π(β0, γ, I|R) dβ0

π(γ, I|R) ∝
nI∏

i=1,i6=k

(
∑

j∈Yi

hji

)
× (νβ0 + A)−(λβ0

+nR−1)

× γnR+λγ−1 exp

{
−γ
(

nR∑

i=1

(Ri − Ii) + νγ

)}

×
nR∏

i=1

(Ri − Ii)
α−1 (2.30)

Other available options is to either integrate γ out

π(β0, I|R) =

∫

γ

π(β0, γ, I|R) dγ
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π(β0, I|R) ∝
nI∏

i=1,i6=k

(
∑

j∈Yi

dji

)
× β

λβ0
+nI−1−1

0 exp {−β0(A+ νβ0)}

×
(
νγ +

nR∑

i=1

(Ri − Ii)

)−(λγ+nR)

×
nR∏

i=1

(Ri − Ii)
α−1 (2.31)

or even both β0 and γ and then obtain the marginal distribution of the missing

data (I) given the observed (R):

π(I|R) ∝
nI∏

i=1,i6=k

(
∑

j∈Yi

dji

)
× (νβ0 + A)−(λβ0

+nI−1)

×
(
νγ +

nR∑

i=1

(Ri − Ii)

)−(λγ+nR)

×
nR∏

i=1

(Ri − Ii)
α−1 (2.32)

π(I|R) =

∫

β0

∫

γ

π(β0, γ, I|R) dβ0 dγ

If we construct an MCMC algorithm based on one of these target distributions,

then samples from the posterior distribution of the parameters which were inte-

grated out can be drawn from the resultant samples. For instance if we inte-

grate β0 out, then β0 values can be generated from the sample of (R, I, γ) since

π(β0|I, γ,R) ∼ Ga(nI + λβ0 − 1, νβ0 + A). Having chosen the target distribution,

a variety of algorithms can be implemented.

We first consider the standard MCMC algorithm for stochastic epidemic models.

This similar to the algorithm which was used to draw samples from the parameters

of the GSE model.
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Centered algorithm I: [C]

(Repeat the following steps)

1. Start the chain with initial values:β0
0 , γ

0, I0;

2. Update β0 by using Gibbs Sampler and drawing from

π(β0|γ, I,R);

3. Update γ by using Gibbs Sampler and drawing from

π(γ|β0, I,R);

4. Choose uniformly one (or more) infection times

Ij,j = 1, . . . , nI and update it (them) using

Metropolis Hastings algorithm;

Sampling directly the infection times is problematical and therefore a Metropolis

step is used instead. Step 4 refers to the available options of updating the infection

times. We can either choose at random to update one infection time having the

other fixed (random scan), or a random subset of the infection times (eg. say 10%),

or update each of the infection times individually (deterministic scan). Moreover,

we might also want to perform a block update. Our choice needs to be made on

the basis of computational time and the mixing properties of the Markov chain.

We discuss the properties in Section 2.6 by performing a simulation study.

Once the choice of the number of infection times to be updated is made, then

we need to decide how to implement the Metropolis step which consists of the

proposing a new infection time I ′j from a distribution, say q(·). Apart from a

standard random walk Metropolis algorithm (Neal and Roberts, 2004):

q(Ij, I
′
j) ≡ N(Ij, σ

2),

an independence sampler which makes use of the likelihood equations can also be
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applied:

q(Rj − Ij, Rj − I ′j) ≡ Gamma(α, γ).

We focus now, on the different target distributions which we are interested in draw-

ing samples from. Due to the conditional independence of the model parameters

the algorithm used for the target distribution having β0 integrated out ([C − β0])

is very similar to the [C] algorithm.

Centered algorithm II: [C − β0]

(Integrate β0 out)

(Repeat the following steps)

1. Start the chain with initial values:γ0, I0;

2. Update γ by using Gibbs Sampler and drawing from

π(γ|I,R);

3. Choose uniformly one (or more) infection times Ij,

j = 1, . . . , nI

and update it (them) using Metropolis Hastings algorithm;

[Get β0 values from the resultant sample of (I,R)]

On the other hand, if we integrate γ out then the independence sampler presented

proposed in [C] and [C − β0] algorithms, i.e q(Rj − Ij, Rj − I ′j) ≡ Gamma(α, γ),

becomes inappropriate. This is due to the fact that γ does not exist in the pa-

rameter space any longer and hence cannot be used within the proposal of the

infection times.

In order to take advantage of a proposal which makes use of the likelihood equations
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we could propose an infection time from a similar distribution,

Ri − I ′i ∼ Exp
(
γf
)

where γf can be a fixed value obtained from a pilot study. Alternatively, γf can

be the MLE of γ given the current value of the infection times, I ci , i = 1, . . . , nI at

each MCMC step:

γf =
αnR∑nR

i=1(Ri − Ici )

Note that unlike the former, the latter is not an independence sampler because the

proposed value I ′i depends on the current value Ici , indirectly, through γf . Note,

that extra care is required while evaluating the ratio of the proposal densities q(·)

in order to accept or reject I ′i.

Centered algorithm III: [C − γ]

(Integrate γ out)

(Repeat the following steps)

1. Start the chain with initial values:β0, I0;

2. Update β0 by using Gibbs Sampler and drawing from

π(β0|I,R);

3. Choose uniformly one (or more) infection times Ij,

j = 1, . . . , nI

and update it (them) using Metropolis Hastings algorithm;

[Get γ values from the resultant sample of (I,R)]

If integrate both the model parameters out, we update the infection times in a

similar way to the [C − γ] algorithm since the proposal in the [C] and [C − β0] is

also inappropriate for this algorithm.
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Centered algorithm IV: [C − β0 − γ]

(Integrate β0 and γ out)

1. Start the chain with initial values:I 0;

2. Choose uniformly one (or more) infection times Ij,

j = 1, . . . , nI

and update it (them) using Metropolis Hastings algorithm;

[Get β0 and γ values from the resultant sample of (I,R)]

We can summarize the available centered algorithms for the spatial stochastic

epidemic model as shown in Table 2.1.

Table 2.1: Nomenclature for the centered MCMC algorithms

Algorithm Nomenclature

Centered [C]
Centered with β0 integrated out [C − β0]

Centered with γ integrated out [C − γ]
(γf is assigned a fixed value)

Centered with β0 and γ integrated out [C − β0 − γ]
(γf is assigned a fixed value)

Centered with γ integrated out [C2 − γ]
(γf is assigned its MLE)

Centered with β0 and γ integrated out [C2 − β0 − γ]
(γf is assigned its MLE)
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2.3 On Centered Reparameterisations

2.3.1 Motivation

It has been already stated that the estimation of R0 does not rely on observing the

infection times (see Section 2.1.7.1). Taking into account that in practice infection

times are not observed and that missing data can cause problems of deriving

efficient MCMC algorithms (see Section 1.9.2), this section considers a centered

reparameterisation for stochastic epidemic models which makes use of ψ. We bring

to attention that we have a change in variables from (β0, γ, I,R) to (ψ, γ, I,R)

rather than reconstructing the model having model parameters ψ and γ.

The main difference between this and the standard parameterisation, is that the

two model parameters are not conditionally independent on the missing data.

The Jacobian is equal to 1/γ and the posterior distribution of the parameters (by

change of variable theorem) becomes:

π(ψ|γ, I,R) ∝
nI∏

i=1,i6=k

(
∑

j∈Yi

dji

)
× ψnI+λβ0

−1−1 exp {−ψ · γ(A+ νβ0)}

× γnI+αnR+λβ0
+λγ−1−1 exp

{
−γ
(

nR∑

i=1

(Ri − Ii) + νγ

)}

×
nI∏

i=1

(
1

Γ(α)
(Ri − Ii)

α−1

)
(2.33)

The full conditional distributions of ψ|γ, I,R and γ|ψ, I,R still remain of a stan-

dard form:

π(ψ|γ, I) ≡ Ga (nI + λβ0 − 1, γ(A+ νβ0) + νβ0) (2.34)
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π(γ|ψ, I) ≡ Ga

(
αnR + nI + λβ0 + λγ − 1, νγ +

nR∑

i=1

(Ri − Ii) + ψ(A+ νβ0)

)

(2.35)

Unlike ψ and γ, samples from the conditional distribution of the infection times

cannot be drawn such easily and therefore a Metropolis step should be applied in

a pretty much similar way like the other centered algorithms by proposing from

the Exponential distribution Ri− I ′i ∼ Ga(α, γ). We then can implement the [Cψ]

algorithm.

Centered Reparameterisation I: [Cψ]

(Repeat the following steps)

1. Start the chain with initial values:ψ0, γ0, I0;

2. Update ψ by using Gibbs Sampler and drawing from

π(ψ|γ, I,R);

3. Update γ by using Gibbs Sampler and drawing from

π(γ|ψ, I,R;

4. Choose uniformly one (or more) infection times Ij,j =

1, . . . , nI

and update it (them) using Metropolis Hastings algorithm;

2.3.2 Integrate ψ out

Because of the standard form of π(ψ|γ, I,R) we can integrate ψ out and obtain

the marginal distribution of γ and I given the observed removal times R. Unlike

the [C − β0] parameterisation, γ is not Gamma distributed any more. Therefore,

apart from using Metropolis to update the infection times, another Metropolis step
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is needed to draw samples from the full conditional posterior distribution of the γ.

A natural approach is to use a (multiplicative) random walk since it has always to

be strictly positive.

π(γ|I,R) ∝
nI∏

i=1,i6=k

(
∑

j∈Yi

dji

)
× (γ · (νβ0 + A))−(nI+λβ0

−1)

× γnI+αnR+λβ0
+λγ−1−1 exp

{
−γ
(

nR∑

i=1

(Ri − Ii) + νγ

)}

×
nI∏

i=1

(
1

Γ(α)
(Ri − Ii)

α−1

)
(2.36)

Nevertheless, there is also a choice of various independence samplers. First, we

could make use of conditional distribution of γ|r0, I,R and propose γ′ from:

q(γ, γ′) ≡ Ga

(
nI + αnR + λr0 + λγ − 1,

nR∑

i=1

(Ri − Ii) + νγ + r0 (A+ νr0)

)

(2.37)

Obviously, this proposal cannot be used explicitly because it involves ψ which

does not exist in the parameter space since it has been integrated out. However

a similar proposal could be used by assigning ψ in (2.37) a fixed value which may

be obtained via pilot studies.

In addition, we could also propose γ from:

q(γ, γ′) ≡ f(·).

One way to make this proposal efficient is to choose f(·) to be an approximation

to the posterior distribution of π(γ|I,R). This can be done by performing a pilot

study first, i.e. run the [C] algorithm for an adequate number of iterations and

approximate the obtained distribution via the method of moments (for instance

by matching the mean and the variance) with a distribution of a standard form.
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It is preferable to choose f(·) having heavy tails (for example, a t distribution)

to avoid regular problems of an independent sampler not visiting the tails of the

target distribution often.

Centered Reparameterisation II: [Cψ − ψ]

(Repeat the following steps)

1. Start the chain with initial values:γ0, I0;

2. Update γ by using Metropolis Hastings algorithm;

3. Choose uniformly one (or more) infection times

Ij,j = 1, . . . , nI and update it (them) using Metropolis

Hastings algorithm;

2.3.3 Integrate γ out

Instead of ψ, we could integrate γ out. We then get the following conditional

posterior density:

π(ψ|I,R) ∝
nI∏

i=1,i6=k

(
∑

j∈Yi

dji

)
× ψnI+λβ0

−1−1

×
(
νγ +

nR∑

i=1

(Ri − Ii) + ψ(A + νβ0)

)−(αnR+nI+λβ0
+λγ−1)

×
nI∏

i=1

(
1

Γ(α)
(Ri − Ii)

α−1

)
(2.38)

Once γ is integrated out, the independence sampler used in [Cψ] must be slightly

modified for the same reasons as in the [C − γ] and [C − β0 − γ] (see Section 2.2.3

for details). Moreover, ψ|I,R is not Gamma distributed any longer and therefore

a Metropolis step has to be applied. Apart from a (multiplicative) random walk,
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we could also use an independence sampler as we did to update γ in [Cψ−ψ]. We

could propose ψ′ from:

q(ψ, ψ′) ≡ Ga(nI + λψ − 1, γ · (A+ νψ))

where γ is substituted by a fixed value. We might also propose

q(ψ, ψ′) ≡ h(·)

where h(·) approximates π(ψ|R) via the method of moments.

Centered Reparameterisation III: [Cψ − γ]

(Repeat the following steps)

1. Start the chain with initial values:ψ0, I0;

2. Update ψ by using Metropolis Hastings algorithm;

3. Choose uniformly one (or more) infection times

Ij,j = 1, . . . , nI and update it (them) using Metropolis

Hastings algorithm;

Concluding, Table 2.2 represents the nomenclature for the algorithms which have

been considered in that section referring to some centered reparameterisations.

Note that unlike [C − β0 − γ], we are not able to integrate ψ and γ both at

the same time since they are not conditionally independent on the infection time.

Therefore an algorithm [Cψ−ψ−γ] is very difficult (if possible) to be implemented.
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Table 2.2: Nomenclature for the centered reparameterized MCMC algorithms

Algorithm Nomenclature

Centered (ψ, γ, I) [Cψ]
Centered with ψ integrated out [Cψ − ψ]
Centered with γ integrated out [Cψ − γ]

2.4 On Non−Centered Parameterisations

2.4.1 Introduction

In this section we first review the existing non−centered (NC) and partially non−centered

algorithms for stochastic epidemic models as introduced in Neal and Roberts

(2005). Such reparameterisations will allow us to break the strong correlation

between γ and I. Then then we show how we can apply the same algorithms for

the HMSE model (see Section 2.2).

2.4.2 Non−Centered Parameterisations

Neal and Roberts (2005) were the first to introduce a γ−non−centered parame-

terisation (γNCP) for stochastic epidemic models. Apart from introducing such

reparameterisations for the GSE, the authors also applied NCP for models which

extend the GSE, such as by assuming a Gamma or Weibull infectious period in-

stead of the Exponential.

The centered parameterisations described in Section 2.2.3 alternate between up-

dating the model parameters (β, γ) and the missing data (I). On the other hand,

the NC parameterisation update the model parameters and the missing data to-

gether. Let

Ui = γ · (Ri − Ii), for i = 1, . . . , nI .
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It is trivial to show that a priori Ui ∼ Gamma(α, 1) and given (Ui, Ri, γ) the

infection times can be easily derived because Ii = Ri − 1
γ
Ui.

Papaspiliopoulos (2003) implemented NC algorithms for a variety of different mod-

els that he looked by reconstructing the likelihood equations with respect to the

new parameters. This is not an easy task to do within the context of stochastic

epidemic models. On the other hand, another way to view the NCP is to see it

as a change of variables from (I, β0, γ,R) to (U , β0, γ,R) where we need to take

into account the Jacobian which is equal to 1/γnR. The posterior distribution

π(β0, γ,U |R) for the spatial stochastic model can be derived as follows:

π(β0, γ,U |R) ∝
nI∏

i=1,i6=k


∑

j∈Y U

i

dji


× β

λβ0
+nI−1−1

0 exp {−β0(AU + νβ0)}

× γλγ−1 exp {−γνγ}
nR∏

i=1

{
1

Γ(α)
Uα−1
i exp {−Ui}

}
(2.39)

where AU and Y U

i are functions of U = (U1, . . . , UnI
)T . Computationally, they

can be easily calculated as follows:

AU =

nI∑

i=1

N∑

j=1

hij
((
Ri ∧ IUj

)
−
(
IUi ∧ IUj

))

and

Y U
i :=

{
j : IUj < IUi < Rj

}

where IUi = Ri − 1
γ
Ui for any i, j = 1, . . . , nI .

The form of the posterior distribution as shown in (2.39) indicates that β0 and γ

are conditionally independent and therefore the infection parameter can be easily

integrated out to obtain the marginal distribution of γ and U :

π(γ,U |R) ∝
nI∏

i=1,i6=k


∑

j∈Y U

i

dji


× (AU + νβ0)

−(λβ0
+nI−1)

× γλγ−1 exp {−γνγ}
nR∏

i=1

{
1

Γ(α)
Uα−1
i exp {−Ui}

}
(2.40)
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Unlike, the centered algorithm [C − β0 − γ], within the NC reparameterisation

is not possible to integrate γ out since it appears in the functions AU and Y U

i .

Adopting the alternative setup as described in Section 2.1.6.3 we associate each

individual with their infection (Ii) and removal (Ri) time. This allow us to very

naturally introduce the NCP by the transformation Ui = γ(Ri− Ii), i = 1, . . . , nI .

If the original setup by Bailey and Thomas (1971) had been adopted it, the im-

plementation of the NCP would have been harder.

In principle, the following MCMC algorithm could have been implemented:

Non−Centered MCMC Algorithm

(Repeat the following steps)

1. Start the chain with initial values: β0
0, γ0,U 0;

2. Update β0 using Gibbs Sampler;

3. Update γ using a Metropolis step by proposing γ
′ ∼ q1(·);

4. Choose uniformly one (or more) of the Uj’s ,j = 2, . . . , nI

and update it (them) by proposing U
′

j ∼ Ga(α, 1)

(1 ≤ j ≤ nI).

However, such an algorithm is not very easily implemented. This is due to the

difficulty of not being able to easily derive the likelihood with respect to parameters

γ, β0 and U . Therefore we propose an alternative way of implementation which

makes use of the existing computer code used for the centered algorithms (see also,

p. 100 Papaspiliopoulos, 2003).
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Non−Centered MCMC Algorithm (Alternative Format): [NC]

(Repeat the following steps)

1. Start the chain with initial values: β0
0, γ0, I0;

2. Update β0 using Gibbs Sampler;

3. Choose uniformly one (or more) of the Ij’s, i = 1, . . . , nI

and update it (them) by proposing I 1
j from Rj−I ′j ∼ Ga(α, γ);

4. Set U c
i = γ0(Ri − I1

i );

5. Propose γ ′ ∼ h(·, ·);

6. Set I
′

i = Rj − 1
γ′
U c
j , for 1 ≤ i ≤ nI .

7. Accept γ ′ with probability

1 ∧ π(γ′|I ′

,R, β0)

π(γ|I1,R, β0)
· h(γ

′, γ)

h(γ, γ′)
;

The key difference between a centered and a non−centered approach is shown

clearly in Step 5.3 where by updating γ we update jointly (as a block) the missing

data at the same time. The same algorithm can be applied if we wish to integrate

β0 out and have as target distribution, the one obtained in equation (2.40).

Step 5.1 states the Metropolis Hastings algorithm for the update of γ. Neal and

Roberts (2005) suggest a random Walk Metropolis but we also consider and pro-

pose other proposals in Section 2.5.

2.4.3 Partially Non−Centered Parameterisations

Following the approach in Papaspiliopoulos et al. (2003), Neal and Roberts (2005)

introduced partially non−centered parameterisations (PNCP) for stochastic epi-
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demic models. We adopt this methodology for the HMSE.

The set of the infected individuals in the epidemic, is partitioned into two groups,

C and U . Let IC and IU denote the infection times of the individuals in groups C

and U respectively. For those individuals in the U , let

Ui = γ(Ri − Ii) (i ∈ U),

i.e. we propose a change in variable from (IC, IU , β0, γ,R) to (IC,UU , β0, γ,R).

If U = Ø, then we get the centered parameterisation. The Jacobian for the trans-

formation is γ−ω, where ω is the number of individuals in the set U . The posterior

distribution then becomes:

π(β0, γ, I
C,UU |R) ∝

nI∏

i=1,i6=k


∑

j∈Y U

i

dji


× β

λβ0
+nI−1−1

0 exp {−β0(AU + νβ0)}

× γλγ−1 exp {−γνγ}

× γαω exp

{
−γ
∑

i∈C

(Ri − Ii)

}
∏

i∈C

{
1

Γ(α)
(Ri − Ii)

α

}

×
∏

i∈U

{
1

Γ(α)
Uα−1
i exp {−Ui}

}
(2.41)

The infection rate β0 can be integrated out from (2.41) and get then the marginal

distribution of γ and the infection times (centered and non−centered, IC, IU re-

spectively).

π(γ, IC,UU |R) ∝
nI∏

i=1,i6=k


∑

j∈Y U

i

dji


× (AU + νβ0)

−(λβ0
+nI−1)

× γλγ−1 exp {−γνγ}

× γαω exp

{
−γ
∑

i∈C

(Ri − Ii)

}
∏

i∈C

{
1

Γ(α)
(Ri − Ii)

α

}

×
∏

i∈U

{
1

Γ(α)
Uα−1
i exp {−Ui}

}
(2.42)
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If for 1 ≤ i ≤ nI we let:

Zi =





1 with probability µi

0 with probability 1 − µi

(2.43)

Then set C = {i : Z1 = 1} and U = {i : Zi = 0}. Then, the following γPNC

algorithm could be adopted:

Partially Non−Centered MCMC Algorithm

(Repeat the following steps)

1. Start the chain with initial values: β0
0, γ0, IC0

,UU0
;

2. Update β0 using Gibbs Sampler;

3. Update Z and hence C and U ;

4. Update γ by proposing γ
′ ∼ h(·);

5. Draw j uniformly at random from 1, 2, . . . , nI.

If j ∈ C (j ∈ U) then update Ij (Uj) using a

Metropolis-Hastings step by proposing

Rj − I
′

j ∼ Ga(α, γ) (Uj ∼ Ga(α, 1)).

This algorithm cannot be very easily implemented for the similar reasons explained

in Section 2.4 and therefore we present an alternative and easier way of implement-

ing the PNC reparameterisation.
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Partially Non−Centered MCMC Algorithm (Altern. Format)

[PNC]

(Repeat the following steps)

1. Start the chain with initial values: β0
0, γ0,U 0;

2. Update β0 using Gibbs Sampler;

3. Choose uniformly one (or more) of the Ij’s, i = 1, . . . , nI

and update it (them) by proposing I 1
j from

Rj − I1
j ∼ Ga(α, γ);

4. Update Z and hence C and U;

5. Set Ui = γ(Ri − I1
i ) for i ∈ U;

6. Propose γ ′, say γ′ ∼ h(·, ·);

7. Set I ′i = Ri − 1
γ′
U c
i for i ∈ U and I ′i = I1

i for i ∈ C;

8. Accept γ ′ with probability

1 ∧ π(γ′|I ′,R, β0)

π(γ|I1,R, β0)
· h(γ

′, γ)

h(γ, γ′)
;

Following Papaspiliopoulos et al. (2003), we could apply an alternative form of

a γPNCP, by partially non−centering each infectious period. Neal and Roberts

(2005) argued that such an algorithm did not perform as well as the non−centered

algorithm outlined in Section 2.4.3 and therefore we decide not implement such a

PNCP.

The NC and PNC algorithms can be slightly modified to be appropriated when the

infection rate is integrated out and get [NC−β0] and [PNC−β0] respectively. The

alternative implementations of the NC and PNC algorithms can be relatively easy

applied by making use of the existing computer codes for the centered algorithms.
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In general the approach we used to construct a PNC algorithm can be summarized

as follows:

1. Get a sample from π(I|R) and π(γ|R) via a centered algorithm;

2. Transform the I’s to U’s and update γ using Metropolis Hastings

algorithm;

The nomenclature for the PNC algorithms described in this section are shown in

Table 2.3.

Table 2.3: Nomenclature for the PNC algorithms

Algorithm Nomenclature

δ% PNC (β0, γ, I
C, IU) [δ%PNC]

δ% PNC with β0 integrated out [δ%PNC − β0]]

2.5 On Efficient Partially Non−Centered Param-

eterisations

In this section we focus on deriving more efficient ways of implementing a non−centered

and a partially non−centered parameterisation as described in Section 2.4. With-

out loss of generality, we concentrate only on the partially non−centered algo-

rithms, since a 100% PNC is equivalent to a fully NC.

2.5.1 Draw samples of γ and I

As stated in Section 2.4, in general, the PNC algorithms can be summarized in two

steps. First, we get a sample from of (γ, I) via a centered parameterisation having
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as a target distribution π(γ, I|R) and then update γ using the non-centered repa-

rameterisation: Neal and Roberts (2005) have proposed to get posterior samples

from (γ, I) via the following approach:

Neal and Roberts Approach [NR]

1. Choose one (or more) infection times Ij, j = 1, . . . , nI

and update it (them) using Metropolis Hastings

by proposing from Rj − I ′j ∼ Exp(γ) and accept it

with probability:

1 ∧ π(I ′|γ,R)

π(I|γ,R)

q(I ′, I)

q(I, I ′)

2. Set Ui = γ(Ri − I ′i) for i = 1, . . . , nI;

3. Update γ using Random Walk Metropolis by proposing

γ′ ∼ N(γ, σγ) and accept it with probability:

1 ∧ π(γ′|U)

π(γ|U)
;

We propose another way of implementing the PNC algorithm:
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Our Approach

1. Obtain a sample of (I ′, γ′) via the centered algorithm

which has

the best performance;

2. Set Ui = γ′(Ri − I ′i) for i = 1, . . . , nI;

3. Update γ ′ using Metropolis algorithm by proposing

γ′′ ∼ h(γ, γ′) and accept it with probability:

1 ∧ π(γ′′|U)

π(γ′|U)

h(γ′′, γ′)
h(γ′, γ′′)

;

It easy to see that the main difference between our and Neal and Roberts (2005)

approach is the way that samples of (I, γ) are drawn. They draw them using the

conditional distribution of the infection times given the removal rates, π(I|γ,R)

(in a centered framework), which actually is equivalent to the [C − β0] algorithm.

However, the simulation study in Section 2.6 indicates the [C−β0] does not always

perform better than the other variations of the centered algorithm. Therefore,

the 1st Step represents the algorithm via which we can draw the most efficiently

samples of (I, γ) among the centered algorithms.

As it has been stated already, overall, the relative performance of the centered

algorithms shown in Table 2.1 mainly depends on how informative about the pa-

rameter γ, the infection times are. We should note that if we choose to obtain

a sample of (I, γ) via a centered algorithm where γ is integrated out, such as

the algorithms [C1 − γ], [C1 − β0 − γ], [C2 − γ], [C2 − β0 − γ] then in order to

preserve the invariance of the Markov chain we need a further modification, i.e.

update γ within the centered framework before applying the NCP. Suppose that

the [C1 − β0 − γ] algorithm is chosen for the Step 1:
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1i. Start with initial values I0;

1ii. Choose one (or more) infection times Ij, j = 1, . . . , nI and update

it (them)

using Metropolis Hastings by proposing from an appropriate distribution

and accept the new set of infection times I ′ with probability:

1 ∧ π(I ′|R)

π(I|R)

q(I ′, I)

q(I, I ′)

1iii. Update γ within the centered framework by drawing from its conditional

distribution:

π(γ′|I ′,R) ≡ Ga

(
αnR + λγ, νγ +

nR∑

i=1

(Ri − I
′

i)

)

Similar steps should be followed if a different target distribution is chosen which

does not involve γ in its parameter space, eg. the algorithm [C1 − γ].

2.5.2 Update the removal rate γ

An important part of the a NC implementation is how to update the removal rate

γ. Neal and Roberts (2005) proposed a random walk Metropolis to update γ. We

also propose to choose an independence sampler:

• Random Walk Metropolis:

h(γ, γ′) ≡ N(γ, σ2)

Obviously, since γ > 0 we could also use a multiplicative random walk

Metropolis.
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• ”Pseudo-Independence” Sampler I - Pseudo−Gibbs: We choose to up-

date γ as if it was centered and propose from its full conditional distribution:

h(γ, γ′) ≡ π(γ|Icur,R)

where Icur denotes the current infection times obtained via the centered

algorithm (Step 1).

• ”Pseudo-Independece” Sampler II - Normal Approximation: Having

samples from the infection times at each iteration (Icur), we can make use

of the maximum likelihood estimate and the corresponding standard error

(Equations 2.10 and 2.12 respectively) and derive a Normal approximation

to the distribution of γ̂:

h(γ, γ′) ≡ N
(
γ̂, ε · σ2

γ̂

)
.

where ε > 1.

