
Delivering Layered Object-Based Media using
WebAssembly with Selective Cloud Rendering

Barry Porter
School of Computing and

Communications
Lancaster University, UK
b.f.porter@lancaster.ac.uk

Rajiv Ramdhany
BBC R&D

Rajiv.Ramdhany@bbc.co.uk

Nicholas Race
School of Computing and

Communications
Lancaster University, UK
n.race@lancaster.ac.uk

Abstract
Traditional media is delivered using segmented video, with variable
bitrates, over protocols such as MPEG-DASH. This works well for
media experiences with a single, or very few, pre-produced variants.
When the number of possible variants increases, however, it results
in an explosion of pre-produced whole-experience videos in a one-
per-variant relationship; this in turn causes high storage costs and
poor re-use of otherwise separable media assets. The paradigm of
object-basedmedia (OBM) offers a solution by keepingmedia entities
distinct after the production phase, allowing them to be combined
flexibly at the point of consumption. In this research we examine
the delivery and playback of OBM using a novel WebAssembly-
based media player running in the browser. This approach allows
the selective render offload of different elements of an experience
into the edge/cloud, by seamlessly migrating those pieces of code
from the browser. Using three diverse exemplars of OBM, we (i)
present a common meta-data format to capture flexible experiences,
and (ii) measure the performance of our delivery pipeline in a range
of on-device and compute-offload scenarios. As far as we are aware
this is the first such study of generalised OBM media delivery.
ACM Reference Format:
Barry Porter, Rajiv Ramdhany, and Nicholas Race. 2026. Delivering Layered
Object-Based Media using WebAssembly with Selective Cloud Rendering.
In ACM Multimedia Systems Conference 2026 (MMSys ’26), April 04–08, 2026,
Hong Kong, Hong Kong. ACM, New York, NY, USA, 11 pages. https://doi.
org/10.1145/3793853.3795762

1 Introduction
Object-based media (OBM) is an emerging paradigm which offers
a high level of end-user flexibility and configurability when con-
suming a piece of media. In contrast to traditional streamed media
delivery, OBM separates out elements of a media experience so
they can be combined in a variety of ways by the viewer. Elements
may include different presenters (e.g., for hearing and non-hearing
viewers), information overlays, picture-in-picture elements, camera
angles, or generative scene aspects such as relighting. Each media
frame is thus composed dynamically at the point of playback, using
a suite of renderers for each object type selected for inclusion.

The delivery and render of OBM presents a set of novel chal-
lenges compared to traditional streamed content. These include

This work is licensed under a Creative Commons Attribution 4.0 International License.
MMSys ’26, Hong Kong, Hong Kong
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2481-7/2026/04
https://doi.org/10.1145/3793853.3795762

methods to express an object-based experience and its configura-
bility, including the way in which viewers can interact with and
control that configurability; the way in which objects are delivered
from streaming providers to viewers during playback; and the way
each frame is rendered to the viewer. The rendering element in par-
ticular offers a range of options, from end-user devices rendering
all elements of each frame, to selectively offloading part or all of the
rendering to a cloud service for lower-capability playback devices.

We present an end-to-end systems-level study of layered OBM
as a delivery paradigm; as far as we are aware this is the first such
empirical study of its kind. To underpin our study we present a
generalised metadata format to express layered object-based ex-
periences, in terms of source and transform layers, and associated
GUI controls that interact with an experience’s variability. Media
is rendered using a novel player in WebAssembly [? ], allowing
the player to run in modern web browsers while also allowing
selective render offload to native cloud locations, using the same
codebase in both locations – where the cloud version has access to
hardware-accelerated media coding and highly parallel processing.

We present our methodology, including our player and metadata
formats, using three object-based exemplars with diverse require-
ments. While our work is underpinned by delivery mechanisms
that suit the cache and CDN realities of traditional media delivery
infrastructure at streaming services like BBC iPlayer, our approach
represents a major departure from approaches deployed today. For
the purpose of this paper, each of our experiments therefore uses a
single client (on a range of client device classes) operating together
with our media server and compute offload cluster to demonstrate
informative results in a controlled setting. Our results show that:

• All of our playback devices can render a single H.264 video
at full HD inWebAssembly and maintain a median framerate
of 25fps. When rendering a full OBM experience, however,
multiple devices fail to maintain this framerate for some
experience types, showing the need to offload compute to
deliver a single pre-composited video stream.

• Our offload servers, using commodity hardware, deliver ren-
der of OBM experiences into composited HD video at twice
real-time, including full decoding of multiple layers and re-
encoding into a single video. Both CPU and bandwidth re-
quirements at the client are reduced when offloading to the
cloud, since segments of a single video are being downloaded,
rather than assets for multiple videos and animations.

• The overall content storage costs tend to be lower for OBM
vs. pre-baked versions of highly-flexible media experiences,
ranging from being 90% less storage size to 20% less, de-
pending on the exemplar; the bandwidth delivery cost for

https://doi.org/10.1145/3793853.3795762
https://doi.org/10.1145/3793853.3795762
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3793853.3795762


MMSys ’26, April 04–08, 2026, Hong Kong, Hong Kong Barry Porter, Rajiv Ramdhany, and Nicholas Race

client-rendering can range from slightly (17%) to signifi-
cantly higher (94%), depending on the experience, while of-
floaded rendering has the same bandwidth cost to the client
as traditional streaming of segmented media.

Our results serve as a baseline for OBM rendering and offloading
and allow us to consider likely next steps; in future work we intend
to conduct large-scale experiments to study the distributed pipelines
of media delivery and offloading for many simultaneous clients.

2 Related Work
In this section we discuss closely-related work in media compo-
sition; streaming and rendering; and OBM itself. We observe that
delivery and rendering mechanisms for OBM, in which media ob-
jects are first-class entities, have received little attention to date,
prompting our research towards offloadable OBM playback.

