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Abstract

The development of turbulence in subsonic submerged jets is reviewed. It is shown

that the turbulence results from a strong amplification of the weak input noise that

is always present in the jet nozzle exit section. At a certain distance from the nozzle

the amplification becomes essentially nonlinear. This amplified noise leads to a tran-

sition of the system to a qualitatively new state, which depends only slightly on the

characteristics of the input noise, such as its power spectrum. Such a transition has

much in common with nonequilibrium noise-induced phase transitions in nonlinear

oscillators with multiplicative and additive noise. The Krylov–Bogolyubov method

for spatially extended systems is used to trace the evolution of the power spectra,

the root-mean-square amplitude of the turbulent pulsations, and the mean velocity,

with increasing distance from the nozzle. It is shown that, as turbulence develops,

its longitudinal and transverse scales increase. The results coincide qualitatively and

also, in specific cases, quantitatively, with known experimental data.
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1 Introduction

There is an abundance of published works relating to hydrodynamic turbulence problems.

It is interesting that the first experimental work where the transition to turbulence was

observed as the fluid viscosity decreased, due to heating, was reported in 1839 by Hagen

[1]. Over the years the volume of experimental works has increased to such an extent that it

cannot even be listed in a review of this kind. As examples, we mention only a fundamental

paper by Reynolds [2], where elegant experiments with stained liquid were described

and intermittent behavior was first discovered, the Compte-Bellot’s book [3], wherein a

detailed comparison is made between turbulence power spectra in a plane channel and

Kolmogorov’s spectra, and the book by Ginevsky et al. [4] in which experiments with

jets are reviewed. A wide variety of books is devoted to the problem of hydrodynamic

instability playing the major role in the transition to turbulence (see, e.g. [5–10]). Among

the many general texts we mention [11–17]. A number of books and a plethora of papers

are devoted to numerical calculations of turbulence by both direct and indirect methods

(see, e.g. the books [18–21]). An important place in the literature is occupied by studies

in which the general properties of so-called fully developed turbulence are derived and

investigated. Thus Kolmogorov and Obukhov [22–24], for example, derived the power

spectra of developed isotropic turbulence starting from simple dimensional arguments

(see also [25]). Different generalizations and refinements of these results were achieved by

Novikov [26], Procaccia et al. [27–36], Amati et al. [37] and many other researchers. Recent

works, developing an approach to turbulence in the context of contemporary theoretical

physics, including field-theoretic and group-theoretic methods, can be also assigned to

this class. Among these we mention [38–40].

It is known that, as distinct from flows in channels, jet flows are rarely, if ever, laminar.

Over a wide range of Reynolds numbers, so-called hydrodynamic waves are excited and

amplified in the body of the jet. The amplitude of these waves decreases exponentially out-

side the jet shear layer. Undamped hydrodynamic waves can propagate only downstream

with a velocity of the order of the flow velocity. The distinctive feature of hydrodynamic

waves is their random character. Nevertheless, against the background of this randomness

there are comparatively regular large scale patterns known as coherent structures.
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It is very important to note that, when hydrodynamic waves interact with an obstacle

or inhomogeneity, they do not undergo simple reflection. Rather, they induce acoustic

waves that propagate upstream. The acoustic waves coming up against an obstacle or

an inhomogeneity, in their turn, induce hydrodynamic waves propagating downstream,

and so on. Owing to these transformations feedback occurs in jet flows, and can excite

self-oscillations. Just such a phenomenon arises in jets impinging upon e.g. a flat plate,

a wedge, a coaxial ring or a coaxial pipe [41–45]. In free jets inhomogeneities formed by

vortices also induce acoustic waves, again resulting in feedback [46]. But this feedback is

nonlinear, and it cannot cause the self-excitation of oscillations. Nonetheless, it exerts an

influence on the development of turbulence and coherent structures.

As will be shown below, the turbulent character of jet flows is caused by strong amplifica-

tion of the random disturbances which are always present at the jet nozzle exit section 1 .

At a certain distance from the nozzle the amplification becomes inherently nonlinear.

The amplification transforms the system to a qualitatively new state which depends only

slightly on the power spectrum or other characteristics of the input disturbances. The

system behaves much as though it had undergone a phase transition.

The hypothesis that the onset of turbulence can usefully be considered as a noise-induced

phase transition was first offered in [47]. It was based on the existence of profound parallels

between turbulent processes in nonclosed fluid flows and noise-induced oscillations in a

pendulum with a randomly vibrated suspension axis, which undergoes such a phase tran-

sition [44,45,48–51]. Note that this hypothesis is in contradistinction with the widespread

belief that the transition to turbulence arises through the excitation of self-oscillations,

first periodic and then chaotic [11,12]; but the latter idea does not explain the origin of

the feedback mechanism responsible for exciting the self-oscillations. It is well known that

instability in a nonclosed fluid flows is of a convective character, but not absolute. Such

an instability cannot excite self-oscillations because all disturbances drift downstream 2 .

1 It should be noted that random sources are present at all points of a jet, even with no external

disturbances — i.e. the so called natural fluctuations [16]. But their influence is significantly less

than that of disturbances at the jet nozzle exit section and they can therefore be ignored.
2 It should be noted, however, that the instability of a jet flow in counter-current stream is of

an absolute character and can result in self-excited oscillations.
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An extremely interesting manifestation of nonlinear effects in jets lies in the possibil-

ity of exploiting them to control turbulence with the aid of acoustic waves applied at

some appropriate frequency ([4,52–57]. Similar control of noise-induced oscillations was

demonstrated for the harmonically driven pendulum [58,51].

Through an approximate solution of the Navier–Stokes equations based on the Krylov–

Bogolyubov asymptotic method, we will show that explicit consideration of the amplifica-

tion of the input noise allows us to account for many known experimental results within

the initial part of a jet [59]. Moreover, it follows from our theory that the commonly

accepted [60–65,21,4] explanation for the well-known shift of velocity pulsation power

spectra towards the low-frequency region is in fact erroneous. According to this expla-

nation, the shift of the power spectra occurs because of feedback via an acoustic wave

nascent where vortex pairing occurs, as seen in experiments. We will show that the reason

for the spectral shift lies in the jet’s divergence; and that this shift causes the increase of

spatial scale with increasing distance from the nozzle, and results in the observed vortex

pairing.

It should be noted that interesting phenomena similar to those for ordinary hydrodynamic

turbulence are also observed in flows of superfluid helium [66].

2 Brief review of the evolution of views of turbulence as an oscillatory process

It is well known that fluid flow in channels is laminar for small flow velocities and turbulent

for large flow velocities [11,12,9]. The problem of how turbulence originates has long

attracted the considerable attention of researchers. As is known from the Rytov memoirs

[67], the Russian physicist Gorelik believed that

“...turbulence with its threshold of ‘self-excitation’, with typical hysteresis in its ap-

pearance or disappearance as the flow velocity increases or decreases, with paramount

importance of nonlinearity for its developed (stationary) state — is self-oscillations.

Their specific character lies in that they are self-oscillations in a continuous medium,

i.e. in a system with very large number of degrees of freedom.”
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Landau held implicitly the same viewpoint. According to Landau turbulence appears

in the following manner: first the equilibrium state corresponding to laminar flow be-

comes unstable and self-oscillations with a single frequency are excited. To describe the

amplitude of these self-oscillations, based on physical considerations, Landau wrote a phe-

nomenological equation similar to the truncated van der Pol equation for the amplitude of

self-oscillations in a vacuum tube generator, commenting [68]: “With further increase of

the Reynolds number new periods appear sequentially. As for the newly appeared motions,

they have increasingly small scales”. As a result, multi-frequency self-oscillations with in-

commensurate frequencies, i.e. quasi-periodic motion, must set in. An attractor in the form

of a multi-dimensional torus in the system phase space has to be associated with these

self-oscillations. For a large number of frequencies such quasi-periodic self-oscillations dif-

fer little in appearance from chaotic ones, which is why developed turbulence is perceived

as a random process. In spite of the fact that Landau’s theory was phenomenological, and

did not follow from hydrodynamic equations, it was accepted without question for a long

time by almost all turbulence researchers. Moreover, this theory was further developed

by Stuart [69–72] who proposed a technique for calculating the coefficients involved in

the Landau equations, based on an approximate solution of the Navier–Stokes equations.

However, the approximate solution sought by Stuart in the form of A(ǫt)ei(ωt−kx) is, from

a physical standpoint, incorrect. It describes a wave that is periodic in space, with a given

wave number k and with a slowly time varying amplitude A(ǫt). Strictly speaking such a

solution is true only for a ring flow of length L = 2πn/k, where n is an integer, i.e. for

a flow with feedback. We note that a similar approach to hydrodynamic instability was

used by many scientists, beginning from Heisenberg [73].

In the 1970s, after the discovery of the phenomenon of deterministic chaos and the real-

ization that a multi-dimensional torus is unstable [74], the Landau theory became open

to question, but the conception of self-oscillations was retained. The difference lay only

in that, instead of quasi-periodic self-oscillations, they became spoken of as chaotic ones.

Thus, according to these new ideas, the onset of turbulence is the sudden birth of a strange

attractor in the phase space of certain dynamical variables [74,75]. We note that similar

ideas were repeatedly expressed by Neimark (see [76]). Using the concept of turbulence as

self-oscillations, Gaponov-Grekhov and with co-workers published several articles on the
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simulation of turbulence, modelled in a chain of coupled oscillators [77,78].

However, we believe that turbulence arising in nonclosed fluid flows is not a self-oscillatory

process. As already mentioned above, the instability of nonclosed laminar flows is of a con-

vective character but not absolute. This means that a disturbance arising at some point of

the flow will not increase indefinitely with time, but will drift downstream. It follows from

this property of convectively unstable systems that they are not self-oscillatory, but are

amplifiers of disturbances 3 . For such a system to become self-oscillatory, global feedback

must be introduced, e.g. by closing the system in a ring 4 . Disturbances are necessarily

present in all real systems, both from external sources (technical fluctuations) and as a

result of the molecular structure of a substance (natural fluctuations). The disturbances

can be included as external forces in equations describing the system behavior. The cal-

culation of the forces caused by the natural fluctuations in hydrodynamic flows, based

on the fluctuation-dissipation theorem, was performed by Klimontovich [16]. In hydrody-

namic flows the presence of fluctuations, especially at the input, is crucial because they

are precisely what lead eventually to the turbulent disturbances observed. It follows from

this that an approach to turbulence within the framework of (deterministic) dynamical

systems theory is not always appropriate.

Naturally, the question arises as to how to treat the features of turbulence which, as

pointed out by Gorelik, are seemingly precisely those that are inherent in self-oscillatory

systems. First, the term “self-excitation” should be replaced by “loss of stability”. Further-

more, the hysteresis of turbulence, its “appearance or disappearance as the flow velocity

increases or decreases” can be explained in terms of the specific character of the non-

linearity of the gain factor. Finally, the “paramount importance of nonlinearity for its

fully developed (stationary) turbulent state” is quite possible in amplifiers too, because

nonlinearity of the amplifier can have considerable influence on its output power spectrum.

One piece of evidence suggesting that turbulence is not a self-oscillatory process comes

from the numerical experiments of Nikitin [80,81]. He simulated fluid flow in a circular

3 This fact was first mentioned by Artamonov [79].
4 In essence, this is exactly what occurs in the process of numerical simulation with periodic

boundary conditions.
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pipe of a finite length and radius R with a given velocity at the input cross-section, and

with so-called ‘soft’ boundary conditions at the output cross-section; these latter are

∂2u

∂x2
=
∂2ξ

∂x2
=
∂2η

∂x2
= 0, (2.1)

where u is the longitudinal velocity component, ξ and η are the radial and angular com-

ponents of vorticity Ω = rot u, u = {u, v, w} is the flow velocity vector in cylindrical

coordinates x, r and θ. Under these conditions a reflected wave apparently does not ap-

pear, or is very weak.

At the input cross-section of the pipe the longitudinal velocity component was taken to

be in the form of the Poiseuille profile u0(1 − r2/R2), weakly disturbed by a harmonic

force at the frequency ω = 0.36u0/R, i.e.,

u = u0

(

1− r2

R2

)

+ ARe
(

u′(r)e−iωt
)

cos θ,

(2.2)

v = ARe
(

v′(r)e−iωt
)

cos θ, w = ARe
(

w′(r)e−iωt
)

sin θ,

where u′(r), v′(r) and w′(r) are the components of the Orr–Sommerfeld vector-eigenfunction

at frequency ω, R is the pipe radius, and A is the disturbance amplitude. The velocity

u0 and the pipe radius R were set such that the Reynolds number Re was equal to 4000.

As the amplitude A exceeded a certain critical value (A ≥ Acr), random high-frequency

pulsations appeared in the flow after a short time interval. They occupied all the lower

part of the pipe from x = x0, where x0 depended only weakly on the distance r from the

pipe axis. It turned out that the value of x0 decreased as A became larger. The appear-

ance of turbulent pulsations was accompanied by corresponding deformation of the profile

of the longitudinal constituent of the mean velocity: at the pipe axis the mean velocity

decreased, whereas near the pipe wall it increased. We note that a similar deformation of

the mean velocity profile with increasing turbulent pulsations occurs in jet flows as well.

The instantaneous distributions of the longitudinal velocity component in a steady regime

for A/u0 = 0.04 are shown in Fig. 1 [81].
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As the amplitude A gradually decreased, the turbulent region drifted progressively down-

stream and disappeared at a certain value of A. It is known [82,8] that Poiseuille flow in a

circular pipe, in contrast to that in a plane channel, possesses the property that laminar

flow is stable with respect to small perturbations for any Reynolds number. However, in

the case of sufficiently large Reynolds numbers, such a flow is unstable with respect to fi-

nite perturbations. If an attractor existed corresponding to the turbulent mode, and if the

role of the harmonic disturbance was to lead phase trajectories into the attractor basin,

then turbulence should not disappear following cessation of the harmonic disturbance.

It may be inferred from Fig. 1 that the development of turbulence for A ≥ Acr is associated

with a peculiar phase transition at the point x = x0 induced by an amplification of the

noise that is always present in any numerical experiment owing to rounding errors. The

harmonic disturbance plays a dual role. First, it causes the appearance of instability and,

secondly, it initiates the phase transition, much as occurs in a pendulum with a randomly

vibrated suspension axis [58], or in jets under low-frequency acoustic forcing [4]. It is no

accident that the transition to turbulence was observed by Nikitin only for low-frequency

disturbances (for Strouhal numbers of order 0.1).

Possible counter-arguments against the above ideas lie in the fact that numerical simula-

tion results obtained with periodic boundary conditions are very close to those observed

experimentally. But the data obtained by Nikitin in the numerical experiment described

above are also close to numerical data for periodic boundary conditions [80]. The visual

similarity of turbulent pulsations calculated for periodic conditions, and for the boundary

conditions (2.1), (2.2), is illustrated in Fig. 2 [45]. This similarity may be explained by

the fact that many nonlinear oscillatory systems possess such pronounced intrinsic prop-

erties that they exhibit these properties independently of the means of excitation. Some

examples of such (non-hydrodynamic) systems are described in [83].

Note that our discussion is not related to so called closed flows, e.g. to the Couette

flow between two rotating cylinders or spheres (see [44]). In closed flows there is always

feedback linking the output of the amplifier to its input, so that they consequently become

self-oscillatory.
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3 Some experimental results concerning turbulence development in jets

3.1 The main properties of jet flows

Issuing from a nozzle, a fluid jet always noticeably diverges. This is associated with the fact

that, owing to viscosity, neighboring fluid layers are increasingly drawn into the motion.