• Independence Sampler - Adaptive Sampler: Another option is to make

use of the results obtained via the centered algorithms and propose γ from

a distribution which approximates π(γ|R). A natural approach is to use the

moment estimator method and approximate π(γ|R) with a Gamma distri-

bution. The choice of Gamma relies on its property of having heavy tails

(unlike Normal, for instance):

h(γ, γ′) ≡ Ga(a, b).

The question which arises if we choose the last option, i.e. the Adaptive Sampler

is how we will estimate a and b. We proposed to do it as follows:

1. Run any of the [C] algorithms for an adequate number of iterations;
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2. Get the posterior mean and variance from the obtained sample, say

µγ and σ2
γ ;

3. Calculate a and b from:

a =
µ2
γ

σ2
γ

, b =
µγ
σ2
γ

Since we are interested in obtaining an approximation of π(γ|R) the choice of the

centered algorithm in Step 1 does not significantly affect the performance of this

approach.

The main advantage of the NC parameterisations is that once we update γ, then

the infection times (I) are updated as well via the appropriate transformation.

Therefore, if high acceptance rates for γ could be obtained via a well chosen inde-

pendence sampler, then the infection times will be updated more often compared

to a standard random walk Metropolis. Nevertheless, we have to be very careful

with the independence samplers for reasons already explained in Section 2.3.3.

Another way of looking at the proposed approach for updating γ is to see it as a

trick of a joint block update of γ and the infection times (I). The more efficiently

we draw samples of (γ, I) from Steps 1i and 1ii, then the faster the convergence

of the MCMC algorithm will be. Concluding, any of the proposed samplers can

be tried and the choice should depend on their relative efficiency.
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Efficient Partially Non−Centered MCMC Algorithm [EPNC]

(Repeat the following steps)

1. Start the chain with initial values I 0;

2. Obtain a sample of (I1, γ1) via an appropriately

chosen centered algorithm;

3. Set Ui = γ1(Ri − I1
i ) for i ∈ U;

4. Update γ using Metropolis Hastings algorithm by

proposing from h(γ, γ ′) ;

Table 2.4 shows the nomenclature for the efficiently partially non−centered algo-

rithms which were introduced in this section.

Table 2.4: Nomenclature for the EPNC MCMC algorithms

Algorithm Nomenclature Update γ

δ% EPNC (β0, γ, I
C, IU) [δ% EPNC] IS

δ% EPNC with β0 integrated out [δ% EPNC − β0] IS
δ% EPNC with β0 and γ integrated out [δ% EPNC1 − β0 − γ] RWM
δ% EPNC with β0 and γ integrated out [δ% EPNC2 − β0 − γ] IS
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2.6 An Extensive Simulation Study

When we are concerned with implementing an MCMC algorithm in order to anal-

yse a real dataset, we have to make a range of various decisions to choose in

advance the algorithm which offers the best performance.

First of all, a decision has to be made which class of algorithms (centered or

non−centered) shall we focus on. Apart from this crucial initial choice, other deci-

sions have to be taken. This is due to existence of a variety of MCMC algorithms

(see for example, Table 2.1). Moreover, due to the availability of many variations

of each of these algorithms (see for instance, Section 2.6.2.1), a careful choice of the

most efficient algorithm should be made having taken into account the algorithm’s

performance in association with the cpu time needed.

Therefore, in this section we are interested in assessing the efficiency and drawing

conclusions about the performance of each of the algorithms shown in Tables, 2.1,

2.2, 2.3, 2.4. The comparison is done through a simulation study which is presented

in detail in this section. First, we describe how the data have been simulated (Sec-

tion 2.6.1). Then, we focus on how should the infection times be updated (Section

2.6.2.1) and also provide results for each of the centered algorithms presented in

Table 2.1. We give an explanation why the centered algorithms do not perform

very well especially when the size of the data set increases.

Furthermore, we will show that the centered reparameterisations do not improve

significantly the centered algorithms (and the variations), while on the other hand

most of the (partially) non−centered parameterisations offer significantly better-

mixing algorithms.

2.6.1 The Data

Throughout this section we consider 3 different simulated datasets. Each of them

consists of 501 individuals, N = 500 initially susceptibles and a = 1 initially
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infective, uniformly located in a square [0, 1]× [0, 1] (see Figure 2.2). The datasets

have been simulated from the following HMSE model (as defined in Section 2.2):

βij = β0 exp {−ρ(i, j)}

Ri − Ii ∼ Gamma(α, γ)

for i, j = 1, . . . ,N and let ρ(i, j) denote the Euclidean distance between individuals

i and j. It easy to see that for α = 1 and βij = β0, such a model is equivalent to the

GSE. Table 2.5 presents the true values of the model parameters for the different

datasets. Note that for all the simulated datasets, the (true) average infectious

period (α/γ) of an individual is equal to 2, while the variances (α/γ2) are equal to

8, 2, 0.8 for datasets D1, D2 and D3 respectively (see Figure 2.3 for the a graphical

visualization of the corresponding distributions). Note that the datasets consist

of fairly similar final epidemic sizes. For simplicity in the calculations we have

assumed that α is known and we are only interested in drawing inference for β0

and γ.
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Figure 2.2: The locations of the 501 susceptibles individuals. Red dots denote
the infected individuals of the dataset D1.

Table 2.5: Three simulated datasets with different infectious period

Simulated Dataset D1 D2 D3

True β0 0.0025 0.0025 0.0025
True α 0.5 2 5
True γ 0.25 1 2.5
nI = nR 284 275 286
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Figure 2.3: The distributions of the infectious periods for the simulated data sets
1 (black), 2 (red), 3 (green).

2.6.2 Centered Algorithms

In this section, we examine the performance of the centered algorithms and mod-

ifications of the latter. First, we focus on how the infection times can be updated

and then we present results for each of them

2.6.2.1 Updating the Infection Times

Each of the centered algorithms in Table 2.1 involves a step which refers to an

update of the infection times. Such a step can be simply performed by choosing

at random one infection time (out of the nI) and propose to update it by leaving

the others fixed (random scan). Instead, we can repeat this step many times

(deterministic scan) or we could also try to update them as block (block update).

Our decision should be mainly based on which approach provides a well-mixing
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Markov chain. Nevertheless, the cpu time needed for the implementation any

MCMC algorithm should also be considered before making any decision. In gen-

eral, the required cpu time will mainly depend on the dimension of the missing

data and the model parameters which makes any decision problem-specific. In this

working example, we tried various sampling schemes regarding the update of the

missing data: a random scan, a j% deterministic scan for j = 10, 50, 100 and a

block update.

Once we have chosen the sampling scheme for the infection times, another deci-

sion about their proposal distribution should be made. A simple random walk

Metropolis update for each of the infection times Ii, i = 1, . . . , nI will require a

careful tuning of many parameters which also in practice turns out to be very

hard especially when nI increases. On other the hand, such a problem of tuning

is overcome by adopting the independence sampler, as described in Section 2.2.3:

q(Rj − Ij, Rj − I ′j) ≡ Gamma(α, γ) j = 1, . . . , nI .

As it has been already mentioned (Section 2.2.3), when the algorithms [C−γ] and

[C − β0 − γ] are applied the above proposal cannot be used explicitly and needs a

further modification:

q(Rj − Ij, Rj − I ′j) ≡ Gamma(α, γf) j = 1, . . . , nI.

The proposed methods for sampling a new infection time as described in Section

2.2.3 were both used. First, a pilot study was ran to obtain a point estimate of

the mode of the posterior distribution of γ, say γmode. Then, we set γf = γmode

(Algorithms [C1 − γ] and [C1 − β0 − γ]).

Alternatively, we assigned to γf the MLE of γ using the current values of the

infection times, Ici , i = 1, . . . , n − 1 at each step of the algorithm. Note that the

latter proposal changes at every iteration whilst the former does not and also can
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be characterised as “pseudo”-independence sampler because the proposed infection

time depends, indirectly, to the current value (Algorithms [C2−γ] and [C2−β0−γ]).

2.6.3 Preliminary Findings

The results obtained for each of the presented algorithms in this chapter are ob-

tained by running each of them for 200, 000 iterations and excluding the first

10, 000 which are considered as burn in. Since similar results were obtained for the

parameters β0 and γ we restrict our attention to γ only and where necessary to

the average infection time (I), as a summary statistic of the missing data instead

of looking at any individual-specific infection time. Obviously, other measures of

location such as medians or means, can also be used.

O’Neill and Roberts (1999) and Neal and Roberts (2005) used random scan to

update the infection times. Nevertheless, they deal with relatively small popula-

tions (nI = 5 and nI = 82 infected individuals) and this does not cause any severe

mixing problems. Within our example, the total population N and the actual

population of infected individuals nI are much larger (see Table 2.5). Note that

in this case, by random scan, at each iteration we choose one infection time at

random and propose to update it whilst the rest (nI − 1) remain fixed.

Figure 2.4 shows clearly that the size of the epidemic does not allow us to use

random scan. Instead, if we choose at each iteration to update 10% of the missing

via deterministic scan update, then the mixing is improving and is getting even

better when we update half of them. Block updating of the infection performs

really poorly. Out of 200, 000 moves of the Markov chain, only 47 were accepted.

On the other hand, within a 100% deterministic scan scheme, on average the

acceptance probability of the independence sampler was over 90%. However, we

have to bring to attention that the more infection times we choose to update in

each iteration then the more cpu time the algorithm needs to run. In addition,

note that these results refer to only one of the simulated datasets (dataset 1).
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Nevertheless, qualitatively similar results were obtained regarding the comparison

of the different proportions of deterministic scan when the same algorithms were

applied to the datasets 2 and 3 and therefore the details are omitted. Taking into

account all these factors, we decide to choose a 10% deterministic scan update for

all the centered algorithms.

Following Neal and Roberts (2005) we only focus on the parameter γ since the

behavior of the parameters β0 and I is pretty similar. Furthermore, to measure

the efficiency of the different centered algorithms we compute the IAT (integrated

autocorrelation time, see Section 1.10) for each of the algorithms in Table 2.1 and

we also draw the corresponding ACFs.

Table 2.6 shows that when the variance of the infectious period decreases the

performance of the algorithms deteriorates. Such a result is consistent for all the

variations of the standard centered algorithm (looking at the Table horizontally).

In other words, regardless the centered algorithm which is used, when a more

informative infectious period is assumed (such as in dataset 3) the mixing of the

Markov chains is worse than the case of a less informative infectious period (such

as in dataset 1).

Apart from concentrating on the integrated autocorrelation time we also pay at-

tention to the behavior of the ACFs which are shown in Figure 2.5, 2.6 and 2.7.

These figures reveal that the more informative the infectious period is, the worse

the performance of centered algorithms becomes. The same argument holds for

all the variations of the standard (centered) algorithm.

The effect of integrating the model parameters (β0 and γ) out can be determined

by looking Table 2.6 vertically. Although, this marginalisation does not seem to

hugely increase the efficiency, especially in datasets 2 and 3, nevertheless, it can

be inferred that integrating both parameters out can provide, in some specific

circumstances, a better-mixing Markov chain. The effect seems more significant

in the case when the least informative infectious period is assumed, i.e. in the
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Figure 2.4: ACFs for the average infection time I using random scan (top left),
10%, 50% and 100% deterministic scan update (top right, bottom left and right,

respectively) applying the standard [C] algorithm to dataset 1.
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dataset 1.

Although the performance of each of the centered algorithms regarding the model

parameters depends on the distribution of the infectious period, on the other hand,

the parameter ψ = β0/γ mixes very well regardless the dataset and the algorithm

used. Note that this quantity, if α = 1 is proportional to the R0 (for the GSE)

which can be estimated without the need of observing the infection times (missing

data).

Concluding, it easy to see that although some variations of the centered algorithms

perform better than the standard ones, we cannot claim that any of these can

provide an adequately well-mixing Markov chain especially when the distribution

of the infectious is very informative and therefore the development of algorithms

with a faster rate of convergence is essential.

Table 2.6: Estimates of the integrated autocorrelation function of the parameter
γ using the 10% deterministic scan centered algorithms for datasets D1, D2, D3

D1 D2 D3

Algorithm

[C] 130.00 275.01 338.99
[C1 − β0] 123.75 274.95 337.57
[C1 − γ] 127.56 294.34 332.44
[C1 − β0 − γ] 119.99 283.12 328.82
[C2 − γ] 125.93 280.81 339.07
[C2 − β0 − γ] 124.67 268.08 333.96

2.6.3.1 Reasons for Poor Mixing

In this section, we give an explanation why the standard centered algorithms do

not provide us with good mixing Markov chains. Having obtained samples from the

posterior distributions of γ and I using the standard (10% deterministic scan) [C]

algorithm, we can draw a correlation plot between these two parameters of interest

for each of the three different datasets. Figure 2.9 firstly reveals that γ and I are
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Figure 2.5: ACFs of parameter γ, using the centered algorithms presented in
Table 2.1 for dataset D1.
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Figure 2.6: ACFs of parameter γ, using the centered algorithms presented in
Table 2.1 for dataset D2.
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Figure 2.7: ACFs of parameter γ, using the centered algorithms presented in
Table 2.1 for dataset D3.
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heavily correlated regardless the dataset used to obtain the posterior samples. It

also indicates that when the variance of the infectious period decreases (such as in

Dataset 3) the correlation increases. Such as a strong dependence between γ and

I can be explained by adopting a similar argument as in Neal and Roberts (2005):

Ri − Ii ∼ Ga(α, γ), for i = 1, . . . , nI
nI∑

i=1

(Ri − Ii) ∼ Ga(αnI , γ)

Thus for large nI or α, the parameter γ and the sum of the infectious periods

∑nI

i=1 (Ri − Ii) are a-priori heavily dependent. If these two were the parameters

of interest, then this a-priori correlation would have caused mixing problems in

the case of a two-state Gibbs sampler since it is well known that the convergence

of the algorithm is linked to the correlation between parameters, see Amit (1991)

and Roberts and Sahu (1997). However, things are more complicated in practice

since the MCMC schemes used so far involved a deterministic scan update of the

each of infection times Ii, i = 1, . . . , nI .

Things deteriorate if both α and nI are large. Intuitively, the more correlated the

two parameters are a-priori, then the more we expect them to get a-posteriori and

this leads to a poor mixing of the MCMC. It is clear that the strong correlation

between each of the model parameters (β0,γ) and the missing data (I) needs to

be broken in order to improve the mixing of currently used MCMC algorithms.
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Figure 2.9: Scatter plot between γ and I obtained from their posterior samples

using the [C] algorithm for each of the three different datasets.

2.6.4 Algorithms Based on Centered Reparameterisations

In this section we are interested in drawing samples from the posterior distributions

of the parameters of interest, such as β0 and γ via the centered reparameterisations

which have been discussed in Section 2.3. First, we apply the [Cψ] algorithm which

does not involve any additional computational cost compared to any of the centered

algorithms [C] (see Table 2.1). Then, we apply the algorithms where either ψ or γ

is integrated out from the full posterior distribution, i.e. the algorithms [Cψ − ψ]

and [Cψ − γ] respectively.

Regarding the infection times, we update them in the same way as we did in Section

2.6, i.e. a 10% deterministic scan in order to facilitate a fair comparison between

the centered−reparameterised and the standard algorithms. Furthermore, when γ
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(or ψ) is updated via Metropolis-Hastings as in the [Cψ−ψ] (or [Cψ−γ]) algorithm,

a multiplicative random walk Metropolis step was chosen. Appropriated tuning of

the variance of the random walks was chosen such that an approximately 20%−25%

was achieved for both of the parameters (see for example, Roberts et al., 1997).

When the γ is integrated out, we update the infection times in a similar manner

as we did when we used the [C2 − γ] algorithm (see Sections 2.6.2.1 2.6). Note

that by using any of the algorithms in Table 2.2 values for β0 are obtained from

the resultant sample of (ψ, γ), since β0 = ψγ.

Table 2.7 gives the integrated autocorrelation time (see Section 1.10) for the al-

gorithms presented in Table 2.2. The clear message from these results, is that in

most of the cases, centered reparameterisation does not significantly improve the

existing centered algorithms. Moreover, some of the algorithms under the cen-

tered reparameterisations (see Table 2.2) perform slightly worse than the standard

(see Table 2.1); for instance, [Cψ − ψ] algorithm. An explanation for its poor

performance is that by integrating ψ out, γ and I become more (conditionally)

dependent which results in poorly mixing Markov chains (see also Figure 2.4).

Nevertheless, under the assumption of an uninformative infectious period, such

the one assumed for the simulated dataset 1, [Cψ−ψ−γ] gives comparable results

to [C1 − β0 − γ] algorithm. Intuitively, the reason for not observing a significant

improvement by applying MCMC algorithms under centered reparameterisations

could be explained as follows. By transforming from (β0, γ, I) to (ψ, γ, I) we man-

age to break the conditional dependence between γ and β0 but not the dependence

between γ and I.
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Table 2.7: Estimates of the integrated autocorrelation function of γ using the
centered reparameterised algorithms for datasets D1, D2, D3

D1 D2 D3

Algorithm

[Cψ] 139.55 263.08 334.72
[Cψ − ψ] 148.43 288.72 334.43
[Cψ − γ] 119.58 266.55 342.61

2.6.5 Non-Centered Algorithms

We revisit the working example (see also Sections 2.6, 2.6.5) and we are inter-

ested in applying the various PNC which already have been proposed by Neal and

Roberts (2005) as well as the EPNC algorithms proposed in Section 2.5. In this sec-

tion we will compare the performance of the various centered and non−centered al-

gorithms using the simulated datasets shown in Table 2.5 and running the MCMC

algorithms for the same number of iterations as we did for the centered algo-

rithms (see also Section 2.6). Papaspiliopoulos et al. (2003, Sec. 4) showed that

a PNC algorithm in some specific cases can perform better than a fully NC al-

gorithm and therefore in our simulation study we consider different proportions

of non−centering, i.e. 10%, 30%, 50%, 70% and 90% to study the effect of the

amount of non−centering adopted in the different algorithms. The integrated au-

tocorrelation time is also computed and is used as a measure of assessing and

comparing the various approaches. We should note that although a wide range

of options were proposed to update the parameter γ, for simplicity, we decide to

update γ using the “Pseudo-Gibbs” approach.

Table 2.8 is very informative about the merits of the NCP in an epidemic context.

The results show that the more informative the infectious period is, i.e. α increases,

the optimal algorithm becomes increasingly non−centered. For α = 0.5, 2.0, 5.0 the

optimal non−centered algorithms have δ = 0.7, 0.9, 0.9. A similar conclusion was
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also drawn from the simulation study which was performed in Neal and Roberts

(2005, Sec 6.2). Although, they considered a homogeneously mixing population,

they showed that as α increases, δ increases too. Note that regardless of the

distribution of the infectious period an appropriate non−centered algorithm out

performs the standard centered algorithms.

In addition, Table 2.8 gives us the ability to compare the variations of the standard

PNC algorithms. There is some evidence that if the “best” centered algorithm is

chosen rather than always the [C−β0] to implement the second Step of the EPNC

algorithm, can provide at least a comparable or in some specific cases a better

mixing algorithm. This is the case, for instance, when the dataset 1 is used, and

the [EPNC1 − β0 − γ] out performs [C − β0]. On the other hand, this approach

does not seem to offer much improvement for infectious period assumed in datasets

2 and 3.

Furthermore, Table 2.8 allows us to determine the effect of choosing an alternative

way to update γ than by RWM as is done in the [PNC − β0]. Recall that the

comparison is done only for the “Pseudo-Gibbs” sampler. It turns out that when

less non−centering is chosen then such an independence sampler behaves better

than the RWM. This is not the case, when a high proportion of non−centering is

needed where the IS offers badly-mixing Markov chains similar to the ones obtained

via a centered algorithm.

Concluding, we should mention that Table 2.8 does not take into account the

computational time needed to implement a centered or a non-centered algorithm

with the latter being two times slower than the former. This is due to the fact,

that within the non−centered framework we need to update γ via a Metropolis

Hastings step and this requires computation of the quantities:

nI∏

i=1,i6=k


∑

j∈Y U

i

dji


 and

nI∑

i=1

N∑

j=1

dij(Ri ∧ Ij − Ij ∧ Ii)

which when they are computed from scratch are quite costly, especially when
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nI or/and N are large Nevertheless, even when the cpu is time is taken into

account, the PNC algorithms still offer a better mixing of the Markov chain than

the centered ones.

We should also mention that we decided to choose a 10% deterministic scan to draw

samples of (I, γ) via the centered algorithms. Unlike Neal and Roberts (2005) who

argued that repeating the Step 3 in the PNC algorithm (see Section 2.4.3) did not

improve the efficiency considerably, in contrast, when samples of (I, γ) were drawn

via a 100% deterministic scan the mixing was significantly better. Nevertheless,

there has been a considerable increase in the computational cost. That is, the

cpu time needed to run the 100% deterministic scan algorithm increases when the

final size of the epidemic becomes larger. Therefore, the choice of the percentage

of deterministic scan should be made based on the actual cpu time needed to run

the corresponding algorithm.
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Table 2.8: Estimates of the integrated autocorrelation time of the parameter γ
for the different PNC and EPNC algorithms

Algorithm Update γ 10%NC 30 %NC 50 %NC 70% NC 90% NC

Dataset 1

[C] − 130.00
[PNC] RWM 125.38 96.11 95.08 115.38 183.72
[PNC − β0] RWM 126.68 95.85 84.35 104.09 180.11
[EPNC] IS 103.71 99.05 114.42 170.05 234.04
[EPNC − β0] IS 109.21 95.40 108.83 191.55 238.79
[EPNC1 − β0 − γ] RWM 114.09 77.32 76.59 65.80 70.59
[EPNC2 − β0 − γ] IS 116.40 88.61 83.30 85.01 95.80

Dataset 2

[C] − 275.01
[PNC] RWM 271.58 229.41 174.39 123.82 58.81
[PNC − β0] RWM 272.79 241.94 192.79 108.12 56.38
[EPNC] IS 266.97 225.75 224.66 225.07 239.00
[EPNC − β0] IS 268.96 234.44 217.21 211.92 241.11
[EPNC1 − β0 − γ] RWM 279.36 234.60 170.72 102.11 62.74
[EPNC2 − β0 − γ] IS 267.47 244.95 211.61 198.43 195.40

Dataset 3

[C] − 338.99
[PNC] RWM 325.90 292.68 244.16 158.22 62.51
[PNC − β0] RWM 324.96 297.11 235.98 165.05 61.19
[EPNC] IS 321.14 304.04 278.84 274.74 279.67
[EPNC − β0] IS 323.29 299.01 285.95 264.03 273.92
[EPNC1 − β0 − γ] RWM 340.25 302.32 236.05 163.21 65.75
[EPNC2 − β0 − γ] IS 337.35 309.76 281.03 277.18 244.83
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Figure 2.10: Comparison of ACFs of γ between the centered and the optimal
PNC algorithm for the different datasets. Details on the nomenclature of the

algorithms are given in Tables 2.3 and 2.4
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2.6.6 Conclusions

The extensive simulation study presented in this section offers a useful guide on

the choice of MCMC algorithms for partially observed stochastic epidemics.

The main finding of this simulation study is that when the size of the dataset

increases and the variance of the infectious period decreases then the centered

algorithms perform badly and a non−centered algorithm should be considered

instead. Note that this is very important, since in many real applications such as

Foot and Mouth or Avian Influenza the size of the population is much larger than

the one in the simulated datasets.

Another finding of the study is that the algorithms based on centered parame-

terisations, do not offer much improvement. On the other hand, non−centered

algorithms offer significantly better mixing, especially when the dependence be-

tween the infection times and the model parameters is high. As we have shown,

this is often the case when the number of the individuals who ultimately contracted

the disease (nI) is relatively large. In addition we have observed that modifica-

tions and extensions of the currently available in the literature NC algorithms for

stochastic epidemics (Neal and Roberts, 2005), can lead to well mixing algorithms.

In practice, if we are interested in designing an MCMC algorithm to draw infer-

ence for a partially observed a stochastic epidemic model then we should take into

account the following. First, it is preferable to use a (repeated) single site update

(deterministic scan) rather than a block update for the infection times. Moreover,

it turns out that about 10% of them should be updated at each step of the algo-

rithm (see also Neal and Roberts (2006)) since performing a 100% deterministic

scan can be very computationally costly without gaining much more relative effi-

ciency. Also, the proposal which is taken from the likelihood equation of the model

should be used rather than a random walk Metropolis in order to avoid problems

of tuning.

The crucial choice refers to which NC algorithm out of those shown in Sections
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2.4 and 2.5 should someone choose. The results obtained in this section, suggest

that if the variance of the infectious period is small (i.e. unobserved data more

informative about the parameters) then δ (percentage of non−centering) should

be large. On other the hand, if the infectious period has large variability then δ

should be small. Having decided on the value of δ we can then choose the algorithm

which offers the best mixing. For instance, if δ needs to be large, then the [PNC]

should be preferred, while on the other hand if δ is small, then the [EPNC] should

be in favor. Concluding, we should note that any choice should be made with care

and the reader is also referred to Table 2.8 where the performance of each of the

algorithms is shown.
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2.7 Discussion

In this chapter we have focused on drawing inference for a stochastic epidemic

model which extends the GSE in two ways. Apart from assuming a more general

and epidemiologically motivated infectious period, the model presented in Section

2.2 allows for heterogeneity in the individuals by assuming an individual−specific

infection rate. In other words, unlike the GSE which considers a common infec-

tion rate β, we suppose that an infected individual i makes a contact with the

susceptible individual j with rate βij = β0 · hij. The deterministic function can

incorporate the various characteristics of the individual and also the structure of

the population; recall Section 2.2.1 for the formulation of βij.

We assumed that only the removal times are observed and the infection (I) times of

the individuals are unknown. We first presented the existing (centered) MCMC al-

gorithms which have been proposed in the literature for partially observed stochas-

tic epidemics. Although various modifications have been proposed, regarding the

target distribution for which the MCMC algorithm is designed and the proposal

distribution for the infection times, we show that the mixing of the centered algo-

rithms deteriorates when the of the individuals becomes more informative and as

the number of infected individuals increases. The simulation study which was per-

formed considering different infectious periods indicated a high correlation between

(γ) and the infection times (I) which increases as the variance of the infectious

period decreases.

The key property of the basic reproduction number R0 that can be estimated with-

out the need of observing the infection times, unlike the infection and the removal

rate, allowed us to introduce a centered reparameterisation which involves a quan-

tity proportional to R0. Nevertheless, although such reparameterisations manage

to break the marginal dependence between β0 and γ do not succeed in eliminating

the dependence between γ and I. Therefore, this explains intuitively why MCMC

algorithms under such centered reparameterisation do not significantly improve
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the standard centered algorithms.

Since the strong a posteriori correlation between γ and I which causes problem of

mixing has to be broken we applied the non−centered (NC) methodology (includ-

ing partially non−centered algorithms) for stochastic epidemics which has been

firstly introduced by Neal and Roberts (2005). Although this methodology has

been derived in terms of a homogeneously mixing population we showed that it

can be easily implemented for the HMSE as well.

A crucial difference between the GSE and the HMSE is that by construction the

observed data for the latter are more informative about the parameters than the

former. For example, suppose that an HMSE model associates the infection rate

with the distance among individuals. It is then likely, that an individual will

become infected from those who are in short distance. This is not the case in the

GSE, where any infective individual can infect any other susceptible with the same

probability, regardless its characteristics such as location etc.

The above explanation could lead to the argument that a NCP does not have much

to offer in comparison the CP. Nevertheless, it can be shown by simulation that

the need of a NCP is also essential in the case of heterogeneously mixing popula-

tion. Further improvements on these algorithms have been obtained by extending

the current methodology and deriving efficiently non−centered parameterisations

(ENCP). Such reparameterisations depending on the choice of the distribution of

the infectious period, lead to considerably more rapidly convergent Markov chains

than some of the NCP and in consequence better than the conventional centered

algorithms even when taking into account the computational time needed.

In general, partially non−centered algorithms become more useful as the final

size of the epidemic (nI) increases. The examples studied in this chapter are

concerned with relatively large initially susceptible population (N = 501) and a

large final size of the epidemic (nI). Thus, the ENC methodology presented here

is of great practical interest since most of epidemics that are of interest have final



CHAPTER 2. EPIDEMICS 124

size relatively large.