MediaComposition andGeneration. Research onmedia com-
position and generation includes novel view generation, human-
object interaction modelling, dynamic relighting, and tiled media
for video conferencing. These works show a move towards increas-
ingly dynamic media, including both composition of existing media
and generation of new media, though many are used by producers
rather than on end-user devices during playback.

Zhang et al. present methods for novel view generation [? ], in
which 2D image inputs are used to construct 3D scenemeshes; these
meshes support the potential generation of novel camera angles
chosen by a user when no physical camera was in that position.

Synthesis of human-like animations allows the generation of
custom presenters or other animated characters without exten-
sive frame-by-frame input; Qin et al. present a method to convert
still image portraits into animated presenters [? ], while Cai et al
study the use of text descriptions to generate realistic interactions
between human characters and various objects in a 3D space [? ].

Choi et al. examine the topic of dynamic relighting using a 3DGC
approach [? ], in which media of a human is inserted into an arbi-
trary scene, with the human lit appropriately to present a seamless
effect of the two media entities being in the same physical space.
The general ability to convincingly relight media objects offers a
wide range of novel media composition approaches [? ? ? ].

Finally, a range of research has recently explored optimisations
available in the composition of tiled media – a media presentation
format used extensively in video conferencing applications. Gunkel
et al., for example, present an approach to dynamically tiling visual
media [? ] without a full transcoding step. Instead of decoding
media and then re-encoding it, this research demonstrates the use
of tiling encoders such as VP9 or AV1 to directly transplant tiles in
encoded frames with new visual content.

Streaming and Rendering. Research in streaming of media is
dominated by adaptive bitrate methods, generally studied in the
context of traditional media delivery techniques. On the rendering
side, recent research has tended to centre on pixel streaming or par-
tial offloading for video game applications, and on neural rendering
solutions to recover from packet loss or scale up a resolution.

In general media streaming, Wang et al. present an approach to
real-time streaming, where a client is encoding frames in real-time
for dissemination to viewers, where the client selectively drops

frames to encode, and the server uses DNN-based interpolation to
recover those frames [? ].

On the theme of bitrate adaptation in particular, Huang et al.
examine an adaptive bitrate approach to Quality-of-Experience [? ]
which integrates user feedback into decision-making, rather than
relying on an aggregated mean opinion score. Chen et al. consider
bitrate planning during a stream to avoid repeated bitrate switches,
demonstrating a planning algorithm with polynomial complexity
[? ]. Agarwal et al. examine the use of data-driven bitrate learning
in videoconferencing applications, finding that the use of real-time
telemetry combined with alternative action reasoning can improve
general decision-making on bitrate selection [? ].

On rendering techniques that go beyond DASH-based delivery
of segmented video, Artioli et al. examine the use of 3D background
models overlaid with video of human performers as a bandwidth-
reduction technique [? ]. Instead of continuously sending high-
resolution frames that include the background, such as an ice rink
in coverage of an ice skating competition, a single 3D model of that
background is sent to the client device instead, with transformations
(camera pans, zooms, etc.) applied to that model in synch with the
way in which the original background was framed. This opens
new research directions in 3D scene composition, though requires
significant render capability on the client device.

The partial offloading of processes required for multi-media
delivery has seen a range of recent research: examples include
Espindola et al. who examine WebAssembly-offloading of Extended
Reality services [? ]; Döka et al. who studied remote-rendering
in mixed-reality applications [? ]; and Jiang et al. who studied
the viability of offloading head-tracking tasks for extended reality
applications [? ]. Yan et al. demonstrate the use of edge compute to
assist with computer vision workflows, in which video semantic
segmentation is carried out by IoT devices in close proximity to the
user [? ]. Carter et al. examine the use of real-time pixel streaming
of composited media which is fully rendered in the cloud, with each
frame delivered to the client using a just-in-time model [? ].

OBM Research. Specific research in OBM is more limited, with
recent efforts focusing onQoEmodelling and on authoring pipelines
for highly personalize-able audio experiences.

Research on Quality of Experience for OBM has recently identi-
fied a range of challenges in how quality is quantified by streaming
protocols and subjectively observed by viewers [? ? ]. These works
note non-obvious subjective appreciation of raising or lowering the
quality of different elements of an OBM experience; this work is
highly complementary to our own and could be used as part of the
foundation of novel QoE models for OBM delivery.

Beyond research into the visual aspects of OBM, Cieciura et al.
have explored the authoring of inter-compatible layered audio for
highly diverse personalisation [? ]. They cover the tools, processes,
and production challenges of authoring highly flexibly audio experi-
ences; this is again complementary to our research, which primarily
focuses on visual aspects of media delivery.

Gap Analysis and Contributions. Current research trends
show an increasing interest in dynamic and re-compose-able media,
and in alternative delivery methods such as the use of 3D meshes as
backgrounds. As far as we are aware, our work represents the first
generalised framework to support the specification and delivery



Delivering Layered Object-Based Media using
WebAssembly with Selective Cloud Rendering MMSys ’26, April 04–08, 2026, Hong Kong, Hong Kong

of layered media in which each media object is uniquely identified
as a first-class entity; these media layers are separately delivered
to the client device, and composed with other layers in a way that
is highly customizable by the viewer. Our work is also the first
to examine generalised offloading of layered media composition
between a browser-based player and the cloud, using WebAssem-
bly to support the same code being used in both locations. This
represents a baseline of performance in dynamic layered media
composition between browser and cloud renderers, and serves as a
basis for a range of novel future research directions.

