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Abstract. Let X be the unique normal martingale such that X0 = 0 and

d[X]t = (1 − t − Xt−)dXt + dt

and let Yt := Xt + t for all t ≥ 0; the semimartingale Y arises in quantum probability, where it is the monotone-independent
analogue of the Poisson process. The trajectories of Y are examined and various probabilistic properties are derived; in particular,
the level set {t ≥ 0: Yt = 1} is shown to be non-empty, compact, perfect and of zero Lebesgue measure. The local times of Y are
found to be trivial except for that at level 1; consequently, the jumps of Y are not locally summable.

Résumé. Soit X l’unique martingale normale telle que X0 = 0 et

d[X]t = (1 − t − Xt−)dXt + dt

et soit Yt := Xt + t pour tout t ≥ 0; la semimartingale Y se manifeste dans la théorie des probabilités quantiques, où c’est analogue
du processus de Poisson pour l’indépendance monotone. Les trajectoires de Y sont examinées et diverses propriétés probabilistes
sont déduites; en particulier, l’ensemble de niveau {t ≥ 0: Yt = 1} est montré être non vide, compact, parfait et de mesure de
Lebesgue nulle. Les temps locaux de Y sont trouvés être triviaux sauf celui au niveau 1; par conséquent les sauts de Y ne sont pas
localements sommables.
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0. Introduction

The first Azéma martingale, that is, the unique (in law) normal martingale M such that M0 = 0 and

d[M]t = −Mt− dMt + dt,

has been the subject of much interest since its appearance in [3], Proposition 118 (see, for example, [4,13] and [17],
Section IV.6); it was the first example to be found of a process without independent increments which possesses the
chaotic-representation property. It shall henceforth be referred to as Azéma’s martingale.

From a quantum-stochastic viewpoint, the process M may be obtained by applying Attal’s D transform ([1], Sec-
tion IV) to the Wiener process. Furthermore, thanks to the factorisation of D provided by vacuum-adapted calculus [5],
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M appears as a natural object in monotone-independent probability theory; the distribution of Mt (the arcsine law) is
a central-limit law which plays a rôle analogous to that played by the Gaussian distribution in the classical framework
([16], Theorem 3.1).

The Poisson distribution also occurs as a limit (the law of small numbers): if, for all n ≥ 1, (xn,m)nm=1 is a collection
of independent, identically distributed random variables and there exists a constant λ > 0 such that

lim
n→∞nE

[
xk
n,1

]= λ ∀k ≥ 1,

then xn,1 + · · · + xn,n converges in distribution to the Poisson law with mean λ. (A simple proof of this result is
provided in Appendix A.) In the case where xn,1, . . . , xn,n are Bernoulli random variables taking the values 0 and 1
with mean λ/n, this is simply the Poisson approximation to the binomial distribution ([8], Example 25.2).

A corresponding theorem holds in the monotone set-up ([16], Theorem 4.1), but now the limit distribution is related
to the D transform of the standard Poisson process (with intensity 1 and unit jumps) in the same way as the arcsine
law and Azéma’s martingale are related above [6]. (This result also holds for free probability: see [20], Theorem 4.)
The classical process Y which results is such that Yt = Xt + t for all t ≥ 0, where X is the unique normal martingale
such that X0 = 0 and

d[X]t = (1 − t − Xt−)dXt + dt.

This article extends the sample-path analysis of Y (and so X) which was begun in [7]. Many similarities are found
between Y and Azéma’s martingale M ; for example, they are both determined by a random perfect subset of R+ and
a collection of binary choices, one for each interval in that subset’s complement. In Section 1 some results from the
theory of martingales are recalled; Section 2 defines the processes X and Y and presents their Markov generators.
A random time G∞ after which Y is deterministic is discussed in Section 3: by Proposition 3.1 and Corollary 3.5,
G∞ < ∞ almost surely and, in this case,

Yt+G∞ = −W−1
(− exp(−1 − t)

) ∀t ≥ 0,

where W−1 is a certain branch of the inverse to the function z �→ zez (see Notation below). In Section 4 the process X is
decomposed into an initial waiting time S0 which is exponentially distributed and an independent normal martingale Z

which satisfies the same structure equation as X but has the initial condition Z0 = 1; Lemma 4.2 implies that, for all
t ≥ 0,

Xt =
{−t if t ∈ [0, S0[,

Zt−S0 − S0 if t ∈ [S0,∞[.
Explicit formulae are found for the distribution functions of G∞ and J , a random variable analogous to G∞ but for
Z rather than X. In Section 5 it is shown that (Ht := 1 − (Zt + t)−1)t≥0 is a martingale which is related to Azéma’s
martingale M by a time change; this gives a simple way to find various properties of the level set U := {t ≥ 0: Yt = 1}
in Section 6. Finally, Section 7 presents some results on the local times of Y . The appendices contain various supple-
mentary results which are not appropriate for the main text.

0.1. Conventions

The underlying probability space is denoted (Ω,F ,P) and is assumed to contain a filtration (Ft )t≥0 which generates
the σ -algebra F . This filtration is supposed to satisfy the usual conditions: it is right continuous and the initial σ -
algebra F0 contains all the P-null sets. Each semimartingale which is considered below has càdlàg paths (that is, they
are right-continuous with left limits) and two processes (Xt )t≥0 and (Yt )t≥0 are taken equal if they are indistinguish-
able: P(Xt = Yt for all t ≥ 0) = 1. Any quadratic variation or stochastic integral has value 0 at time 0.

0.2. Notation

The expression 1P is equal to 1 if the proposition P is true and equal to 0 otherwise; the indicator function of a
set A is denoted by 1A. The set of natural numbers is denoted by N := {1,2,3, . . .}, the set of non-negative rational
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numbers is denoted by Q+ and the set of non-negative real numbers is denoted by R+. The branches of the Lambert
W function (that is, the multi-valued inverse to the map z �→ zez) which take (some) real values are denoted by W0
and W−1, following the conventions of Corless et al. [10]:

W0(0) = 0, W0(x) ∈ [−1,0 [ and W−1(x) ∈]−∞,−1] ∀x ∈ [−e−1,0 [.
If Ξ is a topological space then B(Ξ) denotes the Borel σ -algebra on Ξ . The integral of the process X by the
semimartingale R will be denoted by

∫
Xt dRt or X · R, as convenient; the differential notation Xt dRt will also be

employed. The process X stopped at T is denoted by XT , that is, XT
t := Xt∧T for all t ≥ 0, where x ∧ y denotes the

minimum of x and y. For all x, the positive part x+ := max{x,0}, the maximum of x and 0.

1. Normal sigma-martingales and time changes

Remark 1.1. Let A ∈ F be such that P(A) > 0. If G is a sub-σ -algebra of F such that A ∈ G then

G̃ := {B ⊆ Ω: B ∩ A ∈ G}
is a σ -algebra containing G; the map G �→ G̃ preserves inclusions and arbitrary intersections. If

P̃ := P(·|A) : F̃ → [0,1]; B �→ P(B ∩ A)

P(A)
,

then (Ω, F̃ , P̃) is a complete probability space; if (G)t≥0 is a filtration in (Ω,F ,P) satisfying the usual conditions
then (G̃t )t≥0 is a filtration in (Ω, G̃, P̃) which satisfies them as well.

If T is a stopping time for the filtration (Gt )t≥0 then it is also one for (G̃t )t≥0 and, if B ⊆ Ω ,

B ∈ G̃T ⇐⇒ B ∩ A ∈ GT ⇐⇒ B ∩ A ∩ {T ≤ t} ∈ Gt ∀t ≥ 0,

⇐⇒ B ∩ {T ≤ t} ∈ G̃t ∀t ≥ 0 ⇐⇒ B ∈ (G̃)T ,

so the notation G̃T is unambiguous.