Finally, we should mention that although models such the GSE and the HMSE

are relatively simple, they are very challenging for standard MCMC methods.

On the other hand, even though the methodology presented in this chapter has

mainly focused on the HMSE, it can be very easily extended to models with more

complicated structure, such as incorporating latent periods (eg. SEIR) or models

involving other states (eg. notification). The main idea is to break the prior link

between missing data and the model parameters via non−centered parameterisa-

tion which will make them a priori independent. In conclusion, non−centering

has much to offer for inference problems in epidemics due to the nature of out-

break and the need of extensive data−augmentation schemes to derive inference

for realistic models.



Chapter 3

Bayesian Analysis of the 2001 UK

Foot-and-Mouth epidemic.

3.1 Introduction

Foot-and-Mouth disease (FMD) is considered one of the most important of all these

infections because it can spread rapidly between livestock species. In general, FMD

is rarely lethal to adult livestock, but causes blisters on the mouth and feet which

often leads to a significant drop in milk production in dairy cattle. It also causes

very slow weight gain in other livestock (Alexandersen et al., 2003). The economic

effects of infection within a country are dramatic; prevention of export of meat

and milk to other countries eliminates a vital source of revenue.

The main aim of any control policy is to achieve disease-free status as quickly as

possible by having the minimum impact on the livestock community. However,

minimizing the time and the disturbance are often in conflict (Keeling, 2005) and

determining which is the correct balance between the two is a critical decision that

must be taken.

This chapter is mainly concerned with performing a fully Bayesian analysis to

analyse the FMD outbreak which took place in the UK in 2001. First, we will

125
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briefly review the models which have been used during the outbreak. Then, we

will describe in a detail how an HMSE model (see Section 2.2), could capture

the disease’s dynamics. We will also show how the methodology presented in

Chapter 2 can be applied to efficiently draw Bayesian inference for the model’s

parameters. Finally, we compare our findings with the conclusions obtained from

other approaches on modelling the FMD outbreak and discuss limitations of our

study.

3.2 Previous Work on Modeling of the 2001 FMD

Prior to 2001 there were relatively few attempts to model the spatial spread of

FMD or any other livestock disease. Morris and coworkers developed a variety

of spatial simulation models (Sanson, 1993, Sanson et al., 1993, 1999). Naturally,

there was increasing interest in analyzing such models during the 2001 FMD out-

break. Three different models, among others, were used in order to predict the

disease’s dynamics, assess the existing control measures and provide information

to support the decision-making process. In this section we will review the general

ideas of these models and briefly mention their methodology and main findings.

Following Keeling (2005), we will refer to as the Imperial model (Ferguson et al.,

2001a,b), the Cambridge-Edinburgh model (Keeling et al., 2001, 2003), and Inter-

Spread (Morris et al., 2001). We will also review the most recent work by Diggle

(2006) and Deardon et al. (2006).

3.2.1 InterSpread

InterSpread (Sanson et al., 1999) is a computer program which is used to simulate

(stochastically) an epidemic in discrete time. It was founded upon the research by

R.S. Morris and coworkers in the early 1990s and particularly, in the Ph.D. thesis

of Sanson (1993). InterSpread was used by DEFRA during the FMD outbreak in
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2001, in order to predict the spread of the epidemic. Simulating an FMD epidemic

via InterSpread involves representing biological processes, including their inherent

variability, by sampling from statistical distributions. InterSpread initially uses

as input the spatial location of all farms and animal markets in conjunction with

other relevant data such as coordinates of any control zones. In addition, detailed

information on the the number of cattle, sheep, pigs, goats and deer in each farm

at the start of the epidemic is part of the initial input of the program. The

model simulation is initiated with either the index case in the outbreak or with

the sequence of specific farms already confirmed with the disease of a chosen date,

which represents the start of the simulation period. The model is then used to

predict the temporal and spatial spread of the infection of the disease by taking

into account the different factors which can influence the spread.

The transmission mechanism adopted by InterSpread is briefly explained as follows.

For each farm confirmed with FMD an estimated date of infection is determined

by subtracting a species-specific incubation period from the date on which clinical

signs where first detected. Each farm is assumed to be infectious on or just prior

to the date of appearance of clinical signs, depending on the species present.

3.2.1.1 The Model

The transmission rate of FMD from an infectious to a susceptible farm is modeled

stochastically, with the probability of infection depending on the distance between

the two farms, route of transmission and the number of the different species of

animals in each farm. An infectious farm makes contacts with susceptible farms

via one of the following four mechanisms:

• movement of animals as a result of sales to other farms or markets,

• local spread to nearby farms due to movements of personnel,

• long-distance windborne spread if meteorological conditions are conductive

to this pathway,
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• spread from dairy tanker movements.

A large number of risk factors are used by InterSpread. For instance, the pro-

portion of dairy farms with lactating dairy cattle, the maximum length of tanker

routes and the probability of farm being selected for particular tanker route, are

taken into account to model the probability of infection (see Tables 2 and 3 of

Morris et al., 2001). A farm remains infectious until control measures have been

completed and varies according to the stage of the disease process and the adop-

tion of control policies. A set of parameter values is then chosen (see Sanson, 1994,

and the references therein) to predict the spread of the disease.

3.2.1.2 Methods and Results

In February 2001, when the epidemic was first detected in the UK, the InterSpread

model was used by DEFRA to predict the spread of the infection (Morris et al.,

2001). One of its primary uses was to compare short-time model predictions with

the observed cases in order to target specific areas for discovering cases which need

further investigation.

Moreover, InterSpread was used to evaluate the various control strategies adopted

by DEFRA during the outbreak. In the first series of strategies, the effects of

varying the number of farms slaughtered around each farm diagnosed as infected

was assessed. In addition, in the second series of strategies, the effect of increasing

the time to slaughter of farms of unknown status (pre-emptive slaughtering) was

also assessed. Finally, the effect of vaccination alone as a control measure and

the effectiveness of a combination of vaccination and slaughter were both assessed.

Each of the specific strategies was simulated for 200 days commencing from April

10, 2001, and five iterations of each variant were produced. For each simulation,

the total number of farms which became infected, the mean date of eradication

and the proportion of iterations where eradication was achieved within 200 days

were recorded.
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Morris et al. (2001) reported that it is crucial to slaughter all susceptible animals

on affected farms as rapidly as possible (after diagnosis) and to slaughter animals

on high-risk farms before signs of the disease can appear. Furthermore, the authors

claim that if the goal is to eradicate the disease most rapidly and most effectively,

then the provision of additional recourses to allow intensification of the stamping-

out policy was clearly the best solution identified by their approach.

3.2.2 The Cambridge - Edinburgh Model

The Cambridge-Edinburgh (CE) approach is to describe the dynamics of the FMD

disease by developing a stochastic, explicitly spatial, “individual-based“ model

where individuals are represented as discrete points in time and space. The CE

model is a stochastic SEIR−type model (in discrete time) which is initialised with

the location of all the farms in the UK and their livestock as recorded at the

last census. The CE model requires the same input such as InterSpread, but

model’s transmission mechanism is much simpler. We shall describe in detail the

formulation of the CE model and then refer to the methodology used by Keeling

et al. (2001) to draw inference for the model’s parameters.

3.2.2.1 The Model

Each farm is classified as either susceptible, incubating (exposed), infectious or

slaughtered. Heterogeneity of the farm is incorporated by allowing the susceptibil-

ity and infectiousness of farms to vary with the type and the number of livestock.

Therefore, the probability of infection is associated with the number and species

of animals per farm as well as with the distance between infectious and susceptible

farms. Denote by P (j, t) the probability that a previously uninfected (susceptible)

farm j is infected within the time interval (t, t + 1]:

P (j, t) = 1 − exp

{
−
∑

i∈It

βij

}
(3.1)
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where It denotes the set of infectious farms at time t. Moreover, βij is defined as

follows:

βij = K(ρ(i, j)) × (εnci + nsi ) ×
(
ξncj + nsj

)
(3.2)

where nci and nsi denotes the number of cattle and sheep for farm i respectively

while ε (ξ) represents the relative infectiousness (susceptibility) of cattle to sheep.

The terms Ti = (εnci + nsi ) and Si = (ξnci + nsi ) are considered the farm’s infectivity

and susceptibility respectively. K(ρ(i, j)) is the transmission kernel which shows

how infectivity decreases with the distance ρ(i, j) of the two farms. While livestock

number and species contribute towards the rate of transmission, the latent and

the infectious periods were treated as fixed without any variability or differences

between farms. Each farm is considered to be exposed (incubation period) for 5

days and the period from infection to reporting is taken to be 9 days.

3.2.2.2 The Methodology

Keeling et al. (2001) used what they term as a hybrid mixture of maximum likeli-

hood estimation and repeated stochastic simulations of model. They consider the

transition from a susceptible state to an exposed state to be based on a time de-

pendent Poisson process. Therefore, given a record of infection events at discrete

time points t during the epidemic, the likelihood is simply a product over those

time points so that the likelihood can easily be obtained:

L(θ) =
∏

t






 ∏

i∈ Susceptibles at time t+1

(1 − Pi)




 ∏

i∈ New cases at time t+1

Pi





 .

The authors first estimated the model’s parameters via maximum likelihood meth-

ods. They claimed that these estimates did not offer an adequate fit and therefore,

they fitted a different model. They wanted to adjust for instance for the fact that

between June 2000 (census) and February 2001, when the epidemic began, there

was substantial movement of livestock, in particular the movement of sheep out
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of the upland areas of Cumbria and Wales into lowland regions. Their new model

takes into account that farm’s infectivity and susceptibility could vary for different

counties in the UK (such as Cumbria and Devon). In order to make inference for

the parameters of this new model they performed least-squares fit at the county

level to match both the temporal pattern of case reports as well as the regional

patterns of spatial cases. The maximum likelihood estimates of their first model

were used as initial guess for the adopted least-squares method.

3.2.2.3 Results

Apart from estimating parameters associated with farm’s infectivity and suscep-

tibility, culling and vaccination strategies have been examined with this model

(Keeling et al., 2001, 2003) in order to assess the approach adopted by DEFRA

of the culling of contiguous premises (CP). However, CP culling is very difficult

to be precisely modelled since only the location of the farm is recorded and in-

formation about their neighbours (boundaries) is not available (Keeling, 2005).

The Cambridge-Edinburgh model suggested that if a “well-targeted” large-scale

vaccination was applied early in the epidemic, it would have been beneficial. The

authors also argued that an earlier implementation of the control strategies and

earlier detection of the first cases could have led to a significant reduction of the

total number of infected farms.

3.2.3 The Imperial Model

The Imperial model is a deterministic SIR-type model (see Section 2.1.2.1) and

treats the farm as the individual unit in a similar way to InterSpread and the CE

model. Its initial version (Ferguson et al., 2001a) was formulated during the early

stages of the outbreak and therefore was very simplistic. As a crude approximation,

the differences between the farms (size, species etc) were ignored and the model

focused only on local and long-range transmission.
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Although the traditional, homogeneous−mixing, deterministic SIR model (see also

Section 2.1.2.1) ignores any spatial structure, the Imperial model attempts to ad-

just for the spatial effect by adopting the methodology presented in Keeling (1999)

for modelling the behaviour of individuals in a fixed network. The assumption

made by Ferguson et al. (2001a) is that the total infectious pressure that a sus-

ceptible farm j is subjected to can be separated in two sources; pressure from the

locally connected farms and pressure from the farms which are in long distance.

This formulation is along the lines to the work by Ball et al. (1997), where models

with two levels of mixing (local and global) are described. Before explaining in

detail the Imperial model, we briefly outline the framework used to adjust for a

local spatial spread.

3.2.3.1 The Network’s Structure

We assume that the contact structure forms a network of links between farms,

with all links being of equal strength. Such a network is often referred to as a

graph. A network involving N farms can be described by a matrix G ∈ {0, 1}N 2
,

where

Gij =





1 if i and j are connected

0 otherwise

As all links are bidirectional and self contact is not allowed, the following two

constraints upon the matrix as placed: G = GT and Gii = 0. The number of

connected pairs and triples in the graph can be calculated as follows:

Number of pairs := ||G|| = nN

Number of triples =
∣∣∣∣G2

∣∣∣∣− trace
(
G2
)

where ||G|| =
∑

ij Gij is the sum of all the elements in the matrix and n is therefore

the average of neighbours per node. The number of triples is calculated as the

number of nodes which are joined by two connections, given that the nodes are
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distinct. A triangle is three linked nodes with the same start and end point.

We define φ the ratio of triangles to triples and this is a simple measure of how

interconnected the local neighbourhoods are:

φ =
number of triangles

number of triples
=

trace (G3)

||G2|| − trace (G2)

When φ is large, the members of a connected pair is connected to many com-

mon nodes, whereas when φ is small there a few common nodes and long-range

connections dominate.

In order to consider the dynamics of farms, the following set of functions which

inform us about the state of each node are defined. Let

Ai =





1 the farm at node i is of type A

0 otherwise.

This allows us to define rigorously the number of single, pairs and triples of each

type:

singles of type A := [A] =
∑

i

Ai

pairs of type A-B := [AB] =
∑

ij

AiBjGij

triples of type A-B-C := [ABC] =
∑

ijk

AiBjCkGijGjk

This method of counting means that pairs are counted once in each direction so

that [AB] = [BA] and that [AA] is even.

For illustration, using these tools, Keeling (1999) considers the spread of a disease

through a network of nodes. In particular he describes the dynamics of the disease’s

spread within a deterministic SIR model framework (see 2.1.2.1). Within such a

framework, differential equations describe the behavior of A-B pairs instead of

the behavior of individuals. Therefore, we define τ , the transmission rate across
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a connection, to be β/n whereas we let (1/γ) to be the length of the infectious

period. Although there exist nine distinct types of pairs, due to symmetries and

the fact that the sum over all pairs remains constant, only the five differential

equations are necessary:

d[SS]

dt
= −2τ [SSI]

d[SI]

dt
= τ([SSI] − [ISI] − [SI]) − γ[SI]

d[SR]

dt
= −τ [RSI] + γ[SI]

d[II]

dt
= 2τ([ISI] + [SI]) − 2γ[II]

d[IR]

dt
= τ [RSI] + γ([II] − [IR])

(3.3)

Furthermore, Keeling (1999) provides estimators of R0 and the final size of the

epidemic within this context of a fixed network.

3.2.3.2 A Pair-Based Transmission Model

We shall now describe the initial model which was proposed by Ferguson et al.

(2001a). They authors first were interested in quantifying the effect of a long-range

infection compared to a “local” infection. Contact tracing for all FMD-affected

farms (provided by DEFRA) has produced data on the spatial scale of disease

transmission. The probability density function, f(ρ(i, j)), of the distance ρ(i, j),

from the source FMD-affected farm to the farm it infects was parameterised as

follows:

f(ρ(i, j)) = p · g(ρ(i, j))N + (1 − p) ·K(ρ(i, j)) (3.4)

with probability p that the infection arose uniformly over the area surrounding

the index case (represent mass action mixing) and with probability (1 − p) that

the infection arose from local spread in the proximity of the FMD-affected farm

characterised by a local kernel, K(ρ(i, j)). The radial density of farms with sheep,
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cattle and/or pigs distance ρ(i, j) from the average FMD-affected is denoted by

g(ρ(i, j)) and was determined by the data from the census (June 2000). The

following parametric model of the kernel was used:

K(ρ(i, j)) =
exp{−aρ(i, j)b}g(ρ(i, j))∫∞

0
exp{−aρ(i, j)b}g(ρ(i, j)) . (3.5)

Ferguson et al. (2001a) reported parameter estimates for a, b and p by fitting

f(ρ(i, j)) to the distribution of distances ρ(i, j) between identified infectious con-

tacts.

The authors then defined a model which combined a traditional mass-action term

(see Section 2.1.2) to describe initial long-range contacts, with a spatial correlation

(formulated as described in Section 3.2.3.1) to adjust for local transmission and

the structure of contact network between neighbouring farms. They stratified the

population of farms in a susceptible class, S, sequential infection classes Ii, i =

1, . . .M and the slaughtered class, R. Classes can be seen as types according to

the previously mentioned construction of the contact network. The authors, for

conciseness and clarity, presented only a simple model with two infected classes:

E (uninfectious) and I (infectious). Therefore, such a model can be seen as a

deterministic SEIR-type model. The dynamics of the disease can be represented

by the following set of differential equations:

d[S]

dt
= −(τ + µ+ ω)[SI] − p

β

N [S][I]

d[E]

dt
= p

β

N [S][I] + τ [SI] − ν[E] − µ[EI]

d[I]

dt
= ν[E] − σ[I] − µ[II]

d[SS]

dt
= −2(τ + µ+ ω)[SII] − 2p

β

N [SS][I]

d[SE]

dt
= τ([SSI] − [ISE]) − µ([SEI] + [ISE]) − ω[ISE] + p

β

N ([SS] − [SE])[I]

d[SI]

dt
= ν[SE] − (τ + µ+ ω)([ISI] + [SI]) − p

β

N [SI][I]

d[EE]

dt
= τ [ISE] − 2µ[EEI] − 2ν[EE] + 2p

β

N [SE][I]
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d[EI]

dt
= ν[EE] − µ([EI] + [IEI]) − (ν + σ)[EI] + p

β

N [SI][I]

d[II]

dt
= 2ν[EI] − 2σ[II] − 2µ([II] + [III])

The number of triples (for instance [EEI]) are approximated with the method

provided in Section 3 of Keeling (1999). τ = (1 − p)β
n

is the transmission rate

across a contact, where p is the proportion of contacts that they are long-range.

ν is the rate transition rate from the uninfectious to the infectious state while

σ is the transition rate from the the infectious to the removal state. µ is the

rate at which farms in the neighbourhood of an infected farm are culled and ω is

the rate at which farms are vaccinated in ring vaccination. It is also assumed that

vaccination has no effect on previously infected farms. The above set of differential

equations reveal that new infections occur with the following rate:

rate of new infections = (1 − p) · [SI] · β
n

+ p · [S][I] · βN (3.6)

3.2.3.3 A Spatially Explicit Per−Farm Hazard Model

Ferguson et al. (2001b) extended their earlier work (Ferguson et al., 2001a) to take

into account the heterogeneity between the farms. Apart from classifying farms

in terms of their status, they additionally structured the them by their livestock,

classifying each farm as either cattle, sheep, pig or small (fewer than 100 animals).

The analysis framework used what they term as a spatially explicit per−farm haz-

ard model in discrete time. It was formulated to allow simultaneous estimation of

the spatial transmission, infectiousness, susceptibility and time−varying transmis-

sion rates. Infectiousness is dependent on farm type, specified by the species mix

and number of animals per farm, susceptibility is dependent on both farm type

and farmland fragmentation.

Each of the farms is indexed by (k, l, i) with k and l respectively denoting farm-

type-dependent infectiousness and susceptibility classes and i indexing farms within
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the (k, l) class. The relative infectiousness of farms in infectious class k is denoted

by Tk. Similarly, the relative susceptibility of farms in a susceptible class l is

denoted by Sl.

The model in its general form allows the infectiousness of farm i within the class

(k, l), nkli(d), to vary with the number of days, d, since infection on the farm. Nev-

ertheless, in the work presented by the authors, they assumed that infectiousness

does not vary from the day after infection until the date on which the farm was

culled. The probability at which farm i of class (k, l) infects farm j of class (k
′

l
′

)

is given as follows:

βkli k′ l′j =
Tk · (Ij − Ii) · nk′ l′ i · Tρ(k′ l′j,kli)∑

k′′ l′′ i′′ Tk′′ · (Ij − I
′′

i ) · nk′′ l′′ i′′ · Tρ(k′ l′j,k′′ l′′ i′′)

where nkli(d) denotes the relative infectiousness of farm (k, l, i), d days after infec-

tion, Tk denotes the relative infectiousness of farms in class k. Let Ii denote the

infection time of farm i and Tρ(kli,k′ l′j) the relative infectiousness of an infected

farm (k, l, i) to a susceptible farm (k
′

, l
′

, j) distance ρ
(
kli, k

′

l
′

j
)

away. In addition,

the authors have also focused in deriving farm-specific estimates of the “effective

reproductive” number Rkli which is obtained by summing the proportions of in-

fections attributed to each farm weighted according to their susceptibility. The

estimate Rkli is then corrected for neighbourhood depletion and gives the farm-

specific R0.

3.2.3.4 Methodology

Ferguson et al. (2001a) reported estimates for the parameters which are associated

with the transmission kernel (a, b) and the probability of long-range infection (p) by

fitting f(ρ(i, j)) to the distribution of distances ρ(i, j) between identified infectious

contacts. The pair-based model was fitted to the 3 fully recorded incidence time

series (report, confirmation, and slaughter), assuming that the data are Poisson

distributed. The authors then derived estimates for the first date of infection, R0
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before and after the introduction of movement restrictions.

For the spatially explicit per−farm hazard model, the parameters such as farm’s

infectivity and farm’s susceptibility, are estimated iteratively by adjusting param-

eters such that the observed and predicted number of infections in each class

(infectious, susceptible) were equal. Furthermore, the effect of farm fragmenta-

tion is estimated by assuming that the susceptibility was linearly proportional to

fragmentation and fitting the slop parameter such that the average number of frag-

ments in the farms expected to be infected by IPs (over the course of the epidemic)

equalled the average number of fragments on that day.

On the basis of these parameter estimates the likelihood of the observed epidemic

was calculated based on the farm type, fragmentation and location of each farm in

the country. For each day, expected infection probabilities are obtained from the

estimated hazards scale to sum to the observed number of infections across the

country at that day. The authors used univariate likelihood profiles with respect

to each of the parameters of interest were used to calculate confidence bounds on

the parameters.

Finally, the authors indicate that a full likelihood approach is much more compu-

tationally intensive than the adopted iterative procedures since the former relies

on multidimensional optimization methods. Nevertheless, they claimed that their

adopted parameter estimation techniques very close to the maximum likelihood

estimates.

3.2.3.5 Results

The Imperial group focused on an extensive description of the times (also referred

to as “delays”) from infection-to-report and report-to-slaughter and especially how

these distributions varied over the epidemic. Moreover, they were interested in

estimating farm-specific R0 before and after the placement of the control policies.

They suggested that culling of infected premises and dangerous contacts from the
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start of the epidemic could have reduced the number of farms lost by 45%. The

same model was also used to investigate the use of the ring culling and vaccination.

They concluded that both can be used to control the epidemic with vaccination

requiring relatively larger rings (Ferguson et al., 2001a,b).

3.2.4 A Partial Likelihood Approach

Diggle (2006) is concerned with drawing formal statistical inference for the FMD

2001 outbreak. The author’s approach is to a specify a model for a spatio-temporal

point process through its conditional intensity at location x and at time t, given

the history of the process up to time t. It is assumed that the data consist of all

relevant events in a pre-specified spatial region A and time interval [0, Tobs]. Then,

a parametric model for the underlying point process is specified and the goal is to

make inference for the model parameters.

3.2.4.1 The Model

Diggle (2006) models the conditional transmission rate from an infected farm i to

a susceptible farm in a form similar to the CE model. Let nci and nsi denote the

numbers of cows and sheep held on farm i. Denote by Iij(t) an at-risk indicator

for transmission of infection from farm i to farm j at time t, if farm i is infected

and not slaughtered by time t, and farm j is not infected and not slaughtered by

time t. A central feature of the model is the transmission kernel which has the

following form:

K(ρ(i, j)) = exp {−(ρ(i, j)/φ)κ} + ρ

where exp {−(ρ(i, j)/φ)κ} in which the powered exponential term corresponds to

spread of the infection over short distances, whilst the parameter ρ allows for

long-distance infections, occurring far from all currently infectious farms. Let

βij(t) denote the conditional rate of transmission from farm i to farm j, given the

history Ht. The model has the following form:
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βij(t) = β0(t) · Ti · Sj ·K(ρ(i, j)) · Iij(t) (3.7)

where β0(t) is an arbitrary baseline hazard and

Ti = ε · nci + nsi and Sj = ξ · ncj + nsj.

The parameters ε and ξ represent the relative infectiousness and susceptibility,

respectively, of cows to sheep. The model is very similar to the model proposed

by Keeling et al. (2001) except from the kernel, K(ρ(i, j)). The forms of farm’s

infectivity and susceptibility are identical.

3.2.4.2 The Methodology

We shall briefly describe the methodology adopted by the author to draw inference

for the parameters of interest. Denote by Ht the complete history of the process

up to time t and let by β(x, t|Ht) the conditional intensity for an event at location

x and time t, given Ht. Therefore, for data which consist of the location of all the

events in the specified area and the time interval, (xi, ti) ∈ A×[0, To] : i = 1, . . . , n,

with t1 < t2 < . . . < tn, the log-likelihood function can be derived as follows (see

for example, Daley and Vere-Jones, 1988):

L(θ) =

n∑

i=1

log β(xi, ti|Ht) −
∫ To

0

∫

A

β(x, t|Ht) dx dt

where θ is the parameter associated with the intensity function. It is often the

case where the form of the conditional intensities may be intractable or/and the

integral term might be impractical. Diggle (2006) comments that although Monte

Carlo methods are widely available for such problems (see for example, Møller and

Waagepetersen, 2004), these methods often need careful tuning to each application,

and the cost of developing them turns out to be an obstacle to their routine use.

The author proposes as an alternative, a computationally simpler approach to
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make inference for models which are defined through their conditional intensity.

A partial likelihood is proposed which can be obtained by conditioning on the

locations xi and times ti and taking into account the resulting log−likelihood for

the observed time-ordering of the events, 1, . . . , n. We need to adjust for right-

censored event-times, we denote by Ri the risk-set at time ti. Then we let:

pi =
β(xi, ti|Hti)∑
j∈Ri

β(xj, ti|Hti)
(3.8)

Then, the partial log-likelihood is

Lp(θ) =
n∑

i=1

log pi. (3.9)

The partial likelihood defined by the above equations is a direct adaption to the

space-time of the seminal proposal in Cox (1972) for proportional hazards mod-

elling of survival data. As discussed in Cox (1975), estimates obtained by maximis-

ing the partial likelihood preserve the general asymptotic properties of maximum

likelihood estimators (MLE) although they might be less efficient that then full

MLEs. Moreover, Diggle (2006) indicates that although some parameters of the

original model may be unidentifiable from the partial likelihood, this is not a

problem if non-identified parameters are nuisance parameters.

When the conditional intensity function can be expressed as

β(x, t|Ht) = β0(t)g(x, t|Ht)

for some function β0(t), it follows that the partial likelihood provides no informa-

tion about β0(t). If g(·) is indexed by parameters θ, then the partial log-likelihood

is

Lp(θ) =
∑

i

log (g(xi, ti|Hti)) −
∑

i

log

{
∑

j>i

g(xj, ti|Hti)

}

Within the FMD model, for any farm i the relevant conditional intensity is β(xi, ti|Hti) =
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∑
j βji(ti) and the partial likelihood follows by substitution of these conditional

intensities into Equations (3.8) and 3.9). The partial likelihood is maximised by

using the Nelder-Mead simplex algorithm (Nelder and Mead, 1965).

3.2.4.3 Results

Diggle (2006) provides estimates for the parameters of interest ε, ξ, φ and ρ.

Qualitatively similar conclusions were obtained to those derived by Keeling et al.

(2001) in the sense that cattle are more infective and more susceptible than sheep.

The author also focused on possible extensions of the model by considering the fact

that the infectivity and susceptibility for each individual farm may be sub-linear

to number of animals.

3.2.5 An Individual-Level-Model’s Approach

Very recently, Deardon et al. (2006) have focused on drawing Bayesian inference

for individual-level models. The probability of a susceptible individual being in-

fected from the infectious pressure is modelled by considering potential factors of

infection (eg. distance). Models of this structure have already been proposed in

the literature (see for example Gibson, 1997, Keeling et al., 2001). Such an ap-

proach provides models which are very intuitive and flexible. In addition, they fit

very naturally to a Bayesian framework where the imputation of the missing data

is straightforward via MCMC methodology.