3 System Overview

Player

Meta-Data
Parser

Network
Transport

Source
Renderer

Source
Renderer

Source
Renderer

Transform
Renderer

Transform
Renderer

Transform
Renderer

Web
Server

Offload
Server

Player

Player

Player

UI Widget

UI Widget

UI Widget

Our object-based media delivery infrastructure is illustrated
above. It is designed to stream segmented layered media, where
layers can be primary source content (such as videos, animations,
or graphical overlays including subtitles), or can be post-processing
transformations (such as chroma-keying, various filters, or genera-
tive elements). The media of each layer is segmented into arbitrary-
length chunks for streaming (such as 2-seconds or 10-seconds), in
a similar way to current adaptive bitrate streaming approaches like
MPEG DASH [? ]. In our current version each segment is delivered
via HTTP, but various drop-in replacements to the delivery protocol
could be used (such as Media-over-QUIC [? ]).

The media player includes a set of Source components, with one
Source implementation for each available source content type (such
as video or animation). It also includes a set of Transform com-
ponents, with one Transform implementation for each available
post-processing type. This list of Source and Transform implementa-
tions is extensible, with their types identified in a per-layer-variant
manner in our metadata format.

The entry-point of our server infrastructure is a web server
which serves segments of media as requested by a player. This is
augmented with an offload capability, in which a player can send a
HTTP request asking for a set of layers to be rendered by the server
into a video segment for a given time-range (with the configuration
of the experience specified in the request). When the server receives
an offload request, it instantiates a version of the player at an offload
site, uses that player instance to render the requested time segment,
encodes each resulting frame as video, and responds to the client
with the video segment; the video segment may then be cached or
pushed into a CDN for re-use. This design allows our server-side

infrastructure to operate with existing caching and CDN architec-
tures, which are built around segmented video, while supporting
arbitrary offloading of sub-elements of a media experience.

In the following sections we present the detail of our media
player and metadata format, and describe how render offload works.

3.1 Player
The core of our design is a media player and its associated meta-
data format to describe an OBM experience. As summarized above,
this same player implementation is used both on the end-user de-
vice and in the cloud when offload requests are made. Our media
player is implemented in the Dana adaptive systems language [?
? ] and compiles either to WebAssembly for web browsers, or to
native code to run in the cloud. Our WebAssembly build uses only
software-based video decoders, while our native build has access
to both software and hardware-accelerated decoders and encoders.
WebAssembly is an intermediate binary execution framework, in
which native code (such as C) is ahead-of-time-compiled to run
within web browsers with ‘near-native’ performance (though in
practice performance varies per-task [? ? ]).

The media player begins by downloading a main manifest meta-
data file which describes the overall media experience (i.e. an
episode of a TV show). This file describes layout variants of the
experience, the set of layers within each layout, the options avail-
able for each layer, and the user interface control types available to
configure that variability. The concept of layer options is illustrated
in Fig. 1. Each layer option references a second-level metadata file
which is ingested by the renderer for that particular layer type. We
use JSON [? ] as the descriptor format for all metadata files.

  

Chosen
Options

Other
options...

Other
options...

GUI Controls

Figure 1: Layering Concept. The layer options between the
two black lines are currently-selected. Each layer option can
be of a different type, including the special ‘none’ type which
disables that layer. The option for each layer is selected via
custom UI controls defined in a show’s meta-data manifest.

Once a manifest has been downloaded, along with associated
secondary meta-data files, the player parses the meta-data and
instantiates all Source and Transform instances for the current (or
default) configuration of the media experience. It also instantiates
all of the UI control widgets specified in the main manifest and
associates their control functions with the appropriate layers. The
player then enters a rendering loop, typically running at 25fps.

Each render loop iteration checks if all appropriate Source /
Transform instances have sufficient buffered data, and if so calls



MMSys ’26, April 04–08, 2026, Hong Kong, Hong Kong Barry Porter, Rajiv Ramdhany, and Nicholas Race

a render() function of each Source / Transform to compose the
current frame. The rendered output of each layer is placed on top
of the rendered output of the previous layer.

Source instances represent primary content; the track types we
currently support are as follows:

Video. Downloads segmented video content, using a fixed seg-
ment size, at a given resolution and bitrate, and decodes a frame
of video for each frame of the media experience. We use H.264-
encoded video [? ] throughout all of our examples, where each
segment begins with a key-frame.

Animation. Downloads segmented animation data using a simple
bespoke animation format. Each segment begins with an animation
key-frame which identifies all assets (e.g., PNG files) which are used
in the animation. The remainder of the segment has one record per
frame, each of which indicate the asset number(s) to render, their
positions on the screen, zoom level, and rotation.

Subtitles. Downloads segmented subtitle data using a simple
bespoke subtitle format. Segments contain one record per frame
which describe the text to render, its colour(s), and relative position.

None. This special track type renders nothing to the screen, and
is used to represent a layer effectively being turned off.

Transform types are post-production transformations applied to
one or more lower layers. A transform applied to two lower layers,
for example, has those two lower layers A and B each rendered to an
isolated texture; A and B are then passed into the transform, which
outputs a third texture C which is composited with the current
frame. The layers that feed into a transform layer may either be
source tracks or transform layers themselves. The transform track
types we currently support are as follows:

Chromakey. This transform type operates over a single lower
layer and applies a colour value to its input from that layer; any
pixels which match this value are converted to transparent. This
is often used when presenters or actors have their performance
captured in front of a green screen to later be replaced with a
background.

Transparency. This transform type operates over a single lower
layer, and downloads segmented transparency masks; these masks
are applied to the input data to convert pixels to transparent ones.
This is often used to implement video-with-transparency, where
an exact alpha mask is available from the production process.

Hue/saturation. This transform type operates over any number
of lower layers and applies a re-colour operation to alter the hue
and saturation levels of the input.

None. This transform type applies no modification to its input,
acting as a pass-through to render its child layer(s) straight to the
screen, and is used to represent a transform layer being turned off.