This phenomenon has come to be known as entrainment. The profile of the flow velocity

changes essentially in the process. At the nozzle exit, it is nearly rectangular, whereas

away from the nozzle it becomes bell-shaped: see Fig. 3 a. The fluid layer within which

the mean velocity changes significantly is called the shear layer or the mixing layer (see,

for example, [84,86,87]). It can be seen from Fig. 3 a that, within the initial part of the

jet (x ≤ xin), the thickness of the mixing layer increases with increasing distance from the

nozzle. At x = xin the thickness of the internal part of the mixing layer δ1 becomes equal

to the half-width of the nozzle outlet for a plane jet, or the nozzle radius for a circular jet,

whereupon a continuous boundary layer is formed. In the vicinity of the jet axis, the mean

velocity first decreases very slowly with increasing distance x from the nozzle. This part

of the jet is called the initial part: see I in Fig. 3 b. Further on, the decrease of the mean

velocity becomes significant. This part of the jet is called the main part: see III in Fig. 3 b.

Parts I and III are separated by the so-called transient part II. The length of the initial

part decreases with increasing intensity of disturbances at the nozzle exit section. This

can be seen in Fig. 4, where experimental dependences of the relative mean velocity U/U0

on the relative distance x/D from nozzle are plotted (D is the nozzle diameter). Results

are shown for three values of the intensity of the disturbances at the nozzle exit section

ǫu(0) =
√

u(0)2 − U(0)2/U0, where U0 and u(0) are the mean velocity and longitudinal

component of total flow velocity at the center of nozzle exit section, respectively [4,21].

The main parts of plane and axially symmetric jets possess approximately the property of

self-similarity, i.e. at all jet cross-sections the velocity profiles are affine-similar [14]. For

a plane jet the property of self-similarity means that the jet velocity can be presented in

the form u(x, y) = x−αF (y/xβ), where x and y are longitudinal and transverse coordinate

respectively, α and β are certain numbers and F is a function of y/xβ. The processes in

the jet main part are studied in considerable detail (see, e.g. [85–93]). We will consider
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only the processes in the initial part of a jet.

It is interesting that coherent structures are formed just in the mixing layer of initial part

of the jet . They are vortex formations (bunches of vorticity). Their sizes are of the order

of the thickness of the shear layer, and they are moderately long-lived. The presence of

coherent structures in a jet shear layer results in the intermittent behavior of a jet flow,

especially in the neighborhood of the external boundary of a jet, where turbulent and

laminar phases alternate [94].

3.2 Evolution of power spectra of the pulsations of fluid velocity and pressure with the

distance from the nozzle exit section

The randomness of the hydrodynamic waves excited in a jet manifests itself, in particular,

as continuous power spectra of the pulsations of fluid velocity and pressure. Within the

initial part of the jet, these spectra are of a resonant character. Experiments show that

the frequency fm corresponding to the maximum of the power spectrum within the initial

part of the jet decreases as the distance from the nozzle exit increases [95–97,50]. Within

the main part of the jet, the power spectra decrease monotonically with frequency. Fig. 5

shows examples of how the power spectra of the velocity pulsations evolve with distance

from the nozzle exit, along the jet axis, and along a line offset by R from the axis [50].

The abscissa in each case plots the frequency expressed in terms of the Strouhal numbers

St = fD/U0.

As mentioned above, most studies of the different processes in jets attribute such behavior

of the pulsation power spectrum within the mixing layer to a pairing of vortices. When

pairing takes place, the vortex repetition rate must be halved. Within the initial part

of the jet, depending on the conditions of outflow, from 3 to 4 pairings of vortices are

usually observed [61]. The frequency fm at the end of the jet’s initial part should therefore

decrease by factor of between 8 and 16, a conclusion that conflicts with experimental data.

Experiments show that the frequency fm is not a step, but a smooth function of distance

from the nozzle exit (see Fig. 6, where the experimental dependences of the Strouhal

number Stm on the relative distance from the jet nozzle exit x/D are plotted [45]). In
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an attempt to resolve this conflict, the researchers holding this viewpoint speculate that

there is a statistical spread in the sites of pairing, but without explaining why there should

be such a spread.

The faster decrease of Stm within the mixing layer, compared to what happens on the

jet axis, may result from the influence of nonlinear feedback caused by acoustic waves

induced by vortices within the jet mixing layer. The presence of such waves is indirectly

supported by the experimental data of Laufer [61]. According to these data high-frequency

pulsations of fluid velocity within a mixing layer near the nozzle exit are modulated by

low-frequency pulsations with frequencies corresponding to Strouhal numbers St from 0.3

to 0.5. This fact can be also illustrated by the power spectrum of velocity pulsations on

a line offset by R from the jet axis for x/D = 0.5 (see Fig. 5, at the bottom). We see

that the spectrum peaks at the main frequency corresponding to the Strouhal number

St = 3.2 and the two side frequencies corresponding to St1 = 2.7 and St2 = 3.7. This

means that the modulation frequency corresponds to the Strouhal number 0.5. Owing to

the nonlinear feedback, each jet cross-section can be considered as an oscillator with a

natural frequency depending on the distance from that cross-section to the nozzle exit. It

is evident that the strongest pulsations at the cross-section at coordinate x have to occur

at a frequency fm that is related to x by the resonant relation

xfm
Uv

+
xfm
a

= N,

where Uv is the velocity of the vortex motion 5 , a is the sound velocity, and N is an

integer. From this it follows at once that fm ∼ x−1. This is precisely the dependence

which was found experimentally by Petersen [96] (Fig. 6 a). Outside the boundary layer

where, within the initial part, inhomogeneities are very weak and nonlinear feedback is

nearly absent, the decrease of fm with increasing x follows from the linear theory and is

explained by the jet’s divergence as is shown below.

5 It follows from visual observations and measurements of spatio-temporal correlations that

Uv ≈ 0.5 – 0.7U0.
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3.3 A jet as an amplifier of acoustic disturbances

Owing to its strong instability, a fluid jet acts as an amplifier of disturbances whose fre-

quencies lie within a certain range. It is an amplifier with a high spatial gain factor. A

small acoustic disturbance at some frequency fa within this range near the nozzle trans-

forms into a growing hydrodynamic wave. There is evidence for this in the experimental

results of Crow and Champagne [98] and Chan [99]. It follows from the experimental data

in Fig. 7 [98] that, above a certain value of the acoustic wave amplitude, the dependence of

the relative root-mean-square pulsation of the longitudinal component of hydrodynamic

velocity ǫu =
√
u2/U0 acquires a resonant character. Here u is the deviation of the lon-

gitudinal component of hydrodynamic velocity from its mean value at the acoustic wave

frequency fa, measured in terms of Strouhal numbers. The latter authors consider that the

resonance is caused by a combination of linear amplification and nonlinear saturation. The

latter increases as the frequency of the disturbance rises. For ǫua
=
√

u2a/U0 = 0.02, where

ua is the oscillatory velocity in the acoustic wave, the dependence of ǫu on Sta = faD/U0

is shown in Fig. 8. We see that ǫu is maximal for Sta ≈ 0.3.

Figure 9 a taken from [99] shows that the gain factor depends nonmonotonically on

distance from the nozzle exit: it has a maximum at x/D = (0.75÷1.25)/Sta. A theoretical

dependence similar to that shown in Fig. 9 a was found by Plaschko [100] by approximate

solution of the linearized Euler equations for a slowly diverging jet. It is depicted in

Fig. 9 b. By doing so, Plaschko showed that the decrease of the gain factor away from the

nozzle exit is caused by jet divergence, and not by nonlinear effects as was claimed by a

number of researchers.

3.4 Suppression and intensification of turbulence in jets by a weak periodic forcing

An interesting consequence of the nonlinear effects in a jet is the possibility they provide

for controlling the turbulence level and the length of the jet’s initial part by application of

a weak acoustic wave, or by vibration of the nozzle, at an appropriate frequency [101,4]. In

the case of high-frequency forcing, the hydrodynamic pulsations are suppressed, whereas
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at low frequencies, vice versa, there is intensification of pulsations and turbulence. The

experiments show that marked intensification or suppression of turbulence within the

initial part of a jet, induced by a periodic forcing, is accompanied by changes in the

aerodynamic, thermal, diffusive and acoustic properties of the jet. All of these phenomena

have been observed by different researchers.

It should be noted that the influence of acoustic forcing was first studied by Ginevsky

and Vlasov [102–106]. Let us consider their main results.

In the case of a low-frequency harmonic acoustic forcing at a frequency f corresponding

to a Strouhal number in the range 0.2–to 0.6, the vortices in the jet’s mixing layer are

enlarged within the initial part. In turn, this results in an intensification of the turbulent

intermixing, thickening the mixing layer, shortening of the initial part and an increase

in entrainment; at the same time, the longitudinal and radial velocity pulsations at the

jet axis rise steeply. These effects are observed independently of the direction of the jet

irradiation, provided that the amplitudes of the longitudinal and radial components of

oscillatory velocity in the sound wave at the jet axis near the nozzle lie in the range

0.05–2% of U0. For the effects to occur, the amplitude of the acoustic wave must exceed

a certain threshold value. As the wave amplitude rises above this threshold, turbulent

intermixing at first intensifies and the saturates. A further increase of the wave amplitude

has little or no effect on the jet.

For high-frequency acoustic forcing of the jet at a frequency corresponding to a Strouhal

numbers in the range 1.5–5.0, the vortices in the jet mixing layer become smaller. This

results in an attenuation of the turbulent intermixing, a reduction in the thickness of the

mixing layer, a lengthening of the initial part, and a decrease of entrainment. Correspond-

ingly, the longitudinal and radial velocity pulsations on the jet axis decrease. In contrast

to the effect of low-frequency forcing, high-frequency forcing does not lead to saturation

with increasing amplitude; moreover, an increase in the amplitude beyond a certain value

causes, not suppression of the turbulence, but its intensification (see Fig. 10 [65,107]).

These effects are observed universally for jets over a wide range of Reynolds numbers

(Re = 102–106), both for initially laminar and for turbulent boundary layers with a level

of initial turbulence less than 10%.
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The foregoing can be illustrated by the experimental dependences of the flow relative

mean velocity, and the relative root-mean-square pulsation of the longitudinal (ǫu) and

radial ǫv components of hydrodynamic velocity on the distance from the nozzle exit along

the jet axis for fixed values of the Strouhal number (Fig. 11). All the dependences shown

correspond to a fixed value of the acoustic forcing intensity. We see that the mean velocity

decreases essentially in the case of low-frequency forcing (0.2 < Sta < 1.5) and increases

in the case of high-frequency forcing (Sta > 1.5). It should be noted that, as the acoustic

forcing intensity at low-frequency increases, the initial part of the jet decreases in length

right down to the point where it disappears [108].

Effects similar to those described above are also observed for other means of periodic

forcing of the jet: e.g. longitudinal or radial vibration of the nozzle, or a pulsating rate of

fluid outflow from the nozzle [65,4].

Detailed experimental and numerical studies of turbulence suppression in jet flows were

also performed by Hussain and collaborators [109–112]. We concentrate in particular on

a single result of these works: that the suppression of turbulence by acoustic forcing of

constant amplitude depends on its frequency nonmonotonically: it is maximal at a value

of the forcing frequency that depends on the amplitude (see Fig. 12 taken from [112]) 6 .

Periodic forcing of a jet changes markedly the form of its power spectra. For low-frequency

forcing, the power spectra of the velocity pulsations near the nozzle contain discrete

constituents at the forcing frequency and its higher harmonics. An example of such a

spectrum is given in Fig. 13. In the case of high-frequency forcing (see Fig. 14), the power

spectra of the velocity pulsations within the jet mixing layer in the immediate vicinity of

the nozzle exit also contain discrete components at the forcing frequency and its higher

harmonics. At a short distance from the nozzle the second subharmonic appears in the

spectrum. Next the fourth, eighth and successively higher subharmonics appear in the

spectra. At sufficiently large distances from the nozzle exit the spectra are decreasing

almost monotonically.

6 We note that authors of [112] used, not the conventional Strouhal number St, but Stθ = Stθ/D,

where θ is the so-called boundary layer momentum thickness at the nozzle exit (see [14]).

15



Kibens [113] obtained the dependences on distance from the nozzle of the Strouhal number

corresponding to the spectral line of highest intensity, both along the jet axis and along a

line offset from the axis by R, for high-frequency acoustic forcing with a Strouhal number

of 3.54 (Fig. 15 [113,45]). We see that these dependences are step-like, with distinct

hysteresis phenomena. Adherents to the viewpoint that the decrease of Stm with distance

from the nozzle for a free jet is caused by vortex pairing attribute the step-like character

of the dependences to localization of the sites of pairing caused by the acoustic forcing

[65,4]. In this explanation, the causes of the localization are ignored and the hysteresis

phenomena are not discussed. The picture presented in Fig. 15 can also be interpreted

as the successive occurrence of subharmonic resonances of higher and higher order as

x increases. The transition from subharmonic resonance of one order to the next can

clearly be accompanied by hysteresis, if within a certain range of x both of the resonances

are stable. In the transition to a subharmonic resonance of higher order, the frequency

has to be halved. This can manifest itself as vortex pairing. We can thus infer that the

experimentally observed localization of the sites of vortex pairing, when an acoustic wave

acts upon a jet, is a consequence, but not a cause, of the indicated behavior of the power

spectra.

4 The analogy between noise-induced oscillations of a pendulum with ran-

domly vibrated suspension axis and turbulent processes in a jet

It seems at first sight very surprising that there should exist any analogy between the

development and control of turbulence in a jet, and the noise-induced oscillations of a

pendulum with a randomly vibrated suspension axis. These latter oscillations and their

control were first studied in [114,115,58,116,117,51]. We believe that the analogy arises

because the onset of turbulence in jets is a noise-induced phase transition, and the pen-

dulum with a randomly vibrated suspension axis is an appropriate model for illustrating

just such a transition [48].

In the simplest case, when additive noise is neglected, the equation describing the oscil-
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lations of a pendulum with a randomly vibrated suspension axis is:

ϕ̈+ 2β
(

1 + αϕ̇2
)

ϕ̇+ ω2
0 (1 + ξ(t)) sinϕ = 0, (4.1)

where ϕ is the pendulum’s angular deviation from the equilibrium position, 2β (1 + αϕ̇2) ϕ̇

is proportional to the moment of the friction force which is assumed to be nonlinear, ω0 is

the natural frequency of small oscillations, and ξ(t) is a comparatively wide-band random

process with nonzero power spectral density at the frequency 2ω0.

When the intensity of the suspension axis vibration 7 exceeds a certain critical value

proportional to the friction factor β, excitation of pendulum oscillations occurs, and the

variance of the pendulum’s angular deviation becomes nonzero. The evolution of such

oscillations, and their power spectra with increasing noise intensity, found by the numerical

simulation of Eq. (4.1), are shown in Fig. 16. It can be seen from the figure that, close to

the excitation threshold, the pendulum oscillations possess the property of so called on–

off–intermittency. This notion was first introduced by Platt et al. [118], although a similar

phenomenon was considered earlier in [119]. It was noted in [118] that intermittency of

this kind is similar to the intermittency in turbulent flows. It is of importance that on-

off intermittency is possible, not only in dynamical systems, but in stochastic ones as

well [120]. It results from fluctuational transitions through the boundary of excitation

[121,123]. External manifestations of on-off intermittency are similar to those of ordinary

intermittency (see e.g. [124]), i.e. over prolonged periods the pendulum oscillates in the

immediate vicinity of its equilibrium position (‘laminar phases’); these slight oscillations

alternate with short random bursts of larger amplitude (‘turbulent phases’). Away from

the excitation threshold the duration of the laminar phases decreases and that of the

turbulent ones increases, with the laminar phases ultimately disappearing altogether [121].

The variance of the pendulum’s angular deviation increases in the process. Comparing

the evolution of the power spectra shown in Figs. 5 and 16, we can see that they have

much in common.

As described in [122], high-pass filtering of turbulent velocity pulsations reveals their

7 By intensity of the suspension axis vibration is meant the spectral density of ξ(t) at frequency

2ω0 (κ(2ω0)).
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intermittent behavior. We have studied this phenomenon both for experimental velocity

pulsations in a jet measured by one of us [50] and also for the pendulum oscillations

considered above. In each case we have observed on-off intermittency after high-pass

filtering. This fact can be considered as an additional argument in support of the parallels

between noise-induced pendulum oscillations and turbulent processes in jets.