Nevertheless, such models are typically highly computationally costly to analyse,

especially when dealing with large data sets. That is due to the difficulty of

calculating the full likelihood. Deardon et al. (2006) are mainly concerned with

providing methods to minimise this computational cost. At this stage, we will first

describe their model and then briefly their methodology.
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3.2.5.1 The Model

The authors formulate an SEIR model in discrete time, which assumes that at

any given time t, an individual farm i can be in one of four states: i ∈ S implies

farm i is susceptible to FMD; i ∈ E implies farm i has been exposed to the disease

(i.e. has been infected), but is not yet infectious; i ∈ I implies farm i is infectious;

i ∈ R implies that farm i has been removed from the population, in this context

through the culling of animals. The time is measured in days and the following

assumptions are made: once exposed to FMD, the farm would remain in that

exposed state for 5 days, and then become infectious for 4 days. After this point,

it is assumed that symptoms would be visible and so the farm would be reported

and subsequently removed from the population through animal slaughter.

The probability of a susceptible farm j becoming infected during the time interval

[t, t+ 1) is given as follows:

P (j, t) = 1 − exp

{
−
∑

i∈It

βij

}
(3.10)

where It denotes the set of infectious farm at time t and βij is defined as follows:

βij = Sj × (K(ρ(i, j)) × Ti + ε · |E(t+ 1) \ E(t)|) (3.11)

where Ti and Si denotes the infectivity and susceptibility for farm i respectively.

They are defined as follows:

Ti = εc(n
c
i)
ζ1 + εs(n

s
i )
ζ2

Si = ξc(n
c
i)
ζ3 + ξs(n

s
i )
ζ4

The vector (ξs, ξc) denotes the susceptibility vector where ξs and ξc describe the

rate of increase in susceptibility of a susceptible farm per additional sheep and

cow respectively. Similarly, the transmissibility vector, (εs, εc), where εs and εc
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are parameters describing the rate of increase in infectious pressure per additional

sheep and cow, respectively, that an infectious farm exerts on the susceptible

population. Following similar notation to the previous approaches, nci and nsi

denote the number of cattle and sheep in farm i respectively. The set of parameters

ζ = (ζ1, ζ2, ζ3, ζ4) allows us to assume that the effect of the number of animals of

different species to the infection probability could be non-linear.

K(ρ(i, j)) denotes a distance−based kernel where ρ(i, j) denotes the distance be-

tween farms i and j. The authors prefer to use a geometric kernel rather than

an exponential, which could have also been used. They argue that the former has

more mass in the tails and allows for the possibility of longer infections. They

also mention that after experimentation with the FMD data, the geometric kernel

failed to adequately describe short range transmissions as the geometric shape was

largely determined by its tail which describes the longer-range transmissions. On

the other hand, they believe that over shorter distances, different disease trans-

mission dynamics come in to play. Therefore, they suggest a threshold distance δ0,

to be determined, within which we assume a constant disease transmission rate,

k0. Thus, they introduced the following kernel

K(i, j) =





k0, 0 ≤ ρ(i, j) ≤ δ0

ρ(i, j)b, δ0 < ρ(i, j) ≤ δmax

0, otherwise

with parameters k0, δ0, b. The parameter δmax is fixed a priori and set to 30km. It

is mentioned that changing δmax has an effect on the results; however, increasing

δmax above 30km produces relatively little change in the other results.

The model also allows for spontaneous infection which is unexplained by the sus-

ceptibility, transmissibility and kernel components of the model. Such infections

are considered as sparks infections and in such an example it allows for infection

beyond the δmax limit (e.g. long distance movement of vehicles or people for ex-

ample). The authors suppose that the risk of a spark infection on farm i at time t
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is affected by the farm’s susceptibility and by the number of newly exposed farms

during the interval [t, t+ 1), denoted by |E(t+ 1) \ E(t)|.

It is easy to see that the model as shown in (3.11) is an extended version of the

models shown in (3.2) and (3.7). The CE model does not explicitly model the

distance kernel and only assumes a linear effect of the number of animals to the

infection rate. Diggle’s model considers a parametric form of the distance kernel

and also allows for a non-linear effect of the covariates, which is common for sheep

and cattle. On the other hand, the model presented in Deardon et al. (2006) has

much more flexibility regarding the distance kernel and the effect of the covariates.

3.2.5.2 The Methodology

We briefly review the methodology adopted by the authors. Inference for the

parameters is drawn within a Bayesian framework. The likelihood is given below:

f(S,E, I, R|parameters) =
∏

t






 ∏

i∈E(t+1)\E(t)

P (i, t)




 ∏

i∈S(t+1)

(1 − P (i, t))







(3.12)

It has already been mentioned that such models are highly costly computational

due to the products which appear in (3.12). For instance, for any t, the S(t)

consists of around 150, 000 elements and the calculation of the (3.12) at every

MCMC iteration becomes demanding.

Deardon et al. (2006) provide methodology to avoid recalculating (3.12) at each

iteration. This is achieved by linearising the model through a Taylor series expan-

sion. Then, the time-consuming summations in the likelihood can be partitioned

into two groups: those which are computationally expensive but need to be calcu-

lated only once; and those which are much quicker to compute but change with the

parameter values and therefore need to be recalculated throughout the simulation.

Finally, this approach also assumes that the infection status of those farms culled

without knowing whether they have been infected or not is unknown and hence,
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the time of infection of these farms must be imputed. Note that for the infected

premises, their infection times are assumed to be known.

3.2.5.3 Results

Deardon et al. (2006) provided estimates regarding farm’s infectivity and suscep-

tibility as well as the transmission kernels. Their findings are similar to the results

obtained by the other approaches. In addition, the authors argued that the trac-

ing data kernel (provided by DEFRA) overestimates the risk of short-distance

infection and underestimate that of long-distance infections. Furthermore, they

also indicated that the linear assumption made in Keeling et al. (2001) was ques-

tionable in terms of transmissibility, whereas a linear approximation looks more

reasonable in the case of susceptibility. Finally, regarding the assessment of the

adopted control policies by DEFRA, Deardon et al. (2006) suggest that perhaps

CP culling was not carried out in the most efficient manner.

3.2.6 Preliminary Conclusions

In this section we described the models and the corresponding methodology adopted

by five different approaches (Morris et al., 2001, Keeling et al., 2001, Ferguson

et al., 2001a,b, Diggle, 2006, Deardon et al., 2006) to infer about the dynamics of

the 2001 UK FMD outbreak. Diggle (2006) and Deardon et al. (2006) perform

statistical inference based solely on the likelihood. On the other hand, Ferguson

et al. (2001a,b) and Keeling et al. (2001) use methods which make use of the like-

lihood of the observed data given the parameters in conjunction with stochastic

simulation. That is, given a set of parameter values the model is simulated forward

to predict the most likely spread of the epidemic.

Concluding, InterSpread is a very flexible and powerful modelling tool. It is not

used to draw inference for the parameters but to simulate a variety of models,

from very simple to very complex ones given some specific assumptions. The large
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number of transmission roots allow us to construct models which reflect the real

epidemic process. On the other hand, the more parameters we insert, the more

informative and detailed the available data should be. In addition, Keeling (2005)

reports that InterSpread is much more computationally costly to simulate than the

other two models which were used during the outbreak (Imperial and Cambridge

- Edinburgh). Extra details used in InterSpread should be weighted against diffi-

culties in parameterisation with expert opinion being required to estimate many

quantities of interest.

The stochastic simulations of the CE are much computationally cheaper than Inter-

Spread due to simpler transmission mechanism of the former. However, robustness

of the obtained results should be investigated since changes in the parameter es-

timates could have potentially led to very different conclusions regarding control

policies. In addition, parameter’s uncertainty is performed via sensitivity analysis,

nevertheless it questionable whether the parameters of the model satisfy orthogo-

nality.

Although the initial model by (Ferguson et al., 2001a) was able to capture the

temporal dynamics of the 2001 FMD, the model suffers from being deterministic.

Therefore, questions which have strong stochastic element such as the duration of

the epidemic cannot be accurately answered. Furthermore, since the model always

predicts an average epidemic, extreme situations such as when a significant number

of infections occurs, or other unlikely scenarios are not really encountered. Apart

from not being stochastic, the other main feature of the Imperial model is that

does not explicitly model the spatial spread of the disease. The latter is only taken

into account, by externally defining the number of the local connections of each

farms. The way these farm-specific local connections are defined can potentially

have an effect on the parameters and lead to different estimates.

The model proposed by Diggle (2006) is very similar to the CE model, nevertheless

the difference in the two approaches relies on the methodology used to infer the

parameters. Although the implementation of maximum partial likelihood method
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is relatively straightforward, the obtained estimators might be less efficient than

their likelihood counterparts. Such methods are well-suited to routine use, pro-

vided that the parameters of interest remain identifiable.

Deardon et al. (2006) are the first to adopt a fully Bayesian approach to model

the 2001 FMD outbreak. In order to capture the dynamics of the disease, they

propose a very detailed and flexible model in discrete time. They also incorporate

within the Bayesian framework the unknown status of the culled farms which

have been identified by DEFRA as dangerous contacts. Nevertheless, they treat

the farm’s latent and infectious periods fixed. Concluding, the authors focus on

deriving methods to reduce the computational cost of such an approach and make

it feasible for large data sets, such as the 2001 UK epidemic.

Despite the big differences of the methodology of the approaches by Morris et al.

(2001), Keeling et al. (2001), Ferguson et al. (2001a,b), similar predictions were

made regarding the type of controls which were needed to prevent the epidemic

from spreading. Nevertheless, prediction of epidemic risks on the basis of plug-in

parameter estimates is likely to be highly inaccurate no matter how well-informed

these estimates are. Moreover, no level of sensitivity analysis can compensate

for a rigorous statistical analysis. A sensitivity analysis will mainly be based

on considering orthogonality between the parameters and in stochastic epidemic

models such an assumption is often implausible.

3.3 A Fully Stochastic Epidemic Model

Our goal is to adopt a fully likelihood-based approach because this will allow all

relevant information from the data to be extracted. In addition, it is important

to account for stochasticity in the evolution of the epidemic in time and secondly,

the risk analysis needs to take into account risk due to parameter uncertainty.

In this section, we propose to use a heterogeneously mixing stochastic epidemic
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model (see Section 2.2) to capture the dynamics of the FMD disease in the UK.

Adopting a fully Bayesian approach, a natural framework is offered to incorpo-

rate the unobserved infectious periods whereas all the other approaches discussed

so far assumed fixed (and known) infectious periods. In addition an alternative

transmission kernel is used in order to capture long-range infections without the

need of extra parameters.

Our main goal is to draw inference for the parameters associated with farm’s

infectivity and susceptibility using efficient MCMC algorithms. In general we are

interested in drawing conclusions on the mechanism that could reveal how the

disease was spread. Furthermore, we also compare the obtained results with those

derived from the other approaches and comment on any differences or similarities

between them.

3.3.1 The Data

Two years after the outbreak in 2003, the Department of Environment Food and

Rural Affairs (DEFRA) uploaded a spread sheet in their website (www.defra.gov.uk).

The name of the file was “DataForModellersOct03.xls” and contained information

about the infected premises. The key entries of this file are shown in Table 3.1.

The same file also provides the “infection dates ”of the infected premises (IP). This

is either estimated as 5 days prior to date of earliest lesions, regardless of species.

In this case the “Infection Status” is set to “E”. On other the hand, “infection

date” is considered the date of a known contact with infected farm. This is the case

where “Infection Status” is set to “C”. For cases confirmed on serology (infection

status set to ’S’) the infection date is estimated as 10 days. Within our framework,

(see 2.2) we are able to draw formal inference about the infection times of the IPs

and therefore we discard this information from DEFRA.

Regarding the Date Slaughtered, it is explained by DEFRA that there can be

multiple slaughter dates on DCS due to voluntary culls and previous DC status
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etc. Therefore the slaughter date is closest to the date it became infected. The

variables Dairy and Beef, which refer to the total number of dairy animals and

cattle respectively, are firstly imported from the DCS database and then they were

corrected from telephone reports. DEFRA has also provided us with another file

which includes information about the uninfected premises, which contains the x

and y coordinates, and the number of different species for each farm.

Table 3.1: Information on the infected premises

Variable Name Description

IP Sequence number for every Infected Premises.
X x-coordinate of Map reference.
Y y-coordinate of Map reference.

Infection Status ’E’ if the ’Infection Date’ has been estimated,
’C’ if there is a known date of contact,

or ’S’ if FMD was confirmed on the basis of serology.
Date of Report Date of report to MAFF SVS HQ at Page Street.

Imported from DCS database.
Date Slaughtered Date slaughter was completed.

Updated from DCS regularly, but will not always be current.
Date confirmed The date the premises was confirmed to be infected.

Imported from DCS database.
Dairy Number of dairy animals on premises.
Beef Refers to total cattle on property.
Sheep Total sheep on property. Imported from DCS database.
Pigs Total pigs on property. Imported from DCS database.
Goat Total goats on property. Imported from DCS database.
Deer Total deer on property. Imported from DCS database.

Infecting species First species to be infected on the IP.

Figure 3.1 shows the spatial distribution of the infected and uninfected farms in the

UK. It is clear that the counties which were mostly affected by the FMD are Devon

(south-east) and Cumbria (north-west). Diggle (2006) argues that because the two

counties are geographically well separated, they should be treated informally as

replicates of the same natural experiment, thus allowing to compare parameter

estimates and pool as appropriate. Following this argument, we decide to analyze
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only the data in Cumbria since it had more infected premises than Devon (see

Figure 3.2).

Due to the limited availability of detail in the spread sheet, as Keeling et al.

(2001), Diggle (2006) and Deardon et al. (2006) we choose as model covariates the

number of cattle and number of sheep for each farm. Note that a small number

of farms which appears to have zero number of cattle (nc) and sheep (ns), have

been excluded from our study. The variable Date Slaughtered is considered as the

removal times within the context of an HMSE. The corresponding infection times

are assumed to be unknown. Table 3.2 presents the summary statistics for the

two covariates. Figure 3.3 shows the distribution of the size of susceptible farms

in Cumbria and reveals skewness and heavy tails. In other words there are a few

farms with significantly larger size than the average.

Once the data are cleaned, the resulting dataset consists of N = 5378 farms in

total. At the end of the outbreak, nI = 1021 got infected. Some farms were culled

without knowing their infection status (eg. dangerous contacts). If information

about these farms was available then the status before their culling (infected,

susceptible) could have been imputed. Alternatively, a simpler approach would

have been to remove them from the susceptible population once the animals have

been slaughtered. Due to the absence of such data, the fact that farm animals

may be slaughtered after they become infected but before the disease is diagnosed

is ignored with our approach.
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British Isles Map

Uninfected Premises
Infected Premises

Figure 3.1: The spatial distribution of susceptible farms in the UK at the start of
the outbreak (green) and of the infected farms at the end of the outbreak (red).
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Cumbria

Figure 3.2: The spatial distribution of susceptible farms in Cumbria at the start
of the outbreak (green) and of the infected farms at the end of the outbreak (red).
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Figure 3.3: Histograms of the number of cattle and sheep for the all the
susceptible farms in Cumbria
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Table 3.2: Summary statistics for the number of cattle and sheep of each farm in
Cumbria

Min. 1st Quart. Median Mean Std. Error 3rd Quart. Max.

Cattle 0 9 73 111.7 127.43 171 1593
Sheep 0 10 227 534.5 812.583 739.0 13240.0

3.3.2 The Model

Our approach relies on constructing an HMSE (see Chapter 2, Section 2.2) with

appropriate assumptions about the infection and the removal rate which we de-

scribe in this section in detail.

Infectious Period

At any time t, the farm can be in one of the three states: susceptible, infected

or removed. Within the FMD context, a previously infected farm is considered to

be removed when all its animals have been slaughtered. Once a farm is infected,

is remains infectious for some time which we assume is Gamma distributed with

mean α/γ and variance α/γ2:

Ri − Ii = Ga(α, γ).

We assume that the shape parameter of the Gamma distribution, α, is known and

equal to 4. The particularly chosen value of α, leads to a bell-shaped distribution

where the mean (or the mode) and the variance depends only on γ. Figure 3.4

reveals the various shapes of such distribution for different values of γ. We should

note that by assuming an Exponential infectious period i.e. α = 1, such flexibility

is not possible.

The commonly adopted approach is to assume that the infectious period of a farm

is fixed and known. For instance, and Keeling et al. (2001) and Deardon et al.
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(2006) assume that a farm is in the exposed state for five days and then remains

infectious for four days. Diggle (2006) considers that the reporting date is the

infection date plus a constant time τ , corresponding to the latent period of the

disease plus any reporting delay. Although such assumptions about the infectious

period and hence the (unknown) infection times, can reduce the computational

cost considerably, it is of interest to quantify the effect such assumptions have on

parameter’s inference.

Suppose that within the context of an SIR model the individual’s infectious period

is distributed as the random variable D. Lefèvre and Picard (1993) showed that if

we replace D with its mean µ, then we tend to predict an epidemic with a smaller

number of ultimate susceptibles surviving the disease, i.e. an epidemic with a larger

final size. For illustration, suppose two different infectious periods, D1 ∼ Ga(α, γ)

and D2 ∼ Ga(κα, κγ). Then, we can show that that once you increase the variance

of the infectious period the final size gets smaller. Nevertheless, exact results in

terms of the infection and removal rates (instead of the final size) do not seem

to exist. Therefore, such assumptions about the length of the infectious periods

should be made with extra caution. In contrast, within our Bayesian framework,

infection times are treated as unknown parameters and hence inference is made

based on the observed data (removal times).
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Figure 3.4: Different distributions for the infectious period given specific values
of the shape and the scale parameter

Infection Rate

We model the infection rate by taking into account the available covariates which

are the location and the size of the farm. Following the approaches by other groups

(see for example, Keeling et al., 2001, Diggle, 2006, Deardon et al., 2006) we take

into account the number of different species in each farm and in particular the

number of sheep and cattle and in each farm. Since FMD was primarily confined

to cows and sheep, this approach seems sensible. The infection rate is modelled

as follows:

βij = β0 ·K(i, j) ·
(
ε · (nci)ζ + (nsi )

ζ
)
·
(
ξ · (ncj)ζ + (nsj)

ζ
)

(3.13)

K(ρij, δ) =
δ

ρ2
ij + δ2

where β0 represents the overall (average) infectious rate, ε and ξ the relative in-
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fectiousness and susceptibility, respectively, of cows to sheep. nci and nsi refer to

the number of cattle and sheep for farm i respectively. The parameter ζ identifies

whether the infectivity or susceptibility for each of the farms is linear or sub-linear

in the numbers of animals. Note that Diggle (2006) has also adjusted for a non-

linear effect of the covariates. Moreover, Deardon et al. (2006) have proposed a

more general model which allows for different degree of non-linearity among the

number of different species and the status of the premise.

The Kernel

We model explicitly the environmental spread by assuming a Cauchy kernel K(ρi,j, δ),

which is associated with parameter δ. Denoted by ρ(i, j), is the Euclidean distance

between farms i and j. We shall explain in this section why such a kernel is chosen.

We should note that a transmission kernel, known as DEFRA tracing data distance

kernel was used by DEFRA during the outbreak. It was estimated by veterinarians

by taking into account information on infected premises (eg. location, dangerous

contacts) and making a best guess at the source of the infection. It could be argued

that such a subjectively-based distance kernel is likely to overestimate the effect

of short distance infections and on the other underestimate the effect of the long

distance infections (see also, Deardon et al., 2006).

The approach adopted by Imperial does not explicitly model the transmission

kernel between farms, while the Cambridge-Edinburgh model assumes a kernel

with a fixed and known parameter which is more sharply peaked than exponential.

Diggle (2006) uses an exponential-type kernel (see Equation 3.7) which allows the

relative importance of long-range transmission in the spread of the disease to be

measured. Similarly to Deardon et al. (2006), we would like to consider long-range

infections (sparks). Therefore we use a Cauchy kernel which has heavier tails than

the exponential or the geometric and allows for long-range infections without the

need of any extra parameter.
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The Distance Between Farms

An important issue regarding the association of the infection rate with the distance

between the farms is whether or not the Euclidean metric is the most appropriate

measure. Other distances could be used, such as the minimum walking distance.

Nevertheless, the answer to the above question is problem-specific and cannot be

generalised very easily. Depending on the landscape of the area where the outbreak

is taking place and the disease’s characteristic, it can be argued that in many cases

the Euclidean metric is not applicable.

For example, consider the case that between farms, i and j, there exists a lake or

a mountain and that the disease cannot be spread by wind. Obviously, the Eu-

clidean distance does not seem to be an appropriate measure. On the other hand,

we should be very careful when using measures like minimum walking distance

especially when i and j are adjacent farms.

Regarding the FMD outbreak in the UK, Savill et al. (2006) showed that Eu-

clidean distance between infectious and susceptible premises is a better predictor

of transmission risk than shortest and quickest routes via road, except where major

geographical features intervene. Therefore, they concluded that a simple spatial

transmission kernel based on Euclidean distance suffices in most regions, probably

reflecting the multiplicity of transmission routes during the epidemic.

Concluding, due to the lack of geographical information on the landscape of Cum-

bria and the difficulty of obtaining metrics such as minimum walking distances

and also taking into account the results Savill et al. (2006), we used the Euclidean

distance for our spatial kernel.

3.3.3 Results

In this section we present the results obtained from our Bayesian analysis. Since

any fully Bayesian analysis consists of prior’s specification about the parameters,
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we first refer to our chosen prior distributions. Then by adopting the methodol-

ogy in Chapter 2, a 25% partially non−centered algorithm was applied to obtain

samples from the posterior distributions of the parameters of interest.

Priors

Consider the following vector of the unknown parameters θ = (β0, γ, δ, ε, ξ, ζ). We

specify the the following prior:

• π(β0) ≡ Ga(0.001, 0.001)

• π(γ) ≡ Ga(0.001, 0.001)

• π(δ) ≡ Ga(1, 0.1)

• π(ε) ≡ Ga(1, 0.001)

• π(ξ) ≡ Ga(1, 0.001)

• π(ζ) ≡ Ga(1, 0.001)

It is easy to see that all the assigned priors are fairly uninformative about the

parameters. Because the infection times also have to be treated as parameters,

we assume a uniform prior over the label of the initially infected farm and also

on its corresponding (initial) infection time. We can visualise the state of our

knowledge about the parameters of interest by plotting the density of each of the

corresponding posterior distributions.

Key Parameter of the Infectious Period

The key parameter which characterizes the infectious period is the scale parameter

of the Gamma distribution, Ri−Ii ∼ Ga(4, γ). Figure 3.5 shows the kernel density

estimates of the posterior distribution of γ and the average infectious period, 4.0/γ.



CHAPTER 3. BAYESIAN ANALYSIS OF 2001 UK FMD 161

It turns out that the estimated average infectious period is approximately 7.5

days with the 95% highest posterior density region (see Section 1.3.3) of (7, 8.5).

Such an estimated value is not very different from the one that Keeling et al.

(2001) and Deardon et al. (2006) have assumed. Recall that within the context

of both approaches, the authors consider an SEIR-type model, which incorporates

apart from the infectious period(I→R), an incubation period (E→I) as well. The

incubation period was taken to be 5 days and the period from infection to reporting

9 days. There an estimated average infectious period of 7.5 is quite similar. In

addition, we should note that the prior assigned to parameter γ has no influence

on the posterior distribution. In other words, the information about γ is extracted

mainly from the data.
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Figure 3.5: Posterior distribution of parameter γ (left) and the corresponding
mean infectious period (right)

Spatial Kernel

The key parameter which drives the shape of the spatial kernel in our model is δ.

The most likely value of the posterior distribution of δ is around 0.0065 . Figure

3.6 shows a 95% highest posterior density region (0.0055, 0.0087) for the shape

of the spatial kernel, K(ρ(i, j)), based on the posterior samples of π(δ|R). It is
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remarkable that there is not much uncertainty about δ. Furthermore, it can be

easily seen that the effect of K(ρ(i, j)) to the infection rate is very little when the

distance between two farms is greater than 4 Km.
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Figure 3.6: A 95% highest posterior density region of K(i, j). The black line
refers to the “average” shape of the Kernel, based on the posterior mean of

π(δ|R)

It is of interest to compare the the effect of the kernels used by other approaches

to the infection rate (see Table 3.3).

Before performing any proper comparison, we define the relative kernel’s effect (rδ)

as follows:

rδ =
K(ρ(i, j), δ)

K(0, δ)
(3.14)

In other words, rδ is obtained as the ratio of the transmission kernel evaluated for

two farms which are far from each other at distance ρ (K(ρ(i, j))), divided by the
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Table 3.3: The form of the different kernels used for the 2001 UK FMD outbreak

A Fully Stochastic Model Kernel

Our approach: K(ρ(i, j)) = δ
δ2+ρ(i,j)2

Pseudo-Likelihood
(Diggle, 2006): K

′

(ρ(i, j)) = exp {−(ρ(i, j)/δ)0.5} + ρ

ILM

(Deardon et al., 2006) K
′′

(ρ(i, j)) =





k0, 0 ≤ ρ(i, j) ≤ δ0
ρ(i, j)δ, δ0 < ρ(i, j) < δmax

0, otherwise

value of the kernel evaluated for two farms whose distance is 0 (K(0)). Figure 3.7

shows the relative kernel’s effect for the different kernels. It is easy to see that for

distances less than 5 Km there are considerable differences, whereas for distances

greater than 5 Km, the differences are small.

Infectivity and Susceptibility

The infection rate (βij) consists of three main parts; the transmission kernel, farm’s

infectivity and farm’s susceptibility (see Equation 3.13). The parameters which

are associated with farm’s infectivity and susceptibility, are ε and ξ respectively.

We assume that farm’s infectivities or susceptibilities could be non−linear in the

number of cows or sheep.

The relationships between animal numbers and susceptibility, and animal numbers

and transmissibility are estimated via the marginal posterior means of the corre-

sponding parameters ε, ξ, and ζ. Figure 3.8 shows the posterior distribution of

the model parameters whereas Table 3.4 provides us with the parameter estimates

as well as with their corresponding 95% highest posterior density region (HPDR).

We have chosen the median of each of the posterior distribution to be our loca-
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tion measure. Note that the distribution of ε cannot be considered as symmetric

and therefore the approximately obtained 95% HPD is not very reliable. This is

not the case for the other parameters, since each of them can be assumed to be

symmetrical.

Table 3.4 reveals that each individual cow was more likely to transmit the disease

(ε = 1.45), and also likely to be more susceptible to the disease than each individual

sheep (ξ = 2.45). Such results lead to qualitatively similar conclusions of those

obtained by Keeling et al. (2001) although the authors reported rather different

estimates (ε
′

= 1.61 and ξ
′

= 15.2). We should note though the two crucial

differences between the two approaches. First, the estimates by Keeling et al.

(2001) are based to the total number of farms in the UK while we have focused

only in Cumbria; secondly, they have considered the case where ζ = 1 while we

allow for non-linearity.

Moreover, Diggle (2006) and Deardon et al. (2006) have also reported different

point estimates for the corresponding parameters. Diggle (2006) who also considers

a common non-linear effect of the number of animals, reported ε
′′

= 1.42 and ξ
′′

=

36.17. We should note that the latter parameter is estimated very imprecisely as

the reported 95% confidence interval is (0.19, 692.92) and therefore any comparison

should be made with care. Deardon et al. (2006) reported ε
′′′

= 0.57 and ξ
′′′

=

7.14, having assumed a different effect of non−linearity for the different species

(cows and sheep). Summarizing, although the reported parameters’ estimates

obtained via the different approaches are very different, all methods lead to similar

conclusions about how transmissibility and susceptibility varies with the number

of different species in a farm.