Finally, UI widgets allow the user to control the available vari-
ability in a media experience, and include:

Toggle. This control type cycles between the options for a given
layer, and is often used to toggle a layer between the None pseudo-
track and a content option.

Select. This control type presents a list of options, allowing the
user to select one of them.

Select-multi. This control type presents a list of options, allowing
the user to select zero-to-n of them for simultaneous presentation.

Layout-select. This control is always shown if the manifest pro-
vides more than one layout option, and when clicked allows the
user to select which layout they want.

Source, transform, and UI controls each implement a common
interface, allowing new types to be easily introduced.

We use JSON to represent all meta-data, as a compromise be-
tween human readability and compact representation. The top-level
element of the JSON schema is a layout variants array; each vari-
ant may use a different resolution or screen orientation, and may
internally contain a very different set of media layers, in different
Z-orderings, or UI control types. The selection of different layout
variants is thus the first level of variability for a media experience.

Each layout contains an array of layers, listed in their Z-order,
such that the first layer is the bottom-most (furthest-away from the
viewer’s eye) and thus the first to be rendered. The second layer in
the array is rendered on top of the first layer, and so on.

Each layer has basic descriptors: a name, the layer type (source
or transform), the display type (full-screen or windowed, where the
latter includes relative positioning and size), and any conditionality
of the layer (such as only-available-if another named layer is turned
on). The layer then lists an array of options for that layer; each
option has a type (such as video or animation) which references
the Source or Transform implementation that will be instantiated
for this layer option. The layer option also features a name and a
spec which links to a second-level JSON meta-data file.

If a given layer option is selected for inclusion in playback of a
media experience, its metadata spec file is downloaded, with its
Source or Transform implementation instantiatedwith the content
of the spec file. Layer options often include one option of type None
which equates to that layer being turned off. Finally, a layer specifies
an optionSelect type, which names a UI widget typewhich should
be used to interact with the variability offered by that layer.

3.2 Render Offload Protocol
One of themain benefits of OBM is that a media consumer can select
from a rich set of options in how a given show is presented, without
the streaming service having tomaintain and store an combinatorial
number of fully-rendered show versions: the streaming service
has one copy of each source media object, with the media player
combining appropriate objects at the point of playback.

The potential drawback of this approach is that the viewer’s
device must have sufficient compute resource to perform the scene
composition / rendering during playback. Depending on the kind
of show being consumed, and the set of layer options chosen, some
device types may not be able to maintain a suitable framerate, and
may therefore require additional compute resource to render their
desired experience configuration.

Our player and server infrastructure therefore includes a render
offload protocol in which a subset of layers (up to and including all
layers) can be rendered remotely and streamed back to the media
player as video. In our current implementation the set of offloaded
layers must start at the bottom-most layer, to avoid encoding trans-
parency. The media player formulates a HTTP request string which



Delivering Layered Object-Based Media using
WebAssembly with Selective Cloud Rendering MMSys ’26, April 04–08, 2026, Hong Kong, Hong Kong

encodes the set of layers being requested, the time-span being re-
quested, and the chosen options for each layer in the set. This
encoded URL begins with the identifier /offload/, which receives
special handling by our content server: where receiving such a
request, it contacts an offload server and forwards the encoded
URL. The offload server parses the URL, instantiates a media player
instance with the layers configured accordingly, and renders each
frame to a video. The server-side version of the player has access to
hardware decoders and encoders, and is also able to perform highly
parallel processing on transform layers such as chroma keys, by
decoding and rendering all of the lower layers, then applying the
transform to those decoded frames in parallel.

An example offload request URL would be:

https://mycontent.com/offload/shows/MyShow/
variant/0/layers/2/100/160/base/alex

This URL requests a show known with the ID MyShow, requests
the first layout variant of that show, requests the first two layers
of that variant, between time indices 100 and 160, with the first
layer configured to the option labelled base and the second layer
configured to the option labelled alex.

Using URLs to encode offload requests in this way allows content
servers to check if the requested media element is already cached
before proceeding to render it. We note that the offload request
using this approach contains the same information as the OBM
content requests that the player is already sending, so there is no
additional data leakage assuming that the offload site is under the
same trust model as the media content servers.

An actual policy to determinewhen to offload is beyond the scope
of this paper; our current working assumption is that a device’s
client identification data will be matched against a database to make
a static decision, but determining offload status could also be an
ongoing negotiation process between the client and server-side.

4 Exemplars
In this section we present three different exemplars of object-based
media which we use for evaluation. These are a weather forecast, a
Formula 1 race, and a short animated drama. Each of these shows is
constructed using different combinations of the layout, layer, and
control types we have already introduced.

We use these three examples because they represent three differ-
ent levels of compute complexity, and three different application-
level motivations for the use of OBM. The weather example repre-
sents the lowest compute demand, using a single presenter video
layered with simple animation elements; its OBM motivation is
on accessibility, with spoken and signing presenters, and regular,
high-contrast, and low-clutter versions of the presentation. The
F1 example is a mid-level compute demand case, rendering multi-
ple time-synchronised videos simultaneously alongside animation
layers; its OBM motivation is on viewer engagement, allowing the
viewer to track the elements of an F1 race that most interest them.
The animated drama is our highest-level compute demand exam-
ple, rendering five synchronised layered videos, with four of those
layers utilising alpha masks; its OBM motivation is on narrative
versioning, including plain, horror, and visual clarity versions.

4.1 Weather Forecast
This example is a weather forecast decomposed into individual
media objects, shown in Fig. 2 and Fig. 3. The weather map, weather
iconography, and presenter all have alternatives to choose from,
alongside subtitles being on/off in different languages.