Lemma 1.2. If T is a stopping time such that P(T < ∞) > 0 and M is a local martingale then N : t �→
1T <∞(Mt+T − MT ) is a local martingale for the conditional probability measure P̃ := P(·|T < ∞) and the filtration
(F̃t+T )t≥0, such that

[N ]t = 1T <∞
([M]t+T − [M]T

) ∀t ≥ 0.

Proof. If T < ∞ almost surely and M is uniformly integrable then the first part is immediate, by optional sampling
([18], Theorem II.77.5), and holds in general by localisation and conditioning. The second claim may be verified by
realising [N ] as a limit of sums in the usual manner (see [17], Theorem II.22, for example). �

Definition 1.3. A martingale M is normal if t �→ (Mt − M0)
2 − t is also a martingale. (If M0 is square integrable

then this is equivalent to t �→ M2
t − t being a martingale, but in general it is a weaker condition.)

Definition 1.4. A semimartingale M is a sigma-martingale if it can be written as K ·N , where N is a local martingale
and K is a predictable, N -integrable process. Equivalently, there exists an increasing sequence (An)n≥1 of predictable
sets such that

⋃
n≥1 An = R+ ×Ω and 1An ·M ∈ H 1 for all n ≥ 1, where H 1 denotes the Banach space of martingales

M with ‖M‖H 1 := E[[M]1/2∞ ] < ∞. Every local martingale is a sigma-martingale and if M is a sigma-martingale
then so is H ·M for any predictable, M-integrable process H . (The class of sigma-martingales, so named by Delbaen
and Schachermayer in [11], was introduced by Chou in [9], where it is denoted (Σm); the equivalence mentioned
above is due to Émery ([12], Proposition 2).)

Theorem 1.5 ([14]). If M is a semimartingale with M0 = 0 then the following are equivalent:

(i) M and t �→ M2
t − t are sigma-martingales;
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(ii) M and t �→ [M]t − t are sigma-martingales;
(iii) M and t �→ M2

t − t are martingales;
(iv) M and t �→ [M]t − t are martingales.

Proof. Since M2 − [M] = 2M− · M , the equivalence of (i) and (ii) is immediate; it also follows from this that (iv)
implies (iii) ([17], Corollary 3 to Theorem II.27). To complete the proof it suffices to show that (ii) implies (iv).

Suppose (ii) holds and let (An)n≥1 be an increasing sequence of predictable sets such that
⋃

n≥1 An = R+ × Ω

and both 1An · M ∈ H 1 and 1An · N ∈ H 1 for all n ≥ 1, where N : t �→ [M]t − t . (Note that if X ∈ H 1 and B is a
predictable set then 1B · X ∈ H 1.) Let T be a bounded stopping time; since 1An · N is a martingale,

E
[(

1An · [M])
T

]= E
[
(1An · N)T

]+ E

[∫ T

0
1An ds

]
= E

[∫ T

0
1An ds

]
(1)

and therefore E[[M]T ] = E[T ] < ∞, by monotone convergence. It follows that E[|N |T ] ≤ E[[M]T ] + E[T ] < ∞
and E[NT ] = E[[M]T − T ] = 0, so N is a martingale. (Apply [17], Theorem I.21 to N stopped at t for any t ≥ 0.)
Furthermore, since (1An\Am · [M])t ≤ (1Ac

m
· [M])t for all m ≤ n and t ≥ 0, where Ac

m := (R+ ×Ω)\Am, the sequence
(1An∩(]0,t]×Ω) · M)n≥1 is Cauchy in H 2, so convergent there; it follows (by [17], Theorem IV.32, say) that M stopped
at t is an H 2-martingale. �

Theorem 1.6. If M is a normal martingale and T is a stopping time such that P(T < ∞) > 0 then N : t �→
1T <∞(Mt+T − MT ) is a normal martingale (for the measure P̃ := P(·|T < ∞) and the filtration (F̃t+T )t≥0).

Proof. As M and t �→ (Mt − M0)
2 − t are local martingales, so are N and

Q : t �→ 1T <∞
(
(Mt+T − M0)

2 − (t + T ) − (MT − M0)
2 + T

)
= 1T <∞

(
(Mt+T − MT )2 − t + 2(MT − M0)(Mt+T − MT )

)
,

by Lemma 1.2. Hence t �→ (Nt −N0)
2 − t = Qt −21T <∞(MT −M0)Nt is also a local martingale (as local martingales

form a module over the algebra of random variables which are measurable with respect to the initial σ -algebra) and
the conclusion follows from Theorem 1.5. �

Lemma 1.7. If A is a right-continuous, increasing process such that A0 ≥ 0 and each At is a stopping time then
(FAt )t≥0 is a filtration which satisfies the usual conditions.

Proof. This is a straightforward exercise. �

Lemma 1.8. Let K and L be independent martingales and let A be a continuous, increasing, (FK
t )t≥0-adapted

process with A0 = 0 and A∞ = ∞, where (FK
t )t≥0 denotes the smallest filtration satisfying the usual hypotheses to

which K is adapted.
If Gt := FK∞ ∨FL

t for all t ≥ 0 then each At is a (Gt )t≥0-stopping time, (GAt )t≥0 is a filtration satisfying the usual
conditions, LA is a (GAt )t≥0-local martingale and [LA] = [L]A. If H is an (FL

t )t≥0-predictable process which is
L integrable then HA is (GAt )t≥0 predictable and LA integrable, with (H · L)A = HA · LA.

If Ht := FK
t ∨FLA

t for all t ≥ 0 then Ht ⊆ GAt for all t ≥ 0. If there exist disjoint, (Ht )t≥0-predictable sets B and
C such that 1B · [K] = [K] and 1C · [L]A = [L]A and if ([K] + [L]A)1/2 is (Ht )t≥0-locally integrable then K + LA

is a (Ht )t≥0-local martingale and [K + LA] = [K] + [L]A.

Proof. This is immediate from Lemmes 1–3 and Théorème 1 of [21]. �

2. The processes X and Y

Definition 2.1. Let X be the normal martingale which satisfies the (time-inhomogeneous) structure equation

d[X]t = (1 − t − Xt−)dXt + dt
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with initial condition X0 = 0 and let Yt := Xt + t for all t ≥ 0. (The process X was introduced in [7], where it was
constructed from the quantum stochastic analogue of the Poisson process for monotone independence. Existence also
follows directly from [23], Théorème 4.0.2; uniqueness (in law) and the chaotic-representation property hold by [2],
Corollary 26.) Then Y0 = 0 and

d[Y ]t = (1 − Yt−)dYt + Yt− dt, (2)

which implies that �Yt ∈ {0,1 − Yt−} for all t > 0. If

Gt := sup
{
s ∈ [0, t]: Ys = 1

} ∈ {−∞}∪ ]0, t] (3)

then (by [7], Theorem 24)

Yt = −W•
(− exp(−1 − t + Gt)

)
(4)

for all t ≥ 0, where W• = W−1 if Yt ≥ 1 and W• = W0 if Yt ≤ 1; a little more will be said in Proposition 6.3. (It
follows from this description of the trajectories that X and Y are uniformly bounded on [0, t] for all t ≥ 0.)

Definition 2.2. Let

a : R+ →]0,1]; t �→ −W0
(−e−1−t

)
,

b : R+ → [1,∞[; t �→ −W−1
(−e−1−t

)
and

c : ]0,∞[ → R+; t �→ b′(t) − a′(t) = b(t)

b(t) − 1
+ a(t)

1 − a(t)
.

Note that a(0) = b(0) = 1, both a and b are homeomorphisms (which may be verified by inspecting their derivatives
on ]0,∞[) and c(t) ↘ 1 as t → ∞.

Lemma 2.3. For all t ≥ 0 the random variable Yt is distributed with an atom at 0 (of mass e−t ) and a continuous
part with support [a(t), b(t)]:

P(Yt ∈ A) = 10∈Ae−t + 1

π

∫
A∩[a(t),b(t)]

Im
1

W−1(−yet−y)
dy ∀A ∈ B(R).