Regarding the assumption about a potential non−linear effect of the covariates, it

turns out that the linear assumption made in the paper by Keeling et al. (2001)

is questionable (ζ
′

= 1). We derived a point estimate of ζ, about 0.32 which

is significantly less than one. This is in agreement with the conclusions drawn

by Diggle (2006) (ζ
′′

= 0.13) and Deardon et al. (2006). Note that the latter
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Figure 3.8: Posterior distributions of the model parameters. Red line shows the
prior distributions.
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Table 3.4: Parameter estimates and approximate 95% highest posterior density
region for model’s parameters

Estimate 95 % Highest posterior
density region

Parameter

Relative infectivity
of cattle to sheep (ε) 1.45 0.79, 6.51

Relative susceptibility
of cattle to sheep (ξ) 2.32 1.74, 3.71

Non-linear effect of
number of animals (ζ) 0.32 0.25, 0.44

approach assumes a different non-linear effect for farm’s infectivity and suscepti-

bility depending also on the different species. The authors concluded that a linear

approximation looks more reasonable in the case of susceptibility since the esti-

mated effect of ζ for a susceptible farm is fairly close to one for both cattle and

sheep. On the other hand, in terms of transmissibility a strong non-linear effect is

found for both sheep and cattle since. For illustration Figure 3.9 shows how the

farm’s infectivity and susceptibility increases according to the number of sheep

and cattle.
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Figure 3.9: Average posterior farm’s infectivity under the number of cattle
(green) and sheep (red), T = εnζc and T = nζs respectively (top) and

susceptibility, S = ξnζc and S = nζs respectively (bottom).

3.3.4 Limitations

Perhaps the most important limitation of our study is the level of detailed infor-

mation on the dataset which we were given. First, although we have very detailed

data for the infected premises, we have no information for farms which were culled
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without knowing their status; i.e. whether they were infected or not at the time

they were slaughtered. Such information can potentially have an effect for the

parameters, such as the spatial kernel or/and farm’s infectivity and susceptibility.

Moreover, regarding the uninfected farms, the available knowledge is only based

on census data. It is uncertain, whether the number of animals in each farm during

the outbreak matches the number recorded in the census.

Another important issue which has already been mentioned is how appropriate

the use of the Euclidean distance is in comparison to other measures such as

minimum walking distance or quickest route. Especially in Cumbria there exists a

rich landscape with hills and lakes and therefore if such measures were used it may

have lead to different kernel parameter estimates. Nevertheless, such measures

cannot be calculate very easily since they are very computationally demanding. It

is of interest whether such measure can be used in conjunction with the Euclidean

distance to obtain the “optimal measure” for the distance between two farms.

Comparisons between our findings and those obtained from the other studies

should be made very carefully. This is due to the fact that we have analysed

the outbreak which took place in Cumbria while other studies (Keeling et al.,

2001, Deardon et al., 2006) analysed the epidemic which took in the whole UK.

3.3.5 Conclusions

In this chapter we performed a fully Bayesian analysis of the 2001 FMD UK out-

break. Before doing so, we described the approaches adopted by other researchers

during the outbreak. These range from a set of deterministic differential equations

to a complex simulation model, reflecting the elements that the researchers felt

were most important and those that could be neglected. In addition, we briefly

reviewed some recently developed work which provides formal statistical inference

based solely on the likelihood. The similarities and the differences in the model

and the approaches on how inference is made have also been discussed.
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Then we introduced a a fully stochastic, heterogeneously mixing epidemic model to

capture the dynamics of the outbreak. The infection rate was associated with two

main risk factors; the size and the location of the farm. Unlike the other studies,

we have assumed that the farm’s infectious period is unobserved since the date of

infection is not known. A transmission kernel based on the Cauchy distribution

was used to allow for long-range infections.

Compared to the other studies, qualitatively similar conclusions were drawn about

farm’s infectivity and susceptibility. Cattle were found to be more infective and

more susceptible to the disease than sheep. In addition, we found a strong non-

linear relationship between the infection rate and the number of cattle and sheep

in each farm. Moreover, the key feature of the transmission mechanism in our

model was the spatial kernel. Our results suggested that over long distances (> 5

Km), the effect of the kernel is very little.

Although many new measures have been implemented to prevent FMD from ar-

riving in the UK, we are still at risk from this and other infections (Yu et al.,

1997). It is not certain that a future outbreak will have the same epidemiological

characteristics or affect the same livestock to the same degree as the previous one.

Therefore, the methods of inference should be very flexible and easy to be adapted

to a different model. Within the framework of an HMSE (see Section 2.2) this is

straightforward.

The British government considers vaccination to be a viable defence in the face

of an outbreak because vaccination is used to combat a wide variety of human

and animal diseases. Vaccination especially within the context of human diseases

would seem very intuitive. However, reactive vaccination against FMD would need

to be implemented in the face of an epidemic and would thus require prohibitively

large amounts of trained labour to vaccinate all susceptible livestock rapidly (Keel-

ing et al., 2003). Modelling strategies can play an important role, informing the

optimal use of limited resources.
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It is probable that as our understanding of spatiotemporal disease dynamics in-

creases and our quantitative knowledge of FMD epidemiology grows, so, too, will

models become more complex. This will lead to models which include more factors

that may influence the disease dynamics than the ones which have been currently

used. Advancements will need to be made if such models are to be of use. In order

for such models to be applicable, for far more data (in terms of covariates) are

required on a range of facets that may modify the susceptibility to infection or the

risk of transmission is essential. In addition, factors such as topography and farm

management are both important elements in the spread of infection that could be

included in future models if the data were available.

A common feature was absent from the models discussed in this chapter. All

models treated the farm as a single unit, such that all the animals became infected

en masse. In practice, the infection will initially spread through the farm before

spreading between farms. However, predicting such dynamics is complicated by

our lack of knowledge of the infection at this level of detail. Until such information

is available treating the farm as a single infectious unit is as reliable as attempting

to simulate within-farm epidemics (Keeling, 2005).

Concluding, one of the most important advancements for the future would be to

combine the expertise of modellers, veterinarians and those responsible for imple-

menting policy. Therefore, veterinary judgement, experience and local knowledge

can provide the most accurate assessment of infection risk for particular farms.

Such expert’s opinion can be very easily incorporated by adopting a Bayesian

framework. The methodology presented in Chapter 2 will then offer a variety of

robust MCMC algorithms to draw inference for the parameters of interest.



Chapter 4

Future Work

In this chapter we first discuss various extensions to the methodology presented in

Chapter 2. Then we briefly refer to future work on modelling the 2001 UK FMD

outbreak. Finally, we also present some ongoing work on modelling a potential

Avian Influenza outbreak in the poultry industry of the UK.

4.1 Methodology

4.1.1 Infectious Periods

It has already been mentioned that although the GSE and the HMSE are very

simple models, they can become surprisingly very challenging for modern MCMC

methods due to the high dependence between model parameters and infection

times. Nevertheless, we have shown how mixing problems can be overcome by

introducing partially (or completely) non−centered parameterisations.

So far, we have considered an HSME where each individual i, remains infectious for

some time, say Di, which is Gamma distributed with with mean α/γ and variance

α/γ2:

Di ∼ Ga(α, γ).

172
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Throughout the simulation study which was performed in Section 2.6, we have as-

sumed that α was known. It would be very interesting to assess the performance

of centered and the non−centered algorithm when both α and γ are unknown and

inference needs to be drawn for both of them. Preliminary work shows that when

α is large or the number of infected individuals increases, then the mixing of the

Markov chains deteriorates. In addition, there exists high correlation between α

and γ. Although the mixing for both α and γ is bad, the mixing of average infec-

tious period, α/γ, is much better. Intuitively, this can be explained by the fact,

that the observed data contain more information about the mean infectious period,

rather than the parameters α and γ separately. In this case, a centered parame-

terisation in a similar manner to those presented in Section 2.3 can be potentially

useful in order to break the correlation between the model parameters. However,

such a reparameterisation will not break the dependence link between γ and the

missing data (infection times) and therefore a (partially) non−centered seems to

be appropriate to improve the mixing of the standard (centered) algorithms.

Finally, if other distributions for the infectious period of the individuals are as-

sumed, such as a Weibull with parameters α and γ, i.e.

Di ∼ Weib(α, γ),

then it will be of a particular interest to see the performance of the various centered

and/or non−centered algorithms and whether mixing problems occurs with such

an infectious period.

4.1.2 Epidemics in Progress

The approach via which Bayesian inference was drawn for the HMSE relies on the

assumption that the epidemic was completed by the time Tobs we observed it. In

practice, it is often the case to be mostly interested in drawing inference for the

parameters associated with the chosen model while an epidemic is in progress.
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In Section 2.1.8.2 we have shown how MCMC methods can provide inference for the

parameters of the GSE, taking into account the uncertainty about the infectious

status of each the individuals, i.e. whether they have been infected or not at time

Tobs we observe the epidemic. Although the importance of GSE model in epidemic

theory is widely known, it is not always a realistic model to model many real life

outbreaks. Mainly this is due to the fact the heterogeneity between the individuals

in the population is not taken into account. Therefore, we will briefly describe in

this section our approach for performing real-time inference about the parameters

of the HMSE model.

Our approach is along the lines of the approach by O’Neill and Roberts (1999).

Consider the structure of the HMSE model as described in Section 2.2 with the

following forms of the infection and removal rates.

βij = β0 · hij

Ri − Ii ∼ Ga(α, γ)

where Ii and Ri denote the infection and the removal time of the infected individual

i respectively. Denote by nI , ns and nR the number of infected, susceptibles and

removed individuals by time T respectively. An individual which is infected but

not detected by time T is considered as occult individual.

We propose to implement the following MCMC algorithm:
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MCMC Algorithm

(Repeat the following steps)

1. Start the chain with initial values for the parameters θ0

and the set of infection times I0;

2. Update β0 and γ via Gibbs steps;

3. Choose one of the following steps with equal probability:

(a) Move an infection time;

(b) Add an infection representing an occult individual;

(c) Delete an infection time which has been previously

added;

4. Goto 1.

Step 3 is described here in more detail. We move the time of an existing infection,

or add or delete an infection time as described above. The three events are per-

formed with equal probability. We denote by I − {t} + {s} a move, I + {s} an

addition, and I −{t} a deletion. Thus whenever we add an infection, nI increases

by 1, and nS decreases by 1. The reverse is true for a deletion, while for moving

an infection time, nI and nS remain constant. This is implemented as follows:

3a. Move an infection time: We choose an infection time to move from a

discrete uniform distribution, U(1, nI), and propose a replacement infection

time drawn from distribution a chosen distribution with probability density

function q(·). We accept the proposed value with probability

1 ∧ f(I − {t} + {s}|N ,R, θ)

f(I|N ,R, θ)
× q(I|I − {t} + {s})
q(I − {t} + {s}|I)

3b. Add an infection: We choose an occult infection from the susceptibles
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using a discrete uniform distribution U(1, nS). An infection time is then

chosen from the uniform distribution U(min(I), Tobs). We accept such an

addition with probability:

1 ∧ f(I + {s}|N ,R, θ)

f(I|N ,R, θ)
× nS(Tobs − Ik)

m+ 1

where m is the number of previously added infections prior to the addition.

3b Delete an infection. We choose an infection time to delete from a discrete

uniform distribution over the premises that have been previously added. We

accept such a move with probability:

1 ∧ f(I − {t}|N ,R, θ)

f(I, Im|N ,R, θ)
× m

(T − Ik)(nS − 1)

where m is the number of previously added infections prior to the deletion.

Such an algorithm is very similar to the one used by O’Neill and Roberts (1999)

in the context of the GSE. However, the authors have considered a very small

dataset which consists of 10 individuals. In real life outbreaks the initial susceptible

population is typically very large, For instance, in the 2001 UK FMD outbreak,

the farms at risk in the beginning of the outbreak, were about 120,000. Moreover,

suppose that we are interested in modelling a potential Avian Influenza outbreak

in the poultry industry of the UK. In this case, the farms at risk are about 40,000.

Simulation studies have shown so far, that when the number of the susceptible

farms increases, the MCMC algorithm described above becomes very computa-

tionally costly and very inefficient. Intuitively, this can be explained by the fact

that due to heterogeneity, choosing individuals uniformly and assign them an in-

fection time does not always increase the likelihood and many of such proposed

steps get rejected. Therefore, this leads to very slow mixing Markov chains. More-

over, the same holds when choosing uniformly individuals to delete their infection

times.
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An alternative and more efficient approach is to take into account, the infectious

pressure (as defined in Section 2.1.6.3) that an individual gets at any time. In

other words, it is more sensible to choose an individual among the susceptible

population to add an infection time for, with probability which is proportional

to the infectious pressure which is subjected. Note that the infectious pressure

is determined through the infection rate, βij which takes into account a series

of potential risk factors. Similarly, when choosing individuals in order to delete

their infection time, it makes more sense to be chosen with probability conversely

proportional to their infectious pressure.

Nevertheless, although such an approach can become very effective compared to

simpler one, when the size of population increases, the computational cost of the

former is much larger than the computational cost of the latter. This is because,

if an addition is chosen, then the infectious pressure for the individuals in the

susceptible population (which is typically large) must be calculated. An interesting

question is whether it is necessary to compute the infectious pressure at every step

of the MCMC algorithm or not. For instance, one could calculate the individual’s

infectious pressure only every 100 say, or more, iterations. Alternatively, if it

is believed that the epidemic has been “established” in the sense that plausible

estimates for the parameters can be obtained, then these estimates could be used

for computing the corresponding individual’s infectious pressure.

In conclusion, another issue which should carefully been considered in the future,

is the effect of the number of additions, moves or deletions to the mixing of the

Markov chains. The illustrative example in Section 2.6 showed that the more

infection times we choose to update, the better the mixing it gets; although the

algorithm runs shower in time. In the case of an epidemic in progress, addition

and deletion of infection times take place as well. Therefore, it should be examined

what is the trade off between the number of times we shall repeat Step 3 and the

performance of the MCMC algorithm.
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4.2 Applications

4.2.1 A Comprehensive Bayesian Analysis of the 2001 FMD

Outbreak

Although we adopted a fully Bayesian analysis to analyse the outbreak which took

place in Cumbria, it would be of interest to assess the assumption by Diggle (2006).

He claims that because the two counties (Cumbria and Devon) are geographically

separated, it shall be treated informally as two replicates of a natural experiment,

thus allowing to compare parameter estimates and pool as appropriate. In addi-

tion, an analysis considering the total number of farms in the UK would allow us

to compare our methodology with the one adopted Deardon et al. (2006) in terms

of using a discrete or a continuous model setup.

Having a more detailed and accurate dataset than the currently available, a more

sophisticated analysis can be performed where we will be able to incorporate and

infer about the infectious status of the farms which had animals slaughtered with-

out being identified as IPs.

Adopting the methodology in Section 4.1.2, it would be very interesting to in-

vestigate after which day of the outbreak and onwards there was no much more

variation in the parameter estimates. This for instance, could lead to an assess-

ment of DEFRA’s policies regarding for controlling strategies.

4.2.2 Modelling a Potential Avian Influenza Outbreak in

the UK

It is remarkable the threat that governed UK when the poultry industries of many

other European countries were affected by the Highly Pathogenic Avian Influenza

(HPAI) disease. In this section we will summarize ongoing work on modelling a

potential a potential AI outbreak in the UK.
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4.2.2.1 The Model

We use a realistic complex stochastic model for the evolution of an outbreak,

parameterised by a number of unknown parameters. Whilst expert opinion can

be relied upon to provide reasonable estimates of many of these parameters, the

absence of an H5N1 epidemic in the UK poultry industry to date inevitably implies

that some uncertainty about parameter values remains.

Our approach to the problem will be Bayesian since

• we would like to incorporate expert’s opinion in the form of the parameter

prior distributions;

• we would like to derive a real-time risk assessment tool as the epidemic

evolves;

We propose to model a potential outbreak of Avian Influenza in the UK using a

stochastic epidemic model of the form of an HMSE.

Consider a total population of size N farms. At any given time point each farm i

can be in one of four states:

• Susceptible premises (SP) do not have the disease and are able to be infected

by it;

• Infected premises (IP) have the disease and are able to infect susceptibles.

Their infectivity increases as a function of time.

• Notified premises (NP) have been detected as having the disease and are sub-

ject to government-imposed movement restrictions. However, they are still

capable of infecting susceptibles by other means, such that their infectivity

is curbed at a lower level.

• Removed premises (RP), in the case of AI, have had their flocks culled and

therefore play no further part in the epidemic.
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Thus the only transitions we allow are: from susceptible to infected, from infected

to notified, and from notified to removed.

S I N R

Figure 4.1: The four compartments of the SINR model.

We assume that the epidemic is observed up to a certain time, say Tobs. Denote

by nI ≤ N and nR ≤ N , the number of individuals who got infected and removed

by time Tobs respectively. In general, nI ≤ nR ≤ N . The SINR model has the

following properties:

we consider a heterogeneously mixing population, with a time-dependent trans-

mission rate from farm i to farm j:

βij(t) = Tij · h(t) (4.1)

where h(t) represents how a farm’s infectivity changes over time up to a maximum

of Tij. It is defined as follows:

h(t) =
1

µ+ ν exp {−t} , µ, ν > 0 (4.2)

It easy to see that different values of µ and ν give a large variety of different shapes

of the farm’s infectivity profile.

The quantity Tij involves six parameters which drive the infection rate. I,N ,S

define the sets of the infected, notified and removed farms respectively:

Tij =





βij, i ∈ I, j ∈ S

β?ij, i ∈ N , j ∈ S
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Parameters βij and β?ij are modelled appropriately so as we distinguish between

possible disease transmission by managemental contacts, and environmental fac-

tors such as rodents, walkers, and short-range dust-borne infection. Therefore,

factors such as the probability of any two farms being connected by the requisite

means of contact per day and the distance between them are taken into account.

Since an IP has movement restrictions imposed upon it, we assume that all con-

tact components are severed, and only environmental transmission is possible.

Furthermore, we assume that since the biosecurity of the IP is likely to have been

increased, the rate of spatial spread for a NP is lower than for an IP.

In contrast to the model used so far, we assume that the time from infection to

notification (D|I = N − I) is distributed according to the following distribution:

P (D > d) = exp {−a(exp {b · d} − 1)} (4.3)

where a, b > 0.

4.2.2.2 Challenges

Bayesian inference for the parameters of interest can be drawn via the algorithm

mentioned in this chapter. However, the size of the susceptible farms is relatively

large and therefore, care is needed in order to construct robust and feasible algo-

rithms. Moreover, unlike the HMSE model (as defined in Section 2.2), the SINR

model assumes a fixed and known period between notification and removal.

It would be interesting to see how well the centered algorithm performs in the

case where the parameters a and b are unknown. Intuitively, these parameters are

a priori dependent with the infection times and therefore the implementation of

a non−centered reparameterisation sounds essential. Questions similar to those

mentioned in Section 4.1.2 should also be answered so as to be able to provide

precise answers in a reasonable time and inform governmental organisations about

optimal policies.
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4.3 Computational Issues and Parallel Comput-

ing

It can be easily understood that when we are aiming to analyse real life applica-

tions such as FMD or AI, the datasets we are concerned with, are of very high

dimension. An increase in the dimension of parameter’s space would result to more

computationally costly algorithms. Although such problems can be overcome by

the methods introduced in Deardon et al. (2006), there are still parts in the al-

gorithm which can slow down the time that an algorithm needs to run. Methods

of parallel computing seem to be ideal for static Monte Carlo algorithms (eg im-

portance sampling), however their applicability within a dynamic Monte Carlo

framework (i.e. MCMC) is not very straightforward. That is because we need to

keep track of the states which the Markov chain has visited. Nevertheless, parallel

computing methods have much to offer in evaluating parts of the likelihood which

can be linearised, for example those which appear in the likelihood of an HMSE

(see Section 2.2). Therefore, we are interested in making use of such algorithms in

order to be able to efficiently apply our methodology in real-time.
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Chapter 5

Latent Branching Trees

5.1 Introduction

There are many aspects of a number of observed univariate time series which can-

not be adequately modelled by standard time time series modelling. For instance,

non-Gaussian marginal distributions and dependence beyond autocorrelations. It

is also often the case that the assumption of Normally distributed observations is

inappropriate because the variable being modelled has a positive and highly skewed

distribution, eg. wind speeds and daily flows of a river. Therefore, in this chapter,

we are mainly concerned with the construction of a class of semi-parametric time

series models of infinite order where we will be able to specify the marginal distri-

bution of the observations in advance and then build their dependence structure

around them. Such a class of models can be very useful in cases where data are

collected over long period and it might be relatively easy to indicate their marginal

distribution but much harder to infer about their correlation structure.

Regarding the structure of this chapter, we first briefly review previous work on

modelling time series with non-Gaussian margins and various correlation struc-

tures. In addition, we explain our motivation by giving examples of time series we

will be interested in analysing. In Section 5.4 we introduce a stochastic process,

184



CHAPTER 5. LATENT BRANCHING TREES 185

which we term it a latent branching tree (LBT) and constitutes the base of the

class of time series we will develop. Furthermore, in Section 5.5, we will describe in

detail the general properties of the LBT and also show some illustrative data sets

generated by such a construction (Section 5.6). Exact simulation for a LBT and

methods for drawing Bayesian inference for the associated parameters of interest,

are presented in Sections 5.7 and 5.8 respectively. Sophisticated algorithms which

could improve the efficiency of the standard algorithms are illustrated via appli-

cations on simulated datasets in Sections 5.9 and 5.10. An application on some

genome scheme data is presented in Section 5.11 and finally, we discuss potential

extensions on the current methodology in Sections 5.12 and 5.13.

5.2 Literature Review

The development of methods for constructing stationary time series models with

marginals of choice has been of particular interest in the literature. As it has

already been mentioned, typically such models are useful when marginal inspection

from the data is feasible. Early work of this type of construction, outside the

Gaussian framework can be found in Lawrance and Lewis (1977), Jacobs and Lewis

(1977) and Gaver and Lewis (1980) where positive real-valued AR-type models

with Gamma marginal distributions were proposed. There has also been a number

of other examples concerned with Exponential (Gaver and Lewis, 1980, McKenzie,

1982), Gamma (Gaver and Lewis, 1980) and mixed Exponential (Lawrance, 1980)

distributions. There has been an extensive literature on constructing Markov

models with short-term dependence behavior; a key work on the development of

such stationary time series with pre-specified marginals is that of Lawrance and

Lewis (1985), whilst more recently, Joe (1996) and Jørgensen and Song (1998)

have highlighted a unified approach for constructing stationary AR-type models.

Models with short-range memory like ARMA model and Markov processes are well

known (see for example, Brockwell and Davis, 1991) and often used in practice.
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Apart from Markov models, there has been a considerable interest in constructing

infinite order models and developing methods in order to analyse data for long-

range dependence. Datasets with such a behavior often appear in geophysics,

hydrology and astronomy. Beran (1992) provides a review of statistical methods

for data with long-range dependence. The two best known classes of stationary

processes with slowly decaying correlations are increments of self-similar processes

(in the Gaussian case so-called fractional Gaussian noise) and fractional ARIMA

processes.

Self-similar processes and the corresponding increment processes were first intro-

duced to statistics by Mandelbrot and collaborators (see for example, Mandelbrot

and Van Ness, 1968). Brownian motion is self-similar and was known for long

time, while Lamperti (1962) points to the fact that normalized sums of random

variables converge to self-similar processes (see for details Beran (1994)).

Fractional ARIMA models were introduced by Granger and Joyeux (1980) and

Hosking (1981). They are a natural generalisation of standard ARIMA(p,d,q)

models defined in Box and Jenkins (1970). Later, a generalisation of fractionally

ARIMA models have been proposed by Gray et al. (1989).

Summarizing, it can be easily seen that there has been a considerable amount of

focus and interest on developing stationary time series with pre-defined marginal

distribution of the observations and short-term covariance structure around them.

In addition there has also been an extensive literature on statistical methodology

for modelling long-range dependent data. Most of the work cited so far, relies on

rather different techniques to derive the appropriate margins and dependence. In

this chapter, we will introduce a unified framework based on a latent stochastic

process through which a class of infinite order time series models with the desired

properties is obtained.
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5.3 Motivation

In this section, we will first refer to some motivating examples in order to illustrate

the idea behind the time series we are interested in modelling. Then, we will review

the work by Neal (2003) which motivates the adoption of the introduced stochastic

process in Section 5.4.

5.3.1 Examples

Suppose we are interested in modelling a time series such as the one shown in

Figure 5.1. The histogram of the data reveals that they are Normally distributed

and the corresponding ACF plot indicates slowly decaying autocorrelation (see

Figure 5.2). A transparent characteristic of this data set is that a significant

number of clusters exist. Since there seems to exist some dependence structure

within the cluster, analysis of such data via standard change-point problem does

not seem appropriate. That is, because such an analysis requires the assumption of

iid observations within the clusters in order to make the inference feasible. From a

practical point of view, such data structures often appear in genome scheme data;

in particular, at sequences of a DNA where there exist long genome segments

homogeneous in C+G, termed as isochores.
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Figure 5.1: A series 3, 000 observations collected over time.
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Figure 5.2: Histogram (left) and ACF plot for the data shown in Figure
5.1(right).

5.3.2 Dirichlet Diffusion Trees

Neal (2003) introduced a class of prior distributions over distributions which can

be seen as generalization of Dirichlet mixture models (Ferguson, 1973, 1983, An-
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toniak, 1974). Unlike simple mixtures, these priors can capture the hierarchical

structure which is present in many distributions. The construction of these pri-

ors is based on an underlying latent process, defined as a “Dirichlet diffusion

tree”(DDT). Such a process, also provides a hierarchical clustering of the data

with probabilistic indications of uncertainty. In this section we will describe the

procedure of obtaining a DDT in order to randomly generate a data set of n points

each a vector of p real numbers in which the data points are drawn independently

from a common distribution drawn from the prior.

In general, each point in the data set drawn from a DDT is generated by following

a path of diffusion process. In principle any diffusion process can be used although

the author only considered a Gaussian diffusion process. The first data point is

generated in the following way: the Brownian motion begins from an origin which is

fixed at zero and operates for a length of time which without any loss of generality,

can also be fixed at one. The end point of this first path is the first point in the

data set.

The second point in the data set is also generated by following a path from the

same origin (t = 0) and for the same time (t = 1). This second path initially follows

the first but after some time, Td say, it diverges to another which is independent of

the remainder of the first path. The end point of the second path is second data

point.

In general the ith point in the data set is generated by following a path from the

origin that initially coincides with the path to the previous i − 1 data points. If

the new path has not diverged at a time when paths to past data points diverged,

then it chooses between the previous path with probabilities proportional to the

number of paths that went each way. Once a path diverges, the new one moves

independently of the previous paths.

The distribution of the divergence time, Td can be expressed in terms of a diver-

gence function α(t). Neal (2003) explores the properties of a DDT by looking at
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data sets which have been created by using a variety of divergence functions α(t).

Different choice of the divergence function will lead to different behavior of the

prior generated by the DDT.

However we should note that a density function must be absolutely continuous and

a prior generated by a DDT must satisfy this condition. Therefore the selection

of a divergence function a(t) must be very careful. Neal (2003) has investigated

empirically when the DDT produce an absolutely continuous density by looking

at distances to nearest neighbors in a large sample from the distribution.

In order to prove that the prior is “exchangeable” he proved a stronger property

that the probability density for producing a data set along with its underlying tree

structure (locations and times) is the same for any ordering of the data points.

Once this is proved, then the exchangeability follows by summing over all possible

tree structures and integrating over times and location of divergences.

Concluding, the author also provides a number of generated data sets and also

briefly describes how MCMC methods can be applied to sample from the posterior

distribution as long as with the parameters of the underlying structure of the

tree such as divergence times, locations and hyperparameters such as diffusion

variances. In the following section we will show how a modification of the DDT

can lead to the generation of a time series model with specific properties.

5.4 Construction of a LBT

In this section, we describe in detail the general latent branching tree construction.

The result of such a construction will be the generation of a data set containing n

say, points, i.e. Y = (Y1, . . . , Yn)
T which follow a specified distribution. Through-

out the construction of the LBT we will state the similarities and the differences

between it and the DDT.

The first data point Y1, is drawn by a diffusion denoted by X1(t) which starts from
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a fixed origin and operates for a fixed length of time. In principle, any diffusion

can be used but for mathematical convenience and without loss of generality we

use a standard Brownian motion. Furthermore, we assume that X1(t) operates for

a time interval of length equal to 1 starting from 0, i.e. X1(t), 0 ≤ t ≤ 1. The

value of the Brownian motion at time t = 1 is considered as the first data point

denoted by Y1 = X1(1).