It is important to note that the response of the pendulum to a small additional harmonic

force (additional vibration of the suspension axis) is similar to the response of a jet to

an acoustic force. For example, in the case when the intensity of the random suspension

axis vibration is close to its threshold value, the dependence of the intensity of pendulum

oscillations on the frequency of the additional harmonic forcing is of a resonant character,

very much like a jet subject to an acoustic force (compare Figs. 17 and 8).

Just as in the case of turbulent jets, the noise-induced pendulum oscillations under con-

sideration can be controlled by a small additional harmonic force. The inclusion of the

additional force can be effected by substitution into Eq. (4.1) of ξ + a cosωat in place of

ξ, where a and ωa are respectively the amplitude and frequency of the additional vibra-

tion of the suspension axis. If the frequency of the additional forcing is relatively low,

then this forcing intensifies the pendulum oscillations and lowers the excitation threshold;

vice versa, a relatively high-frequency forcing suppresses the pendulum oscillations and

increases the excitation threshold. The intensification of the pendulum oscillations by a

low-frequency additional vibration is illustrated in Fig. 18 for two values of the vibration

frequency. We see that the lower the forcing frequency is, the larger the variance of the

oscillation becomes. Just as for jets [125], when the forcing amplitude becomes relatively

large, the pendulum’s oscillation amplitude saturates.

We now consider in detail the possibility of suppressing noise-induced pendulum oscil-

lations by the addition of a high-frequency vibration. Numerical simulation of Eq. (4.1)

with ξ+a cosωat in place of ξ, where ωa > 2, shows that such suppression can occur. The

results of the simulation are presented in Figs. 19 and 20. It is evident from Fig. 20 that,

for small amplitudes of the high-frequency vibration, this vibration has little or no effect

on the noise-induced oscillations (see Fig. 19 a). As the amplitude increases, however,

the intensity of the noise-induced oscillations decreases rapidly and the duration of the
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‘laminar’ phases correspondingly increases (see Figs. 19 b, c, d, and e). When the ampli-

tude exceeds a certain critical value (for ωa = 19.757 it is equal to 42) the oscillations

are suppressed entirely. As the amplitude increases further the oscillations reappear, but

now because the conditions required for parametric resonance come into play. For smaller

frequencies ωa, the behavior of the pendulum oscillations is different. The dependences

of the variance of the angle ϕ on a for a number of values of the vibration frequency are

shown in Fig. 20. It is evident that the variance of ϕ at first decreases, passes through

a certain minimum value, and then increases again. It is important to note that this

minimum value becomes smaller with increasing forcing frequency, but that it is attained

for larger forcing amplitudes at higher frequencies. For sufficiently high frequencies the

oscillations can be suppressed entirely (the case illustrated in Fig. 19). The dependence

shown in Fig. 20 a closely resembles the corresponding dependence for a jet presented in

Fig. 10.

The dependences of σ on ωa for a number of fixed amplitudes of the additional vibration

are illustrated in Fig. 21. Again, these dependences closely resemble the corresponding

ones for a jet shown in Fig. 12.

The presence of a small additive noise, in addition to the multiplicative one in Eq. (4.1),

does not change the behavior of the pendulum qualitatively, but there are large quan-

titative differences. The principal one is the impossibility of achieving full suppression

of the pendulum oscillations. Nevertheless, a very marked attenuation of the oscillation

intensity occurs. This is illustrated in Fig. 22. It should be emphasized that, in the case

of turbulence, full suppression is of course also impossible.

5 The main equations and dynamics of a plane jet

Let us consider a plane jet issuing from a nozzle of width 2d. Neglecting compressibility, we

may describe the processes in such a jet by the two-dimensional Navier–Stokes equation

for the stream function Ψ(t, x, y) [11]:

∂∆Ψ

∂t
− ∂Ψ

∂x

∂∆Ψ

∂y
+
∂Ψ

∂y

∂∆Ψ

∂x
− ν∆∆Ψ = 0, (5.1)
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where ∆ =
∂2

∂x2
+

∂2

∂y2
is the Laplacian, ν is the kinematic viscosity, x is the coordinate

along the jet axis, and y is the transverse coordinate. The stream function Ψ(t, x, y) is

related to the longitudinal (U) and transverse (V ) components of the flow velocity by

U(t, x, y) =
∂Ψ

∂y
, V (t, x, y) = − ∂Ψ

∂x
. (5.2)

We can conveniently rewrite Eq. (5.1) in terms of the stream function Ψ(t, x, y) and the

vorticity Ω̃(t, x, y) which is defined by

Ω̃(t, x, y) = ∆Ψ(t, x, y). (5.3)

In dimensionless coordinates x′ = x/d, y′ = y/d and time t′ = U0t/d, the equations for

the stream function and vorticity become:

Ω̃′(t′, x′, y′) = ∆′Ψ(t′, x′, y′), (5.4)

∂Ω̃′(t′, x′, y′)

∂t′
− ∂Ψ′(t′, x′, y′)

∂x′
∂Ω̃′(t′, x′, y′)

∂y′

+
∂Ψ′(t′, x′, y′)

∂y′
∂Ω̃′(t′, x′, y′)

∂x′
− 2

Re
∆′Ω̃′(t′, x′, y′) = 0, (5.5)

where ∆′ is the Laplacian in terms of x′ and y′, Re = 2U0d/ν is the Reynolds number,

and U0 is the mean flow velocity in the nozzle center.

From this point onwards the primes will be dropped. It should be noted that in so deciding

on a dimensionless time, the circular frequencies ω = 2πf are measured in units of S =

ωd/U0 ≡ πSt, where St = 2fd/U0 is the Strouhal number.

In accordance with the ideas presented above, the onset of turbulence is caused by random

disturbances (noise) in the nozzle exit section. The authors of most of the works devoted

to the stability of these small disturbances [126–128,132] split the solution into mean

values and small random disturbances. In our opinion this procedure is inappropriate

for two reasons: first, exact equations for the mean values are unknown; and, secondly,

the random disturbances make a significant contribution to the mean values. Therefore

we split the solution of Eqs. (5.4), (5.5) into dynamical and stochastic constituents. The

dynamical constituents are described by stationary Navier-Stokes equations and differ
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from the mean values of the corresponding variables because, owing to the quadratic

nonlinearity, the stochastic constituents also contribute to the mean values. Ignoring noise

sources everywhere except in the nozzle exit (for x = 0) we set

U(t, 0, y) = ud(0, y) + ξ1(t, y), V (t, 0, y) = vd(0, y) + ξ2(t, y), (5.6)

where ud(0, y) and vd(0, y) are the dynamical constituents of the longitudinal and trans-

verse velocity components, respectively, and ξ1(t, y) and ξ2(t, y) are random processes. It

should be noted that ud(0, y) and vd(0, y), as well as ξ1(t, y) and ξ2(t, y), are not indepen-

dent, but are related by the continuity equation.

We consider first the dynamical constituents of the velocity and vorticity. It follows from

Eqs. (5.4), (5.5) that the dynamical constituents ud(x, y), vd(x, y)) and Ωd(x, y) are de-

scribed by the equations

Ωd(x, y) =
∂ud(x, y)

∂y
− ∂vd(x, y)

∂x
, (5.7)

∂ud(x, y)

∂x
+
∂vd(x, y)

∂y
= 0, (5.8)

ud(x, y)
∂Ωd(x, y)

∂x
+ vd(x, y)

∂Ωd(x, y)

∂y
− 2

Re

(

∂2Ωd(x, y)

∂x2
+
∂2Ωd(x, y)

∂y2

)

= 0. (5.9)

It is very difficult, if not impossible, to solve these nonlinear equations exactly. Therefore

we choose ud(x, y) in the form of a given function of y with unknown parameters depending

on x. The shape of this function must depend on whether the outflow from the nozzle is

laminar or turbulent. For simplicity, we restrict our consideration to laminar nozzle flow.

In this case we can set ud(x, y) so that, at the nozzle exit section, the boundary layer is

close in form to that described by the Blasius equation (see [14,11])

uBl(y) =































F (η) for |y| ≤ 1,

0 for |y| ≥ 1,

(5.10)
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where

η =
a(1− |y|)

δ00
, (5.11)

δ00 = 1/(b0
√
Re) is the relative thickness of the boundary layer at the nozzle exit, b0 is

determined by the conditions of outflow from the nozzle, a is a parameter which depends

on the definition of the boundary layer thickness 8 , F (η) is the derivative with respect to

η of the Blasius function f(η), described by the equation

d3f

dη3
+
f

2

d2f

dη2
= 0 (5.12)

with initial conditions f(0) = 0, df(0)/dη = 0, d2f(0)/dη2 ≈ 0.332 [14,11].

Taking account of the entrainment of the ambient fluid, we set the velocity profile close

to (5.10) for x = 0 to the form

ud(x, y) =
1

1 + tanh(q/δ00 + r0)

[

1− tanh

(

q
|y| − 1

δ0(x)
− r(x)

)]

, (5.13)

where δ0(x) and r(x) are unknown functions of x, and δ0(x) is the boundary layer thickness

which is equal to δ00 for x = 0, r0 = r(0). We note that the profile (5.13) was first suggested

in [46]; it is similar to that given for the mean velocity in [126–128,132].

The thicknesses of inner and external boundary layers (δ1(x) and δ2(x)) are defined by

the relations:

ud
(

x, 1− δ1(x)
)

= α, ud
(

x, 1 + δ2(x)
)

= 1− α, (5.14)

where α is a number close to 1. As follows from (5.13) and (5.14)

q
δ1(x)

δ0(x)
+ r(x) = arc tanh(2α− 1), q

δ2(x)

δ0(x)
− r(x) = arc tanh(2α− 1). (5.15)

8 If the boundary layer thickness is defined so that at its boundary the relative velocity is equal

to 0.99, then a ≈ 5.
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Adding Eqs. (5.15) we obtain the relation between q and α:

q = 2 arc tanh(2α− 1). (5.16)

For α = 0.95 we find q ≈ 3.

The substitution of (5.16) into (5.15) gives

δ1(x)

δ0(x)
=

1

2
− r(x)

q
,

δ2(x)

δ0(x)
=

1

2
+
r(x)

q
. (5.17)

The form of the velocity profile determines the so-called shape-factor H [14], which is

equal to the ratio between the displacement thickness

δ∗(0) =
1

δ0(0)

1+δ2(0)
∫

0

(

1− ud(0, y)
)

dy

and the thickness of momentum loss

θ(0) =
1

δ0(0)

1+δ2(0)
∫

0

ud(0, y)
(

1− ud(0, y)
)

dy.

For a turbulent boundary layer, the shape-factor H has to lie in the range 1.4–1.6 [14],

whereas for a laminar boundary layer it has to be significantly more. Using the values of

parameters calculated above we can calculate δ∗(0), θ(0) and H(0) for our velocity profile.

As a result, we find δ∗(0) ≈ 0.5081, θ(0) ≈ 0.1588 and H(0) ≈ 3.2. Thus, our velocity

profile does correspond to a laminar boundary layer.

To find the unknown functions in the expression (5.13), we use the conservation laws for

the fluxes of momentum and energy. Usually they are derived for the mean values of these

fluxes starting from the Reynolds equations [86,21], and therefore contain the so-called

turbulent viscosity. We derive them directly starting from Eqs. (5.7)–(5.9) for dynamical

constituents. For this we transform Eqs. (5.7)–(5.9) in the following way. Substituting

Ωd(x, y) from Eq. (5.7) into Eq. (5.9), and taking into account that within the jet’s initial

part ∂2ud/∂x
2 and ∂2vd/∂x

2 are negligibly small, we obtain

ud(x, y)
∂2ud(x, y)

∂x∂y
+ vd(x, y)

∂2ud(x, y)

∂y2
− 2

Re

∂3ud(x, y)

∂y3
= 0. (5.18)
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Taking account of the continuity equation (5.8) we can rewrite Eq. (5.18) as

∂

∂y





∂u2d(x, y)

∂x
+
∂
(

ud(x, y)vd(x, y)
)

∂y
− 2

Re

∂2ud(x, y)

∂y2



 = 0. (5.19)

By integrating Eq. (5.19) over y, we obtain the following approximate equation:

∂u2d(x, y)

∂x
+
∂
(

ud(x, y)vd(x, y)
)

∂y
− 2

Re

∂2ud(x, y)

∂y2
= 0. (5.20)

The conservation law for the dynamical constituent of the momentum flux is found by

integrating Eq.(5.20) over y from −∞ to ∞, taking into account that ud(x,±∞) = 0 and

∂ud(x,±∞)/∂y = 0. We thus obtain

∂

∂x

∞
∫

−∞

u2d(x, y) dy = 0. (5.21)

To derive the conservation law for the dynamical constituent of the energy flux, we mul-

tiply Eq. (5.20) by 2ud(x, y) and transform it to the form

∂u3d
∂x

+
∂(u2dvd)

∂y
=

4

Re
ud
∂2ud
∂y2

. (5.22)

Integrating further Eq. (5.22) over y from −∞ to ∞ and taking into account the boundary

conditions indicated above we find

∂

∂x

∞
∫

−∞

u3d(x, y) dy = − 4

Re

∞
∫

−∞

(

∂ud(x, y)

∂y

)2

dy. (5.23)

Because ud(x, y) is an even function of y, we obtain from (5.21) and (5.23) the following

approximate equations:

∞
∫

0

u2d(x, y) dy =

∞
∫

0

u2d(0, y) dy, (5.24)

3

∞
∫

0

u2d(x, y)
∂ud(x, y)

∂x
dy = − 4

Re

∞
∫

0

(

∂ud(x, y)

∂y

)2

dy. (5.25)
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Substituting (5.13) into Eq. (5.24) and taking into account that

∞
∫

0

u2d(0, y) dy ≈ 1

we obtain a relationship between r(x) and δ0(x):

ln

[

2 cosh

(

q

δ0(x)
+ r(x)

)]

− q

δ0(x)
+ r(x)− 1

2

[

1 + tanh

(

q

δ0(x)
+ r(x)

)]

= 0. (5.26)

Within the jet part, where

q

δ0(x)
≫ 1, (5.27)

the relationship (5.26) reduces to 2r(x) ≈ 1, i.e. r(x) ≈ r0 = 0.5. It follows from this and

(5.19), (5.17) that

δ1(x) ≈
δ0(x)

3
, δ2(x) ≈

2δ0(x)

3
. (5.28)

Substituting (5.13) into Eq. (5.25), and taking account of (5.26), we find the differential

equation for δ0(x):

{

5 tanh

(

q

δ0(x)
+ r0

)

− 4− cosh−2

(

q

δ0(x)
+ r0

)

− 2q

δ0(x)

[

1− tanh

(

q

δ0(x)
+ r0

)

+
1

4

(

3 + tanh

(

q

δ0(x)
+ r0

))

cosh−2

(

q

δ0(x)
+ r0

)]}

dδ0(x)

dx

=
4q2

3Reδ0(x)

[

1 + tanh

(

q

δ0(x)
+ r0

)] [

1 + tanh

(

q

δ0(x)
+ r0

)

+ cosh−2

(

q

δ0(x)
+ r0

)]

.

(5.29)

A solution of this equation can be found analytically only for the condition (5.27). In this

case Eq. (5.29) becomes

dδ0(x)

dx
=

16q2

3Reδ0(x)
. (5.30)

It follows from Eq. (5.30) that

δ0(x) =
√

δ200 + 2kx ,
dδ0(x)

dx
=

k

δ0(x)
, (5.31)
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where k = 16q2/(3Re).

We note that the dependence δ0(x) found here from the Navier–Stokes equations differs

from that found from the Reynolds equations [86,21] and containing the turbulent viscosity

νt. Since, by Prandtl’s hypothesis [13], νt is proportional to the boundary layer thickness

δ(x), the dependence δ(x) was found to be linear.