Proof. See [7], Corollary 17. �

Remark 2.4. The (classical) Poisson process is simpler when uncompensated; similarly, it is easier to work with Y

than with X. These processes are strongly Markov (by [2], Theorem 37, for example) and Émery’s Itô formula ([13],
Proposition 2) implies that, if f : R → R is twice continuously differentiable,

f (Xt ) = f (0) +
∫ t

0
g(Xs−, s)dXs +

∫ t

0
h(Xs−, s)ds (5)

and

f (Yt ) = f (0) +
∫ t

0
g(Ys−,0)dXs +

∫ t

0

(
h(Ys−,0) + f ′(Ys−)

)
ds (6)

for all t ≥ 0, where g, h : R2 → R are such that

g(x, t) = 1x �=1−t

f (1 − t) − f (x)

1 − x − t
+ 1x=1−t f

′(1 − t)
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and

h(x, t) = 1x �=1−t

f (1 − t) − f (x) − (1 − x − t)f ′(x)

(1 − x − t)2
+ 1x=1−t

1

2
f ′′(1 − t)

for all x, t ∈ R. It follows that

lim
ε→0+

1

ε
E
[
f (Xt+ε) − f (Xt )|Ft

]= (
Γ X

t f
)
(Xt )

and

lim
ε→0+

1

ε
E
[
f (Yt+ε) − f (Yt )|Ft

]= (
Γ Y f

)
(Yt ),

for almost all t ≥ 0, where

(
Γ X

t f
)
(x) :=

{
f (1−t)−f (x)−(1−x−t)f ′(x)

(1−x−t)2 if x �= 1 − t ,
1
2f ′′(1 − t) if x = 1 − t ,

= 1x=1−t

1

2
f ′′(x) +

∫
R\{x}

(
f (y) − f (x) − (y − x)f ′(x)

)δ1−t (dy)

(y − x)2
, (7)

(
Γ Y f

)
(x) :=

{
f (1)−f (x)−x(1−x)f ′(x)

(1−x)2 if x �= 1,
1
2f ′′(1) + f ′(1) if x = 1,

= 1x=1
1

2
f ′′(x) + f ′(x) +

∫
R\{x}

(
f (y) − f (x) − (y − x)f ′(x)

) δ1(dy)

(y − x)2
, (8)

and δz denotes the Dirac measure on R with support {z}.

3. The final jump time

Proposition 3.1. If G∞ := sup{Gt : t ≥ 0}, where Gt is defined in (3), then the random variable G∞ (the final jump
time of Y ) is almost surely finite and has density

g∞ : R → R+; x �→ 1x≥0
1

π
Im

1

W−1(−e−1+x)
. (9)

Proof. Note first that Gt = 1 + t − Yt + logYt for all t ≥ 0, by (4), so Gt is Ft measurable. As t �→ Gt is increasing,
it is elementary to verify that

G∞ = sup{Gt : t ≥ 0} = sup{Gn: n ≥ 1} = lim
n→∞Gn;

in particular, G∞ is F measurable. If t > 0 then 1Gn∈]0,t] → 1G∞∈]0,t], because Gn ↗ G∞, and the dominated-
convergence theorem implies that

P
(
G∞ ∈]0, t])= E[1G∞∈]0,t]] = lim

n→∞ E[1Gn∈]0,t]] = lim
n→∞ P

(
Gn ∈]0, t]).

Since P(G∞ = −∞) = P(Y ≡ 0) ≤ P(Yt = 0) = e−t → 0 as t → ∞, it follows that P(G∞ = −∞) = 0 and

P(G∞ ≤ t) = lim
n→∞ P

(
Gn ∈]0, t])
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for all t ≥ 0. If n ≥ 1 and t ∈ [0, n] then

0 < 1 + n − Yn + logYn ≤ t ⇐⇒ −e−1−n > −Yn exp(−Yn) ≥ −e−1−n+t

⇐⇒ Yn ∈ ]
a(n), a(n − t)

]∪ [
b(n − t), b(n)

[
and, by Lemma 2.3,

γn(t) := P
(
Gn ∈]0, t])= 1

π

∫
]a(n),a(n−t)]∪[b(n−t),b(n)[

Im
1

W−1(−yen−y)
dy.

Note that γn is continuously differentiable on [0, n[ , with

γ ′
n(s) = 1

π
Im

1

W−1(−e−1+s)

(
b′(n − s) − a′(n − s)

)= c(n − s)g∞(s)

for all s ∈ [0, n[ . If n > t and s ∈ [0, t] then, by the remarks in Definition 2.2, γ ′
n(s) ↘ g∞(s) as n → ∞ and the

monotone-convergence theorem implies that

lim
n→∞

∫ t

0
γ ′
n(s)ds =

∫ t

0
g∞(s)ds ∀t ≥ 0.

This gives the result, because
∫∞

0 g∞(s)ds = 1 (by Proposition B.1). �

Remark 3.2. It follows from Proposition 3.1 that E[G∞] = ∞; a proof is given in Proposition B.1.

Remark 3.3. Calling G∞ the final jump time is perhaps a little misleading, since it is not a stopping time; it is,
however, almost surely the limit of a sequence of jump times. (See Corollary 6.2 and Corollary 6.4.)

Proposition 3.4. limt→∞ P(Yt ≤ 1) = 0.

Proof. By Lemma 2.3,

P(Yt ≤ 1) = e−t + 1

π

∫ 1

a(t)

Im
1

W−1(−yet−y)
dy ∀t ≥ 0. (10)

If y ∈]0,1] then there exists x ∈ [0,∞[ such that y = a(x), and if t ≥ x then

Im
1

W−1(−yet−y)
= Im

1

W−1(−e−1+t−x)
= πg∞(t − x) → 0

as t → ∞. (This last claim follows from Proposition B.1.) Furthermore, as g∞ is bounded, the integrand in (10) is
bounded uniformly in y and t , so the result follows from the dominated-convergence theorem. �

Corollary 3.5. As t → ∞, the process Yt → ∞ almost surely.

Proof. If G∞ < ∞ then, as t → ∞, either Yt → 0 or Yt → ∞; furthermore,

{G∞ < ∞} ∩
{

lim
t→∞Yt = ∞

}
= {G∞ < ∞} ∩

∞⋂
n=1

∞⋃
m=n

{Ym > 1}.

Since P(G∞ < ∞) = 1 and P(Yn ≤ 1) → 0 as n → ∞, it follows that

P

(
lim

t→∞Yt = ∞
)

≥ lim sup
n→∞

P(Yn > 1) = 1 − lim
n→∞ P(Yn ≤ 1) = 1.

(The inequality in the previous line holds by [8], Theorem 4.1(i).) �
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4. The active period

Proposition 4.1. The stopping time S0 := inf{t > 0: Yt = 1} is exponentially distributed and has mean 1.

Proof. Note that Yt = 0 only if Ys = 0 for all s ∈ [0, t[, by (4); the claim now follows from Lemma 2.3. �

Lemma 4.2. If Zt := Xt+S0 + S0 for all t ≥ 0 then Z is a normal martingale for the filtration (Ft+S0)t≥0 such that
Z0 = 1, which satisfies the structure equation

d[Z]t = dt + (1 − t − Zt−)dZt (11)

and which is independent of FS0 .

Proof. As Zt = Xt+S0 − XS0 + 1 for all t ≥ 0, Theorem 1.6 implies that Z is a normal martingale. Furthermore,

[Z]t = [X]t+S0 − [X]S0 =
∫ t+S0

S0

(1 − r − Xr−)dXr =
∫ t

0
(1 − s − Zs−)dZs

for all t ≥ 0. (The first equality is a consequence of Lemma 1.2; the last may be shown by expressing the integrals
as the limit of Riemann sums, as in [17], Theorem II.21, for example.) It now follows from [2], Theorem 25, that,
for all t ≥ 0, the law of Zt conditional on FS0 depends only on the initial value Z0 = 1 and the coefficient functions
α : s �→ 1 − s and β ≡ −1 restricted to [0, t], so Zt is independent of FS0 . �

Remark 4.3. If t ≥ 0 then

Zt + t = Yt+S0 = −W•
(− exp

(−1 − (t + S0) + Gt+S0

)) ∈ [a(t), b(t)
]
,

since Gt+S0 ≥ S0. Consequently, Z is uniformly bounded on [0, t] for all t ≥ 0.