Figure 2: Weather Forecast

Figure 3: Weather Forecast Layers (map data in the left-most
layer is © OpenStreetMap)

The experience has a landscape and portrait layout variant (with
the portrait variant intended for use on a device such as a smart-
phone which is often held with the screen vertical).

Within both layout variants, the map is the bottom-most layer,
followed by the weather iconography layer, then the presenter, and
finally the time-of-day and subtitles. The map layer is an anima-
tion track, where the map is zoomed and panned throughout the
presentation. The weather iconography layer is also an animation
track, which has corresponding zoom and pan motion, but also
changes the weather symbols being displayed through the course
of the presentation to match the narrative. The presenter layer is a
video with a (non-optional) chroma-key transform layer on top.

For layer-based variability, there are various map options in-
cluding high-contrast (low-detail) and topographical (high-detail);
there are various weather iconography options, including radar /
satellite, or simple sun/cloud icons; and for the presenter layer there
is a traditional audible/spoken presenter, a sign-language presenter,
and an audio-only presenter (‘narrator’) with no visual element.



MMSys ’26, April 04–08, 2026, Hong Kong, Hong Kong Barry Porter, Rajiv Ramdhany, and Nicholas Race

4.2 Formula 1
This example is a Formula 1 race, with a wide range of presenta-
tion variants, shown in Fig. 4 and Fig. 5. There are three layouts:
the producer layout, driver layout, or track layout. The producer
layout shows the producer’s feed as the full-screen feature, with
an optional picture-in-picture in-car driver feed, and an optional
track-tracker showing positions of selected drivers on the track.

Figure 4: Formula 1

Figure 5: Formula 1 Layers

The driver layout shows an in-car camera feed as the full-screen
feature, where the user can choose which car is being followed, with
an optional picture-in-picture of the producer feed, and an optional
track-tracker with positions of selected drivers on the track.

The track layout shows the track graphic animation as the full-
screen feature, with the positions of selected drivers on the track,
and has an optional in-car picture-in-picture feed, and an optional
picture-in-picture of the producer’s feed.

Each layout variant uses a similar combination of track instances,
in different layer orders and different sizes. The producer layout,
for example, has a video track as the bottom-most layer which is
showing the producer’s chosen camera angles and cuts of the race.
The next layer is a picture-in-picture video layer positioned in the
top-right of the screen, in which the viewer can choose to follow
an in-car feed of a chosen driver. The next layer is an animation
layer showing the track graphic (with transparency), which can
be turned on or off, appearing as a picture-in-picture window in

the bottom right of the screen. The final layer is set of animation
tracks, which can only be used if the track graphic layer is turned
on. Each animation track in this layer shows one driver’s position
on the track, where the user can select [0..n] tracks in this layer to
populate the track graphic.

4.3 Animated Feature
This example is a one-minute animated drama, called the ‘Changing
Forest’, which was specifically produced as an OBM experience by
professional animators (shown in Fig. 6 and Fig. 7). The animation
team used the 3D animation tool Maya to design the original anima-
tion, and as a second step generated each layer of the animation as
a sequence of PNG frames (since animated elements across layers
require precise transparency).

Figure 6: Animated Feature

Figure 7: Animated Feature Layers

To realise this as a real-time renderable experience we encoded
each layer’s frames as a video, with a separate alpha mask. To save
on the resulting size of the video layers, our encoding tool calculates
the maximum width/height needed by the animated entity, and
encodes a video at that width/height, to be shown as a picture-in-
picture video anchored at an appropriate X/Y coordinate in the
final presentation. This approach allowed us to exactly replicate
the animators’ production.

In our experience manifest for this example we again have layout
variants for landscape and portrait versions, with the cropping



Delivering Layered Object-Based Media using
WebAssembly with Selective Cloud Rendering MMSys ’26, April 04–08, 2026, Hong Kong, Hong Kong

bounds of these two variants provided to us by the animation
producer. We then have a range of variability in each layer.

The bottom-most layer is the forest background, which is drawn
as a full-screen video and has no transparency element. This layer
has ‘normal’, ‘horror’, and ‘high-contrast’ versions. The next layer
is a mystery creature in the forest, which is drawn as a picture-in-
picture video with an alpha mask; this layer has ‘normal’, ‘horror’,
and ‘highlighted’ versions. The next layer is a foreground creature
element (a bird), which is again drawn as a picture-in-picture video
with an alpha mask; this layer again has ‘normal’, ‘horror’, and
‘highlighted’ options. The next layer is a foreground forest, as an-
other picture-in-picture video with low- and high-density options
or ‘off’. The final layer is a falling leaves element which adds depth
to the production; this layer can be turned on or off.

5 Evaluation
We use our media playing infrastructure to answer three empiri-
cal research questions on the delivery and rendering of OBM in
WebAssembly. Our evaluation is performed using a range of real
client devices for media playback, and a cluster of servers in a real
datacentre for content delivery and render offload provision. Client
devices use WiFi to download content, with the datacentre being
in the same local area network (but on a different subnet) as the
client devices. Our client devices are:

• A HP EliteBook G2 laptop, with an Intel i7, using Firefox
141.0.3 (our highest-power device).

• A Lenovo ThinkCentre M920q, with an Intel i5, using Firefox
141.0.3 (our lowest-capability device).

• An iPhone 12, using Firefox 142.0.1.

This set of devices offers insight into a range of different hard-
ware capabilities. Our server-side cluster uses different hosts for
the web server and the render offload servers. The web server host
is a rackmount server with an Intel Xeon Quad Core 3.60 GHz CPU
and 16 GB of RAM; the offload hosts are rackmount servers with
Intel i7 CPUs, 32GB of RAM, and Intel Iris Xe Graphics (TGL GT2)
chipsets. Our prototype software is available for reuse [? ].