The expressions for vd(x, y) and Ωd(x, y) can be found by exact solution of Eqs. (5.7),

(5.8). As a result, we obtain

vd(x, y) = − 16qsign y

3Reδ0(x)
(

1 + tanh(q/δ00 + r0)
)

[

q(|y| − 1)

δ0(x)
tanh

(

q(|y| − 1)

δ0(x)
− r0

)

− q

δ0(x)
tanh

(

q

δ0(x)
+ r0

)

− ln
cosh

(

q(|y| − 1)/δ0(x)− r0
)

cosh
(

q/δ0(x) + r0
)



 , (5.32)

Ωd(x, y) = − qsign y

δ0(x)
(

1 + tanh(q/δ00 + r0)
)

{(

1 +
256q4(|y| − 1)2

9δ40(x)Re
2

)

cosh−2

(

q(|y| − 1)

δ0(x)
− r0

)

− 256q2

9δ20(x)Re
2

[

q2

δ20(x)
cosh−2

(

q

δ0(x)
+ r0

)

− q

δ0(x)

(

(|y| − 1) tanh

(

q(|y| − 1)

δ0(x)
− r0

)

− tanh

(

q

δ0(x)
+ r0

))

+ ln
cosh

(

q(|y| − 1)/δ0(x)− r0
)

cosh
(

q/δ0(x) + r0
)











. (5.33)

For the condition (5.27), from (5.32)and (5.33) we find the following approximate asymp-

totic expressions for vd and Ωd:

vd(x,±∞) ≈ ∓ 16qr0
3δ0(x)Re

, Ωd(x,±∞) ≈ ∓ 256q3r0

9δ30(x)Re
2 . (5.34)

Fig. 23 shows plots of ud(x, y), vd(x, y), Ωd(x, y) versus y for b0 = 0.1, q = 3, r0 = 0.5,

Re = 25000, x = 0 and x = 8. We see that for all values of y, except for narrow intervals

near y = ±1, ud(x, y), vd(x, y) and Ωd(x, y) are nearly constant. The constant transverse

velocity component for |y| > 1 directed towards the jet axis accounts for the entrainment

of ambient fluid with the jet flow.
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It should be emphasized that the results obtained here concern only the dynamical con-

stituents of the velocity and vorticity. Stochastic constituents greatly influence the thick-

ness of the boundary layer, its dependence on the distance from the nozzle, and values of

the mean velocities (see below).

Substituting further

U(t, x, y) = ud(x, y) +
∂ψ(t, x, y)

∂y
, V (t, x, y) = vd(x, y)−

∂ψ(t, x, y)

∂x
,

(5.35)

Ω̃(t, x, y) = Ωd(x, y) + Ω(t, x, y)

into Eqs. (5.4), (5.5) and taking into account (5.7)–(5.9), we find the equations for the

stochastic constituents ψ(t, x, y) and Ω(t, x, y), which we write in the form

Ω−∆ψ = 0, (5.36)

∂Ω

∂t
+ ud(x, y)

∂Ω

∂x
+ vd(x, y)

∂Ω

∂y
− Ωdy(x, y)

∂ψ

∂x
+ Ωdx(x, y)

∂ψ

∂y
− 2

Re
∆Ω

=
∂ψ

∂x

∂Ω

∂y
− ∂ψ

∂y

∂Ω

∂x
, (5.37)

where

Ωdx(x, y) =
∂Ωd(x, y)

∂x
, Ωdy(x, y) =

∂Ωd(x, y)

∂y
.

According to (5.6) the boundary conditions for Eqs. (5.36), (5.37) are

∂ψ

∂y

∣

∣

∣

∣

∣

x=0

= ξ1(t, y),
∂ψ

∂x

∣

∣

∣

∣

∣

x=0

= −ξ2(t, y). (5.38)

6 The derivation of truncated equations for the amplitude of stochastic con-

stituents

To describe the development of turbulence, we can assume that the right-hand side of

Eq. (5.37) is of the order of a small parameter ǫ. In this case Eqs. (5.36), (5.37) can be

solved approximately by a method similar to the Krylov–Bogolyubov method for spatially

extended systems [131]. We therefore seek a solution in the form of a series in ǫ:
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Ω(t, x, y) = Ω0(t, x, y) + ǫr1(t, x, y) + ǫ2r2(t, x, y) + . . . ,

ψ(t, x, y) = ψ0(t, x, y) + ǫs1(t, x, y) + ǫ2s2(t, x, y) + . . . , (6.1)

u(t, x, y) =
∂ψ(t, x, y)

∂y
= u0(t, x, y) + ǫq1(t, x, y) + ǫ2q2(t, x, y) + . . . ,

where Ω0(t, x, y) and ψ0(t, x, y) are generative solutions of Eqs. (5.36), (5.37), u0(t, x, y) =

∂ψ0(t, x, y)/∂y; r1(t, x, y), r2(t, x, y), . . ., s1(t, x, y), s2(t, x, y), . . . are unknown functions,

and q1(t, x, y) = ∂s1(t, x, y)/∂y, q2(t, x, y) = ∂s2(t, x, y)/∂y, . . ..

It should be emphasized that because of the quadratic nonlinearity the contribution of

nonlinear terms into turbulent processes can be estimated only by using the second ap-

proximation of the Krylov–Bogolyubov method. Thus in the expansion (6.1) we have to

retain the terms up to the second order with respect to ǫ.

6.1 Generative solutions

Putting the right-hand side of Eq. (5.37) to zero and eliminating the stochastic constituent

of vorticity, we obtain the generative equation for the stochastic constituent of the stream

function:

∂∆ψ0

∂t
+ ud(x, y)

∂∆ψ0

∂x
+ vd(x, y)

∂∆ψ0

∂y

−Ωdy(x, y)
∂ψ0

∂x
+ Ωdx(x, y)

∂ψ0

∂y
− 2

Re
∆∆ψ0 = 0. (6.2)

It should be noted that finding the generative solution is similar to the well known problem

of the linear instability of a jet flow. During the last three decades, this problem was

studied primarily by Crighton and Gaster [126,132], Michalke [128] and Plaschko [127]. In

these works a profile of the mean flow velocity for a circular jet was given, and the problem

was solved approximately, mainly within the framework of linearized Euler equations.

Because the coefficients of these equations depend on the coordinates, an exact analytic

solution could not be found. Numerical calculations performed by these authors are in

qualitative agreement with experimental data.

Here we find the generative solution for a plane jet based on the linearized Navier–Stokes
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equation (6.2) and using the dynamical constituents of velocity and vorticity calculated

above. We emphasize that viscosity should be taken into account, because all terms in

Eq. (6.2) are of the same order over the region of the boundary layer. We chose a plane jet,

rather than a circular one, by virtue of the same reasoning as in [92]: its simple geometry

and boundary conditions.

We seek a partial solution of Eq. (6.2) in the form of a sum of running waves of frequency

S with a slowly varying complex wave number Q(S, x):

ψ0(t, x, y) =
1

2π

∞
∫

−∞

f (S)(x, y) exp



i



St−
x
∫

0

Q(S, x) dx







 dS. (6.3)

Taking into account that the jet diverges slowly, we can represent the function f (S)(x, y)

and the wave number Q(S, x) as series in a conditional small parameter µ ∼ 1/
√
Re:

f (S)(x, y) = f0(S, x, y) + µf1(S, x, y) + . . . , Q(S, x) = Q0(S, x) + µQ1(S, x) + . . . , (6.4)

where f0(S, x, y), f1(S, x, y), . . . are unknown functions vanishing, along with their deriva-

tives, at y = ±∞.

Substituting (6.3), in view of (6.4), into Eq. (6.2) and retaining only terms containing

first derivatives with respect to x we obtain the following equations for f0(S, x, y) and

f1(S, x, y):

L0(Q0)f0 = 0, (6.5)

L0(Q0)f1 = iQ1L1(Q0)f0 − L2(Q0)f0, (6.6)

where

L0(Q0) = i
(

S− ud(x, y)Q0

)

(

∂2

∂y2
−Q2

0

)

+ vd(x, y)

(

∂3

∂y3
−Q2

0

∂

∂y

)

+iQ0 Ωdy(x, y) + Ωdx(x, y)
∂

∂y
− 2

Re

(

∂4

∂y4
− 2Q2

0

∂2

∂y2
+Q4

0

)

, (6.7)

L1(Q0) = ud(x, y)

(

∂2

∂y2
− 3Q2

0

)

+ 2SQ0 − 2iQ0vd(x, y)
∂

∂y

−Ωdy(x, y) +
8iQ0

Re

(

∂2

∂y2
−Q2

0

)

, (6.8)
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L2(Q0) = S

(

2Q0
∂

∂x
+
∂Q0

∂x

)

+ ud(x, y)

[

∂3

∂x∂y2
− 3Q0

(

Q0
∂

∂x
+
∂Q0

∂x

)]

− ivd(x, y)

×
(

2Q0
∂2

∂x∂y
+
∂Q0

∂x

∂

∂y

)

− Ωdy(x, y)
∂

∂x
+

4i

Re

[

2Q0
∂3

∂x∂y2
+
∂Q0

∂x

∂2

∂y2

−Q2
0

(

2Q0
∂

∂x
+ 3

∂Q0

∂x

)]

. (6.9)

Eq. (6.5), with the boundary conditions for function f0 and its derivatives so as to be

vanishing at y = ±∞, describes a non-self-adjoint boundary-value problem, where Q0

plays the role of an eigenvalue. Similar boundary-value problems, but on a finite interval,

were studied by Keldysh [129]. Consistent with Fredholm’s well known theorem [130] about

linear boundary-value problems described by an inhomogeneous equation, Eq. (6.6) has

a nontrivial solution only if

iQ1

∞
∫

−∞

χ(S, x, y)L1(Q0)f0(S, x, y) dy −
∞
∫

−∞

χ(S, x, y)L2(Q0)f0(S, x, y) dy = 0, (6.10)

where χ(S, x, y) is a complex conjugate eigenfunction of the adjoint boundary-value prob-

lem described by the equation:

i

(

∂2

∂y2
−Q2

0

)

[(

S− ud(x, y)Q0

)

χ
]

−
(

∂3

∂y3
−Q2

0

∂

∂y

)

(

vd(x, y)χ
)

+iQ0Ωdy(x, y)χ−
∂
(

Ωdx(x, y)χ
)

∂y
− 2

λ2

(

∂4χ

∂y4
− 2Q2

0

∂2χ

∂y2
+Q4

0χ

)

= 0. (6.11)

The over-bar in Eq. (6.10) implies the operation of complex conjugation. The condition

(6.10) allows us to find the small correction Q1(S, x) to the eigenvalue Q0(S, x).

Over the region of |y| ≤ y1(x) (region I), where y1(x) is the internal boundary of the

boundary layer, ud(x, y) ≈ 1, vd(x, y) ≈ 0, Ωdx(x, y) ≈ 0 and Ωdy(x, y) ≈ 0. For this

region the general solution of Eqs. (6.5) and (6.11) is

f0(y) = A1 sinh(B11y) + A2 sinh(B12y) + A3 cosh(B11y) + A4 cosh(B12y),

(6.12)

χ(y) = Ã1 sinh(B11y) + Ã2 sinh(B12y) + Ã3 cosh(B11y) + Ã4 cosh(B12y),
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where

B11 = Q0, B12 =

√

Q2
0 +

i(S−Q0)Re

2
(6.13)

are the roots of the characteristic equation corresponding to Eqs. (6.5) and (6.11), and

A1, A2, A3, A4, Ã1, Ã2, Ã3 and Ã4 are arbitrary constants.

Any arbitrary disturbance can be represented as a linear combination of even and odd

constituents. We consider the case of odd disturbances. In this case we can solve Eqs. (6.5)

and (6.11) only for positive values of y, seeking a solution of these equations in the form

f0(y) = A1f01(y) + A2f02(y), χ0(y) = Ã1χ01(y) + Ã2χ02(y), (6.14)

where, for |y| ≤ y1(x), the functions f01(y), χ1(y) transform to sinh(B11y), and f02(y),

χ2(y) transform to sinh(B12y). It follows that f01(y), χ01(y), f02(y) and χ02(y) must satisfy

the following initial conditions:

f01(0) = χ01(0) = 0,
∂f01
∂y

∣

∣

∣

∣

∣

y=0

=
∂χ01

∂y

∣

∣

∣

∣

∣

y=0

= B11,

∂2f01
∂y2

∣

∣

∣

∣

∣

y=0

=
∂2χ01

∂y2

∣

∣

∣

∣

∣

y=0

= 0,
∂3f01
∂y3

∣

∣

∣

∣

∣

y=0

=
∂3χ01

∂y3

∣

∣

∣

∣

∣

y=0

= B3
11,

(6.15)

f02(0) = χ02(0) = 0,
∂f02
∂y

∣

∣

∣

∣

∣

y=0

=
∂χ02

∂y

∣

∣

∣

∣

∣

y=0

= B12,

∂2f02
∂y2

∣

∣

∣

∣

∣

y=0

=
∂2χ02

∂y2

∣

∣

∣

∣

∣

y=0

= 0,
∂3f02
∂y3

∣

∣

∣

∣

∣

y=0

=
∂3χ02

∂y3

∣

∣

∣

∣

∣

y=0

= B3
12.

Over the region of |y| ≥ y2(x) (region II), where y2(x) is the external boundary of the

boundary layer, ud(x, y) ≈ 0, vd(x, y) ≈ vd(x,∞), Ωdx(x, y) ≈ Ωdx(x,∞) and

Ωdy(x, y) ≈ 0. For this region the solutions of Eqs. (6.5) and (6.11) must behave as

partial solutions of the equations
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iS

(

∂2f0
∂y2

−Q2
0f0

)

+ vd(x,∞)

(

∂3f0
∂y3

−Q2
0

∂f0
∂y

)

+Ωdx(x,∞)
∂f0
∂y

− 2

Re

(

∂4f0
∂y4

− 2Q2
0

∂2f0
∂y2

+Q4
0f0

)

= 0,

(6.16)

iS

(

∂2χ0

∂y2
−Q2

0χ0

)

− vd(x,∞)

(

∂3χ0

∂y3
−Q2

0

∂χ0

∂y

)

−Ωdx(x,∞)
∂χ0

∂y
− 2

Re

(

∂4χ0

∂y4
− 2Q2

0

∂2χ0

∂y2
+Q4

0χ0

)

= 0,

satisfying the condition of vanishing at y = ∞. Such partial solutions can be written as

f0(y) = C21 exp
[

B21

(

y − y2(x)
)]

+ C22 exp
[

B22

(

y − y2(x)
)]

,

(6.17)

χ0(y) = C̃21 exp
[

B̃21

(

y − y2(x)
)]

+ C̃22 exp
[

B̃22

(

y − y2(x)
)]

,

where C21, C22, C̃21 and C̃22 are arbitrary constants, and B21, B22, B̃21 and B̃22 are roots

of the characteristic equations corresponding to Eqs. (6.16) with negative real parts. The

characteristic equations for region II take the form

B4 − a10B
3 − a20B

2 − a30B + a40 = 0,

(6.18)

B̃4 + a10B̃
3 − a20B̃

2 + a30B̃ + a40 = 0,

where

a10 = ± vd(x,∞)Re

2
, a20 = 2Q2

0 +
iSRe

2
,

(6.19)

a30 = ±
(

Ωdx(x,∞)−Q2
0vd(x,∞)

)

Re

2
, a40 = Q4

0 +
iSQ2

0Re

2
,

the signs ‘+’ and ‘−’ correspond to y > 0 and y < 0, respectively. It follows from (6.18)

and (6.19) that jth root of Eq. (6.18) for y < 0 is equal to jth root for y > 0 of opposite

sign. That is why we need consider only y > 0.