Remark 4.4. Let mn(t) := E[(Zt + t)n] for all n ≥ 1 and t ≥ 0, where Z is as in Lemma 4.2. It may be shown using
Émery’s Itô formula ([13], Proposition 2 and the subsequent remark) that

mn(t) − mn−1(t) = n

∫ t

0
mn−1(s)ds (12)

for all n ≥ 1 and t ≥ 0 (where m0 ≡ 1). Hence (compare [6], Section 4)

m̂n(p) = p−1
n∏

j=1

(
1 + jp−1)

if n ≥ 1, where f̂ denotes the Laplace transform of f , and so

mn(t) = 1 +
n∑

k=1

( ∑
1≤j1<···<jk≤n

j1 · · · jk

)
tk

k! =
n∑

k=0

[
n + 1

n + 1 − k

]
tk

k! (13)

for all t ≥ 0, where
[ ·

·
]

denotes the unsigned Stirling numbers of the first kind [15]. (The final identity holds by [7],
Proposition 3 and Remark 6, for example.)

Theorem 4.5. If t > 0 then Zt + t = Yt+S0 is continuously distributed, with density

fZt+t : R → R+; z �→ 1z∈[a(t),b(t)]
1

π
Im

1

1 + W−1(−zet−z)
. (14)
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Proof. Let x ≥ 0. Since Yt = 1t≥S0(Z(t−S0)
+ + t − S0) for all t ≥ 0, it follows that

P(0 < Yt ≤ x) = P(S0 ≤ t and Z(t−S0)
+ + t − S0 ≤ x)

=
∫ t

0

∫ x−t+s

−∞
dFZt−s (z)e

−s ds

= e−t

∫ t

0

∫ x−u

−∞
dFZu(z)e

u du,

where FV denotes the distribution function of the random variable V . (For the second equality, note that

E[1S0≤t1Z(t−S0)++t−S0≤x] = E
[
1S0≤tE[1Z(t−S0)++t−S0≤x |FS0 ]

]
= E

[
1S0≤tE[1Z(t−s)++t−s≤x]|s=S0

]
,

since Z is independent of FS0 .) Hence

P(Zt + t ≤ x) = e−t d

dt

(
etP(0 < Yt ≤ x)

)= P(0 < Yt ≤ x) + d

dt
P(0 < Yt ≤ x).

Thus if t > 0 then either x ≤ a(t), so that P(Zt + t ≤ x) = 0, or x ≥ b(t), whence P(Zt + t ≤ x) = 1 − e−t + e−t = 1,
or x ∈ ]a(t), b(t)[, in which case

πP(Zt + t ≤ x) =
∫ x

a(t)

Im
1

W−1(−zet−z)
dz − a′(t) Im

1

W−1(−a(t)et−a(t))
+
∫ x

a(t)

∂

∂t
Im

1

W−1(−zet−z)
dz

=
∫ x

a(t)

Im
1

1 + W−1(−zet−z)
dz,

as claimed. (This formal working is a little awkward to justify: a rigorous proof is provided by Proposition C.2.) �

Proposition 4.6. The random variables S0 and J := G∞ − S0 are independent and J is continuous, with density

fJ : R → R+; x �→ 1x>0
1

π
Im

1

1 + W−1(−e−1+x)
. (15)

Proof. To see that S0 and J are independent, note first that

J = lim
n→∞Gn+S0 − S0 = lim

n→∞
(
1 − Zn + log(Zn + n)

)
almost surely, where (Zt )t≥0 is as defined in Lemma 4.2, which implies that Gn+S0 − S0 is independent of S0 for all
n ≥ 1 and, therefore, so is J .

If FJ (z) := P(J ≤ z) for all z ∈ R then, by independence and Proposition 4.1,∫ z

−∞
g∞(w)dw = P(J + S0 ≤ z) =

∫ ∫
{(x,y)∈R2: x+y≤z}

dFJ (x)1y≥0e−y dy

=
∫ z

−∞
e−v

∫ v

−∞
eu dFJ (u)dv

for all z ∈ R, using the substitution (u, v) = (x, x + y). Thus, for almost all v ∈ R,

g∞(v) = e−v

∫ v

−∞
eu dFJ (v);
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in fact, this holds for all v ∈ R, as both functions are continuous, and, since g∞(0) = 0,

g∞(t) = e−t

∫ t

0
es dFJ (s) ∀t ≥ 0.

Now g∞ is continuously differentiable on R \ {0} and fJ (x) = g∞(x) + 1x �=0g
′∞(x), so if 0 < ε < t then integration

by parts yields the equality∫ t

ε

esfJ (s)ds = et g∞(t) − eεg∞(ε) →
∫ t

0
es dFJ (s) as ε → 0+.

Hence
∫ t

0 esfJ (s)ds exists for all t ≥ 0 (as does
∫ t

0 fJ (s)ds, by comparison) and

μ :B(R+) → R+; A �→
∫

A

es dFJ (s) =
∫

A

esfJ (s)ds

is a positive Borel measure on R+; by [19], Theorem 1.29,∫ t

0
fJ (s)ds =

∫ t

0
e−s dμ(s) =

∫ t

0
dFJ (s) = FJ (t) − FJ (0)

for all t ≥ 0 and

1 = lim
t→∞FJ (t) = FJ (0) +

∫ ∞

0
g∞(s)ds + lim

t→∞g∞(t) = FJ (0) + 1,

by Proposition B.1, so FJ (0) = 0. The result follows. �

Remark 4.7. The distribution of J may also be found by imitating the proof of Proposition 3.1, with Zt + t replac-
ing Yt , since J has the same relationship to Z as G∞ does to X.

Proposition 4.8. If t ≥ 0 then

P(G∞ ≤ t) = − 1

π
Im

(
W−1

(−e−1+t
)+ 1

W−1(−e−1+t )

)
(16)

and

P(J ≤ t) = − 1

π
ImW−1

(−e−1+t
)= P(G∞ ≤ t) + g∞(t). (17)

Proof. These follow immediately from the identities∫ t

0

1

W−1(−e−1+x)
dx = t − (1 + W−1(−e−1+t ))2

W−1(−e−1+t )

and ∫ t

0

1

1 + W−1(−e−1+x)
dx = t − W−1

(−e−1+t
)− 1,

which are valid for all t ≥ 0 and may be verified by differentiation. For brevity, let w = W−1(−e−1+t ) and w′ =
W ′−1(−e−1+t ); note that dw/dt = −e−1+tw′ and −e−1+t (1 + w)w′ = w, whence

d

dt

(
t − (1 + w)2

w

)
= 1 − −2e−1+t (1 + w)w′w + e−1+tw′(1 + w)2

w2

= 1 − −e−1+t (1 + w)w′(2w − (1 + w))

w2
= 1 − w − 1

w
= 1

w
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and, if t > 0,

d

dt
(t − w) = 1 + e−1+tw′ = 1 − w

1 + w
= 1

1 + w
,

as required. (To see the existence of
∫ t

0 1/(1 +W−1(−e−1+x))dx, note that if t ≥ ε > 0 then, letting W−1(−e−1+x) =
−v cotv + iv, where v ∈ ]−π,0[,

∫ t

ε

∣∣∣∣ 1

1 + W−1(−e−1+x)

∣∣∣∣dx =
∫ v(ε)

v(t)

√
1 − 2v cotv + v2 cosec2 v

v2
dv

and the function v �→ (1 − 2v cotv + v2 cosec2 v)/v2 is continuous on ]−π,0[ with limit 1 as v → 0−.) �

5. La martingale cachée

The martingale H discussed in this section was discovered by Émery [14].