The remainder of this section is structured to answer three empir-
ical research questions, using our three OBM exemplars, beginning
with a comparison between the performance of WebAssembly and
native implementations. Overall we seek to measure:

• The framerate sustained during playback at client devices
when those devices are performing frame-to-frame composit-
ing, as an indicator of which kinds of experiences require
offload support for which classes of client device;

• The render speed of media compositing at offload sites, as
an indicator of both initial offload latency and compute load
for streaming service providers; and

• The bandwidth required at the client device in both client-
rendered or offloaded cloud-rendered versions of the same
OBM experience, to demonstrate the tradeoff between lo-
cally rendering and offloading an OBM experience: locally
rendering consumes more bandwidth at the client, as each
layer is streamed separately, while rendering in the cloud in-
curs computational expense for the streaming service while
reducing bandwidth to the client.

1080p 720p 480p 360p 240p 144p
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0
110.0
120.0

Test Category

Fr
am

e 
Re

nd
er

 T
im

e 
(m

s)

Native_i7
WebAssembly_i7
WebAssembly_i5
WebAssembly_iPh

Figure 8: Frame render statistics for a single H.264 video
file of a Formula1 race, using a software decoder running
natively and in WASM, targeting 25fps.

5.1 RQ1: How does video decode, transform,
and render performance compare between
WebAssembly and native implementations?

We begin by examining the baseline performance of the WebAssem-
bly (WASM) build of our player against the native build. Both builds
use the same source code. We first measure the performance of sin-
gle video decoding, then the performance of entire frame rendering
(involving the compositing of all layers in our exemplars).

Across all of our experiments our target framerate is 25fps, which
is a common target in general media presentation. This provides a
notional maximumper-frame render time of 40ms to avoid compute-
induced jitter during playback. All of our video content is encoded
with H.264, using its baseline profile, which tends to have the fastest
decode speed (at the cost of some additional file size). We also
experimented with AV1-encoded video [? ], but found software
decode speeds in WASM to be too slow for viability. Note that we
use software-based decoding in the WASM build of our player as
WASM does not currently feature hardware decoding support.

We measure the decode speed of a single video across a range
of common resolutions. Decode speed is measured by reading the
system clock, in milliseconds, before and after the render of a frame,
and taking the difference between the two readings. The result is
stored in a pre-allocated array which has sufficient cells to store all
frame timing readings. We carry out these frame timing readings
for the first 20 seconds of each video, after which we send the array
of readings to our web server using a HTTP POST request.

We measure frame timings using the producer feed of the For-
mula 1 example. This video has a high range of movement through-
out the whole frame and features regular scene cuts as the feed
switches between cameras. The results are shown in Fig. 8. At
1080p we see that the iPhone WASM build has the best overall
frame render time, though its outliers overlap with the next two
fastest platforms. The native i7 build is the next fastest, followed by
theWASM i7 build. TheWASM i5 build is the worst-performer, with
the median lying very close to the 40ms limit and higher outliers



MMSys ’26, April 04–08, 2026, Hong Kong, Hong Kong Barry Porter, Rajiv Ramdhany, and Nicholas Race

than the presenter video. At resolutions of 720p and below we see
all platforms keeping render times under 40ms. It is notable that the
WASM builds on both the iPhone and i7 are slightly faster than the
native i7 build. At lower video resolutions, from 720p downwards,
all platforms render the video well within the 40ms limit.

Aside from being of interest in themselves, we note that these
results also demonstrate the relative capability of our different
platforms to present a fully-render-offloaded experience, which
would be delivered to the player as a single video.

Our next experiment measures the average frame render times
for the entire OBM experience of our three exemplars, in everything-
turned-on permutations of those experiences when rendering is
entirely performed on the end-user device. The results are shown
in Fig. 9, considering only 1080p renditions. In almost all cases
here the Intel i7 native build performs the best, able to render all
elements of the full experience within the 40ms-per-frame target.
The remaining platforms vary in where they lie; for the Formula
1 example the i7 and iPhone WASM builds have a similar median,
with worse outliers on the iPhone. In the animated forest feature,
the iPhone WASM build demonstrates a better median than the
i7 WASM build, but again has worse outliers. The i5 WASM build
generally performs the worst, with its median being far outside of
the 40ms-per-frame target, though its outliers are slightly lower
than those of the iPhone WASM build in the Formula 1 case.

f1 forest weather
0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0

Test Category

Fr
am

e 
Re

nd
er

 T
im

e 
(m

s)

Native_i7
WASM_i7
WASM_i5
WASM_iPh

Figure 9: Frame render statistics for the full experiences of
the F1, animated forest, and weather forecast, with every
layer option turned on in each case.

These results show potential thresholds for offloading the com-
pute of these experiences for different device classes and different
experience types, such that the offloaded compute would yield a sin-
gle video steam for the client device to consume – where the same
device types are comfortably able to render a single video stream
at the same resolution, as shown earlier in Fig. 8. Our results also
correlate well with other measurement studies of WASM vs. native
in general compute comparisons (rather than the media-specific
comparison here), which found that WASM tends to under-perform
native implementations in particular kinds of compute [? ].

f1 forest weather
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

Test Category

Fr
am

e 
O
ffl

oa
d 

Ti
m

e 
(s

)

remainder
encode
rgbaToYUV
getPixels
render
resource

Figure 10: Performance at an offload site building a segment
of media at 1080p. The coloured segments of the chart rep-
resent different elements of the pipeline needed to generate
a media segment, while the white area which fills the re-
mainder of the space up to 10.0 is the amount of remaining
real-time for the requested segment length. For F1, for exam-
ple, it took 5.8 time units to acquire assets for, render, and
encode a media segment of length 10.0 time units.