Consider the following Brownian motion, X2(t), 0 ≤ t ≤ 1 where:

X2(t) = X1(t) for 0 ≤ t ≤ τ1

X2(t) −X2(τ1) ⊥ X1(t) −X1(τ1) for τ1 < t ≤ 1

where a⊥b denotes that “a is independent of b”. In words, the process X2(t)

traverses the same path as X1(t) up to a (divergence) time point τ1 and then it

diverges to another path which is independent of the previous one. The second

data point is the value of the second Brownian motion at t = 1, i.e. Y2 = X2(1).

These first two steps are exactly the same as the ones you need to produce the

first two data points from the DDT. However the generation of the following data

differs.

In general the ith data point is the value of the (i)th Brownian motion, i.e. Yi =

Xi(1), i = 0, . . . , n where:

Xi(t) = Xi−1(t) for 0 ≤ t ≤ τi−1

Xi(t) −Xi(τi−1) ⊥ Xj(t) −Xj(τi−1) for j = 1, . . . , i− 1 and τi−1 < t ≤ 1

In general, in order to generate n data points, n diffusions and n − 1 divergence

points are required. For illustration, a visualization of a latent branching tree is

shown in Figure 5.3. We decide in advance the “jump distribution” to be a Uniform

[0, 1], i.e. τi ∼ U [0, 1]. Firstly, the first BM path from 0 to 1 is simulated and

Y1 = 1.55 is obtained (upper-left). The upper-right plot, shows that the second BM

follows the same path as the first one up to time τ1 = 0.122, where X(τ1) = 0.05
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and then it follows another (independent) path which leads to the second data

point Y2 = −2.63. In a similar way the third data point Y3 = −2.88 is generated

where the third BM diverged at time τ2 = 0.595, where X(τ2) = −1.819 (bottom-

left). Finally the fourth BM follows the common path of the previous three up to

time τ3 = 0.312, where X(τ3) = −1.05 and then it diverges by traversing another

path which leads to the fourth data point Y4 = 0.015 (bottom-right).
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Figure 5.3: Generation of four real data points (Y1, Y2, Y3, Y4) where the ”jump
distribution” is Uniform[0, 1]. (see the text for more details)
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5.5 General Properties of a LBT

5.5.1 Marginal Distribution of the Data

By construction, whatever the “jump distribution” is, the marginal distribution of

each of the data points, Y1, . . . , Yn, is N(0, 1). This is due to the choice of the

diffusion, i.e. Brownian motion in this case. Although at first glance this sounds

restrictive, in fact it is not, because we can derive different marginal distributions

for the data either by adding an another level to hierarchy of the model or by a

choosing a different diffusion than a Brownian motion.

Firstly, we describe how by appropriate transformations we can get a variety of

non-Normal distributions having as origin a N(0, 1) random variable. For example,

if Yi ∼ N(0, 1) then (Yi)
2 ∼ X2

1 . Table 5.1 shows the appropriate transformations

to obtain a variety of very well known distributions. Note that:

Φ(m) =
1√
2π

∫ m

0

e−
k2

2 dk,

Table 5.1: A variety of transformations of a standardized Normal Variable
X ∼ N(0, 1)

Distribution Parameters Transformation

Normal µ, σ2 µ+ σX
logNormal µ, σ2 exp {µ+ σX}
Gamma a, b ab

(
X
√

1
9a

+ 1 − 1
9a

)3

Exponential λ − 1
λ

log

(
1

2
+ Φ(X)

)

Uniform a, b a+ (b− a)

(
1

2
+ Φ(X)

)

Instead of adding another level to the hierarchy (τ → X(τ) → Y ) we can choose

a different Lévy process. Nevertheless, in order to make the construction of the
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LBT feasible, it is essential that we can simulate from the such a process and also,

that we are able to write explicitly the conditional density of intermediate points

of the diffusion.

Choosing a different process will lead to a different marginal distribution. If we

choose a Gamma process (i.e. independent Gamma increments) then the real-

izations will not longer be Normally distributed but they will follow a Gamma

distribution. If we are interested in modeling heavy-tailed distributions then we

might need to use a Cauchy process.

In general, apart from real-valued time series we are also able to produce integer-

valued observations from discrete distributions. This can be achieved by choosing

a process which will lead to discrete observations. For instance, a Poisson process

will produce Poisson variables. Moreover, one can also use a random walk in

discrete space such that a discrete distribution will be generated.

The above extensions reveal the flexibility of a LBT and give an idea how one can

generalize it in order to obtain different marginal distributions of the realizations.

5.5.2 Covariance Structure

The most important property of a construction of a LBT is the correlation struc-

ture of observations. Suppose that only two data points have been generated from

such a stochastic process, Y1, Y2 say, where the 2nd Brownian motion diverged at

time τ1. The covariance between Y1 and Y2 is:

cov(Y1, Y2) = E[Y1Y2] − E[Y1]E[Y2] = E[Y1Y2] = Eτ1 [E[Y1Y2|τ1]].

This expectation can be easily calculated by taking into account that because of

the independence between the normal increments the expectations E[X(τ1) · (Y2 −

X(τ1))], E[(Y1 − X(τ1)) · X(τ1)] and E[(Y1 − X(τ1)) · (Y2 − X(τ1))] are equal to
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zero. Therefore,

E[Y1Y2|τ1] = E[(X(τ1) + Y1 −X(τ1)) · (X(τ1) + Y2 −X(τ1))]

= E[X2(τ1)]

= var(X(τ1))

= τ1

Hence,

E[Y1Y2] = Eτ1 [τ1] = τ1

i.e. the covariance between the first two data points it is equivalent to the time

that the 2nd Brownian motion diverged. i.e. the greater the time τ1 the higher

the correlation becomes. We can then state the following theorem:

Theorem 1 Let Y1, Y2, . . . , Yn be the data points generated by a latent branching

tree and denote by τ1, . . . , τn−1 the divergence time points, where τi ∼ F , i =

1, . . . , n − 1. The covariance of Y1 and Yn is equal to the expected value of the

minimum of the τi’s, i.e.

cov(Y1, Yn) = E[min(τ1 . . . , τn−1)]

Proof Denote by τ ∗ the minimum of the divergence points:

τ ∗ = min(τ1, . . . , τn−1).

Each of the data points can be written as follows:

Y1 = X(τ ∗) +W1

Yn = X(τ ∗) +W2
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where W1 ∼ N(0, 1− τ ∗) and W2 ∼ N(0, 1− τ ∗). Both these independent random

variables can also be seen as sums of m, m > 0 independent normal variables each

of them having mean zero and variance σ2
i which satisfy the condition

∑m
i=1 σ

2
i =

1 − τ ∗. The covariance between the first and the last data point is

cov(Y1, Yn) = EY [Y1Yn]

= Eτ∗ [EY [Y1Yn|τ ∗]]

By following a similar approach as we did for the first and the second data point

we can evaluate the following expected value:

EY [Y1Yn|τ ∗] = EY [(X(τ ∗) +W1) · (X(τ ∗) +W2)]

= EY [X2(τ ∗)]

= var(X(τ ∗))

= τ ∗

Therefore it is easy to derive that:

EY [Y1Yn] = E[τ ∗] = E[min(τ1, τ2, . . . , τn−1)] (5.1)

�

It can be easily seen from (5.1) that the covariance between Y1 and Yn depends

on F and especially, on the expected value of the minimum of the divergence time

points. Different distributions will give a different covariance structure of the time

series Y1, Y2, . . . , Yn.

We have considered a variety of well known distributions in order to study the

behavior of the expected value of their minimum which characterizes the nature of

the realizations obtained via a LBT. Table 5.2 summarizes the rates of decay for

each of the distributions which have been studied in the Appendix. The different
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decays are due to the different amount of probability mass around zero for each

of the distribution. It can be seen that a very rich class of covariance structures

can be obtained which could range from very short to long memory time series

depending on the different “jump distribution” . A visualization of Table 5.2 is

given by the Figure 5.4.

Table 5.2: Rate of decays O(·)

“Jump Distribution” Density fX(x) Rate of decay O(·)

Uniform, U(0, 1) 1 ∝ 1
n

Beta(a, 1) a · xa−1 ∝ 1
n1/a

Bernoulli(p) px · (1 − p)1−x ∝ (1 − p)n

Truncated Exponential(λ) λ
1−e−λ · e−λx ∝ − 1

λ
n+e−λ

n+1

Special x−2e1−
1
x ∝ 1

log n
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Figure 5.4: Rate of decay of the covariance, O(·)

5.5.3 Differences between LBT and DDT

While constructing a LBT, each of the diffusions Xi(t), i = 1, . . . , n follows the

same path only of the just previously constructed diffusion Xi−1(t). On the other

hand while building a DDT, the diffusion Xi(t), i = 1, . . . , n can follow paths of

any of the previously generated diffusions Xj(t), j = 1, . . . , i − 1. This states a

distinct difference between the two constructions.

We should also mention the differences between the “jump distribution” of the LBT

and the “divergence function” of the DDT. The former must satisfy the condition

that it is a well defined distribution and it is also assumed for convenience that

we are able to simulate it. On the other hand, Neal (2003, Sec. 3) states that

the DDT will produce prior which are continuous (w.p. 1) when the “divergence

function” a(t) is such that, the A(t) =
∫ 1

0
a(t) is infinite.
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The divergence points τi, i = 1, . . . , n − 1 are independent and identically dis-

tributed random variables which follow a specified distribution F truncated to the

interval [0, 1]. F is known as the “jump distribution” and its associated parame-

ters (if any exist) as “jump parameters” , whilst Neal (2003) calls them “divergence

function” and “divergence parameters” respectively.

5.6 Illustrative Datasets Generated from an LTB

In this section various datasets are simulated via the LBT construction and the

nature of their realisations as well as their correlation structure is examined. For

illustration, we consider the following “jump distributions” :

1. Beta(1, 20);

2. Beta(20, 1);

3. A mixture of these two Beta distributions.

We generate 10, 000 values using the first two distributions Beta(1, 20) and Beta(20, 1).

The difference between these two distributions relies on their amount of probabil-

ity mass around zero (see left plot of Figure 5.5). This is what characterizes the

behavior of the correlation structure of the obtained time series (see right plot of

Figure 5.5). Beta(20,1) has much more probability mass around one and therefore

the chosen diffusions tend to diverge mostly around values close to one which re-

sults in a time series with long memory. On the other hand, if we use a Beta(1, 20)

as “jump distribution” then the obtained realizations are almost i.i.d due to the

fact that most of the divergence time points (τ1, . . . , τn−1) are concentrated around

values less than 0.1. For illustration, Figure 5.6 shows the first 1,000 observations

of the time series generated by these two “jump distributions” .
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Figure 5.6: The first 5, 000 realizations obtained via a LBT using Beta(1,20)
(top) and Beta(20,1) (bottom) as “jump distributions”

The results obtained so far from these two “jump distributions” indicate that a

mixture of these two distributions could lead to an interesting nature of realiza-

tions. Let us consider the following “jump distribution” :

f(τ) =





Beta(1, 20), with probability 1 − p

Beta(20, 1), with probability p
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The actual value of p will specify the structure of the LBT. If p is chosen to be

very small, then most of the diffusions will diverge at values of t close to one and

much more less times will diverge at values close to zero. The occurrence of small

values of the divergence time points τi’s will “refresh” the tree’s memory while

the consecutive large values will possibly create clusters of observations due to the

result of Theorem 1. Figure 5.7 presents the time series generated using a LBT

construction with the above “jump distribution” with p = 0.01. The small value

of p had an effect on the number of clusters created, i.e. (1 − p) × N , where N

denotes the number of observations. In our example N = 5, 000 and p = 0.01,

therefore we expect to get about 50 clusters.
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Figure 5.7: An LBT construction using a mixture of Beta distributions as “jump
distribution”

5.7 Simulation

There exist (at least) two different ways of simulating, n say, data points Y1, . . . , Yn,

from a latent branching tree; an approximate and an exact.
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The approximate algorithm is fairly easy to implement, because it is mainly based

on discretisation of the diffusion paths using Euler approximation. Nevertheless,

a significant drawback of such an algorithm is that at each step we need to store

the diffusion’s path. The more accurate the approximation we want to be, the

more costly is to store the path. Therefore, the approximate algorithm is not pre-

sented, and we propose instead an exact algorithm based on retrospective sampling

techniques (see for example, Beskos et al., 2006).

The main idea behind the exact algorithm relies on the fact that we do not really

need to store the full path of each of the diffusions but only their values at the

divergence time points τ = (τ1, . . . , τn−1). Because of the property of independent

incremements for the Brownian motion we are able to write down the conditional

distribution of the value X(τ) between any two given time points τ1 and τ2. Then,

we can implement the following algorithm:
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Exact Algorithm

1. Draw the n− 1 divergence points from t ∼ F;

2. Generate the first data point by simulating from a

Normal distribution: Y1 ∼ N(0, 1);

3. Draw X(τ1) by simulating from a Brownian Bridge between

0 and 1;

4. Generate the second data point (Y2) by simulating from

a Normal distribution: Y2 ∼ N(X(τ1), 1 − τ1);

5. Set i = 2, τ0 = 0 and τn = 1;

6. While (i < n) {

Define the sets L and U as follows:

• L = {j ∈ [0, i− 1] : τj < τi} and l = max(L)

• U = {j ∈ [l + 1, i− 1] : τj > τl & τj > τi}. Let τu = min(τj),

j ∈ U .

i. Simulate the value of the Brownian motion at the

ith divergence time point τi, X(τi) by drawing from a

Brownian bridge between τl and τu.

ii. Generate the ith data point by drawing from

a Normal distribution: Yi ∼ N(X(τi−1), 1 − τi−1);

iii. i = i+ 1;

}

In words the algorithm does the following: i) draw all the divergence time points

(τ1, . . . , τn) in advance, ii) draw Y1 ∼ N(0, 1), iii) simulate the value of the Brow-
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nian motion at the first divergence time point τ1 by drawing from a conditional

Normal distribution (i.e. Brownian bridge in the interval [0, 1]), iv) simulate the

second data point Y2 ∼ N(X(τ1), 1 − τ1)), v) simulate X(τ2) by drawing from a

Brownian bridge in the interval [0, τ1] or [τ1, 1] if τ2 < τ1 or τ2 > τ1 respectively,

vi) simulate the third data point Y3 ∼ N(X(τ2), 1 − τ2)). If we repeat the steps

(iv-vi) then we can get the desired number of data points.

As already explained, the great advantage of the exact algorithm is that is has a

much smaller computational cost than the approximate. In other words, given the

skeleton of a LBT we can fill in the intermediate points with diffusion bridges.

Figure 5.8 shows the skeleton of the LBT derived in Section 5.4.

Figure 5.8: A Skeleton of a LBT

5.8 Inference

This section focuses on how to draw inference for the parameters associated with

a LBT. In principle, the parameters of interest are the divergence time points

τ = (τ1, τ2, . . . , τn−1). If complete information was available, i.e. the observed

data (Y = Y1, Y2, . . . , Yn) and the state of the processes at the divergence time

points, X(τ) = (X(τ1), . . . , X(τn−1)) then inference for the times τ would rely on

maximization of the likelihood with respect to that vector of unknown parameters.

This is usually not an easy task especially when the parameter space is relatively
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big.

Furthermore, in practice, the location parameters X(τ) are also unobserved and

therefore inference for them should also be drawn. The maximization becomes even

harder in this case. We adopt a fully Bayesian approach where we treat all the

unobserved quantities as parameters. Without loss of generality, for illustration

we assume that chosen diffusion of the LBT, is a Brownian motion.

The choice of “jump distribution” can be viewed as prior for the divergence times,

τ while the parameters associated with it, as hyperparameter for which an appro-

priate (hyper)prior distribution should be specified. Before we show how we make

inference for the parameters, we adopt the following notation:

Notation

Let φ(x, µ, σ2) be the Gaussian density with mean µ and variance σ2. Lets denote

by φBB(xb, tb, ta, tc, xta , xtc) the conditional density of a Brownian bridge in the

interval (ta, tc) such that ta < tb < tc i.e.:

φ(x, µ, σ2) =
1

σ
√

2π
exp

{
− 1

2σ2
(x− µ)2

}
(5.2)

φBB(xb, tb, ta, tc, xta, xtc) =
1

σBB
√

2π
exp

{
− 1

2σ2
BB

(xtb − µBB)2

}
(5.3)

where µBB and σ2
BB are:

µBB =
xta(tc − tb) + xtc(tb − ta)

tc − ta
(5.4)

σ2
BB =

(tc − tb)(tb − ta)

tc − ta

(5.5)

Denote by F (·) be the distribution where the τi are drawn from and by f(·) the

corresponding probability density function. Denote the vector of parameters θ =

(θ1, θ2, θ3)
T where: θ1 = (τ1, . . . , τn−1)

T and θ2 = (X(τ1), . . . , X(τn−1))
T , θ3 the
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vector containing the ”jump parameters” (if any exist) and the data vector by

Y = (Y1, . . . , Yn)
T .

We define the following sets:

• L = {j ∈ [0, i− 1] : τj < τi}

• U = {j ∈ [l + 1, i− 1] : τj > τl & τj > τi}.

and denote by l = max(L). Also, we set τu = min(τj), j ∈ U .

5.8.1 Likelihood

The probability of obtaining a latent branching tree can be calculated once i) the

divergence points (τi, i = 1, . . . , n − 1), ii) their locations X(τi), i.e. the state of

the process at each time, iii) the data points Yi, i = 1, . . . , n are known and the

order of these events as well. The likelihood can be expressed as product of two

factors, one describing the tree (L1) and the other the data (L2). The first factor

is the probability of obtaining the (ordered) divergence points (τi) and the second

is the probability of obtaining the tree given the locations of the divergence points

(X(τi)) and the final data points (Yi) given the divergence times.

The likelihood can be expressed in terms of two products as follows:

f(Y ; θ1, θ2, θ3) =

n∏

i=1

f(τi) × φ(Y1, 0, 1)

×
n−1∏

i=1

(
φBB X(τi), τi, τl, τu, X(τl), X(τu) · φ(Yi+1, X(τi), 1 − τi)

)

(5.6)

It easy to see that L1 =
∏n

i=1 f(τi) and L2 is a product of normal densities. Since

the procedure described in the previous section generates a sequence of n data

points, the factor L2 is most easily obtained in the same way. The appearance of

the normal products is due to the choice of the stochastic process, i.e. Brownian
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motion. If instead we use a Gamma process, the distributions φBB(·) for the

intermediate points are substituted by Gamma densities.

Recall, the example presented in Section 5.4. The likelihood of observing the data

Y1, Y2, Y3, Y4 with this order, given the the divergence time points τ1, τ2, τ3 and

the corresponding states of the processes, X(τ1), X(τ2), X(τ3) can be derived as

follows:

L1 =
4∏

i=1

f(τi) (5.7)

L2 = φ(Y1, 0, 1)

× φBB(X(τ1), τ1, 0, 1, 0, Y1) × φ(Y2, X(τ1), 1 − τ1)

× φBB(X(τ2), τ2, τ1, 1, X(τ1), Y2) × φ(Y3, X(τ2), 1 − τ2)

× φBB(X(τ3), 0, τ1, 0, X(τ1)) × φ(Y4, X(τ3), 1 − τ3). (5.8)

f(X; θ1, θ2, θ3) = L1 × L2 (5.9)

An alternative way of rewriting L2 is the following:

L2 = φ(X(τ1), 0, τ1) × φ(Y1, X(τ1), 1 − τ1)

× φ(X(τ3), X(τ1), τ3 − τ1) × φ(Y4, X(τ3), 1 − τ3)

× φ(X(τ2), X(τ3), τ2 − τ3) × φ(Y3, X(τ2), 1 − τ2)

× φ(Y2, X(τ2), 1 − τ2)

The above expression shows that the likelihood can be expressed as the product of

the densities of all the segments of the tree. The density of each segment depends

on the choice of the diffusion. For instance, in this case where a Brownian motion

is used, the segments are Normally distributed. On the other hand, note that L1

depends only on the “jump distribution” and is independent of of the vector X(τ).
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5.8.2 Posterior Distribution

The likelihood and the prior are combined using Bayes theorem and we get up

to proportionality the full posterior distribution of the parameters which has the

following density:

π(θ1, θ2, θ3|Y ) ∝ L1 × L2 × π(θ1, θ2, θ3) (5.10)

where π(θ1, θ2, θ3) can also be written as π(θ1) × π(θ2) × π(θ3|θ1, θ2). Markov

Chain Monte Carlo (MCMC) methods need to be applied in order to draw samples

from the full posterior distribution of the parameters. The following algorithm can

be implemented:

MCMC Algorithm - Centered I

(Repeat the following steps)

1. Start the chain with initial values τ 0
1 , . . . , τ

0
n,

X0(τ1), . . . , X
0(τn), θ0

3;

2. Choose one (or more) of the divergence parameters j,

1 ≤ j ≤ n− 1 and update τj (individually) using

Metropolis Hastings;

3. Update each of the location parameters X(τj), 1 ≤ j ≤ n− 1

using Gibbs sampler;

4. Update θ3 using either Metropolis Hastings or Gibbs

sampler

We discuss the various issues regarding the implementation of the above centered

MCMC algorithm. For illustration we derive full conditional distributions of some

of the parameters involved in the example described in Section 5.4.
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• Update the divergence time points (θ1). The full conditional distri-

bution of [τi|τ−i, θ2, θ3] is not of standard form and therefore a Metropolis

Hastings algorithm is needed. Apart from a random walk Metropolis (RWM),

an independence sampler can be used. Optimal proposals can be chosen ac-

cording to the prior assumed for the times τ . If for instance, a uniform prior

is chosen then a Uniform(0,1) can be applied. On the other hand, if a Beta

distribution is assumed then this Beta distribution can be used as proposal.

The conditional distribution of τ1 given the rest is given as follows:

π(τ1| . . .) ∝ φ(X(τ1), 0, τ1) × φ(Y1, X(τ1), 1 − τ1) × φ(X(τ3), X(τ1), τ3 − τ1)

∝ 1√
τ1

exp

{
−1

2

(X(τ1))
2

τ1

}
× 1√

1 − τ1
exp

{
−1

2

(X(τ1) − Y1)
2

1 − τ1

}

× 1√
τ3 − τ1

exp

{
−1

2

(X(τ3) −X(τ1))
2

τ3 − τ1

}

(5.11)

• Update the location parameters (θ2). Because of the choice of the Brow-

nian motion as the driving diffusion of the LBT, the conditional distribution

of each of the location parameters X(τi) given the rest, [X(−τi), τ , θ3], is

Normally distributed with mean µi and variance σ2
i . It is easy to check that

µi is a linear combination of the rest X(−τi), and actually it only depends

on the the three adjacent states X(τj), j ∼ i of X(τi).

We derive the full conditional distribution of [X(τ1)|Y , τ , X(τ2), X(τ3)]:

π(X(τ1)| . . .) ∝ φ(X(τ1), 0, τ1) × φ(Y1, X(τ1), 1 − τ1) × φ(X(τ3), X(τ1), τ3 − τ1)
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∝ exp

{
−1

2

(X(τ1))
2

τ1

}
× exp

{
−1

2

(X(τ1) − Y1)
2

1 − τ1

}

× exp

{
−1

2

(X(τ3) −X(τ1))
2

τ3 − τ1

}

π(X(τ1)| . . .) ≡ N(µ1, σ
2
1) (5.12)

where

µ1 =

(
Y1

1 − τ1
+

X(τ3)

τ3 − τ1

)(
1

τ1
+

1

1 − τ1
+

1

τ3 − τ1

)−1

and

σ2
1 =

(
1

τ1
+

1

1 − τ1
+

1

τ3 − τ1

)−1

• Update the jump parameters (θ3). A Gibbs step or a Metropolis may be

needed in order to update θ3 depending on the form of the “jump distribution”

and also on its prior. For the example we are looking at, such parameter

does not exist.

5.9 MCMC Strategies

It might be the case that the standard MCMC algorithm described in the previous

section does not offer a well mixing Markov chain due to various problems. For in-

stance, dependence between the missing data (τ ,X(τ)) and the model parameters

θ3. In this section we describe alternative MCMC algorithms and an alternative

parameterisation which can be applied in order to draw samples from the posterior

distribution of the parameters given the observed data.
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5.9.1 Block Update of Location Parameters (θ2)

The 3rd step of the standard MCMC algorithm states that we can apply a Gibbs

sampler to update sequentially (deterministic scan) the location parameters X(τi),

i = 1, . . . , n − 1. Apart from this approach, we are able to update the location

parameters as a block by drawing from a multivariate Normal distribution. First

we show how we can draw from such a distribution and then we discuss when such

an alternative approach is of any practical benefit.

Consider the vector Z = (X(τ),Y )T = (X(τ1), X(τ2), . . . , X(τn−1), Y1, . . . , Yn)
T

of length 2n− 1. Since:

π(X(τ),Y |τ ) ∼ N
(
0, Q−1

)
(5.13)

where Q can expressed as follows:

Q =



Qxx Qxy

Qxx Qxy




It is easy to construct the matrix Q. For its off-diagonal elements, qij, where i 6= j:

qij =





0, if Zi and Zj are not connected

− 1
dij
, if Zi and Zj are connected

(5.14)

where dij denotes the length of the branch of the tree which involves the elements

of Z. The diagonal elements are given from the following form:

qii = −
2n−1∑

j=1,j 6=i

qij +
1

τi
× 1τi (5.15)



CHAPTER 5. LATENT BRANCHING TREES 213

where

1τi =





1 if τi = min (τj, j = 1, . . . , n− 1)

0 otherwise

Note that the diagonal elements are equal to the inverse of the conditional variance

of each of the components:

qii = (var(Zi|Z−i))
−1 = (var(X(τi)|X−τi , τ ,Y ))−1 (5.16)

Once the matrix Q is obtained, then is relatively easy to obtain the conditional

distribution of X(τ) given the observed data (Y ) and the divergence times τ

(Chatfield and Collins, 1980).

π(X(τ )|Y , τ ) ∼ N
(
−Qxx ·Qxy · Y , Q−1

xx

)
(5.17)

Therefore, Equation (5.17) allows us to update the location parameters as a block

by drawing from an n − 1 dimensional Normal distribution and we can then im-

plement the following algorithm:
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MCMC Algorithm - Centered II

(Repeat the following steps)

1. Start the chain with initial values τ 0
1 , . . . , τ

0
n,

X0(τ1), . . . , X
0(τn), θ0

3;

2. Choose one (or more) of the divergence parameters j,

1 ≤ j ≤ n− 1 and update τj (individually) using

Metropolis Hastings;

3. Update location parameters X(τj), 1 ≤ j ≤ n− 1

as a block by drawing from a multivariate Normal

Distribution using Equation (5.17);

4. Update θ3 using either Metropolis Hastings or Gibbs

sampler

depending on the parameter.

The question which remains to be answered is whether block updating of the

location parameters can improve the mixing or not. Roberts and Sahu (1997)

derive rates of convergence of the Gibbs sampler for Gaussian target distributions.

The authors discuss various updating strategies such as deterministic scan and

block schemes and they also study the effect of dimensionality and correlation

structure on the convergence rates using different schemes. The following theorem

is taken from Roberts and Sahu (1997):

Theorem 2 If all partial correlations of a Gaussian target density are non-negative,

i.e. all the off diagonal-elements of Q are non-positive, then the block update

scheme has faster rate of convergence than deterministic scan.

In other words, this theorem states that if qij < 0 for all i 6= j, then block update

of the location parameters can only improve mixing. Within a LBT framework,
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the form of Equation (5.14) assures that all the off-diagonal elements of matrix

Qxx are non-positives since dij is defined to be strictly positive. Therefore, this

suggests that block update of the missing data is worthwhile.

The matrix Q can be obtained for example presented in Section 5.4:

Qxx =




q11 0 −1/(τ3 − τ1)

0 q22 −1/(τ2 − τ3)

−1/(τ3 − τ1) −1/(τ2 − τ3) q33




where

• q11 = 1/τ1 + 1/(τ3 − τ1) + 1/(1 − τ1),

• q22 = 1/(τ2 − τ3) + 1/(1 − τ2) + 1/(1 − τ2),

• q33 = 1/(τ3 − τ1) + 1/(τ2 − τ3) − 1/(1 − τ3).