Theorem 5.1. If Ht := 1 − (Zt + t)−1 for all t ≥ 0 then H is a martingale such that H0 = 0,

d[H ]t = (1 − Ht−)2 dt − Ht− dHt (18)

and Ht → H∞ := 1 almost surely as t → ∞.

Proof. If t ≥ 0 and E(−Z) denotes the Doléans-Dade exponential of the normal martingale −Z then E(−Z) is square
integrable on [0, t] for all t ≥ 0 and (11) implies that

(Zt + t)E(−Z)t

= Zt + t −
∫ t

0
(dZs + ds)

∫ t

0
E(−Z)s− dZs

= Zt + t −
∫ t

0
(Zs− + s)E(−Z)s− dZs −

∫ t

0

(
1 − E(−Z)s−

)
(dZs + ds) −

∫ t

0
E(−Z)s− d[Z]s

= 1.

Thus H = 1 − E(−Z) is a martingale and dHt = E(−Z)t− dZt = (1 − Ht−)dZt , whence

d[H ]t = (1 − Ht−)2 d[Z]t
= (1 − Ht−)2(dt + (

1 − (1 − Ht−)−1)dZt

)
= (1 − Ht−)2 dt − Ht− dHt,

as claimed. Since Yt → ∞ almost surely as t → ∞, by Corollary 3.5, so does Zt + t = Yt+S0 , and the final claim
follows. �

Remark 5.2. As Ht = 0 if and only if Zt + t = 1,

U := {t ≥ 0: Yt = 1} = {s + S0: Ys+S0 = 1} = {s + S0: Hs = 0};
the structure of U is determined by the zero set of H .

Definition 5.3. Let

τ : R+ × Ω → R+; (t,ω) �→ τt (ω) :=
∫ t

0

(
1 − Hs−(ω)

)2 ds
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and note that τ is adapted to the filtration (Ft )t≥0 and has paths which are continuous, strictly increasing and bi-
Lipschitzian on any compact subinterval of R+, since the derivative

τ ′
t = (1 − Ht−)2 = (Zt− + t)−2 ∈ [b(t)−2, a(t)−2]

for all t ≥ 0. Let

τ∞ :=
∫ ∞

0
(1 − Hs−)2 ds ∈]0,∞]

and extend τ−1 (defined pathwise) to all of R+ by letting τ−1
s := ∞ for all s ∈ [τ∞,∞[. If s ≥ 0 then {τ−1

s ≤ t} =
{s ≤ τt } ∈Ft for all t ≥ 0, so τ−1

s is an (Ft )t≥0 stopping time. Thus (Gs := F
τ−1
s

)s≥0 is a filtration which satisfies the
usual conditions, by Lemma 1.7.

Proposition 5.4. The process K = (Ks := H
τ−1
s

)s≥0 is a martingale for the filtration (Gs)s≥0 and satisfies the equa-
tion

[K]s = s ∧ τ∞ −
∫ s

0
Kr− dKr ∀s ≥ 0. (19)

Proof. Fix s ≥ 0; as τ−1
s is an (Ft )t≥0 stopping time, Hτ−1

s is a martingale for this filtration ([18], Theorem II.77.4).
Let (Tn)n≥1 be an increasing sequence of stopping times which reduces the local martingale H− · H and note that

E
[
τ
τ−1
s ∧Tn

− [H ]
τ−1
s ∧Tn

]= E
[
(H− · H)

Tn

τ−1
s

]= 0,

by the optional-sampling theorem. As τ is increasing, the monotone-convergence theorem implies that

E[s ∧ τ∞] = lim
n→∞ E[τ

τ−1
s ∧Tn

] = lim
n→∞ E

[[H ]
τ−1
s ∧Tn

]= E
[[

Hτ−1
s
]
∞
]
,

so Hτ−1
s is a square-integrable martingale ([17], Corollary 4 to Theorem II.27). Hence K is a martingale, by a further

application of the optional-sampling theorem: if 0 ≤ r ≤ s then

E[Ks |Gr ] = E
[
H

τ−1
s∞ |F

τ−1
r

]= H
τ−1
r

= Kr.

Moreover,∫ s

0
Kr− dKr =

∫ τ−1
s

0
Kτr− dHr =

∫ τ−1
s

0
Hr− dHr

(which follows from [17], Theorem II.21, for example), so

[K]s = K2
s − K2

0 − 2
∫ s

0
Kr− dKr = H 2

τ−1
s

− H 2
0 − 2

∫ τ−1
s

0
Hr− dHr = [H ]

τ−1
s

and this equals

τ
τ−1
s

−
∫ τ−1

s

0
Hr− dHr = s ∧ τ∞ −

∫ s

0
Kr− dKr.

�

Theorem 5.5. Let M be Azéma’s martingale, that is, the normal martingale such that M0 = 0 and

d[M]t = dt − Mt− dMt.

If T := inf{t ≥ 0: Mt = 1} then MT and K are identical in law.
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Proof. Let L be a normal martingale which is independent of K such that L0 = 1 and

d[L]t = dt − Lt− dLt ,

that is, L is an Azéma’s martingale started at 1; existence of such follows from [13], Proposition 5. For all t ≥ 0, let

Pt := 1t∈[0,τ∞[ Kt + 1t∈[τ∞,∞[ Lt−τ∞ = Kt + L(t−τ∞)+ − 1.

In the notation of Lemma 1.8, τ∞ = inf{t ≥ 0: Kt = 1} is a (FK
t )t≥0-stopping time, so ]0, τ∞] is (FK

t )t≥0 predictable
and 1 ]0,τ∞] · [K] = [K] (since K = Kτ∞ ) whereas 1 ]0,τ∞] · [LA] = 0, if At := (t −τ∞)+, because (LA)

τ∞
t = LAt∧τ∞ =

0 for all t ≥ 0. Since [K]t = 2(t ∧ τ∞) − K2
t ≤ 2t and [L]At = 2At − L2

At
≤ 2t , Lemma 1.8 implies that P =

K + LA − 1 is a local martingale such that P0 = 0 and

[P ]t = [K]t + [L]At = t − (K− · K)t − (L− · L)At .

However,

[P ] = [K] + [LA]
= K2 − 2K− · K + L2

A − 1 − 2LA− · LA

= (K + LA − 1)2 + 2K + 2LA − 2 − 2KLA − 2K− · K − 2(L− · L)A

and KLA = P , so

P 2 − 2P− · P = [P ] = P 2 − 2K− · K − 2(L− · L)A.

Thus [P ]t = t − (P− · P)t , so P is a normal martingale, by Theorem 1.5, and, by uniqueness ([13], Proposition 6),
P is equal to M in law. Since τ∞ = inf{t ≥ 0: Pt = 1}, the processes K = P τ∞ and MT are identical in law, as
claimed. �

6. The level set U

The level set

U = {t + S0: Ht = 0} = τ−1({s ∈ [0, τ∞[ : Ks = 0
})+ S0,

where τ is a homeomorphism between R+ and [0, τ∞[ which is bi-Lipschitzian on compact subintervals. This obser-
vation, together with Theorem 5.5, leads immediately to the following theorem, thanks to well-known properties of
the zero set of Azéma’s martingale (or rather, by [17], Section IV.6, properties of the zero set of Brownian motion: see
[8], Theorem 37.4 and [24]).

Theorem 6.1. The set U := {t ≥ 0: Yt = 1} is almost surely non-empty, perfect (that is, closed and without isolated
points), compact and of zero Lebesgue measure. If a > 0 then U ∩ [S0, S0 + a] has Hausdorff dimension 1/2.

Corollary 6.2. If T is a stopping time then P(G∞ = T ) = 0. In particular, the final jump time G∞ is not a stopping
time.

Proof. If T is a stopping time then so is T ′ = 1YT =1T + 1YT �=1∞; let Z′
t := 1T ′<∞(Xt+T ′ − XT ′ + 1) for all t ≥ 0.