5.2 RQ2: How viable is offloaded compute for
on-demand object-based media?

In this section we consider offloaded rendering, for user devices
which are unable to render a full object-based media experience.
While our system is able to offload arbitrary groups of sub-layers, to
reduce the experiment design space herewe study only a full-offload
scenario. As presented in Sec. 3, offloading involves sending a HTTP
request to the content server for the desired layer configuration;
this request is forwarded to an offload server which instantiates a
media player, downloads the relevant media assets from a content
server, renders each frame in the requested time range, and encodes
those frames to a single video. Unlike the WASM builds of our
media player, the offload server builds of the player have access to
hardware-accelerated video decoders and encoders.

The general render process at the offload servermedia player is to
download all assets and create a hardware texture on which to ren-
der. For each frame, the media player decodes any video frames and
renders them to the texture, along with any animation layers and
subtitles, in the Z-order specified by the experience metadata file.
The final composited frame is then converted from RGBA to YUV
format and pushed to a hardware-accelerated video encoder. We
use the Intel VAAPI framework as our hardware decoder/encoder
pipeline, with the Intel Iris Xe Graphics (TGL GT2) chipset.

The results are shown in Fig. 10, using a nominal 10 second
segment of requested render offload. At a high level we see that
the overall rendering process occurs faster than real-time, making
the offload approach generally viable for these exemplars. The
rendering cost is dominated by two main elements: primary asset
acquisition (the bottom segment of the bars, shown in green) and



Delivering Layered Object-Based Media using
WebAssembly with Selective Cloud Rendering MMSys ’26, April 04–08, 2026, Hong Kong, Hong Kong

  

OBM 
size

Composited 
size

Permutation 
count

OBM size of all 
permutations

Composited size 
of all permutations 

Formula 1 13.9MB 8.3MB 123 106.8MB 1.02GB

Weather 1.7MB 1.2MB 12 3.6MB 14.4MB

Forest 38.4MB 4.0MB 12 38.4MB 48.0MB

Table 1: Storage requirements of 10 seconds of content, for
our three different exemplars, when assets are stored as dis-
tinct objects or in fully-composited forms.

encoding of the final composited frames (the top-most segment
of the bars, shown in pink). The other pipeline phases have lower
costs, and include rendering of elements to the hardware texture,
transport of texture data from the graphics buffer to the video
encode buffer, and the conversion of texture data from RGBA to
YUV (a pre-processing step required by the video encoder).

Between the three exemplars, asset download time represents
the main point of variation; the forest has the highest asset cost as
it involves multiple videos with corresponding alpha masks, with
the weather forecast having the lowest asset cost with its single
video and smaller animation-based assets.

5.3 RQ3: How does storage and bandwidth
compare between pre-baked and OBM?

In this section we examine the storage cost and network delivery
costs of object-based and fully-composited versions of the same
media experience. This provides a more complete picture of the
relative benefits and drawbacks of the object-based approach.

We begin by examining storage costs. The cost of 10 seconds of
an individual permutation of each experience is shown in Table. 1,
along with the number of permutations, and the resulting storage
cost of all of those permutations if stored in their OBM or fully-
composited form. We note that these figures are for a single quality
level; in practice a content distributor is likely to store a quality
ladder (multiple bit rate representations) of each experience.

In the Formula 1 case we see that the OBM version comes in
very much cheaper, due to the large number of permutations (this
is due to being able to follow a large number of different drivers in
various layouts). The weather forecast case is also cheaper, though
by a smaller margin. In the animated forest case, the OBM version
has slightly cheaper storage cost for all permutations combined;
the marginal gain here is due to the inclusion of one video per layer
and their associated alpha masks, which take significant space.

We next consider the difference in network bandwidth costs.
We measure this using a run-through of the first 500 frames of
each exemplar, in which we capture all bytes downloaded by the
media player. The results are shown in Fig. 11, measured in bytes-
per-frame. In each case, note that the pre-composited bandwidth
displayed on these graphs is also the bandwidth required by a fully-
offloaded version of the experience; an offloaded version is rendered
into segments of a single HD video and therefore has an equivalence
with traditional segmented DASH delivery.

For the Formula 1 case we see an OBM and pre-composited
bandwidth profile which are closely matched. This is likely due to
bandwidth in the OBM case being dominated by video content (the
main feed and picture-in-picture), with very small assets for the

0.0
40.0
80.0

120.0
160.0
200.0
240.0
280.0
320.0
360.0
400.0

0.0 100.0 200.0 300.0 400.0 500.0
Frame

D
at

a 
Si

ze
 (K

by
te

s)

Pre-composited
OBM Version

F1 weather forest

Figure 11: Network bandwidth consumed for the composited
vs. OBM versions of each exemplar.

track-tracker animation element. Bandwidth spikes generally occur
on video keyframes. The OBM case adds an average of 17.4% extra
bandwidth per-frame for this case.

For the weather forecast case we see a more differentiated band-
width profile. The OBM version here has a low-complexity video
to deliver (dominated by blue-screen), with the rest of the media
experience delivered using animations. These animations tend to
download all assets at the start of the experience and then re-use
those same assets throughout playback. The startup bandwidth of
the OBM version is therefore higher, with ongoing bandwidth costs
then being lower than the composited version. The OBM case adds
an average of 38.1% extra bandwidth per-frame for this case.

Finally, for the animated feature case we see a very different
bandwidth profile. The OBM version is significantly higher than
the composited version, and also shows wide variation over the
course of playback. The overall higher bandwidth volume is due
to the much larger number of videos (5 separate videos) used to
deliver the OBM version, plus the alpha masks that go with those
videos. The wide variation during playback is caused by differences
in the size of the alpha masks per frame, depending on howmuch of
the lower layers the animated element is obscuring (such that larger
obscured areas yield smaller alpha masks). On average the OBM
case here adds an average of 94.1% extra bandwidth per-frame.