In view of (6.19), the first equation of (6.18) can be conveniently rewritten as

[

B2 − vd(x,∞)Re

2
B −

(

Q2
0 +

iSRe

2

)]

(B2 −Q2
0) =

Ωdx(x,∞)Re

2
B. (6.20)
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It can be shown that the right-hand side of Eq. (6.20) is small. Therefore the roots of

Eq. (6.20) with negative real parts are approximately equal to

B21 = −Q0 +∆B1, B22 = B220 +∆B2, (6.21)

where

B220 =
vd(x,∞)Re

4



1 +

√

√

√

√1 +
8iS

v2d(x,∞)Re
+

16Q2
0

v2d(x,∞)Re2



 ,

(6.22)

∆B1 = − Ωdx(x,∞)

2
(

iS− vd(x,∞)Q0

) , ∆B2 =
Ωdx(x,∞)B220

vd(x,∞)(B2
220 +Q2

0) + iSB220

.

Equating (6.14) to (6.17) at the point y = y2(x), we find the following boundary condi-

tions:

A1f01(y2) + A2f02(y2) = C21 + C22, A1f11(y2) + A2f12(y2) = B21C21 +B22C22,

A1f21(y2) + A2f22(y2) = B2
21C21 +B2

22C22, A1f31(y2) + A2f32(y2) = B3
21C21 +B3

22C22,

(6.23)

Ã1χ01(y2) + Ã2χ02(y2) = C̃21 + C̃22, Ã1χ11(y2) + Ã2χ12(y2) = B̃21C̃21 + B̃22C̃22,

Ã1χ21(y2) + Ã2χ22(y2) = B̃2
21aC̃21 + B̃2

22aC̃22, Ã1χ31(y2) + Ã2χ32(y2) = B̃3
21C̃21 + B̃3

22C̃22,

where

f11(y2) =
∂f01
∂y

∣

∣

∣

∣

∣

y=y2

, f12(y2) =
∂f02
∂y

∣

∣

∣

∣

∣

y=y2

, f21(y2) =
∂2f01
∂y2

∣

∣

∣

∣

∣

y=y2

,

f22(y2) =
∂2f02
∂y2

∣

∣

∣

∣

∣

y=y2

, f31(y2) =
∂3f01
∂y3

∣

∣

∣

∣

∣

y=y2

, f32(y2) =
∂3f02
∂y3

∣

∣

∣

∣

∣

y=y2

.

χ11(y2) =
∂χ01

∂y

∣

∣

∣

∣

∣

y=y2

, χ12(y2) =
∂χ02

∂y

∣

∣

∣

∣

∣

y=y2

, χ21(y2) =
∂2χ01

∂y2

∣

∣

∣

∣

∣

y=y2

,

χ22(y2) =
∂2χ02

∂y2

∣

∣

∣

∣

∣

y=y2

, χ31(y2) =
∂3χ01

∂y3

∣

∣

∣

∣

∣

y=y2

, χ32(y2) =
∂3χ02

∂y3

∣

∣

∣

∣

∣

y=y2

.

The eigenvalues of Q0 for the basic boundary-value problem must satisfy the requirement

34



that the determinant

D(Q0) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f01(y2) f02(y2) 1 1

f11(y2) f12(y2) B21 B22

f21(y2) f22(y2) B2
21 B2

22

f31(y2) f32(y2) B3
21 B3

22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(6.24)

be equal to zero. It can be shown that the eigenvalues for the adjoint boundary-value

problem coincide with those for the basic boundary-value problem.

The expression for D(Q0) can be written as

D(Q0) = q23(y2)− (B21 +B22)q13(y2) + (B2
21 +B2

22)q12(y2)

+B21B22

(

q12(y2) + q03(y2)− (B21 +B22)q02(y2)
)

+B2
21B

2
22q01(y2), (6.25)

where

q01(y) = f01(y)f12(y)− f11(y)f02(y), q02(y) = f01(y)f22(y)− f21(y)f02(y),

q03(y) = f01(y)f32(y)− f31(y)f02(y), q12(y) = f11(y)f22(y)− f21(y)f12(y), (6.26)

q13(y) = f11(y)f32(y)− f31(y)f12(y), q23(y) = f21(y)f32(y)− f31(y)f22(y).

A direct numerical calculation of D(Q0), starting from Eqs. (6.5) and (6.25), gives random

values on account of the need to subtract large numbers of the same order. Therefore,

instead of Eq. (6.5), we solve the equations for qij(y) which follow from (6.5), (6.27). They

are
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∂q01
∂y

= q02(y),
∂q02
∂y

= q03(y) + q12(y),
∂q12
∂y

= q13(y),

∂q03
∂y

= q13(y) +



2Q2
0 +

i
(

S− ud(x, y)Q0

)

Re

2



 q02(y)

+
Re

2

[

vd(x, y)
[

q03(y)−Q2
0q01(y)

]

+ Ωdx(x, y)q01(y)
]

,

(6.27)

∂q13
∂y

= q23(y) +



2Q2
0 +

i
(

S− ud(x, y)Q0

)

Re

2



 q12(y)

+Q4
0q01(y) +

Re

2

[

[

iQ2
0

(

S− ud(x, y)Q0

)

− iQ0Ωdy(x, y)
]

q01(y) + vd(x, y)q13(y)
]

,

∂q23
∂y

= Q4
0q02(y) +

Re

2

[

[

iQ2
0

(

S− ud(x, y)Q0

)

− iQ0Ωdy(x, y)
]

q02(y)

+vd(x, y)
(

q23(y) +Q2
0q12(y)

)

− Ωdx(x, y)q12(y)
]

.

Solving Eqs. (6.28) with initial conditions

q01(0) = q02(0) = q03(0) = q12(0) = q23(0) = 0, q13(0) = B11B12(B
2
12 −B2

11), (6.28)

and substituting the solution found for y = y2 into (6.25), we calculate D(Q0). By varying

Q0 until D(Q0) becomes equal to zero, we find the eigenvalues of Q0. The real part of

the eigenvalue of Q0 gives the real wave number K0, whereas its imaginary part gives

the wave gain factor Γ0. The dependences of the gain factor Γ0 and wave phase velocity

vph0 = S/K0 on the Strouhal number St are given for Re = 25000, b0 = 0.1 and a number

values of x in Fig. 24 a and b.

To estimate the influence of the Reynolds number and the thickness of the boundary

layer at the nozzle exit, we have calculated the eigenvalues of Q0 for x = 0 in two cases:

Re = 100000, b0 = 0.05 and Re = 100000, b0 = 0.02. In the first case the thickness of the

boundary layer at the nozzle exit is the same as in Fig. 24, and in the second case it is

considerably larger. The results are shown in Fig. 25. We see that, for the same thickness

of boundary layer at the nozzle exit the results depend only weakly on the Reynolds

number, whereas the thickness of the boundary layer affects the eigenvalues strongly.

To find the eigenfunction and the adjoint eigenfunction corresponding to the eigenvalue

Q0, we use Eq. (6.10) for the calculation of the correction Q1 to the eigenvalue Q0,
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and we should in principle calculate the functions f01(S, x, y), f02(S, x, y), χ01(S, x, y)

and χ02(S, x, y) and solve the systems of equations (6.23), taking into account that their

determinants are equal to zero. However, in the process of a direct numerical solution of

Eqs. (6.5) and (6.11) over the region of boundary layer (region III) we face the problem of

the strong instability of solutions corresponding to the functions f01 and χ01 with respect

to small rapidly increasing disturbances. This instability becomes more pronounced for

larger S.

The instability can be illustrated clearly if we pass in Eqs. (6.5) and (6.11) to new variables

φ(S, x, y) and φ̃(S, x, y) by

f0(S, x, y) = C exp
(

φ(S, x, y)
)

, χ0(S, x, y) = C̃ exp
(

φ̃(S, x, y)
)

, (6.29)

where

φ(S, x, y) =

y
∫

0

B(S, x, y) dy, φ̃(S, x, y) =

y
∫

0

B̃(S, x, y) dy. (6.30)

Substituting (6.29) into Eqs. (6.5) and (6.11) and taking account of (6.30) we obtain the

following nonlinear equations for B(S, x, y) and B̃(S, x, y):

∂3B

∂y3
+ 4B

∂2B

∂y2
+ 2(3B2 −Q2

0)
∂B

∂y
+ 3

(

∂B

∂y

)2

+ (B2 −Q2
0)

2 − Re

2

[

i
(

S− ud(x, y)Q0

)

(

∂B

∂y

+B2 −Q2
0

)

+ vd(x, y)

(

∂2B

∂y2
+ 3B

∂B

∂y
+B(B2 −Q2

0)

)

+ iQ0Ωdy(x, y) + Ωdx(x, y)B

]

= 0,

(6.31)

∂3B̃

∂y3
+ 4B̃

∂2B̃

∂y2
+ 2(3B̃2 −Q2

0)
∂B̃

∂y
+ 3

(

∂B

∂y

)2

+ (B̃2 −Q2
0)

2

− Re

2

[

i
(

S− ud(x, y)Q0

)

(

∂B̃

∂y
+ B̃2 −Q2

0

)

− iQ0

(

2udy(x, y)B̃ + udyy(x, y)
)

−vd(x, y)
(

∂2B̃

∂y2
+ 3B̃

∂B̃

∂y
+ B̃(B̃2 −Q2

0)

)

− 3vdy(x, y)

(

∂B̃

∂y
+ B̃2 − Q2

0

3

)

−3vdyy(x, y)B̃ − vdyyy(x, y) + iQ0 Ωdy(x, y)− Ωdx(x, y) B̃ − Ωdxy(x, y)

]

= 0. (6.32)

It is convenient to solve Eqs. (6.31) and (6.32) forward from y = y1(x) to y = 1 and

backward from y = y2(x) to y = 1, and then to sew the solutions found for y = 1. In the
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first case we should find four partial solutions of these equations with initial conditions

B1,2(S, x, y1) = B̃1,2(S, x, y1) = ±Q0, B3,4(S, x, y1) = B̃3,4(S, x, y1) = ±B12. (6.33)

It is evident that the functions f01(S, x, y), f02(S, x, y), χ01(S, x, y) and χ02(S, x, y), for

y1 ≤ |y| ≤ 1, are equal to

f01(S, x, y) =
A1

2

(

exp
(

φ1(S, x, y)
)

− exp
(

φ2(S, x, y)
)

)

,

(6.34)

f02(S, x, y) =
A2

2

(

exp
(

φ3(S, x, y)
)

− exp
(

φ4(S, x, y)
)

)

,

χ01(S, x, y) =
Ã1

2

(

exp
(

φ̃1(S, x, y)
)

− exp
(

φ̃2(S, x, y)
)

)

,

(6.35)

χ02(S, x, y) =
Ã2

2

(

exp
(

φ̃3(S, x, y)
)

− exp
(

φ̃4(S, x, y)
)

)

,

where
∂φ1,2(S, x, y)

∂y
= B1,2(S, x, y),

∂φ̃1,2(S, x, y)

∂y
= B̃1,2(S, x, y),

∂φ3,4(S, x, y)

∂y
= B3,4(S, x, y),

∂φ̃3,4(S, x, y)

∂y
= B̃3,4(S, x, y), (y1 ≤ |y| ≤ 1).

In the second case we should find two partial solutions of Eqs. (6.31) and (6.32) with

initial conditions

B1(S, x, y2) = B21, B2(S, x, y2) = B22, B̃1(S, x, y2) = B̃21, B̃2(S, x, y2) = B̃22, (6.36)

where B21, B22, B̃21 and B̃22 are defined by (6.22). The functions f01(S, x, y), f02(S, x, y),

χ01(S, x, y) and χ02(S, x, y), for 1 ≤ |y| ≤ y2, are equal to

f01(S, x, y) = C1 exp
(

Φ1(S, x, y)
)

, f02(S, x, y) = C2 exp
(

Φ2(S, x, y)
)

, (6.37)

χ01(S, x, y) = C̃1 exp
(

Φ̃1(S, x, y)
)

, χ02(S, x, y) = C̃2 exp
(

Φ̃2(S, x, y)
)

, (6.38)

where

∂Φ1,2(S, x, y)

∂y
= B1,2(S, x, y),

∂Φ̃1,2(S, x, y)

∂y
= B̃1,2(S, x, y), (1 ≤ |y| ≤ y2).
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Numerical solution of Eqs. (6.31) and (6.32), both forward and backward, has shown that

in the first case all partial solutions for B tend to the third partial solution with initial

condition B|y=y1 = B12, whereas in the second case the first partial solution tends to

the second one with initial condition B|y=y2 = B22 (see, for example, Fig. 26, where all

numerical partial solutions of Eqs. (6.31) and (6.32) with initial conditions (6.33) and

(6.36) are shown for S = 22). This means that all partial solutions, except the third one

in the first case and the second one in the second case, are unstable. That is why we

have taken the two partial solutions of the equations for B and B̃, following from the

Euler equations, as the first and second approximate partial solutions of Eqs. (6.31) and

(6.32), and, for y1 ≤ y ≤ 1, ignored the fourth partial solution with a large negative real

part. The former is valid because |Q0| ∼ |B21| ≪
√
Re, and the latter is valid because,

for y1 ≤ y ≤ 1, exp (
∫

B3(S, x, y) dy) ≫ exp (
∫

B4(S, x, y) dy). The equations for B and B̃

following from the Euler equations are

i
(

S− ud(x, y)Q0

)

(

∂B

∂y
+B2 −Q2

0

)

+ iQ0Ωdy(x, y) + Ωdx(x, y)B = 0, (6.39)

i
(

S− ud(x, y)Q0

)

(

∂B̃

∂y
+ B̃2 −Q2

0

)

− iQ0

(

2udy(x, y)B̃ + udyy(x, y)
)

+iQ0 Ωdy(x, y)− Ωdx(x, y) B̃ − Ωdxy(x, y) = 0. (6.40)

An example of the partial solutions found in this way is given in Fig. 27 for S = 22.

Comparing Figs. 27 with 26 we see that, as distinct from the case shown in Fig. 26, all

the solutions found are stable.