Conditional on T ′ < ∞, it holds that Z′
0 = 1 and, working as in the proof of Lemma 4.2,

d[Z′]t = (1 − t − Z′
t−)dZ′

t + dt,

so Z′ is identical in law to Z. In particular, the set U ∩ ]T ,T + 1[ is almost surely non-empty, given that YT = 1, but
U ∩ ]G∞,G∞ + 1[ = ∅ by definition. �
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Proposition 6.3. If S and T are random variables such that 0 ≤ S ≤ T ≤ ∞ and Y is continuous on [S,T [ (both
almost surely) then

Yt = −W•
(
exp(−1 − t + GS)

) ∀t ∈ [S,T [
almost surely, where • ≡ 0 or • ≡ −1 on [S,T [.

Proof. Working pathwise, assume S < T and note that, almost surely for all n ≥ 1, there exists Tn ∈ [S,S + 1/n]
such that YTn �= 1 (otherwise Y ≡ 1 on [S,S + 1/n], contradicting the fact that U almost surely has zero Lebesgue
measure). Let

A := {
R ∈ ]Tn,T ]: Y �= 1 on [Tn,R[};

since YTn �= 1, the right-continuity of Y at Tn implies that A is non-empty. Furthermore, R∞ := supA ∈ A: there exists
(Rn)n≥1 ⊆ A such that Rn ↗ R∞ and Y �= 1 on

⋃
n≥1 [Tn,Rn[ = [Tn,R∞[.

If R ∈ A then, working as in [7], Proof of Theorem 24, it follows that Y is continuously differentiable on [Tn,R[
(taking the right derivative at Tn) with Y ′ = Y/(Y − 1) there. Hence, by [7], Lemma 25,

Yt = −W•
(−YTn exp(−t + Tn − YTn)

)= −W•
(− exp(−1 − t + GTn)

)
for all t ∈ [Tn,R[, where • ≡ −1 or • ≡ 0. In particular, YR− �= 1, so if R∞ < T then Y is continuous at R∞ and
YR∞ �= 1, but then there exists Δ > 0 such that R∞ +Δ < T and Y �= 1 on [R∞,R∞ + Δ[, contradicting the definition
of R∞. Thus Y has the desired form on [Tn,T [; letting n → ∞, so that Tn ↘ S, gives the result. �

Corollary 6.4. If T is a random variable such that YT = 1 almost surely then there exists a sequence (Tn)n≥1 of
random variables such that Tn ↗ T and �YTn �= 0 almost surely.

Proof. Let Tn := sup{t ∈ ]0, T ]: |�Yt | > 1/(n + 1)} for all n ≥ 1; the sequence (Tn)n≥1 is increasing, with each Tn

almost surely finite and such that �YTn �= 0 (since Y has càdlàg paths, so only finitely many jumps of magnitude
strictly greater than 1/(n + 1) on any bounded interval). If S := limn→∞ Tn then Y is continuous on [S,T [ and
Proposition 6.3 implies that S = T almost surely, as required. �

7. Local time

This section is heavily influenced by [17], Section IV.6, hence the proofs are only sketched. Thanks to Theorem 5.5,
the results may also be deduced simply from the corresponding properties of Azéma’s martingale (except, perhaps,
for (21)).

Definition 7.1. Let P denote the predictable σ -algebra on R+ × Ω . Recall (see [22], Section I.6, for example) that
there exists a B(R) ⊗P-measurable function

L : R × R+ × Ω → R; (v, t,ω) �→ Lv
t (ω)

such that, for all v ∈ R, Lv is a continuous, increasing process with Lv
0 = 0 and

|Yt − v| = |v| +
∫ t

0
sgn(Ys− − v)dYs

+
∑

0<s≤t

(|Ys − v| − |Ys− − v| − sgn(Ys− − v)�Ys

)+ Lv
t (20)

for all t ≥ 0 almost surely, where sgn(x) := 1x>0 − 1x≤0 for all x ∈ R.
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Remark 7.2. Since X is purely discontinuous ([7], Lemma 23), [Y ]c = [X]c = 0; by the occupation-density formula
([17], Corollary 2 to Theorem IV.51), there exists a null set N ⊆ Ω such that

0 =
∫ ∞

0
[Y ]ct (ω)dt =

∫ ∞

−∞

∫ ∞

0
Lv

t (ω)dt dv ∀ω ∈ Ω \ N,

and so, almost surely, Lv ≡ 0 on R+ for almost all v ∈ R. The following theorem gives a more exact result.

Theorem 7.3. If v �= 1 then the local time Lv = 0, whereas

E
[
L1

t

]= 2
∫ t

0
g∞(x)dx > 0 (21)

and the random variable L1
t is not almost surely zero for all t > 0.

Proof. If v = 0 then (20) implies that

|Yt+S0 | = −
∫ S0

0
dYs +

∫ t+S0

S0

dYs + 2
∑

0<s≤t+S0

1Ys−=0�Ys + L0
t+S0

= −1 + Yt+S0 − 1 + 2 + L0
t+S0

for all t ≥ 0, so L0 = 0. (The first equality uses the local character of the stochastic integral ([17], Corollary to
Theorem II.18).) If v /∈ {0,1} then the set {s > 0: Ys− = Ys = v} is countable and the claim follows as it does in
[17], Proof of Theorem IV.63. For the remaining case, observe that the Meyer–Tanaka–Itô formula (or just [17],
Theorem IV.49) yields, for all t ≥ 0, the identity

(Yt − 1)+ =
∫ t

0
1Ys−>1 dYs + 1

2
L1

t .

Since

E

[∫ t

0
1Ys−>1 ds

]
= E

[∫ t

0
1Ys>1 ds

]
=
∫ t

0
P(Ys > 1)ds,

as {s > 0: Ys− �= Ys} is countable and thus has zero Lebesgue measure, it follows that

E
[
L1

t

]= 2E
[
(Yt − 1)+

]− 2
∫ t

0
P(Ys > 1)ds.

For all t ≥ 0 and x ≥ 0, let FYt (x) := P(Yt ≤ x); Lemma 2.3 implies that

E
[
(Yt − 1)+

]=
∫ ∞

1
(x − 1)dFYt (x) = 1

π

∫ b(t)

1
Im

x − 1

W−1(−xet−x)
dx =

∫ t

0
b(t − y)g∞(y)dy,

using the substitution x = b(t − y), and similarly∫ t

0
P(Ys > 1)ds = 1

π

∫ t

0

∫ b(s)

1
Im

1

W−1(−xes−x)
dx ds

=
∫ t

0

∫ s

0
b′(s − y)g∞(y)dy ds =

∫ t

0

(
b(t − y) − 1

)
g∞(y)dy.

Combining these calculations yields (21). �
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Definition 7.4. A semimartingale R has locally summable jumps (or satisfies Hypothesis A, in the terminology
of [17]) if∑

0<s≤t

|�Rs | < ∞ almost surely ∀t > 0.

Corollary 7.5. The martingale X does not have locally summable jumps.

Proof. Suppose for contradiction that X (and so Y ) has locally summable jumps. By [17], Theorem IV.56, there exists
a B(R) ⊗P-measurable function

L̃ : R × R+ × Ω → R+; (v, t,ω) �→ L̃v
t (ω)

such that (v, t) �→ L̃v
t (ω) is jointly right continuous in v and continuous in t for all ω ∈ Ω and, for all v ∈ R, L̃v = Lv .

This is, however, readily seen to contradict Theorem 7.3. �
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Appendix A. A Poisson limit theorem

The following theorem must be well known, but a reference for it (or a version with weaker hypotheses) has proved
elusive.

Theorem A.1. For all n ≥ 1 let (xn,m)nm=1 be a collection of independent, identically distributed random variables.
If there exists λ > 0 such that

lim
n→∞nE

[
xk
n,1

]= λ ∀k ∈ N,

then xn,1 + · · · + xn,n converges in distribution to a Poisson law with mean λ.