Qxy =




−1/(1 − τ1) 0 0 0

0 −1/(1 − τ2) −1/(1 − τ2) 0

0 0 0 −1/(1 − τ3)




Qyx =




−1/(1 − τ1) 0 0

0 −1/(1 − τ2) 0

0 −1/(1 − τ2) 0

0 0 −1/(1 − τ3)




Qyy =




1/(1 − τ1) 0 0 0

0 1/(1 − τ2) 0 0

0 0 1/(1 − τ2) 0

0 0 0 1/(1 − τ3)
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5.9.2 Integrate the Location Parameters Out (θ3)

Recall that the joint distribution π(X(τ),Y |τ ) gives us the ability to write ex-

plicitly the marginal distribution of Y |τ by integrating out the vector X(τ):

π(τ , θ3|Y ) =

∫

X(τ)

π(τ ,X(τ), θ3|Y ) dX(τ ) (5.18)

Using matrix calculation and results from multivariate analysis (see for example,

Chatfield and Collins, 1980):

π(Y |τ , θ3) ∼ N
(
0,
(
Qyy −Qyx ·Q−1

xx ·Qxy

)−1
)

(5.19)

Having obtained the likelihood having location parameters integrated out(π(Y |τ , θ3)),

it is easy then to obtain the marginal posterior distribution distribution of τ , θ3|Y :

π(τ , θ3|Y ) ∝ π(Y |τ , θ3) × π(τ ) × π(θ3|τ ) (5.20)

We can then implement the following centered algorithm having as target distri-

bution π(τ , θ3|Y ).
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MCMC Algorithm - Centered III

(Repeat the following steps)

1. Start the chain with initial values τ 0
1 , . . . , τ

0
n, θ0

3;

2. Choose one (or more) of the divergence parameters j,

1 ≤ j ≤ n− 1 and update τj (individually) using

Metropolis Hastings;

3. Update θ3 using either Metropolis Hastings or Gibbs

sampler

depending on the parameter.

5.9.3 Efficient Non-Centered Parameterisations

The dependence between the missing data and the model parameters often can

cause problems with the mixing of the Markov chains. Within a LBT framework,

once the prior of the divergence times involves some unknown parameters to be

estimated, i.e. θ3 then a priori correlation between τ and θ3 is induced. Such

problems can be overcome by applying a non−centered parameterisation (Pa-

paspiliopoulos, 2003, Papaspiliopoulos et al., 2003) (see also Section 1.9) where

we can break the dependence link between missing data and model parameters

by introducing a reparameterisation which makes the missing data and the model

parameters a priori independent (see Figure 5.9).
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Figure 5.9: Graphical model of the centered (top) and and non−centered
hierarchical parameterisation of the model

The break of that dependence link can be done by introducing a change in variables

from

(τ ,X(τ), θ3) → (U ,X(τ), θ3)

where Ui = g(τi, θ3), i = 1, . . . , n − 1 and g(·) is a deterministic function. In

principle, any one to one function can be used, however an obvious choice is to

derive a function using the inverse cumulative distribution function (Inverse CDF)

method by assigning

Ui = F (τi|θ3)

where F (·) denotes the distribution function of the random variables τi, i =

1, . . . , n − 1. This leads to the fact that a priori each of the transformed vari-

ables is uniformly distributed in [0, 1]:

Ui ∼ U(0, 1), i = 1, . . . , n− 1.

Once we adopt a NCP we can implement the following MCMC algorithm:
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Non-Centered (NC) MCMC algorithm

(Repeat the following steps)

1. Start the chain with initial values for the parameters:

τ 0,X(τ)0, θ3
0;

2. Update X(τ) either by deterministic scan, or a block

update scheme;

3. Obtain a sample of (τ 1, θ3
1) via a centered algorithm;

4. Get U1
i = g

(
τ 1
i , θ3

1
)
;

5. Update θ3 using a Metropolis Hastings step by proposing

θ3
2 ∼ q

(
θ3

1
)
and accept it with probability :

1 ∧ π(θ3
2|U ,X(U))

π(θ3
1|U ,X(U))

q(θ3
1, θ3

2)

q(θ3
2, θ3

1)
;

[Note that by updating θ3, the divergence times τi’s are updated

as well since τi
2 = g−1(U1

i , θ3
2), i = 1, . . . , n]

where q(·) denotes the proposal distribution for the Metropolis step of the param-

eter θ3. Now we discuss possible proposal distributions which can be used. Denote

by θ3
c the current value and by θ3

′ the proposed value.

1. Random Walk Metropolis:

θ3
′ ∼ N(θ3

c, σ2
θ)

Depending on the sign of the parameters of interest, a multiplicative random

Walk can also be applied.

2. ”Pseudo-Gibbs” Sampler: Suppose that the full conditional distribution
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of θ3 is of a standard (closed) form. We can then use this distribution as a

proposal:

θ3
′ ∼ π(θ3

′|τ c,X(τ)c)

3. Adaptive Sampling. If we run one of the centered algorithms for an ade-

quate number of observations it is possible that a good approximation of the

marginal posterior distribution of the “jump parameters” can be derived.

If we are able approximate this distribution with one of a standard form

(i.e. Gamma, Normal or others), then such a distribution can be used as a

proposal.

When such proposal is used, much care should be taken. If the approximation

is bad, then this will lead to an inefficient proposal. It might also be the

case that the proposal distribution will have lighter tails than the target and

therefore we will not explore the tails of the target distribution appropriately.

It is then always better to allow for a proposal with heavier tails even if this

causes reduction to the acceptance probability of the independence sampler.

4. Normal Approximation If the divergence times are known, then it may

be relatively easy to derive maximum likelihood estimators (MLEs) for the

parameters θ3 by differentiation of the likelihood. Denote by θ̂3 and σ̂(θ3)

the MLEs and their corresponding standard errors. We can use the following

proposal:

θ3
′ ∼ N

(
θ̂3, εσ̂(θ3)

2
)

for some ε > 1 so as to allow the proposal to do big jumps and avoid similar

problems regarding the tails of the target distribution as mentioned in the

previous proposal.

Apart from a fully non−centered parameterisation (NCP) it is also possible to

construct a partially non−centered parameterisation (PNCP) where a percentage
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of the missing data is parameterized as centered and the rest as non−centered.

Papaspiliopoulos et al. (2003) conclude that when the missing data are more infor-

mative about the model parameter, then a NCP is preferred than a CP. Therefore,

an algorithm which will adjust for the proportion of the information presented in

the data and “switching” between a CP and NCP, could out perform the CP

or the NCP. Such a parameterisation is called “partially non−centered” and be

implemented as follows:

The set of the divergence times τ = (τ1, . . . , τn−1) is partitioned in two groups: C

and U . Let τ C and τU denote the divergence times which belong in the groups C

and U respectively. For the times which belong to U , let

Uj = g(τj, θ3), j ∈ U .

In other words we propose a change in variable

(τ ,X(τ), θ3) → (τi,X(τ), Uj, θ3) for i ∈ C, j ∈ U

It easy to see that if U = Ø, then we get the centered parameterisation. Further-

more, if for 1 ≤ i ≤ n− 1 we let:

Zi =





1 with probability µi

0 with probability 1 − µi

(5.21)

then set C = {i : Zi = 1} and U = {i : Zi = 0}. Once the posterior distribution

of θ3 is derived by taking into account the Jacobian for the transformation of the

divergence times points. Then following PNCP algorithm can be implemented:
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Partially Non−Centered MCMC Algorithm

(Repeat the following steps)

1. Start the chain with initial values: τ 0,X(τ)0, θ3 ;

2. Update X(τ)1
using either deterministic scan or block

update;

3. Obtain a sample of (τ 1, θ3
1) using a centered algorithm ;

4. Update Z and hence C and U ;

5. Get U1
j = g

(
τ 1
j , θ3

1
)
, j ∈ U ;

6. Update θ3 using Metropolis Hastings Algorithm.

[Note that by updating θ3, the divergence times τj’s are updated

as well since τj
2 = g−1(U1

i , θ3
2), j ∈ U ]

Apart from the presented PNCP, other exist as well. Following Papaspiliopoulos

et al. (2003) instead of non−centering some of the divergence times and some

not, we can partially non−center each of the times τi. An example of such a

PNCP is given in Section 5.10. Section 5.10 considers various examples where

such reparameterisations are applied.

5.10 Applications on Simulated Data Sets

We are interested in assessing the performance of models obtained via a LBT

construction and also the efficiency of the different MCMC strategies presented in

Section 5.9. Therefore, in this section, we will simulate some datasets using the

exact algorithm (see Section 5.7) considering different “jump distributions” (JD).

Then we draw inference for the parameters of interest, such as the divergence
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times τi, i = 1, . . . , n− 1 and also for the model parameters associated with them.

Comparisons between the different MCMC strategies are also given.

In order to assess model’s efficiency to capture the true “jump distribution” we

look at the empirical cumulative distribution function (ECDF) of the resultant

samples of the posterior distribution of τ and compare it with the true CDF. In

addition, another measure of efficiency is to compare the average divergence time

τ obtained from the posterior samples with the true one. The average divergence

time can be calculated as follows:

Denote by K the number of samples obtained via MCMC and by ti the posterior

sample of the ith divergence time. Then we easily obtain:

τ =
1

N

N∑

i=1

(
1

K

K∑

j=1

tij

)
(5.22)

5.10.1 JD: Uniform

We simulate a dataset which consists of n = 200 points where the divergence

times points τ1, . . . , τn−1 are uniformly distributed. Such a “jump distribution”

does not involve any parameters, and therefore we are interested in the posterior

distribution of the times given the observed data, i.e. π(τi|Y ), i = 1, . . . , n − 1.

We apply the standard centered algorithm (see Section 5.8.2). The Metropolis

Hastings step needed to update the times is performed by using an independence

sampler having a Uniform(0,1) as proposal distribution.

Figure 5.10 shows a posterior sample of the obtained CDF of the divergence time

points τ and reveals a pretty good fit. The average divergence times is equal to

0.497, close to the true value (equal to 0.5).

Figure 5.11 shows the posterior distribution for three different divergence times,

τ12, τ20, τ22. Recall that in general, τi refers to the time at which the (i+1)th diffu-

sion has diverged in order to obtain the data point Yi+1. The actual observations

related to these three time points we are focusing at are given below:
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Figure 5.10: ECDF of times for the Uniform “jump distribution” - Red line shows
the true CDF



CHAPTER 5. LATENT BRANCHING TREES 225

(Y12, Y13, Y20, Y21, Y22, Y23) = (−2.043,−1.067,−1.607,−1.683,−2.032, 1.056)

Intuitively, we would expect for consecutive observations whose difference Yi+1−Yi
is small, for instance Y20, Y21, the posterior distribution of the related divergence

time, has most of its probability mass around values close to one. On the other

hand, if such a difference is relatively big, for instance Y22, Y23, then it is more

likely that the posterior distribution will be concentrated around values closer to

zero than to one. If this difference is neither very big nor very small, then it is

harder be very confident about the divergence time point and therefore we would

expect a rather flatter distribution. Figure 5.11 indicates the fairly well capability

of the model to capture the true and unknown Uniform “jump distribution” and

the posterior distribution of the various divergence time points.
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Figure 5.11: Posterior distributions of the divergence times τ20, τ22, τ12

Regarding the mixing of the MCMC algorithm it turns out to be relatively good

despite the large dimension of the parameter’s space which need to be imputed

(see Figure 5.12 which shows the ACF plot of the average divergence time). Other

possible strategies can also be considered such those described in Section 5.9 to

obtain posterior samples for the parameters of interest.
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Figure 5.12: ACF plot of the average divergence time point - JD:U(0, 1)

5.10.2 JD: Fréchet

Table 5.2 shows that if a Fréchet “jump distribution” is chosen, whose density is

given by:

f(τi) =
1

τ 2
i

exp

{
1 − 1

τi

}
, 0 ≤< τi ≤ 1

then the realizations obtained from a LBT are very heavily correlated. We apply

the standard centered MCMC algorithm and derive the posterior distributions of

the divergence times. A Uniform proposal is used to update the times (as before).

Nevertheless, one could also propose a new value for the parameters τ by drawing

values from the prior, i.e. the Fréchet distribution using inverse CDF method.

We simulate again n = 200 observations using a LBT where the divergence times

follow a Fréchet distribution. Assuming such a prior over the times, π(τ ), we

obtain posterior samples, π(τi|Y ), i = 1, . . . , n − 1, for each of the parameters.

We derive a sample from posterior distribution of the CDF of the times and again
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the model performs really well (see Figure 5.13). Apart from this, the estimated

average divergence, τ , time (using Equation 5.22) is equal to 0.592, fairly close to

the true value (0.595). In addition the mixing of τ seems to be relatively good (see

Figure 5.14) taking into account the large dimension of the parameter space. As

before, block update of the locations parameters, or integrating them out is also

feasible.
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Figure 5.13: ECDF of times for the Fréchet “jump distribution” - Red line shows
the true CDF
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Figure 5.14: ACF of the average divergence time point - JD: Fréchet

5.10.3 JD: Beta(α, 1)

So far, the examples we have considered did not involve any model parameters

(θ3). We now turn our attention to a simulated dataset from a LBT by assuming

the following Beta(α, 1) “jump distribution” :

f(τi) = ατα−1
i , 0 ≤ τi ≤ 1, a > 0

In this case apart from drawing the posterior distribution of each of the divergence

times, we are also focusing on making inference for the “jump parameters” as well,

i.e. θ3 = α. The likelihood term L1 is equal to

L1 =

n−1∏

i=1

f(τi)

=

n−1∏

i=1

ατα−1
i
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= αn−1

n−1∏

i=1

exp
{
log
(
τα−1
i

)}

= αn−1 exp

{
(α− 1)

n−1∑

i=1

log (τi)

}
(5.23)

The other likelihood term L2 refers to the tree structure and is given in Equation

5.8. Once the Beta(α, 1) prior is assigned, then a prior for the hyper-parameter

α also needs to be adopted. Since that parameter is strictly positive we choose a

conjugate Gamma prior with parameters λα and να:

π(α) ≡ Ga(λα, να).

The full posterior distribution of the parameters θ = (θ1, θ2, α)T , where θ1 = τ

and θ2 = X(τ) is given in Equation

π(θ|Y ) ∝ αλα−1 exp
{
−α
(
να −

∑
log (τi)

)}
× L2(θ1, θ2). (5.24)

The full conditional posterior distribution of the jump parameter α is then easily

derived due to the chosen conjugate prior:

π(α|X(τ), τ ) ≡
(
n + λα − 1, να −

n−1∑

i=1

log(τi)

)
(5.25)

We construct an MCMC algorithm which is based on the centered algorithm de-

scribed in Section 5.8.2 and is shown below:
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Centered Algorithm - JD : τ ∼ Beta(α, 1)

(Repeat the following steps)

1. Start the chain with initial values: α0, τ 0
j , X0(τj),

j = 1, . . . , n− 1;

2. Choose uniformly one (or more) divergence points

τj and update it (them) using Metropolis Hastings

algorithm;

3. Update each of the location parameters X(τj), 1 ≤ j ≤ n− 1

using Gibbs sampler;

or

update them as a block;

4. Update α by using Gibbs Sampler and drawing from its

conditional distribution (5.25).

The form of the conditional distribution of α allow us to perform a Gibbs step

to update it. On the other hand, a Metropolis-Hastings step is needed to update

the times τ . First, a Uniform proposal was tried, but due to its inefficiency, a

Beta(αc, 1) was chosen which turned out to be perform rather better than the

Uniform proposal. In detail, Step 2, was implemented as follows:

2.1 Choose uniformly one (or more) divergence points τj, j = 1, . . . , n−

1;

2.2 Propose τ ′j:

τ ′j ∼ Beta(αc, 1);
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2.3 Accept τj, with probability:

1 ∧ π(τ ′|X(τ),Y , α)

π(τ |X(τ),Y , α)

τα
c−1

j

τ ′j
αc−1

where τ ′ = (τ1, τ2, . . . , τj−1, τ
′
j, τj+1, . . . , n − 1). Note that αc denotes the current

value of parameter α. The algorithm states that we should choose uniformly one

of the τj’s and propose to update it. It turns out that the more τj’s we choose to

update then better the mixing of the Markov chain is.

Integrate α out

In addition, because of the closed form of the conditional posterior distribution

of the model parameter, π(α|τ ,X(τ),Y ), we can integrate it out and have as a

target distribution:

π(τ ,X(τ)|Y ) =

∫

α

π(α, τ ,X(τ)|Y ) dα (5.26)

The Step 2 of the MCMC algorithm has to be modified in order to be applied

properly. This is because we cannot propose τ ′j ∼ Beta(αc, 1) since α does not

exist in the parameter space any more. However, we can substitute αc either with

a fixed value which may obtained from a pilot study. Apart from such a choice, we

could also update the divergence times by using a maximum likelihood estimator

of α given the current values of the Markov chain:

2.1 Evaluate the MLE of α given the current values of the divergence

times τ c,

αcML =
1 − n∑n−1

i=1 log(τ ci )
;

2.2 As the Step 2.1 of the previous algorithm;

2.3 As the Step 2.2 of the previous algorithm;

2.4 As the Step 2.3 of the previous algorithm;
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The true value of α is 4.0 and a rather non-informative prior is adopted − a

Gamma(0.1, 0.1) i.e. mean equal to 1 and variance equal to 100. First we apply,

the standard MCMC algorithm and apart from concentrating on the divergence

time τi’s, i = 1, . . . , n − 1, we also look at the model parameter α. In terms of

model fit, we derive a posterior sample from the CDF of the divergence time points

and the posterior density of α. Figures 5.15 and 5.16 show a pretty good fit since

the mode of the posterior distribution of α is around value 4.0.
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Figure 5.15: Posterior distribution of α obtained via the Centered MCMC
algorithm

Nevertheless, the mixing of “trace” of parameter α is very slow and this can lead

to inaccurate inference (see Figure 5.17). Such a poor mixing can be explained by

looking at a scatter plot between the missing data (τ ) and the model parameter

(α). Figure 5.18 indicates a high correlation between the average divergence time

τ and α. If we consider these two as the only parameters of interest, then it is well

known for a two-state Gibbs sampler the convergence of the algorithm is linked to

the correlation between the parameters (Amit, 1991). Although the situation here
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Figure 5.16: ECDF of times for the Beta(α, 1) “jump distribution” - Red line
shows the true CDF
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is far more complicated than a two-state Gibbs sampler, this gives us an intuition

why such a problematic mixing occurs. A non−centered reparameterisation gets

around this problem of high correlation by breaking down the dependence between

the divergence times τ and α. We show now the techniques described in Section

5.9.3 can be applied for this case-specific Beta(α, 1)-“jump distribution” .
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Figure 5.17: ACF plot of the posterior sample obtained via the centered
algorithm
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Non−Centered Parameterisations

Figure 5.19 shows a graphical representation of a centered and a non−centered

pararameterisation of a LBT model with a Beta(α, 1) prior over the divergence

times.
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Figure 5.19: Centered (top) and Non−Centered Parameterisations

The first step needed for the implementation a NCP is to choose a function g(·)

which will make the missing data and the parameter of interest a priori inde-
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pendent. As suggested already (see Section 5.9.3), the cumulative distribution

function of each of the missing data can be used. We can introduce the following

random variables:

Ui = ταi

such that a priori, Ui ∼ U(0, 1), i = 1, . . . , n− 1. The Jacobian of such transfor-

mation is:

|J | = αn−1

n−1∏

i=1

U
1− 1

α
i

Once a change in variables has been introduced, then the full posterior distribution

with respect to the new variables must be derived:

π(α,X(U),U) ∝ L2(U ,X(U)) · αλα−1 exp {−ναα} (5.27)

where X(U) denotes the vector location parameters with respect to the introduced

variables Ui, i = 1, . . . , n− 1 instead of the times τi, i = 1, . . . , n− 1. Note, that

due to the choice of function g(·), the term L1 (see Equation 5.23) which appears

in (5.24) cancels with the Jacobian term above. In addition, the full conditional

distribution of α is not of closed form any longer. Therefore, a Metropolis-Hastings

step is needed to update it. Using the general algorithm of performing a NCP the

following case-specific one can be adopted:
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Non-Centered (NC) MCMC algorithm - JD: Beta(α, 1)

(Repeat the following steps)

1. Start the chain with initial values for the parameters:

τ 0,X(τ)0, α0;

2. Update X(τ) either by deterministic scan, or a block

update scheme;

3. Obtain a sample of (τ 1, α1) via a centered algorithm;

4. Get U1
i = g (τ 1

i , α
1);

5. Update α using a Metropolis Hastings step by proposing

α2 ∼ q (α1) and accept it with probability :

1 ∧ π(α2|U ,X(U))

π(α1|U ,X(U))

q(α1, α2)

q(α2, α1)
;

[Note that by updating α, the divergence times τi’s are updated

as well since τi
2 = U

1(1/α2
)

i , i = 1, . . . , n]

Based on the methods described in Section 5.9.3 we can update α using the fol-

lowing proposals:

• Random Walk Metropolis: q(·) ≡ N(α, σ2
α). Then, the acceptance rate

becomes:

1 ∧ π(α
′|X(U),U)

π(α|X(U),U)
.

Alternatively, a multiplicative random walk can be used.

• “Pseudo-Gibbs” Sampler: q(·) ≡ Ga
(
n + λα − 1, να −

∑n−1
i=1 log τi

)
. The

proposed value is accepted with probability equal to:
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1 ∧ π(α
′|X(U),U)

π(α|X(U),U)

q(α
′

, α)

q(α, α′)

• Normal Approximation: Denote by α̂ = 1−n∑n−1
i=1 log(τc

i )
and by σ(α̂) = α̂2

n−1
.

Propose a new value as follows:

α′ ∼ N (α̂, εσ (α̂))

where ε > 1 and τ ci , i = 1 . . . , n−1 denote the current value of the divergence

times.

• Adaptive Sampling: can be applied very straightforward (for more details,

see Section 5.9.3).

Apart from a fully non−centered reparameterisation (NCP), a partially non−centered

parameterisation (PNCP) exists as well which can be implemented in various ways.

The first has already been described in Section 5.9.3 by non−centering some of the

divergence times. On the other hand, another way of non−centering is to decide

at each MCMC step, whether to center or to non−center all the the times τ .

Figure 5.20 shows the significant improvement in efficiency gained by using a

NCP in comparison to the centered algorithm (see Figure 5.17). Note that the

available options for updating α were tried and all gave similar results. It should be

mentioned that Step 3, where a sample of (τ , α) via centered algorithm is needed,

is implemented by having as target, the posterior distribution having α integrated

out, i.e. π(τ ,X(τ)) since it makes the algorithm more efficient. The integrated

autocorrelation time (IAT) was computed for both algorithms showing a reduction

of a factor of 4.5 for the non−centered algorithm compared to the centered.

Concluding, we realize that once high correlation between the missing data and

the model parameter exists, a NCP seems to be essential in order improve the rate

of convergence of the standard (CP) MCMC algorithm. Such a parameterisation

is needed even more when the dimension of parameter space (i.e missing data,
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model parameters) since dependence gets even larger.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF plot of α − Efficient Non−Centered Algorithm

Figure 5.20: ACF plot of the posterior sample obtained via the non−centered
algorithm

5.11 An Application on Genome Scheme Data

The simulation study performed in Section 5.10 showed a very good performance of

the LBT framework. In this section, we are concerned with analysing some genome

scheme data. First, before performing any sophisticated analysis we describe the

nature of the data and explain why such a dataset could be modelled within our

proposed framework.

5.11.1 Isochores

The availability of the human genome draft sequence offers an exceptional opportu-

nity to bring sequence patterns into line with the chromosome structures revealed

by modern molecular cytogenetics. The human genome is a mosaic of isochores,
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which are long DNA segments (more than 300 kb on average) which are relatively

homogeneous in G+C (above a size of 3kb) when compared to the pronounced

heterogeneity throughout the entire genome. Higher, Lower and Medium-density

genomic segments are respectively called H, L and M isochores. The isochore

concept has been considered a “fundamental level of genome organisation” (Eyre-

Walker and Hurst, 2001).

The reason why the isochores are relevant for genome biology is based on ob-

servations of gene and short interspersed repetitive elements (SINE) densities, as

well as recombination frequency, which are all higher in (G+C)-rich isochores,

whereas long interspersed repetitive elements (LINE) are denser in (G+C)-poor

isochores (see for example, Bernardi, 2000, Oliver et al., 2004, and the references

therein). Moreover, Human isochores were first identified by density-gradient ul-

tracentrifugation of bulk DNA, and differ in important features, e.g. genes are

found predominantly in the GC-richest isochores. In addition, the density of genes

has been shown to be higher in H isochores than in L ones. Genes in H isochores

are more compact with a smaller proportion of intronic sequences and code for

shorter proteins than do genes in L isochores (see Melo de Lima et al., 2005, and

the references therein).

5.11.2 Existing Methods

The recent availability of the draft human genome sequence allowed for a direct

test of the isochore model and it was hoped that isochores could be identified at

the sequence level. Since then, the existence of isochores in the human genome

has been the object of an active debate. Therefore, different approaches have been

developed for isochore prediction. Homogeneous regions such as isochores are cur-

rently ascertained by plain statistics on moving windows of arbitrary length. In

other words, a long DNA sequence is divided in windows of size 3,000 say, and the

numbers of C+Gs within each window is counted. Therefore, usually predictions
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of isochore boundaries are based on this moving-window plot of C+G content.

Nevertheless, it has been argued that the basic model seems inappropriate for var-

ious reasons such as long-range correlations (Smith and Lercher, 2002), correlation

between segment means and length (Oliver et al., 2002, Bernaola-Galvan et al.,

2002) and the existence of multimodal distributions of means (Bernardi, 2000). On

the other hand, a LBT framework does not require such assumptions and therefore

it would be of interest what kind of information can be drawn from such datasets.

5.11.3 The Data

The major histocompatibility complex (MHC) is one region of DNA sequence

of an organism’s genome, which contains H3 and L2 isochores. The available

dataset consists of a DNA-sequence of length 3, 675, 000. Windows of length of

3, 000 were chosen and the number of C+Gs within each of them is shown in

Figure 5.21. Figure 5.21 reveals a pattern similar to the one shown in Figure 5.1

with less distinct “clusters”. Is is interesting to see that marginally the data are

Normally distributed (see left hand plot of Figure 5.23) with mean and standard

error around 1382 and 193 respectively. Moreover, the data appear to have a

long-range correlation (see Figure 5.22). The dataset is divided into two subsets

according to the 820th observation which can be considered as a change-point.

Although they are short time series, the ACFs for both series show similar long-

range dependence behavior. Figure 5.24 suggests that the long-range dependence

of the whole series is not due simply to non-stationarity. We transform the data to

a N(0, 1) distribution and in association with the characteristics described above

we assume that the time series falls within a LBT class.

5.11.4 A Fully Bayesian Analysis

Assuming that the data follow within a LBT structure, we will adopt a Bayesian

approach in order to draw inference for the parameters of interest, i.e. the di-
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Figure 5.21: Number of C+Gs included in each window of 3,000 from the DNA
sequence
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Figure 5.22: ACF and PACF plot of the normalised data
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Figure 5.23: Histogram of the non-normalised (left) and normalised (right) data.
Red lines reveals the Normal curve.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF plot for the first 819 observations

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

ACF plot for the last 405 observations

Figure 5.24: ACF plots for two subsets of the data
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vergence times (τ ) and the location parameters (X(τ)). We follow the approach

which was described in detail in Section 5.8.
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Figure 5.25: ACF plot of the data. The green line indicates the rate of decay of
the covariance function according to an assumed Fréchet distribution

First, a prior over the distribution of the divergence times should be assigned. A

first attempt is to assume a Uniform distribution so as to let the data to modulate

the shape of the “jump distribution” . However, the significantly high correlation

between the observations indicates that a “jump distribution” similar to Fréchet

distribution might be also appropriate. Figure 5.25 shows that such an assumption

seems very sensible as it appears to have a pretty good fit with the estimated ACF.

Therefore, we decide to perform the Bayesian analysis by considering these two

rather different prior distributions and compare the results.