To find the eigenfunctions and adjoint eigenfunctions we have to use expressions (6.34),

(6.37) and, respectively, for the adjoint functions, (6.35), (6.38) and the sewing conditions

for y = 1. Thus we find the equations for A1, A2, C1 and C2 (and, correspondingly, in the

case of the adjoint eigenfunctions, for Ã1, Ã2, C̃1 and C̃2):
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A1

2

(

exp
(

φ1(S, x, 1)
)

− exp
(

φ2(S, x, 1)
)

)

+
A2

2
exp

(

φ3(S, x, 1)
)

= C1 exp
(

Φ1(S, x, 1)
)

+ C2 exp
(

Φ2(S, x, 1)
)

,

A1

2

(

B
(l)
1 (S, x, 1) exp

(

φ1(S, x, 1)
)

− B
(l)
2 (S, x, 1) exp

(

φ2(S, x, 1)
)

)

+
A2

2
B

(l)
3 (S, x, 1) exp

(

φ3(S, x, 1)
)

= C1B
(r)
1 (S, x, 1) exp

(

Φ1(S, x, 1)
)

+ C2B21
(r)(S, x, 1) exp

(

Φ2(S, x, 1)
)

,

(6.41)

A1

2

(

(

B
(l)
1 (S, x, 1)

)2
exp

(

φ1(S, x, 1)
)

−
(

B
(l)
2 (S, x, 1)

)2
exp

(

φ2(S, x, 1)
)

)

+
A2

2

(

B
(l)
3 (S, x, 1)

)2
exp

(

φ3(S, x, 1)
)

= C1

(

B
(r)
1 (S, x, 1)

)2
exp

(

Φ1(S, x, 1)
)

+ C2

(

B
(r)
2 (S, x, 1)

)2
exp

(

Φ2(S, x, 1)
)

,

A1

2

(

(

B
(l)
1 (S, x, 1)

)3
exp

(

φ1(S, x, 1)
)

−
(

B
(l)
2 (S, x, 1)

)3
exp

(

φ2(S, x, 1)
)

)

+
A2

2

(

B
(l)
3 (S, x, 1)

)3
exp

(

φ3(S, x, 1)
)

= C1

(

B
(r)
1 (S, x, 1)

)3
exp

(

Φ1(S, x, 1)
)

+ C2

(

B
(r)
2 (S, x, 1)

)3
exp

(

Φ2(S, x, 1)
)

,

Ã1

2

(

exp
(

φ̃1(S, x, 1)
)

− exp
(

φ̃2(S, x, 1)
)

)

+
Ã2

2
exp

(

φ̃3(S, x, y)
)

= C̃1 exp
(

Φ̃1(S, x, 1)
)

+ C̃2 exp
(

Φ̃2(S, x, 1)
)

,

Ã1

2

(

B̃
(l)
1 (S, x, 1) exp

(

φ̃1(S, x, 1)
)

− B̃
(l)
2 (S, x, 1) exp

(

φ̃2(S, x, 1)
)

)

+
Ã2

2
B̃

(l)
3 (S, x, 1) exp

(

φ̃3(S, x, 1)
)

= C̃1B̃
(r)
1 (S, x, 1) exp

(

Φ̃1(S, x, 1)
)

+ C̃2B̃21
(r)(S, x, 1) exp

(

Φ̃2(S, x, 1)
)

,

(6.42)

Ã1

2

(

(

B̃
(l)
1 (S, x, 1)

)2
exp

(

φ̃1(S, x, 1)
)

−
(

B̃
(l)
2 (S, x, 1)

)2
exp

(

φ̃2(S, x, 1)
)

)

+
Ã2

2

(

B̃
(l)
3 (S, x, 1)

)2
exp

(

φ̃3(S, x, 1)
)

= C̃1

(

B̃
(r)
1 (S, x, 1)

)2
exp

(

Φ̃1(S, x, 1)
)

+ C̃2

(

B̃
(r)
2 (S, x, 1)

)2
exp

(

Φ̃2(S, x, 1)
)

,

Ã1

2

(

(

B̃
(l)
1 (S, x, 1)

)3
exp

(

φ̃1(S, x, 1)
)

−
(

B̃
(l)
2 (S, x, 1)

)3
exp

(

φ̃2(S, x, 1)
)

)

+
Ã2

2

(

B̃
(l)
3 (S, x, 1)

)3
exp

(

φ̃3(S, x, 1)
)

= C̃1

(

B̃
(r)
1 (S, x, 1)

)3
exp

(

Φ̃1(S, x, 1)
)

+ C̃2

(

B̃
(r)
2 (S, x, 1)

)3
exp

(

Φ̃2(S, x, 1)
)

.
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Because the determinants of the systems of equations (6.41) and (6.42) are equal to

zero, these equations allow us to find a = A2/A1, c1 = C1/A1 and c2 = C2/A1 (and,

correspondingly, ã = Ã2/Ã1, c̃1 = C̃1/Ã1 and c̃2 = C̃2/Ã1). Examples of the eigenfunctions

and adjoint eigenfunctions constructed in this way are illustrated in Figs. 28, 29 for x = 0,

(a) S = 10 and (b) S = 18. We see that the range of the sharp change of the eigenfunctions

and adjoint eigenfunctions becomes narrower with increasing S.

It is important that the first partial solution of Eq. (6.39) for y1 ≤ y ≤ 1, B
(l)
1 (S, x, y),

transforms uninterruptedly into the first partial solution of the same equation for 1 ≤
y ≤ y2, B

(r)
1 (S, x, y) (see Fig. 30). Thus, at a point 9 y = y∗(S, x) > 1 the real and

imaginary parts of B1(S, x, y) change sign. This change of sign provides an explanation of

the formation of vortices within the boundary layer: on different sides of the pivot point

the stochastic constituents of the longitudinal velocity are oppositely directed.

For S < 3, the form of functions f02(S, x, y) and χ02(S, x, y) means that over the region of

the boundary layer (region III) the eigenfunctions f0(S, x, y) and adjoint eigenfunctions

χ0(S, x, y) depend strongly on the Reynolds number and differ markedly from those found

from the Euler equations. This is illustrated in Fig. 31, where these functions calculated

by the way indicated above and from the Euler equations are compared for S = 1. For

S > 8 the eigenfunctions and adjoint eigenfunctions are practically independent of the

Reynolds number, and hence may be calculated from the Euler equations.

With a knowledge of the eigenfunctions and adjoint eigenfunctions, we can use Eq. (6.10)

to calculate the corrections Q1 to the eigenvalues of Q0. The values of Γ = Γ0 +Γ1/λ and

wave phase velocity vph = S/(K0 +K1/λ) as functions of St are shown for different x in

Fig. 32 a and b. Comparing Fig. 32 a and 24 a we see that for x < 1 the corrections to the

eigenvalues of Γ0 are not small. This is caused by a rather large value of the derivative of

Γ0 with respect to x for small x. The derivatives of Γ0 and vph0 for different values of x

are shown in Fig. 33. As x increases the derivatives of Γ0 and vph0, and corrections to the

eigenvalues of Q0 become progressively smaller.

It can be seen that, as the distance from the nozzle increases, the gain factor decreases

9 This point is called the pivot point.
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for large St and increases slightly for small St. For any given x the gain factor has a

maximum at St = Stm, where the greater x is the smaller Stm becomes. It is easily shown

that the shift of the gain factor maximum to the low-frequency region is caused by the

jet’s divergence. Obviously, this shift of the gain factor maximum results in a shift of

the turbulent pulsation power spectrum towards the low-frequency region as the distance

from the nozzle increases (see below). It is interesting that, from x ≈ 1, the dependence

of Stm on x is of an exponential character.

Another important conclusion that can be drawn from Fig. 32 lies in the fact that the

phase velocity of the hydrodynamic waves depends strongly on the Strouhal number, i.e.

these waves are rather significantly dispersive.

Note also that the resonant character of the dependences of the gain factor on the Strouhal

number that we have found indicates that each jet cross-section can be considered as an

oscillator whose natural frequency decreases with increasing distance from the nozzle.

This fact justifies consideration of a jet as a chain of coupled resonant amplifiers, which

in turn allows us to understand the analogy between noise-induced pendulum oscillations

and the turbulent processes in a jet.

Neglecting the correction to the eigenfunction f0(S, x, y), we can write the generative

solutions ψ0(t, x, y), u0(t, x, y) and Ω0(t, x, y) as

ψ0(t, x, y) ≈
1

2π

∞
∫

−∞

f0(S, x, y) exp



iSt− i

x
∫

0

Q(S, x) dx



 dS,

u0(t, x, y) ≈
1

2π

∞
∫

−∞

∂f0(S, x, y)

∂y
exp



iSt− i

x
∫

0

Q(S, x) dx



 dS, (6.43)

Ω0(t, x, y) ≈
1

2π

∞
∫

−∞

[

∂2f0(S, x, y)

∂y2
−
(

Q2(S, x) + i
∂Q0(S, x)

∂x

)

f0(S, x, y)

+iQ(S, x)
∂f0(S, x, y)

∂x

]

exp



iSt− i

x
∫

0

Q(S, x) dx



 dS.

It follows from (6.43) that the vorticity is moderately small outside the boundary layer.

Knowing Q(S, x) and the expressions for u0(t, x, y) and f0(S, x, y) we can calculate the

evolution of the velocity power spectra in the linear approximation. For the sake of sim-
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plicity, we do so only for the region I. We can expand a random disturbance ξ(t, y) of the

longitudinal component of velocity at the nozzle exit into a series in the eigenfunctions

of our boundary value problem. Over region I we can approximate cosh
(

Q(S, 0)y
)

with

eigenvalues of Q as the eigenfunctions for x = 0. Hence, we can set

ξ(t, y) = ξ1(t) cosh
(

Q(S, 0)y
)

+ . . . . (6.44)

The spectral density 〈A1(S)A1(S)〉 = 〈A2(S)〉, where A(S) = |A1|(S), is determined by

the spectral density of ξ1(t) which is denoted by us as κ(S, 0). Because over region I

u(S, 0, y) ≈ A1(S)Q(S, x) cosh
(

Q(S, 0)y
)

. (6.45)

we find

〈

A2(S)
〉

=
κ(S, 0)

K2(S, 0) + Γ2(S, 0)
. (6.46)

There is almost no experimental information about κ(S, 0), but there is one work [133]

giving power spectra of the longitudinal and transverse constituents of velocity pulsations

over the range of the Strouhal numbers St 0–8 for a circular jet at different initial tur-

bulence levels. It can be seen from these data that the form of the spectra depends only

slightly on the initial turbulence level, that the spectra of the longitudinal and transverse

constituents of velocity pulsations are nearly identical, and that the spectral density de-

creases with increasing St. Since the dependence of the spectral densities presented in

[133] on y is close to f(S)
∣

∣

∣cosh
(

Q(S, 0)y
)∣

∣

∣

2
, where f(S) is a certain function of S, we can

set κ(S, 0) ≈ f(S). So, in accordance with data presented in [133], we approximate κ(S, 0)

by the formula:

κ(S, 0) =
κ0

1 + b1S+ b2S2 + b3S3
, (6.47)

where κ0 characterizes the level of the disturbances at the nozzle exit, b1 = 0.152, b2 =

−0.005 and b3 = 0.000002. The plot of κ(S, 0)/κ0 described by (6.47) is shown in Fig. 34.

Comparison with experimental results for power spectra of velocity pulsations and for the

mean longitudinal velocity shows that κ0 should be taken as very small. Hereinafter we
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will set κ0 = 8 × 10−28. It should be noted that, owing to the resonant character of the

gain factor, the results are scarcely affected by the shape of the dependence of κ(S, 0).

It follows from (6.43), (6.45) and (6.46) that the spectral density of the longitudinal

velocity pulsations in the linear approximation is

κl(S, x, y) = κ(S, 0)
K2(S, x) + Γ2(S, x)

K2(S, 0) + Γ2(S, 0)

∣

∣

∣

∣

cosh
(

Q(S, x)y
)

∣

∣

∣

∣

2

exp





x
∫

0

2Γ(S, x′) dx′



 .

(6.48)

The evolutions of κl(S, x, y) for y = 0 and |y| = 0.7 are shown in Fig. 35 a and b. We see

that in the two cases considered the power spectra differ markedly, especially for small x.

In particular, the difference shows up as a faster (for |y| = 0.7) decrease of the Strouhal

number corresponding to the spectrum maximum (Stm) with increasing distance from the

nozzle. This is more easily seen in Fig. 36, where this decrease is given for both cases

considered. As is evident from the figures, the experimental dependences can be well-

approximated by the curves Stm ≈ 3.2x−0.36 (for y = 0) and Stm ≈ 6.5x−0.68 (for y = 0.7).

Unfortunately, experimental data (see Figs. 5 and 6) are available only for the jet axis

(corresponding to y = 0) and a line offset by the radius from the axis (corresponding

to y = 1). In the first case our dependence is close to the experimental one, and in the

second case it lies between the experimental ones.

We emphasize that our results are obtained from the linear theory without taking account

of nonlinear phenomena such as the pairing of vortices. These results reinforce our idea

that the experimentally observed shift of the power spectrum is explained mainly by the

divergence of the jet, not by the pairing of vortices.

It should be noted that, as the distance from the nozzle increases, the width of the power

spectra decreases significantly. This means that the correlation time increases, i.e. the

coherence level increases too. This is a cause of the formation of coherent structures.

The mean-root-square value of the turbulent velocity pulsations, which is what is usually
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is measured experimentally, is equal to

ǫul(x, y) =

√

√

√

√

√

1

π

∞
∫

0

κl(S, x, y) dS. (6.49)

The plots of ǫul(x, 0) and ǫul(x, 0.7) versus y are presented in Fig. 37. It is seen from

Fig. 37 a that the dependence of ǫul(x, 0) on x closely resembles the dependence of an

order parameter on temperature for a slightly noisy second-order phase transition. This

also reinforces our hypothesis that the onset of turbulence is a nonequilibrium noise-

induced phase transition of the second order, similar to that for a pendulum with a

randomly vibrated suspension axis.

It is interesting that for y = 0.7 the root-mean-square value of turbulent velocity pul-

sations first decreases and then increases with increasing x. This can be explained by

the competition between the amplification of the pulsations and the swift decrease of the

spectrum width. The condition for validity of all results obtained in this paper is that

ǫul(x, y) ≪ 1. We see that along the jet axis the results are valid for almost the whole

initial part (x < 8), whereas for y = 0.7 they are valid only for x < 5. The change of

ǫ(x, y) as x increases is correlated with the change of the mean velocity (see below), but

these changes are not fully identical.

Let us trace the changes of the group wave velocity at St = Stm, as well as of the wave

lengths in the longitudinal and transverse directions (λlon
(

Stm, x
)

= 2π/K(Stm, x) and

λtr
(

Stm, x
)

= 2π/Γ(Stm, x), respectively), with increasing x. The results are presented

in Fig. 38. It is seen that along the jet axis, as the distance from the nozzle increases,

the group velocity vgr
(

Stm(x)
)

first decreases and then increases, whereas for y = 0.7

it decreases monotonically. The longitudinal wave lengths increase considerably in both

cases, providing evidence for an increase in the scale of the turbulence in the longitudinal

direction. Along the jet axis the transverse scale of turbulence increases too, whereas

for y = 0.7 it changes nonmonotonically. The increase of the scale of turbulence in the

longitudinal direction agrees with the experimental data and reveals itself in the pairing

of vortices.
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6.2 The first approximation

Putting
∂A1

∂x
∼ ∂A1

∂y
∼ ǫ2,

substituting (6.1) into Eqs. (5.36), (5.37) and equating the terms of order ǫ we obtain the

following equations:

r1 −∆s1 = 0, q1 =
∂s1
∂y

,

(6.50)

∂r1
∂t

+ ud(x, y)
∂r1
∂x

+ vd(x, y)
∂r1
∂y

− Ωdy(x, y)
∂s1
∂x

+ Ωdx(x, y)
∂s1
∂y

− 2

Re
∆r1 = R(t, x, y),

where

R(t, x, y) =
∂ψ0

∂x

∂Ω0

∂y
− ∂Ω0

∂x

∂ψ0

∂y
, (6.51)

and ψ0 and Ω0 are defined by the expressions (6.43).

We suppose that only waves for which the sign of S is opposite can interact, an assumption

that is justified for dispersive waves. It should be noted that the interaction of waves with

the same sign of S results in the generation of second harmonic, whereas the interaction of

waves for which S is opposite in sign results in the appearance of a constant level. Because

the difference
∂ψ

(S)
0

∂x

∂Ω
(S)
0

∂y
− ∂Ω

(S)
0

∂x

∂ψ
(S)
0

∂y

is small, the second harmonic is also small. It is therefore sufficient to consider the in-

teraction only of waves for which S is opposite in sign. In so doing, it should be borne

in mind that A1(−S) = A1(S) and Q(−S) = −Q(S). Thus, we can set A1(S)A1(S
′) =

2πA2(S)δ(S′ + S), where A(S) = |A1|(S). In this case R(t, x, y) is independent of t, and

we can represent it as

R(x, y) =
1

2π

∞
∫

−∞

Rs(S, x, y) dS. (6.52)

A solution of Eqs. (6.50) can be also presented in the form
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r1(x, y) =
1

2π

∞
∫

−∞

r1s(S, x, y) dS, s1(x, y) =
1

2π

∞
∫

−∞

s1s(S, x, y) dS, (6.53)

q1(x, y) =
1

2π

∞
∫

−∞

q1s(S, x, y) dS, (6.54)

Equations (6.50) can be solved analytically only over regions I, II.