Proof. If n ≥ 1 and θ ∈ R then∣∣∣∣E[exp
(
iθ(xn,1 + · · · + xn,n)

)]−
(

1 + λ

n

(
eiθ − 1

))n∣∣∣∣≤ n

∣∣∣∣E[eiθxn,1
]− 1 − λ(eiθ − 1)

n

∣∣∣∣(1 + 2λ

n

)n−1

,

using the fact that |zn − wn| ≤ n|z − w|max1≤k≤n{|z|k−1|w|n−k} for all z, w ∈ C. Furthermore, because |eiθ −∑2p−1
k=0 (iθ)k/k!| ≤ θ2p/(2p)! for all θ ∈ R and p ≥ 1,

n

∣∣∣∣E[eiθxn,1
]− 1 − λ(eiθ − 1)

n

∣∣∣∣
≤ n

∣∣∣∣∣E
[

eiθxn,1 −
2p−1∑
k=0

(iθxn,1)
k

k!

]∣∣∣∣∣+
2p−1∑
k=1

|θ |k
k!

∣∣nE
[
xk
n,1

]− λ
∣∣+ λ

∣∣∣∣∣eiθ −
2p−1∑
k=0

(iθ)k

k!

∣∣∣∣∣
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≤ |θ |2p(nE[x2p

n,1] + λ)

(2p)! +
2p−1∑
k=1

|θ |k
k!

∣∣nE
[
xk
n,1

]− λ
∣∣.

Since (1 + 2λ/n)n−1 → e2λ as n → ∞, this sequence is bounded by some constant C. Fix ε > 0, choose p ≥ 1 such
that 2|θ |2pλ/(2p)! < ε/(2C) and choose n0 such that

|θ |k
k!

∣∣nE
[
xk
n,1

]− λ
∣∣< ε

4pC
∀n ≥ n0, k = 1, . . . ,2p;

the previous working shows that∣∣∣∣E[exp
(
iθ(xn,1 + · · · + xn,n)

)]−
(

1 + λ

n

(
eiθ − 1

))n∣∣∣∣< 2|θ |2pλC

(2p)! + ε

4p
+ (2p − 1)

ε

4p
< ε ∀n ≥ n0.

Hence

lim
n→∞ E

[
exp

(
iθ(xn,1 + · · · + xn,n)

)]= lim
n→∞

(
1 + λ

n

(
eiθ − 1

))n

= exp
(
λ
(
eiθ − 1

))
,

and the result follows from the continuity theorem for characteristic functions ([8], Theorem 26.3). �

Remark A.2. It follows from the working above that, if m ≥ 1 and θ ∈ R,

E
[
eiθxn,m

]= 1 +
(

λ

n

)(
eiθ − 1

)+ o

(
1

n

)
= E

[
eiθbn

]+ o

(
1

n

)
→ 1

as n → ∞, where P(bn = 0) = 1 − λ/n and P(bn = 1) = λ/n. Thus xn,m converges to 0 in distribution, and so in
probability, as n → ∞, which explains why this result is a “law of small numbers”.

Appendix B. The probability density function g∞

Proposition B.1. The function

g∞ : R → R+; x �→ 1x≥0
1

π
Im

1

W−1(−e−1+x)

has a global maximum g∞(x0) ≈ 0.2306509575 at x0 ≈ 0.7376612533, is strictly increasing on [0, x0], is strictly
decreasing on [x0,∞[ with limx→∞ g∞(x) = 0,∫ ∞

0
g∞(x)dx = 1 and

∫ ∞

0
xg∞(x)dx = ∞.

Proof. Let W−1(−e−1+x) = u(x) + iv(x) for all x ≥ 0, where u(x) ∈ R and v(x) ∈]−π,0]. Since

(u + iv) exp(u + iv) = − exp(−1 + x) ⇐⇒
{

eu(u cosv − v sinv) = −e−1+x,

u sinv + v cosv = 0,

if v = 0 then ueu = −e−1+x , which has no solution for x > 0, so v = 0 if and only if x = 0. Suppose henceforth that
x > 0; note that u = −v cotv,

e−v cotv(−v cosv cotv − v sinv) = −e−1+x ⇐⇒ x = 1 − v cotv + log(v cosecv)

and πg∞(x) = −v/(u2 + v2) > 0. Observe that

du

dv
= − cotv + v cosec2 v = 1

sin2 v
(v − sinv cosv) <

1

sin2 v
(0 − sin 0 cos 0) = 0,
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because (d/dv)(v − sinv cosv) = 1 − cos 2v > 0, and

dx

dv
= 1

v
− 2 cotv + v cosec2 v = 1

v
(1 − v cosecv)2 − 2

sinv
(cosv − 1) < 0,

so u is a strictly increasing function of x. As u(0) = −1, u takes its values in [−1,∞[ ; as v(0) = 0, letting x =
1 − v cotv + log(v cosecv) → ∞ shows that v → −π (since this function of v is bounded on any proper subinterval
of ]−π,0[ ) and therefore u → ∞ as x → ∞. (In particular, |g∞(x)| ≤ 1/u2 → 0 as x → ∞.) Since u is continuous,
strictly increasing and maps [0,∞[ to [−1,∞[, there exists x0 such that u(x0) = −1/2. Moreover,

g′∞(x) = Im
d

dx

1

W−1(−e−1+x)
= Im

−1

(u + iv)(1 + u + iv)
= v(2u + 1)

(u2 + v2)((1 + u)2 + v2)
,

so g′∞ > 0 on ]0, x0[ and g′∞ < 0 on ]x0,∞[ . (The approximate values for x0 and g∞(x0) were determined with the
use of Maple.)

For the integrals, the substitution x = v gives that

π

∫ ∞

0
g∞(x)dx =

∫ 0

−π

sin2 v

v

(
1

v
− 2 cotv + v cosec2 v

)
dv

= π +
∫ 0

−π

(
sin2 v

v2
− sin 2v

v

)
dv = π +

[
− sin2 v

v

]0

−π

= π,

as required. Finally, if ε ∈]0,π/2[ ,

π

∫ ∞

0
xg∞(x)dx =

∫ 0

−π

(
1 − v cotv + log(v cosecv)

)( sin2 v

v2
− sin 2v

v
+ 1

)
dv

≥
∫ −π/2

−π+ε

−v cotv dv ≥ π

2

∫ π/2

ε

cotw dw = − log sin ε → ∞

as ε → 0+. �

Remark B.2. It follows from Propositions B.1 and 3.1 that the distribution of G∞ is unimodal with mode x0, that is,
t �→ P(G∞ ≤ t) is convex on ]−∞, x0[ and concave on ]x0,∞[ .

Appendix C. An auxiliary calculation

Lemma C.1. If fJ is as defined in Proposition 4.6 then

πfJ (t) = Im
1

1 + W−1(−e−1+t )
∼ 1√

2t
as t → 0+

and fJ is strictly decreasing on ]0,∞[.