Prior I : τi ∼ f(·) where f(τi) = τ−2 exp

{
1 − 1

τ

}

Prior II : τi ∼ f(·) where f(τi) = U(0, 1)
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for i = 1, . . . , N − 1 and let N = 1224 denote the number of observations. It is

straightforward to apply the following (centered) algorithm:

MCMC Algorithm

(Repeat the following steps)

1. Start the chain with initial values τ 0
1 , . . . , τ

0
n,

X0(τ1), . . . , X
0(τn);

2. Choose one (or more) of the divergence parameters j,

1 ≤ j ≤ n − 1 and update τj (individually) using Metropolis

Hastings algorithm;

3. Update each of the location parameters X(τj), 1 ≤ j ≤ n− 1

using Gibbs sampler;

We have chosen an independence sampler to update the divergence times by

proposing from the corresponding prior, i.e. if a Uniform prior is chosen (Prior I):

2.1 Propose τ
′

j ∼ U(0, 1);

2.2 Accept τ
′

j with probability

1 ∧ π
(
τ

′

j |τ−j|X(τ)
)

π
(
τ

′

j |τ−j|X(τ)
)

Alternatively if the second prior (Prior II) is used then:

2.1 Propose τ
′

j ∼ Fréchet;

2.2 Accept τ
′

j with probability

1 ∧ π
(
τ

′

j |τ−j|X(τ)
)

π
(
τ

′

j |τ−j|X(τ)
)
τ−2
j exp

{
1 − 1

τj

}

τ
′−2

j exp

{
1 − 1

τ
′

j

}
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The location parameters are updated via Gibbs sampler as shown in Section 5.9.

Note that neither Prior I nor Prior II are associated with “jump parameters” .

5.11.5 Results

We run the aforementioned MCMC algorithms to obtain samples from the poste-

rior distribution of the divergence time points:

π(τi|Y ), i = 1, . . . , 1224

which actually contain all the information needed to infer about the covariance

structure of this dataset. Note that we have assumed two different priors about

the “jump distribution” and therefore it would be very interesting to see the effect

of both to the posterior distribution of the parameters of interest. The first 15

observations of the dataset are shown below:

-0.819757754 -0.004661498 0.366774770 -0.788804732 -0.463797997

1.924743563 0.144944777 -0.814598917 -0.458639160 -1.578106802

-0.566974738 0.650510809 1.610054503 1.357271487 0.377092444

In a similar manner to the simulation study performed in Section 5.10 we are

interested in examining the posterior distribution of a divergence time τj, j =

1, . . . , N − 1. Recall, that each of the times represents the time at which the

(j + 1)st diffusion diverged to another independent path to generate the (j + 1)st

observation Yj+1. Figure 5.26, 5.27, 5.28 show the obtained posterior distributions

for some arbitrarily chosen divergence times. We decide to visualise the posteriors

via histograms instead of kernel density estimates to avoid problems of the latter

showing probability mass for regions outside the interval [0, 1].

Figure 5.26 shows that most of the probability mass of the marginal posterior

distribution of τ4, is concentrated around values close to one regardless of the

choice of the prior. However, the effect of the Fréchet prior which places much
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more probability mass at large values than the Uniform is transparent. Such a

result is consistent with the structure of the LBT since Y4 and Y5 are relatively

close.

On the other hand, the difference between Y5 and Y6 is much bigger. Therefore the

posterior distribution of τ5 obtained using the uninformative (Uniform) prior has

located most of its probability mass at values close to zero (see top plot in Figure

5.27). This is not the case where the Fréchet prior is assumed and the mode of the

posterior distribution is around 0.4, clearly affected by such an informative prior.

This also holds for the divergence time τ6 which is related with observations Y6

and Y7. Similarly, the informative prior “drags” the mode of π(τ6|Y ) to 0.4 while

the Uniform prior lets it to be close to zero (see Figure 5.28). Posterior inference

is drawn for the other divergence times as well and they all shared a common

structure which is relation with the properties of LBT.

Summarizing, the clear message from this analysis is that extra carefulness is

needed when deciding which prior to assume over the divergence times. Never-

theless, if an non−informative prior is used, such as a Uniform, then information

about the parameters is based only on the likelihood.

Model Adequacy

We now empirically investigate whether an infinite order model based on a LBT

framework seems suitable for this specific dataset or a simpler Markov model could

be used instead.

Having obtained the posterior distribution of each of the divergence times τi, i =

1, . . . , n − 1, we simulate 1,000 realisations from the model (i.e. observations,

Y1, Y2, . . . , Yn). Apart from the the partial autocorrelation function we also obtain

a smoothed spectrum of each of the series. Moreover, a realisation of the model

has been produced by treating the averages of the posterior distributions π(τi|·)

as point estimates for each of the divergence time points.
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We first simulate a realisation of the fitted model using the posterior means of

the divergence times. Figure 5.29 shows that the obtained path has a very similar

pattern to the one obtained from the real data (See Figure 5.21).

Figure 5.30 shows the pacf and the smoothed spectrum plot for each of the different

realisations. We should bring to attention that the plots based on the posterior

means of the distribution of the divergence times look quite different from the

ones which were obtained from the random samples of the distributions. This is

especially the case when we look at low frequencies or small lags for the spectrum

and the pacf respectively. This is due to the fact that most of the posterior

distributions π(τi|·) are highly skewed and therefore the posterior mean seems

inappropriate as a location measure for such distributions.

We then compare the plots of the pacf and the smoothed spectrum for the sim-

ulated realisations with the corresponding plots for the observed data. Although

there is some evidence for lack of fit for short lags and low frequencies (see Figure

5.30) which indicates that our model does not really capture very well the short-

range dependence, on the other the hand, for high frequencies and long lags the fit

significantly improves. Overall, both the smoothed spectrum and the plots of the

pacf (obtained by simulating realisations) of the fitted model are in a reasonable

agreement with the ones obtained from the real data. We can conclude then that a

model with long-term dependence behaviour seems reasonable in order to analyse

this dataset.
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Figure 5.26: Posterior distribution for the 4th divergence time points assuming a
Uniform (top) and a Fréchet (bottom) prior for the vector τ .
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Figure 5.27: Posterior distribution for the 5th divergence time points assuming a
Uniform (top) and a Fréchet (bottom) prior for the vector τ .
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Figure 5.28: Posterior distribution for the 6th divergence time points assuming a
Uniform (top) and a Fréchet (bottom) prior for the vector τ .
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Figure 5.29: A simulate realisation from the fitted model using the posterior
mean of the divergence times
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Figure 5.30: Smoothed Spectrum and PACF plots of 1,000 realisations of the
fitted model using samples from the posterior distribution of the divergence time
points τ . The blue line is obtained by simulating a realisation of the model using
the posterior means the posterior distributions. The green line refers to the plots

obtained from the actual real data.



CHAPTER 5. LATENT BRANCHING TREES 255

5.12 Discussion

In this chapter, we have presented a novel methodology for constructing a class

of semi-parametric time series models where the observations have fixed (and pre

specified) margins with a rich collection of dependence structure. The construction

of such a class of models is based on an underlying stochastic process, termed as

a “latent branching tree” (LBT), via which the nature of the generated realisa-

tions is characterized; recall Section 5.4 for the construction of the LBT. A LBT

offers a very flexible way of determining a rich collection of dependence structure

between the observations by allowing them have margins which fall in a variety of

distributions, including Normal, Exponential, Gamma and Poisson.

The construction of a LBT requires the simulation of diffusions. However, we

have shown how the discretisation of the time can be avoided for some specifically

chosen diffusions, by applying retrospective sampling techniques. That is, there is

no need to store the full path of any diffusion but just their values at the times

when they diverged, as well as the value of diffusion at these times. We have

also provided methods for drawing Bayesian inference via MCMC methods. This

resulted in obtaining the posterior distribution, of the divergence time points (τ ),

the location parameters, (X(τ)), and any other hyper parameters associated with

the prior assumed over the “jump distribution” .

In some circumstances, especially when hyper parameters are involved, the stan-

dard MCMC algorithms do not offer well mixing Markov chains and therefore, the

need for more efficient algorithms is essential. Strategies for block update of the

location parameters or integrating them out and efficient non−centered parameter-

isations (ENC) have been presented. Within the context of a particular example,

the efficiency gained by using an ENCP instead of a CP was transparent. Nev-

ertheless, when choosing an alternative MCMC strategy, the computational cost

and the cpu time need needed to run the algorithm should always be taken into

account and decide which to use, on the basis of their relative efficiency.
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We should bring to attention that the implementation of any of the MCMC al-

gorithms mentioned in this chapter is complicated and care is necessary so as to

provide reliable results. As the dimension of the dataset increases, and in conse-

quence the dimension of the parameter space, block updating or integrating out

the location parameters can be dramatically very time consuming. On the other

hand, due to the construction of the tree, routinely used techniques for sparse

matrices in other contexts such as Markov random fields (see for example, Knorr-

Held and Rue, 2002, Rue et al., 2004), can be easily accommodated within this

framework. This observation is very important especially when integrating the

location parameters out or updating them as a block, offers significantly faster, in

terms of convergence, Markov chains.

Examples with simulated datasets showed that the performance of the LBT is very

good since it manages to capture the true unobserved and underlying stochastic

process. However, in applications with real datasets, it is not always obvious what

prior distributions shall be assumed over the divergence times. An alternative (and

simpler) approach is to assume a Uniform prior and then let the data indicate the

true “jump distribution” (see Section 5.11).

In conclusion, the general modelling framework presented in this chapter has much

to offer in the area of time series where the dependence structure is assumed not

to be of a standard form, eg. AR-type and also when observations have marginal

distributions outside the Gaussian context.

5.13 Further Work

In this section we will briefly refer to some work we will be interested in doing in

the future regarding generalisations of the existing methodology of constructing

a LBT and also extensions which are motivated by applications which consist of

real datasets.
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5.13.1 Methods

Marginals outside the Gaussian context

In Section 5.4 we described in detail the construction of a LBT. It has been noted,

that in principle any diffusion can be used instead. For instance, if we are interested

in modelling data which are Gamma distributed we could have used a Gamma

process. On the other hand, even with the existing methodology this is feasible.

That is, by choosing a Brownian motion as the driving diffusion and then an

extra level to the hierarchy by transforming the Normally distributed variables (as

shown in Table 5.1). The problem becomes more interesting, when we focus on

integer-valued distributions such as Poisson where a Poisson process can be used.

Prediction

A very important aspect in the area of time series is the prediction of the future.

Within our context this can be done very straightforward due to the Bayesian

approach adopted. Therefore, once we obtain posterior samples for the unknown

parameters, say θ, we can (forward) simulate a LBT (see Section 5.7). Note, that

with this approach, the uncertainty about the parameters is taken into account

and is being integrated out. The prediction’s performance of a LBT should be

examined and investigate whether more robust predictions could be obtained via

such a framework than standard time series modelling.

General Proposals for the MCMC Algorithms

An important issue while constructing an MCMC algorithm which involves a

Metropolis-Hastings step, is the choice of the proposal distribution. Although no

particular problems occurred throughout the examples described so far, we bring

to attention the following result. For any two independent Normally distributed
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random variables, say Z1, Z2, i.e.

Z1 ∼ N(0, 1)

Z2 ∼ N(0, 1)

if we define Z = Z1 − Z2, then

Z ∼ N(0, 2)

P(|Z| < z) = P(−z < Z < z)

= P

(
− z√

2
<

Z√
2
<

z√
2

)

= Φ

(
z√
2

)
− Φ

(
− z√

2

)

= Φ

(
z√
2

)
−
(

1 − Φ(
z√
2
)

)

= 2Φ

(
z√
2

)
− 1 (5.28)

where Φ(·) denotes the distribution function a random variable following a stan-

dard Normal(0,1) distribution. Equation (5.28) states the probability of the abso-

lute difference between two consecutive observations (obtained via a LBT) being

less than a certain value. Figure 5.31 shows the cumulative distribution function

(CDF) for |Z| and the corresponding complementary CDF. Although (5.28) refers

to standard Normal random variables, it is straightforward to generalize it for any

Normal random variable with mean µ and variance σ2.
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Figure 5.31: The cumulative distribution function of the random variable |Z|,
where Z = Z1 − Z2, with Zi ∼ N(0, 1), for i = 1, 2

It is of practical interest to construct a general proposal which will take into

account the absolute difference of the two observations, Yi and Yi+1. For instance,

if the observed difference |Yi − Yi+1| is very unlikely to have been occurred by

chance (according to (5.28)), then a proposal with most of its probability mass

around values close to one should be used. Note that the same argument holds

regardless of whether the difference is relatively big or small.

Bayesian Non-Parametric

Within the current framework, a parametric form of the “jump distribution” has

to be specified in advance before constructing the LBT. Note that this often leads

to the need of drawing inference for the hyperparameters and this could be prob-
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lematic. A further extension of the current work is to relax this condition and to

become fully non-parametric by considering a Dirichlet distribution for the diver-

gence times (τ ).

Multivariate Time Series

Throughout this chapter we were mainly concerned with constructing and drawing

inference for univariate time series. There exist applications where we are inter-

ested in modelling multivariate time series. Within our framework, extensions for

Normally distributed data can be done as follows. While constructing the diffusion

paths, at each of the divergence time point, instead of drawing from a univariate

N(0,1), we could generate realisations from a multivariate Normal of a pre speci-

fied dimension. Nevertheless, more consideration is needed when we are analysing

time series where the observation have distributions outside the Gaussian family.

Concluding, we should bring to attention that any extension which is mentioned

above must be in agreement with the general structure of the tree. In other words,

if another diffusion is chosen and if it has independent increments, we should be

able to write explicitly its density such that the likelihood is easy to handle and

make the inference feasible.

5.13.2 Applications

Motivated by the genome scheme data which were analysed in Section 5.11, a

particular form a “jump distribution” which could be assumed:

P(τ) =





τ1, with probability 1 − p

τ2, with probability p

Such a discrete “jump distribution” will allow for the Brownian motions either to

diverge at time τ1 or τ2. By an appropriate choice of these two divergence time

points and the “jump probability” p, say, τ1 = 0,τ1 = 0.9 and p = 0.9 then most
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of diffusions will diverge at times close to 1 and a few times close to 0. Due to

the fundamental property of a LBT which states that if the stochastic process

diverges at times close to zero (or close to one) then the observations Yk, Yk+1,

k ∈ (1, . . . , n − 1) will be less (much) correlated, approximately (1 − p) × N

clusters will be created. This reminds us of a standard change-point model with

one change-point (at time τ1). A natural extension to multiple change point model

(with fixed number of change points) can easily done by allowing the following

“jump distribution”

P (τ) =





τ1, with probability p1

τ2, with probability p2

...

τk, with probability pk

The available flexibility on determining the “jump distribution” of a LBT allows

us to perform a further step of generalization and consider the following prior over

the divergence times:

f(τ) =





U(τ1 − α, τ1 − α), with probability 1 − p

U(τ2 − α, τ2 − α), with probability p

In other words, instead of having fixed divergence points around some values, for

instance at time τ1 or τ2, the Brownian motions diverge in one of the two “bands”,

each of the having length α. Obviously, such a “jump distribution” can be extended

to have k bands with different lengths (αk) as follows:
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f(τ) =





U(τ1 − α1, τ1 − α1), with probability p1

U(τ2 − α2, τ2 − α2), with probability p2

...

U(τk − αk, τk − αk), with probabilitypk

Moreover, other distributions apart from Uniforms can be used. However, the more

complicated the form of the “jump distribution” is, the harder the estimation of

any of the parameters will be. Note that although usually the length of the chosen

band can be fixed, the most interesting parameters to draw inference for, are the

probabilities pi, i = 1, . . . , k.

Preliminary work on such kind of “jump distributions” showed that the centered

algorithm as shown in Section 5.8.2 leads to very slow mixing Markov chains.

Therefore the need of better mixing algorithms is necessary. The strategies de-

scribed in Section 5.9 improve the standard algorithms, especially when the loca-

tion parameters, X(τ) are integrated out. Nevertheless, we have already discussed

that such an approach is very costly computationally when the size of the dataset

increases. It would be very interesting to compare the performance of such an

MCMC strategy by integrating the location parameters X(τ) and the introduc-

tion of a non−centered parameterisation between π and τi. Summarizing, such

generalisations of the “jump distribution” can be seen as an alternative way of

defining a change-point model. Within the segments we allow for an additional

level of covariance structure as defined via the LBT. A comparison between the

results obtained from a standard change-point model and the above formulation

would be of interest.
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Appendix for Part II

A.1 On Minima of Random Variables

This section investigates the behavior of a random variable which is the minimum

of n independent and identically distributed random variables. We focus on the

distribution of the minimum and in particular on its expectation since this mainly

describes the nature of a LBT.

We adopt the following the notation: Denote by FX(x) the distribution function of

X1, . . . , Xn and fX(x) = ∂F (x)/∂x the corresponding probability density function.

Let:

Z = min(X1, . . . , Xn) =
n

min
i=1

Xi

and we are interested in FZ(z) and E[Z]. Before considering any specified distri-

bution F we require the following proposition:

Proposition 2 (Probability density function of minima) Let X1, X2, . . . , Xn,

independent and identically distributed variables which follow the distribution func-

tion F . The distribution function of the random variable Z, where Z = min(X1, . . . , Xn)

is given by

FZ(z) = 1 − (1 − FX(x))n.

263
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Proof :

FZ(z) = Pr[min(Xi) ≤ z] = 1 − Pr[min(Xi) > z] = 1 −
n∏

i=1

(1 − Pr[Xi > z])

= 1 − (Pr[(Xi > z)])n = 1 − (1 − FX(x))n

�

The probability density function (pdf) of Z is derived by ∂FZ(z)
∂z

:

fZ(z) = n · (1 − FX(z))n−1 · fX(z) (A.1)

A.1.1 Minimum of Uniform r.v. [X ∼ U(a, b)].

Let X ∼ U(a, b). Then fX(x) = 1/(b− a) and FX(x) = (x− a)/(b− a). Using the

above proposition:

fZ(z) =
n

(b− a)n
(b− z)n−1 (A.2)

For the special case of a standard Uniform distribution a = 0, b = 1 then:

fZ(z) = n(1 − z)n−1 (A.3)

i.e. Z ∼ Beta(1, n) and therefore E[Z] = 1/(n+ 1).

A.1.2 Minimum of Beta r.v. [X ∼ Beta(a, b)]

We consider the special case where a > 0, b = 1, i.e. X ∼ Beta(a, 1) and FX(x) =

xa and fX(x) = axa−1. Proposition A.1 shows that:

fZ(z) = n · a(1 − xa)n−1xa−1 (A.4)
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We need to calculate the expectation E[Z] =
∫ 1

0
fZ(z)dz. This integral is evaluated

by substitution (v = xa) and therefore:

E[Z] = n ·B
(
a+ 1

a
, n

)
=
n

a
· (n + 1/a)!

(n− 1)!

It is easy to see that if Ui ∼ U(0, 1) then the random variable Xi = U
1/a
i follows a

Beta distribution with parameters a and 1, i.e. Xi ∼ Beta(a, 1). Therefore:

E[min(X1, . . . , Xn)] = E[min(U
1/a
1 , . . . , U1/a

n )] = E[(min(U1, . . . , Un)
1/a] = E[Z1/a]

(A.5)

Making use of Jensen’s inequality (see for example Ross, 1996, page 40) which

states the following: If the function f is convex then E[f(x)] ≥ f(E[x]), we get:

If a > 1 : E[Z1/a] ≥ (E[Z])1/a ≥
(

1

n+ 1

)1/a

If 0 < a < 1 : E[Z1/a] ≥ (E[Z])1/a ≤
(

1

n+ 1

)1/a

Although (A.5) gives us the explicit form of E[Z] which can be useful, we are also

interested in calculating the rate of its decay with respect to n, i.e limn→∞E[Z].

We make use of Stirling’s approximation formula (see for example Ross, 1996, page

144)

E[Z] = nB(1 + 1/a, n) = n
Γ(n)Γ(1 + 1/a)

Γ
(
a+1
a

+ n
) ∝ nΓ(n)

Γ
(
a+1
a

+ n
) (A.6)

• nΓ(n) = (n− 1)! =
√

2π · nn+1/2e−n

• Γ
(
n+ a+1

a

)
=

√
2π ·

(
n+ 1 + 1

a

)n+1+ 1
a
− 1

2 · e−(n+1+ 1
a
)

Therefore we get:

E[Z] ≈ nn+ 1
2 · e−n

(
n+ 1 + 1

a

)n+ 1
2
+ 1

a · e−n · e−1− 1
a

=
nn+1/2

(n+ 1 + 1/a)n
· 1

n+ 1 + 1
a

( 1
2
+ 1

a)
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≈
(

n

n+ a+1
a

)n
·
(

n

n+ a+1
a

)1/2

·
(

1

n + a+1
a

)1/a

≈
(

1

1 +
(
a+1
a

)
/n

)n

·
(

1

1 +
(
a+1
a

)
/n

)1/2

·
(

1

n+ a+1
a

)1/a

The first term:

limn→∞

(
1

1 +
(
a+1
a

)
/n

)n

= e−(1+1/a)

The second:

limn→∞
1

1 +
(
a+1
a

)
/n

= 1

Therefore, the rate of decay to zero of E[Z] depends on the third term and that’s

implies that E[Z] decays with rate:

O

(
1

n1/a

)

Note that the Delta method gives a similar result:

E[g(Z)] ≈ g(E[Z]) =

(
1

n+ 1

)1/a

A.1.3 Minimum of Exponential r.v. [X ∼ Exp(λ)]

Let X1, . . . , Xn be i.i.d. ∼ Exp(λ) random variables truncated from 0 to 1. The

probability density function (pdf) of such a random variable Xi and the cumulative

distribution function are given below:

fX(x) =
λ

1 − e−λ
· e−λx, 0 < x < 1

FX(x) =
1 − e−λx

1 − e−λ
0 < x < 1

Using basic principles we realize that fZ(z) is not a well known distribution as
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it was for the minimum of Beta(a, 1) and moreover calculating the E[Z] is not

easily intractable. Instead, the inverse method (Ripley, 1987) is used to generate

samples of an Exponential distribution using Uniforms. In other words,

If Ui ∼ U(0, 1), then Xi = F−1
U (u)

Therefore:

Xi = −1

λ
log
(
1 − Ui(1 − e−λ)

)
∼ Exp(λ), 0 < x < 1 (A.7)

The expectation now becomes more tractable:

E[min(X1, . . .Xn)] = E

[
minni=1

(
−1

λ
log
(
1 − Ui(1 − e−λ)

))]

= E

[
−1

λ
log
(
1 − minUi(1 − e−λ)

)]

= E

[
−1

λ
log
(
1 − Z(1 − e−λ)

)]
(A.8)

By making use of the Delta method:

E[g(Z)] ≈ g(E[Z]) = − 1

λ
log

(
n+ e−λ

n + 1

)
(A.9)

A.1.4 Special case

A random variable X with the following probability density and cumulative dis-

tribution function is considered:

f(x) = x−2e1−
1
x , where 0 < x < 1

F (x) = e1−1/x
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Such a random variable can be generated using the inversion method:

If Ui ∼ U(0, 1) then Xi =
1

1 − logUi
∼ F (x)

The expectation:

E[Z] = E[min(X1, . . . , Xn)] = E

[
1

1 − logW

]
, where: W ∼ Beta(1, n)

≈ 1

1 + log (n + 1)
, since E[W ] =

1

n+ 1

Therefore, we concluded that the rate of decay of the expected value of Z is 1/ logn.

A.1.5 Minimum of Bernoulli r.v. [X ∼ Bernoulli(p)]

Let X1, . . . , Xn i.i.d random variables. If we denote Z to be the random variable

of the minimum then performing simple calculations like above we end up with

the following result:

E[Z] = (1 − p)n.
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eterizations for hierarchical models and data augmentation. In Bayesian statis-

tics, 7 (Tenerife, 2002), pages 307–326. Oxford Univ. Press, New York. With

a discussion by Alan E. Gelfand, Ole F. Christensen and Darren J. Wilkinson,

and a reply by the authors.

Peskun, P. H. (1973). Optimum Monte-Carlo sampling using Markov chains.

Biometrika, 60:607–612.

Rida, W. N. (1991). Asymptotic properties of some estimators for the infection

rate in the general stochastic epidemic model. J. Roy. Statist. Soc. Ser. B,

53(1):269–283.

Riley, S., Fraser, C., Donnelly, C. A., Ghani, A. C., Abu-Raddad, L. J., Hedley,

A. J., Leung, G. M., Ho, L. M., Lam, T. H., Thach, T. Q., Chau, P., Chan,

K. P., Lo, S. V., Leung, P. Y., Tsang, T., Ho, W., Lee, K. H., Lau, E. M.,



BIBLIOGRAPHY 282

Ferguson, N. M., and Anderson, R. M. (2003). Transmission dynamics of the

etiological agent of sars in hong kong: impact of public health interventions.

Science, 300(5627):1961–1966.

Ripley, B. D. (1987). Stochastic simulation. Wiley Series in Probability and

Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons

Inc., New York.

Robert, C. P. and Casella, G. (1999). Monte Carlo statistical methods. Springer

Texts in Statistics. Springer-Verlag, New York.

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). Weak convergence and

optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab.,

7(1):110–120.

Roberts, G. O. and Sahu, S. K. (1997). Updating schemes, correlation structure,

blocking and parameterization for the Gibbs sampler. J. Roy. Statist. Soc. Ser.

B, 59(2):291–317.

Roberts, G. O. and Tweedie, R. (2006). Understanding MCMC. Springer-Verlag.

Ross, R. (1916). An application of the theory of probabilities to the study of a

priori pathometry, i. Proc. Roy. Soc. London, A92:204–230.

Ross, R. (1917a). An application of the theory of probabilities to the study of a

priori pathometry, ii. Proc. Roy. Soc. London, A93:212–225.

Ross, R. (1917b). An application of the theory of probabilities to the study of a

priori pathometry, iii. Proc. Roy. Soc. London, A93:215–240.

Ross, S. M. (1996). Stochastic processes. Wiley Series in Probability and Statistics:

Probability and Statistics. John Wiley & Sons Inc., New York, second edition.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Wiley Series

in Probability and Mathematical Statistics: Applied Probability and Statistics.

John Wiley & Sons Inc., New York.



BIBLIOGRAPHY 283

Rue, H., Steinsland, I., and Erland, S. (2004). Approximating hidden Gaussian

Markov random fields. J. R. Stat. Soc. Ser. B Stat. Methodol., 66(4):877–892.

Sahu, S. and Roberts, G. (1999). On convergence of the EM algorithm and the

Gibbs sampler. Statistics and Computing, 9(1):55–64.

Sanson, R. L. (1993). The developemnt of a decision support system for an animal

disease emergency. PhD thesis, Massey University, New Zealand.

Sanson, R. L. (1994). The epidemiology of foot-and-mouth disease: implications

for New Zealand. N. Z. Vet. J., 42(2):41–53.

Sanson, R. L., Morris, R. S., and Stern, M. W. (1999). Epiman-fmd: a deci-

sion support system for managing epidemics of vesicular disease. Rev Sci Tech,

18(3):593–605.

Sanson, R. L., Struthers, G., King, P., Weston, J. F., and Morris, R. S. (1993).

The potential extent of transmission of foot-and-mouth disease: astudy of the

movement of animals and materials in southland, new zealand. N Z Vet J,

41(1):21–28.

Sato, K. (1999). Lévy processes and Inifinitely Divisible Distributions. Cambridge

University Press.

Savill, N. J., Shaw, D. J., Deardon, R., Tildesley, M. J., Keeling, M. J., Woolhouse,

M. E., Brooks, S. P., and Grenfell, B. T. (2006). Topographic determinants of

foot and mouth disease transmission in the UK 2001 epidemic. BMC Vet Res,

2:3.

Smith, A. F. M. and Roberts, G. O. (1993). Bayesian computation via the Gibbs

sampler and related Markov chain Monte Carlo methods. J. Roy. Statist. Soc.

Ser. B, 55(1):3–23.

Smith, N. G. C. and Lercher, M. J. (2002). Regional similarities in polymorphism



BIBLIOGRAPHY 284

in the human genome extend over many megabases. Trends Genet., 18(6):281–

283.

Sokal, A. D. (1996). Monte carlo methods in statistical mechanics: Foundations

and new algorithms. Lecture at the Cargése Summer School on “Functional
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