It follows from (6.43) and our numerical calculations that over region I

ψ0(S, x, y) ≈ A1 sinh
(

Q(S, x)y
)

exp



iSt− i

x
∫

0

Q(S, x) dx



 ,

(6.55)

Ω0(S, x, y) ≈ −iA1

[

sinh
(

Q(S, x)y
)

+ 2Q(S, x)y cosh
(

Q(S, x)y
)] ∂Q(S, x)

∂x

× exp



iSt− i

x
∫

0

Q(S, x) dx



 ,

and in region II

ψ0(S, x, y) ≈ A1

[

c1(S, x) exp
(

B21(S, x)(y − y2(x))
)

+ c2(S, x)

× exp
(

B22(S, x)(y − y2(x)
)

]

exp



iSt− i

x
∫

0

Q(S, x) dx



 ,

(6.56)

Ω0(S, x, y) ≈ A1

[

Q(S, x)Ωdx(x,∞)

iS−Q(S, x)vdx(x,∞)
c1(S, x) exp

(

B21(S, x)(y − y2(x))
)

+

B2
22(S, x)c2(S, x) exp

(

B22(S, x)(y − y2(x)
)

]

exp



iSt− i

x
∫

0

Q(S, x) dx



 , (6.57)

where c1(S, x) and c2(S, x) are found from Eqs. (6.41), and B21(S, x) and B22(S, x) are

determined by (6.21), (6.22). For y− y2(x) ≫ 1/
∣

∣

∣B22(S, x)
∣

∣

∣ the expressions (6.56) may be

reduced to
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ψ0(S, x, y) ≈ A1c1(S, x) exp
(

B21(S, x)(y − y2(x))
)

exp



iSt− i

x
∫

0

Q(S, x) dx



 ,

(6.58)

Ω0(S, x, y) ≈ A1
Q(S, x)Ωdx(x,∞)

iS−Q(S, x)vdx(x,∞)
c1(S, x) exp

(

B21(S, x)(y − y2(x))
)

exp



iSt− i

x
∫

0

Q(S, x) dx



 .

6.2.1 Region I

It follows from (6.55) that

Rs(S, x, y) = −2
(

K2(S, x) + Γ2(S, x)
)

[

2
∂K(S, x)

∂x
sinh

(

2K(S, x)y
)

+
∂Γ(S, x)

∂x

× sin
(

2Γ(S, x)y
)

+ 2

(

K(S, x)
∂K(S, x)

∂x
− Γ(S, x)

∂Γ(S, x)

∂x

)

y cosh
(

2K(S, x)y
)

]

×A2(S) exp



2

x
∫

0

Γ(S, x) dx



 . (6.59)

Eqs. (6.50) for r1s, q1s and s1s become

r1s −∆s1s = 0, q1s =
∂s1s
∂y

,
∂r1s
∂x

− 2

Re
∆r1s = Rs(S, x, y). (6.60)

Substituting (6.59) into Eqs. (6.60), and ignoring the term proportional to 1/Re, we obtain

the following approximate expressions for r1s(S, x, y), s1s(S, x, y) and q1s(S, x, y):

r1s(S, x, y) = r̃1s(S, x, y)A
2(S) exp



2

x
∫

0

Γ(S, x) dx



 .

(6.61)

s1s(S, x, y) = s̃1s(S, x, y)A
2(S) exp



2

x
∫

0

Γ(S, x) dx



 ,

q1s(S, x, y) = q̃1s(S, x, y)A
2(S) exp



2

x
∫

0

Γ(S, x) dx



 , (6.62)

where

r̃1s(S, x, y) ≈ −K
2(S, x) + Γ2(S, x)

Γ(S, x)

{

2
∂K(S, x)

∂x
sinh

(

2K(S, x)y
)

+
∂Γ(S, x)

∂x
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× sin
(

2Γ(S, x)y
)

+ 2

(

K(S, x)
∂K(S, x)

∂x
− Γ(S, x)

∂Γ(S, x)

∂x

)

y cosh
(

2K(S, x)y
)

}

,

(6.63)

s̃1s(S, x, y) ≈ − 1

2Γ(S, x)

[

Γ(S, x)

K2(S, x) + Γ2(S, x)

(

Γ
∂K(S, x)

∂x
+K(S, x)

∂Γ(S, x)

∂x

)

× sinh
(

2K(S, x)y
)

+

(

K(S, x)
∂K(S, x)

∂x
− Γ(S, x)

∂Γ(S, x)

∂x

)

y cosh
(

2K(S, x)y
)

− K2(S, x) + Γ2(S, x)

2Γ(S, x)

∂Γ(S, x)

∂x
y cos

(

2Γ(S, x)y
)

]

,

q̃1s(S, x, y) ≈ − 1

2Γ(S, x)

{

1

K2(S, x) + Γ2(S, x)

(

(

3Γ2(S, x) +K2(S, x)
)

K(S, x)
∂K(S, x)

∂x

+
(

K2(S, x)− Γ2(S, x)
)

Γ(S, x)
∂Γ(S, x)

∂x

)

cosh
(

2K(S, x)y
)

+ 2K(S, x)y

(

K(S, x)
∂K(S, x)

∂x

−Γ(S, x)
∂Γ(S, x)

∂x

)

sinh
(

2K(S, x)y
)

− K2(S, x) + Γ2(S, x)

2Γ(S, x)

∂Γ(S, x)

∂x

×
[

cos
(

2Γ(S, x)y
)

− 2Γ(S, x)y sin
(

2Γ(S, x)y
)

]

}

. (6.64)

It follows from (6.64) that along the jet axis, where sinh
(

2K(S, x)y
)

= sin
(

2Γ(S, x)y
)

= 0

and cosh
(

2K(S, x)y
)

= cos
(

2Γ(S, x)y
)

= 1, we have r1s(S, x, 0) = s1s(S, x, 0) = 0 and

q̃1s(S, x, y) ≈ − 1

2Γ(S, x)

{

1

K2(S, x) + Γ2(S, x)

(

(

3Γ2(S, x) +K2(S, x)
)

K(S, x)
∂K(S, x)

∂x

+
(

K2(S, x)− Γ2(S, x)
)

Γ(S, x)
∂Γ(S, x)

∂x

)

− K2(S, x) + Γ2(S, x)

2Γ(S, x)

∂Γ(S, x)

∂x

}

. (6.65)

It should be noted that the functions r̃1s, s̃1s and q̃1s are slow functions of x.

We emphasize that the function 〈q1(x, y)〉 determines the dependence on x and y of the

additional constant correction to the dynamical constituent of the longitudinal velocity,

i.e. the change of the mean velocity due to nonlinear effects. This change is caused by

turbulent pulsations. It is intuitively obvious (and confirmed by experiment) that the

correction found over region I must be negative, i.e. turbulent pulsations must decrease

the mean flow velocity in region I.

Averaging (6.62), substituting (6.46) into 〈q1s(S, x, y)〉 and integrating over S we can find

〈q1(x, y)〉 for different values of x and y ≤ y1(x). Fig. 39 shows some examples of the

49



dependences of 〈u(x, y)〉 = ud(x, y)+ 〈q1(x, y)〉 on y at fixed values of x, and on x at fixed

values of y. It is seen from Fig. 39 a that the mean velocity profile becomes increasingly

bell-shaped as x increases. Furthermore (see Fig. 39 b), within the initial part (x ≤ 8)

the velocity on the jet axis decreases significantly only at its end, and then by no more

than 5%. Off-axis, the velocity falls off much faster.

6.2.2 Region II

It follows from (6.58) and (6.21) that

Rs(S, x, y) = − 4Ωdx(x,∞)|c1(S, x)|2K(S, x)S
(

K2(S, x) + Γ2(S, x)
)2
v2d(x,∞) + S

(

S− 2Γ(S, x)vd(x,∞)
)

×





K2(S, x) + Γ2(S, x)−
Ωdx(x,∞)

[(

K2(S, x)− Γ2(S, x)
)

vd(x,∞) + Γ(S, x)S
]

2
[

K2(S, x)v2d(x,∞) +
(

S− Γ(S, x)vd(x,∞)
)2]







× exp







2



B21r(S, x)
(

y − y2(x)
)

+

x
∫

0

Γ(S, x) dx











A2(S), (6.66)

where

B21r(S, x) = −K(S, x)









1− Ωdx(x,∞)vd(x,∞)

2
[

K2(S, x)v2d(x,∞) +
(

S− Γ(S, x)vd(x,∞)
)2
]









.

Equations (6.50) for r1s and s1s become

r1s −∆s1s = 0,

(6.67)

vd(x,∞)
∂r1s
∂y

+ Ωdx(x,∞)
∂s1s
∂y

− 2

Re
∆r1s = Rs(x, y),

Ignoring the term proportional to 1/Re, we obtain the following approximate expressions

for r1s(S, x, y), s1s(S, x, y) and q1s(S, x, y):

r1s(S, x, y) ≈
2Rs(S, x, y)

(

B2
21r(S, x) + Γ2(S, x)

)

B21r(S, x)
[

4
(

B2
21r(S, x) + Γ2(S, x)

)

vd(x,∞) + Ωdx(x,∞)
] ,

(6.68)
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s1s(S, x, y) ≈
Rs(S, x, y)

2B21r(S, x)
[

4
(

B2
21r(S, x) + Γ2(S, x)

)

vd(x,∞) + Ωdx(x,∞)
] ,

q1s(S, x, y) ≈
Rs(S, x, y)

4
(

B2
21r(S, x) + Γ2(S, x)

)

vd(x,∞) + Ωdx(x,∞)
. (6.69)

Averaging (6.69), substituting (6.46) into 〈q1s(S, x, y)〉 and integrating over S we can find

〈q1(x, y)〉 for different values of x and y ≥ y2(x). Extrapolating the values of 〈q1(x, y)〉
found here and for region I into the region of boundary layer we can estimate the mean

longitudinal velocity profiles width for different values of x, taking account of stochastic

constituents. An example of such profile for x = 8 (the end of the initial part) is given

in Fig. 40 a. For comparison, the corresponding profile of the dynamical constituent of

the velocity is shown in the same figure. We see that these profiles differ substantially. It

should be emphasized that the velocity profile that we have found by taking account of

the stochastic constituents coincides in form with experimentally measured profiles.

Unfortunately, we cannot calculate exactly the full velocity profiles, or the change of

velocity, for all y because we are restricted to regions I and II and take no account of

strong nonlinear effects. However, we can calculate the width of the internal and external

parts of the boundary layer. If we take for the internal boundary the plane where the

mean velocity is equal to 0.95U0, and for the external boundary the plane where the

mean velocity is equal to 0.05U0, then these boundaries are as shown in Fig. 40 b. Our

results demonstrate that the boundaries of the mixing layer are very far from being the

straight lines adduced by many researchers. Up to a certain value of x, these boundaries

nearly coincide with the boundaries of the mixing layer for the dynamical constituents.

Only for larger x do they strongly move apart.

6.3 The second approximation

To derive the equation for the amplitude A1 in the second approximation, we set in the

expansion (6.1)
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r2(t, x, y) =
1

2π

∞
∫

−∞

C(S) sinh
(

Q(S, x)y
)

exp



iSt− i

x
∫

0

Q(S, x) dx



 dS,

(6.70)

s2(t, x, y) =
1

2π

∞
∫

−∞

D(S) sinh
(

Q(S, x)y
)

exp



iSt− i

x
∫

0

Q(S, x) dx



 dS,

where C(S) ∼ ǫ2 and D(S) ∼ ǫ2 are unknown amplitudes.

Like the first approximation, the second approximation can be found analytically only

over regions I and II. For simplicity, we restrict our consideration to region I.

Equating the terms of order ǫ2 in Eqs. (5.36), (5.37) for region I, neglecting the derivatives

of Q(S, x) with respect to x and taking account of (6.70), we obtain the following system

of approximate equations for C and D with determinant equal to zero:

C = −2Q(S, x)

(

i
∂A1

∂x
− ∂A1

∂y
coth

(

Q(S, x)y
)

)

,

(6.71)

i
(

S−Q(S, x)
)

C = −Q(S, x)
(

∂r1(x, y)

∂x
coth

(

Q(S, x)y
)

+ i
∂r1(x, y)

∂y

)

A1,

where r1(x, y) is defined by (6.53), (6.61).

From the condition of compatibility of Eqs. (6.71), we find a truncated equation for the

amplitude A1 over region I. It can be written as

tanh
(

Q(S, x)y
) ∂A1

∂x
+ i

∂A1

∂y
= Φ(S, x, y)A1, (6.72)

where

Φ(S, x, y) =
1

2π

∞
∫

−∞

F (S, s, x, y)A2
0(s) exp



2

x
∫

0

Γ(s, x′) dx′



 ds, (6.73)

F (S, s, x, y) =
1

2
(

Q(S, x)− S

)

[

2Γ(s, x)r̃1s(s, x, y)) + i tanh
(

Q(S, x)y
) ∂r̃1s(s, x, y)

∂y

]

(6.74)

and A0(S) = |A1(S, 0, 0)|.
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Equation (6.72) can be conveniently rewritten in terms of

z(S, x, y) = ln

(

A1(S, x, y)

A1(S, 0, 0)

)

(6.75)

as

tanh
(

Q(S, x)y
) ∂z

∂x
+ i

∂z

∂y
= Φ(S, x, y). (6.76)

A solution of Eq. (6.76) can be represented as

z(S, x, y) =
1

2π

∞
∫

−∞

w(S, s, x, y) exp



2

x
∫

0

Γ(s, x′) dx′



 ds. (6.77)

Substituting (6.77) into Eq. (6.76), taking into account that F (S, s, x, y) and w(S, s, x, y)

are slow functions of x, and neglecting the derivative of w with respect to x we obtain

the following equation for w(S, s, x, y):

∂w

∂y
− 2iΓ(s, x) tanh

(

Q(S, x)y
)

w = −iF (S, s, x, y)A2
0(s). (6.78)

The solution of Eq. (6.78) with initial condition w(S, s, x, 0) = 0 is

w(S, s, x, y) = −iA2
0(s)

y
∫

0

F (S, s, x, y′)





cosh
(

Q(S, x)y
)

cosh
(

Q(S, x)y′
)





−2iΓ(s,x)/Q(S,x)

dy′ . (6.79)

After substituting (6.79) into (6.77) and integrating over s, we find z(S, x, y).

Knowledge of z(S, x, y), in view of (6.75), allows us to find 〈A2(S, x, y)〉 and the mean value

of the phase shift. Taking account of (6.75) and using the assumption that |z(S, x, y)| ≪ 1

we find

〈A2(S, x, y)〉 ≈ 〈A2
0(S)〉

(

1 + 2Re
[

〈z(S, x, y)〉
]

)

,

(6.80)
〈

ϕ(S, x, y)− ϕ(S, 0, 0)
〉

≈ Im
[

〈z(S, x, y)〉
]

,

where
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〈z(S, x, y)〉 = − i

2π

∞
∫

−∞

κ(s, 0)

K2(s, 0) + Γ2(s, 0)
exp



2

x
∫

0

Γ(s, x′) dx′





×
y
∫

0

F (S, s, x, y′)





cosh
(

Q(S, x)y
)

cosh
(

Q(S, x)y′
)





−2iΓ(s,x)/Q(S,x)

dy′ ds, (6.81)

κ(S, 0) is defined by (6.47).

The spectral constituent of the longitudinal velocity pulsations is

u(S, x, y) =

(

A1(S, x, y)Q(S, x) cosh
(

Q(S, x)y
)

+
∂A1(S, x, y)

∂y
sinh

(

Q(S, x)y
)

)

(6.82)

× exp



iSt− i

x
∫

0

Q(S, x) dx



 .

Because of the smallness of z(S, x, y) we have A1(S, x, y) ≈ A0(S)
(

1+z(S, x, y)
)

. It follows

from here that the spectral density of the longitudinal velocity pulsations, with account

taken of nonlinearity, can be represented as

κ(S, x, y) = κl(S, x, y)



1 + 2〈z(S, x, y)〉+
2 tanh

(

Q(S, x)y
)

Q(S, x)

∂〈z(S, x, y)〉
∂y



 , (6.83)

where κl(S, x, y) is determined by (6.48).