Proof. For all t ≥ 0, let p := −√
2(1 − et ) = −i

√
2t + O(t3/2) as t → 0+; recall that

−W−1
(−e−1+t

)= 1 − p + O
(
p2)= 1 + i

√
2t + O(t)

as t → 0+, by [10], (4.22), and this gives the first result. For the next claim, if t > 0 and W−1(−e−1+t ) = −v cotv+ iv,
where v ∈ ]−π,0[, then

πf ′
J (t) = Im

−W−1(−e−1+t )

(1 + W−1(−e−1+t ))3
= ((3 − 2v cotv)v2 cosec2 v − 1)v

((1 − v cotv)2 + v2)3
.
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The result follows if

(3 − 2v cotv)v2 cosec2 v − 1 > 0 ⇐⇒ (
v2 − sin2 v

)
sinv + 2v2(sinv − v cosv) < 0

for all v ∈ ]−π,0[, but since sin2 v < v2 and sinv < v cosv for such v, this is clear. �

Proposition C.2. If D := {(t, x) ∈ R2+: a(t) ≤ x ≤ b(t)},

f :D → R+; (t, x) �→ Im
1

W−1(−xet−x)
,

F :D → R+; (t, x) �→
∫ x

a(t)

f (t, y)dy

and (s, y) ∈ D◦ := {(t, x) ∈ R2+: t > 0, a(t) < x < b(t)} then

F(s, y) + ∂F

∂t
(s, y) =

∫ y

a(s)

Im
1

1 + W−1(−zes−z)
dz. (22)

Proof. Note first that, since f is continuous, F is well defined. If h > 0 then

F(s + h,y) − F(s, y)

h
= 1

h

∫ a(s)

a(s+h)

f (s + h, z)dz +
∫ y

a(s)

f (s + h, z) − f (s, z)

h
dz

and the intermediate-value theorem gives ζh ∈ [a(s + h), a(s)] such that

1

h

∫ a(s)

a(s+h)

f (s + h, z)dz = a(s) − a(s + h)

h
f (s + h, ζh) → −a′(s)f

(
s, a(s)

)= 0

as h → 0+. For all z ∈ [a(s), b(s)] there exists θh,z ∈ ]0,1[ such that

f (s + h, z) − f (s, z)

h
= ∂f

∂t
(s + θh,zh, z)

by the mean-value theorem, since t �→ f (t, z) is continuous on [s, s + h] and differentiable on ]s, s + h[. Let

g :D◦ → R+; (t, x) �→ ∂f

∂t
(t, x) + f (t, x) =

{
πfJ

(
t − a−1(x)

)
if x ∈ ]a(t),1

]
,

πfJ

(
t − b−1(x)

)
if x ∈ [1, b(t)

[
,

where fJ is defined in Proposition 4.6. The continuity of f on [s, s + 1] × [a(s), y] and the dominated-convergence
theorem imply that

F(s, y) =
∫ y

a(s)

f (s, z)dz = lim
h→0+

∫ y

a(s)

f (s + θh,zh, z)dz,

so the right-hand limit in (22) has the correct value if
∫ y

a(s) g(s, z)dz exists and

lim
h→0+

∫ y

a(s)

g(s + θh,zh, z)dz =
∫ y

a(s)

g(s, z)dz.

Fix r ∈ ]0, s[ such that y > a(r) and note that g is continuous on [s, s + 1] × [a(r), y], so the dominated-convergence
theorem implies that

lim
h→0+

∫ y

a(r)

g(s + θh,zh, z)dz =
∫ y

a(r)

g(s, z)dz.
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Next, note that if z ∈ ]a(s), a(r)] and h → 0+ then

g(s + θh,zh, z) = πfJ

(
s + θh,zh − a−1(z)

)↗ πfJ

(
s − a−1(z)

)= g(s, z),

because fJ is strictly decreasing, by Lemma C.1. The first half of the result now follows from the monotone-
convergence theorem, once it is known that

∫ a(r)

a(s)
g(s, z)dz exists. However,∫ a(r)

a(s)

g(s, z)dz = π

∫ r

s

fJ (s − u)a′(u)du = −π

∫ s−r

0
fJ (t)a′(s − t)dt < ∞,

since, by Lemma C.1, πfJ (t) ∼ 1/
√

2t as t → 0+, fJ is continuous on ]0, s − r] and a′ is continuous on [r, s].
Now suppose that h < 0 is such that s + h > 0 and b(s + h) > y > a(s + h). Then

F(s + h,y) − F(s, y)

h
=
∫ y

a(s+h)

f (s + h, z) − f (s, z)

h
dz − 1

h

∫ a(s+h)

a(s)

f (s, z)dz

and the second term tends to 0 as h → 0−. If z ∈ [a(s +h), b(s +h)] then t �→ f (t, z) is continuous on [s +h, s] and
differentiable on ]s + h, s[, so there exists θh,z ∈ ]0,1[ such that

f (s + h, z) − f (s, z)

h
= ∂f

∂t
(s + θh,zh, z).

Furthermore, as f is continuous, so bounded, on the compact set D ∩ ([0, s] × R+), the dominated-convergence
theorem implies that

F(s, y) = lim
h→0−

∫ y

a(s+h)

f (s + θh,zh, z)dz

and the result follows if

lim
h→0−

∫ y

a(s+h)

g(s + θh,zh, z)dz =
∫ y

a(s)

g(s, z)dz.

Fix 0 < r1 < r2 < s such that a(r1) < y and note that g is continuous on [r2, s]× [a(r1), y], so bounded there, and the
dominated-convergence theorem implies that∫ y

a(r1)

g(s + θh,zh, z)dz →
∫ y

a(r1)

g(s, z)dz

as h → 0−. A final application of the monotone-convergence theorem completes the result, since if h < 0 is such that
r2 < s + h then, letting h → 0−,

1z∈[a(s+h),a(r1)]g(s + θh,zh, z) = 1z∈[a(s+h),a(r1)]πfJ

(
s + θh,zh − a−1(z)

)
↗ 1z∈]a(s),a(r1)]πfJ

(
s − a−1(z)

)
= 1z∈]a(s),a(r1)]g(s, z). �

Appendix D. A pair of Laplace transforms

Theorem D.1. If g∞ is as defined in Proposition 3.1 and fJ is as defined in Proposition 4.6 then their Laplace
transforms are as follows:

ĝ∞(p) = e−ppp

�(p + 2)
and f̂J (p) = (p + 1)ĝ∞(p) = e−ppp

�(p + 1)
, (23)

where �: p �→ ∫∞
0 zp−1e−z dz is the gamma function.
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Proof. Let

f1(t) := 1

π

∫ b(t)

a(t)

Im
1

W−1(−yet−y)
dy ∀t ≥ 0.

Splitting the interval [a(t), b(t)] at 1 and using the substitutions y = a(t − x) and y = b(t − x), as appropriate,

f1(t) = 1

π

∫ t

0
Im

(
1

W−1(−e−1+x)

)
c(t − x)dx = (g∞ � c)(t),

where � denotes convolution of functions on R+ and c is as in Definition 2.2. Furthermore,

ĉ(p) :=
∫ ∞

0
c(x)e−px dx =

∫ ∞

0
b′(x)e−px dx −

∫ ∞

0
a′(x)e−px dx

=
∫ ∞

1
e−p(−1+y−logy) dy +

∫ 1

0
e−p(−1+y−logy) dy

= ep

∫ ∞

0

(
z

p

)p

e−zp−1 dz.

The second line follows from the substitutions y = b(x) and y = a(x). Thus, since f1(t) = P(Yt > 0) = 1 − e−t ,

ĝ∞(p) = f̂1(p)

ĉ(p)
= 1

p(p + 1)

e−ppp+1

�(p + 1)
= e−ppp

�(p + 2)
,

as claimed. If

f2(t) := 1

π

∫ b(t)

a(t)

Im
1

1 + W−1(−zet−z)
dy ∀t > 0,

then, working as above, f2 = fJ � c. Moreover, since f2 = f1 + f ′
1 (by the working in the proof of Theorem 4.5), it

follows that f̂2(p) = (p + 1)f̂1(p) and

f̂J (p) = f̂2(p)

ĉ(p)
= (p + 1)f̂1(p)

ĉ(p)
= e−ppp

�(p + 1)
.

�

Remark D.2. The substitution x = 1 − v cotv + log(v cosecv) yields the identity

epf̂J (p) = 1

π

∫ π

0

(
sinv

v

)p

exp(pv cotv)dv; (24)

it should be possible to verify directly that the right-hand side of (24) equals pp/�(p + 1). (This would give indepen-
dent proof that

A �→ 10∈A + 1

π

∫
A∩[a(t),b(t)]

Im
1

W−1(−yet−y)
dy

and

A �→ 1

π

∫
A∩[a(t),b(t)]

Im
1

1 + W−1(−zet−z)
dz

are probability measures on B(R).)
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