It follows from (6.81) that for y = 0, in the approximation under consideration, the relative

nonlinear correction

∆κ(S, x, y) = 2〈z(S, x, y)〉+
2 tanh

(

Q(S, x)y
)

Q(S, x)

∂〈z(S, x, y)〉
∂y

to the spectral density κl(S, x, y) is absent. For y 6= 0, however, this correction is essential,

and it increases with increasing y and x. Examples of the dependences of ∆κ on the

Strouhal number St for y = 0.7 and a number values of x and for x = 8 and three values

of y are given in Fig. 41 a and b, respectively. It is seen that for x ≤ 5 and y = 0.7 the

nonlinear correction changes nonmonotonically with increasing x, even changing its sign.

Only for x > 5 the changes become monotone, and nearly for all values of St the correction

is negative. The latter means that for these St the nonlinearity causes the saturation of

turbulent pulsations. We note that the saturation occurs only from a certain value of
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the Strouhal number. For smaller Strouhal numbers the nonlinear amplification occurs in

place of the saturation.

Two examples of the velocity pulsations spectral density (for x = 6, and y = 0.5 and 0.7)

with taking into account of the nonlinearity are illustrated in Fig. 42. For comparison

the corresponding spectral densities calculated in the linear approximation are shown in

the same figure. It is seen that the nonlinearity results in the significant decrease of the

spectral density maximal value, and as a consequence in the decrease of the turbulent

pulsations variance. It is seen from Fig. 42 that, for x = 6, the spectral density for y = 0.5

is more than for y = 0.7, even in linear approximation; whereas for small x it increases

monotonically with increasing y.

We note that ∂
〈

ϕ(S, x, y)
〉

≡ ∆K(S, x, y) gives a nonlinear correction to the wave number

K(S, x). It is important to note that this correction depends on the transverse coordinate

y. It follows from (6.80) and (6.81) that it is

∆K(S, x, y) ≈ −
∞
∫

−∞

κ(s, 0)

K2(s, 0) + Γ2(s, 0)
Γ(s, x) exp



2

x
∫

0

Γ(s, x′) dx′





×Re







y
∫

0

F (S, s, x, y′)





cosh
(

Q(S, x)y
)

cosh
(

Q(S, x)y′
)





−2iΓ(s,x)/Q(S,x)

dy′





 ds. (6.84)

The value of ∆K(S, x, y) determines a nonlinear correction ∆λlon to the longitudinal wave

length λlon
(

S, x
)

= 2π/K(S, x):

∆λlon = − 2π∆K(S, x, y)

K2(S, x)
. (6.85)

Because nearly for all St the values of ∆K are negative, we can conclude that the non-

linearity causes the faster increase of turbulence scales with increasing x, in comparison

with the results of linear consideration.
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7 Conclusions

The theoretical approach proposed above has enabled us to account for many experimental

results, and to demonstrate that a number of widely-accepted interpretations are in fact

erroneous. It has led us to a somewhat different and, we believe, more realistic perspective.

In particular –

(1) Our studies show that the shift of velocity pulsation power spectra to the low-

frequency domain is caused mainly by the jet divergence, not pairing of vortices,

so that it can therefore be calculated within the linear approximation.

(2) The observed phenomenon of vortices pairing can be accounted for in terms of the

increase in the longitudinal and transverse turbulent scales, which is caused by jet

divergence and not by resonance relations.

(3) The transformation of the mean velocity profile can be found without the use of the

concept of turbulent viscosity.

(4) The influence of nonlinearity close to the jet symmetry plane (y = 0) is very small

within the initial part of the jet, but increases significantly as we approach the

boundary layer.

(5) The intensity of random disturbances at the nozzle exit necessary for the onset of

turbulence may be very small. Our quasi-linear theory is valid only for such small

intensities. For larger disturbance intensities, the development of turbulence is from

the very outset an essentially nonlinear process.

(6) The change of the velocity pulsation variance with distance from the nozzle closely

resembles changing order parameter with increasing temperature for a second order

phase transition. That is why we guess that the onset of turbulence can be considered

as a specific noise-induced phase transition similar to that for a pendulum with a

randomly vibrated suspension axis.
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Figure legends

(1) Instantaneous distributions of the longitudinal velocity component u in a steady

regime for A/u0 = 0.04: a along the pipe axis (r/R = 0.02) and b near the pipe wall

(r/R = 0.93). After [81].

(2) View of the turbulent velocity pulsations in a pipe (a) with periodic boundary con-

ditions and (b) with the boundary conditions (2.1), (2.2). After [80].

(3) (a) Schematic diagram of a diverging free jet illustrating the change of its mean

velocity profile and widening of the mixing layer. Curves 1 and 2 correspond to the

internal and external boundaries of the mixing layer, respectively. (b) Schematic

dependence of the relative mean velocity U/U0 along the jet axis on the distance x

from the nozzle exit section.

(4) Experimental dependence of the relative mean velocity U/U0 along the jet axis on

the relative distance x/D from the nozzle exit section, for three intensities of the

disturbance at the nozzle exit section: ǫu(0) = 0.015, 0.093 0.209 (curves marked by

open circles, filled circles and stars, respectively). After [50].

(5) Evolution of the spectral density Sp (in decibels) of velocity pulsations u with in-

creasing distance from the nozzle exit x/D along the jet axis (r = 0), and along a line

offset by R from the axis (r = 1). At the bottom, the spectral density for x/D = 0.5,

r = 1 is shown on a larger scale. After [50].

(6) The experimental dependence of the Strouhal number Stm on the relative distance

x/D from the jet nozzle exit along the jet axis and within the mixing layer: (a)

Petersen’s data for the mixing layer [96]; and (b) the data of [50]. In (b) the de-

pendence on distance along the jet axis, and along a line offset by R from the axis,

are shown by squares and circles, respectively. The solid lines show the dependences

Stm = C1x
−1/3 and Stm = C2x

−1, where C1 ≈ 0.67 and C2 ≈ 1.

(7) The experimental dependence of ǫu =
√
u2/U0 on ǫua =

√

u2a/U0 for x/D and values

of the Strouhal number marked near the corresponding curves. After [98].

(8) The dependence of ǫu on Sta for ǫua = 0.02, x/D = 4 constructed from the data given

in Fig. 7. In the absence of acoustical disturbance ǫu ≈ 0.04. After [98].

(9) (a) The experimental dependence on x̃ = (x/D)Sta of the root-mean-square pulsation

of hydrodynamical pressure p̃ =
√

p2 (in decibels), in the middle of the mixing layer,
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for a fixed amplitude of acoustic disturbance and for different Strouhal numbers. After

[99]. (b) The theoretical dependence on the relative distance from the jet nozzle x/R

of the gain factor K for axially symmetric pulsations of hydrodynamical pressure in

a circular jet, for r/R = 1.05, Sta = 0.5. After [100].

(10) The experimental dependences of the relative root-mean-square pulsation of the sup-

pression factors (a) ǫu/ǫ
(0)
u and (b) ǫv/ǫ

(0)
v of the longitudinal and radial components

of hydrodynamical velocity on the relative amplitude of acoustic pressure p̃a mea-

sured in decibels, for Sta = 2.35, x/D = 8; ǫ(0)u and ǫ(0)v are relative pulsations of the

longitudinal and radial velocity components in the absence of acoustic excitation.

After [65].

(11) Experimental dependences: of (top) the relative mean flow velocity along the jet axis

U/U (0) and of the relative root-mean-square pulsation of the longitudinal (middle)

(ǫu) and radial (bottom) (ǫv) components of hydrodynamic velocity (in %) on x/D

under a longitudinal acoustic forcing at Sta = 0.25 (light circles), Sta = 2.75 (filled

circles). When the acoustic forcing is absent, the corresponding curves are marked

by triangles. The amplitude of the oscillatory velocity in the acoustical wave on the

jet axis near the nozzle exit constitutes 0.07% of U0. After [65].

(12) The experimental dependences on the Strouhal number Stθ = (θ/D)St of the sup-

pression factor ǫu/ǫ
(0)
u , where ǫ(0)u is the relative intensity of the longitudinal velocity

pulsations in the absence of acoustic forcing, for x/θ = 200. The plots are con-

structed for four values of the amplitude of the oscillatory velocity in the acoustic

wave, namely 0.5% of U0 (circles), 2.5% (pluses), 3.5% (crosses) and 4.5% (squares).

After [112].

(13) The power spectrum of the velocity pulsations in response to low-frequency acoustic

forcing of a circular jet for Sta = 0.25, x/D = 0.5. After [50].

(14) The evolution of power spectra of the velocity pulsations with increasing relative

distance x/D from the nozzle exit under high-frequency acoustic forcing at Sta = 2.5.

After [50].

(15) The dependence on distance from the nozzle of the Strouhal number corresponding

to the spectral line of highest intensity, in the presence of high-frequency acoustic

forcing for Strouhal number 3.54, along the jet axis (light circles) and along a line

offset by R from the axis (filled circles). After [113].
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(16) Numerical simulations showing the pendulum oscillations (lower plot in each case)

and their power spectra (upper plots) with increasing noise intensity for ω0 = 1,

β = 0.1, α = 100 and: (a) κ(2ω0)/κcr = 1.01; (b) κ(2ω0)/κcr = 1.56; (c) κ(2ω0)/κcr =

2.44: and (d) κ(2ω0)/κcr = 6.25. After [45].

(17) The dependence of σ = ϕ21/2 on ωa for ω0 = 1, β = 0.1, α = 100, κ(2ω0)/κcr = 1.01,

a = 0.5. After [45].

(18) The dependences of σ on the amplitude a of low-frequency vibration for ω0 = 1,

β = 0.1, α = 100 and: (a) κ(2ω0)/κcr = 1.89, ωa = 0.3; (b) κ(2ω0)/κcr = 2.23,

ωa = 1.5. After [45].

(19) Time series of ϕ(t) and ϕ̇(t) for ω0 = 1, β = 0.1, α = 100, κ(2ω0)/κcr = 5.6,

ωa = 19.757 and: (a) a = 5; (b) a = 15; (c) a = 30; (d) a = 40. After [45].

(20) The dependences of σ on a for ω0 = 1, β = 0.1, α = 100, κ(2ω0)/κcr = 5.6 and: (a)

ωa = 3.5; (b) ωa = 6; (c) ωa = 11; (d) ωa = 19.757. After [45].

(21) The dependence on ωa of σ/σ0, where σ0 is the value of σ in the absence of additional

vibration, for κ(2ω0)/κcr = 5.6, a = 2.5 (filled circles), a = 5 (pluses), a = 10

(squares), and a = 20 (crosses). After [45].

(22) Time series ϕ(t) and ϕ̇(t) in the presence of additive noise in Eq. (4.1) with mul-

tiplicative noise ξ(t) of variance 0.05 for: (a) a = 40; and (b) a = 50. The other

parameters are the same as in Fig. 20. After [45].

(23) Plots of various quantities versus y for b0 = 0.1, q = 3, r0 = 0.5, Re = 25000: (a)

ud(0, y); (b) ud(8, y); (c) vd(0, y); (d) vd(8, y); (e) Ωd(0, y); and (f) Ωd(8, y).

(24) The dependences on the Strouhal number St for b0 = 0.1, q = 3, r0 = 0.5, Re = 25000

and different x of: (a) the gain factor Γ0 and (b) the wave phase velocity vph0 = S/K0.

The value of x is indicated near the corresponding curve in each case.

(25) The dependences on the Strouhal number St of (a) the gain factor Γ0 and (b) the

wave phase velocity vph0 = S/K0 for x = 0 and Re = 25000, b0 = 0.1 (curve 1),

Re = 100000, b0 = 0.05 (curve 2) and Re = 100000, b0 = 0.02 (curve 3).

(26) The partial solutions of Eq. (6.31) for (a and b) y1 ≤ y ≤ 1 and (c and d) 1 ≤ y ≤ y2:

Re = 25000, b0 = 0.1m x = 0, S = 22 (Q0 ≈ 44.357517 + 0.597408i). It is found that

(a and b) all solutions tend to B3, and (c and d) that the first solution tends to the

second one.

70



(27) The partial solutions of Eqs. (6.31) and (6.39) for (a and b) y1 ≤ y ≤ 1 and (c and

d) 1 ≤ y ≤ y2. The parameters are the same as in Fig. 25. It is seen that all solutions

are stable.

(28) Plots of the real and imaginary parts and modulus of the eigenfunction f0, calculated

for b0 = 0.1, q = 3, Re = 25000, x = 0 and (a S = 10 (Q0 ≈ 19.952633 + 9.984723i)

and (b) S = 18 (Q0 ≈ 37.974133 + 4.244753i).

(29) Plots of the real and imaginary parts and modulus of the adjoint eigenfunction χ0,

calculated for b0 = 0.1, q = 3, Re = 25000, x = 0 and (a S = 10 (Q0 ≈ 19.952633 +

9.984723i) and (b) S = 18 (Q0 ≈ 37.974133 + 4.244753i).

(30) The first partial solution of Eq. (6.39) B1(S, x, y) versus y over the range y1 ≤ y ≤ y2

for x = 0, S = 13.

(31) The eigenfunctions and adjoint eigenfunctions versus y over the range y1 ≤ y ≤ y2

for x = 0, S = 1 (bold lines), and the same quantities calculated from the Euler

equations (thin lines).

(32) The dependences on the Strouhal number St for b0 = 0.1, q = 3, r0 = 0.5, Re = 25000

and different x of: (a) Γ = Γ0+Γ1/λ and (b) the wave phase velocity vph = S/(K0+

K1/λ). The value of x is indicated near the corresponding curve in each case.

(33) The dependences of (a) ∂Γ0/∂x ≡ Γ0x and (b) ∂vph0/∂x ≡ v0x on the Strouhal

number St for x = 0, 0.5, 1, 2, 3, 5 and 8.

(34) Plot of κ(S, 0, 0)/κ0 described by (6.47).

(35) Evolution of κ(S, x, y)/κ0 in the linear approximation for (a) y = 0 and (b) |y| = 0.7.

(36) The dependences of the Strouhal number Stm on the distance from the nozzle for

a y = 0 and b |y| = 0.7 (the linear (zeroth) approximation). The dependences

Stm ≈ 3.2x−0.36 (for y = 0) and Stm ≈ 6.5x−0.68 (for y = 0.7) are shown by solid

lines.

(37) Plots of the mean-root-square values of turbulent velocity pulsations versus x for (a)

y = 0 (ǫu(x, 0)) and (b) y = 0.7 (ǫu(x, 0.7)).

(38) The changes of (a, c) the group wave velocity at St = Stm and (b, d) the wave lengths

in longitudinal (1) and transverse (2) directions (λlon
(

Stm, x
)

= 2π/K(Stm, x) and

λtr
(

Stm, x
)

= 2π/Γ(Stm, x), respectively), with increasing x: (a, b) for y = 0; (c, d)

for y = 0.7.

71



(39) The dependences of the mean velocity 〈u(x, y)〉 = ud(x, y)+〈q1(x, y)〉 taking account

of the correction caused by the turbulent pulsations (〈q1(x, y)〉) (a) on y at x = 6

(1), x = 7 (2) and x = 8 (3) and (b) on x at (from right to left) y ==0, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6 and 0.7.

(40) (a) An example of the velocity profile taking account of the stochastic constituents

(curve 1) and the corresponding profile of the dynamical constituent of the velocity

(curve 2) for x = 8 (the end of initial part); and (b) the internal (1) and external (2)

boundaries of the mixing layer taking account of the stochastic constituents.

(41) Examples of the dependences of ∆κ on the Strouhal number St for (a) y = 0.7 and

a number values of x, and (b) for x = 8 and three values of y = 0.01 (curve 1), 0.5

(2) and 0.7 (3). Because ∆κ changes strongly as the values of x and y vary, we have

plotted not ∆κ but (∆κ)1/15.

(42) Examples of the velocity pulsations spectral density with taking into account of the

nonlinearity: x = 6, (curve 1) y = 0.5 and (curve 2) y = 0.7. For comparison in the

same figure are given the corresponding dependences found in the linear approxima-

tion (curves 3 and 4, respectively).
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