6 Discussion
Our research to date shows a generalised approach to delivering di-
verse, user-configurable, layered media experiences; our evaluation
demonstrates the overall viability of OBMdelivery viaWebAssembly-
based players in a browser with optional render offloading.

The path to widely deploying such an infrastructure features
a range of outstanding challenges, however, which we discuss in
this section, grounded in our empirical work from Sec. 5. We group
these challenges into the themes of systems infrastructure, quality
of experience, and production considerations.



MMSys ’26, April 04–08, 2026, Hong Kong, Hong Kong Barry Porter, Rajiv Ramdhany, and Nicholas Race

6.1 Systems Infrastructure
Our current system infrastructure is designed for scale-out opera-
tions of both media servers and offload sites. However, a range of
policy challenges exist which are beyond the scope of this paper.

Perhaps the most significant of these challenges is managing
the relationship between content and compute, assuming scenarios
where offloaded compute capability is required. In our current
implementation, offload sites instantiate a media player and then
pull in required assets from content servers before commencing
the render; as shown in Sec. 5.2, this asset download is a significant
portion of overall offload completion time. A common strategy
when presented with this kind of result is to move the compute to
the data, rather than the data to the compute (e.g. [? ? ]); current
content distribution providers are typically distinct from compute
providers, however, with bespoke infrastructure tailored to one task
or the other. Where these two provisions remain separate, there
are two things we could do to improve performance: first, content
could be pre-emptively pushed to offload sites using (e.g.) historical
modelling; and second, offload sites can both cache assets and pre-
fetch likely-next-assets in a stream, with client devices directed or
‘pinned’ to offload sites which already hold relevant assets.

On the topic of caching, the use of on-demand offloaded render-
ing presents a set of novel challenges in how caches work. First,
assuming that offloaded rendered segments are themselves cached,
it is no longer the case that every cache miss is equal: some rendered
segments incur higher compute cost than others. Exploring cache
miss cost, as part of cache eviction policies, may therefore be useful
in minimising overall compute cost of a large infrastructure. Second,
CDN and cache nodes have a novel balance to maintain in their
overall cache space: the caching of individual object-based assets
(to serve to consumer devices able to perform rendering on their
own, or to serve to offload sites), and the caching of composited
segments rendered at offload sites. Again, the miss costs of these
two data classes are different, but a provider may also wish to skew
response times towards consumers able to do their own rendering.

6.2 Quality of Experience
Our empirical work to date is based on a single quality level, with
render offload when that level is unsustainable on a playback device.
In practice, IP-based media delivery uses quality ladders to adapt to
the link quality of each consumer [? ]. In layered OBM, the quality
of experience (QoE) equation changes in at least two dimensions.

The first is that individual layers can traverse a QoE ladder
independently, raising a range of questions in subjective experience
for different users. A naive QoE ladder policy may seek to degrade
the most expensive layer first (either in bandwidth or compute), but
this may deliver a worse subjective result than degrading a group
of cheaper layers to achieve a similar resource conservation.

The second dimension is that dropping a QoE level (e.g., by mov-
ing to the next lowest render resolution) may change the relative
capability of the end-user device to render the media playback,
rather than relying on compute offload. In these terms, a QoE de-
cision is no longer about bandwidth alone: consider a scenario in
which a device is playing an offloaded version of a show it is unable
to render locally, only for a bandwidth negotiation protocol to de-
cide that a lower resolution is needed to stream the offloaded video

to the consumer. This resolution drop may then enable the con-
sumer device to render the experience locally, causing a significant
change in compute load at the consumer device and the server-side
infrastructure due to a notionally bandwidth-oriented decision.

These additional dimensions suggest that new models of QoE
may be needed, with subjective testing to help inform runtime
policies. Separately to this, an important area of future study is the
QoE considerations of the offload-triggering protocol itself. This
protocol could be triggered using a simple client device mapping,
such that certain classes of device always offload all or part of
an experience, or could be determined dynamically in continuous
negotiation with the client player.

6.3 Production Considerations
Finally, the advent of render-during-playback for media consump-
tion presents a set of novel trade-offs in resource costs – both for
end-users and for streaming providers with a compute offload capa-
bility. Render cost, memory usage, and bandwidth characteristics
offer a far higher level of flux than is the case in traditional media
delivery. This is a question for content providers at an infrastruc-
ture level, as discussed above, but is also a question for production
teams at the planning stage: given a compute and bandwidth ceiling,
what are the best ways to deliver each individual element of an
experience, with their variable compute and bandwidth costs? The
ability to simulate costs during production is likely to become a key
planning process in modelling the total lifetime cost of a project.

7 Conclusion
We have presented an object-based media player complete with
a generalised metadata format to describe media experiences and
their configurability, alongside a content delivery approach and
compute offload infrastructure. As far as we are aware, this is the
first empirical study of generalised layered object-based media.

We have presented three exemplar OBM experiences with di-
verse requirements and have empirically evaluated our work across
a range of criteria. Our results show that delivering OBM via We-
bAssembly is practical, and that this approach is a good candidate
to support modular offloading, with common code being used be-
tween the browser and the cloud depending on where different
aspects of an experience are being rendered.

In future work we aim to introduce subjective testing to further
validate our results on sustained framerate and offload latency,
further broaden our exemplar set, address some of the challenges
discussed in Sec. 6, and examine the ability to use object-based audio
for similarly configurable (and offloadable) experience elements in
the audio domain. We will also seek to implement media experience
types whichwill allowmore direct comparisonwith other rendering
approaches, such as those that use 3D background meshes.

Acknowledgments
This work was partly supported by the UKRI EPSRC BBC Prosper-
ity Partnership AI4ME: Future Personalised Object-Based Media
Experiences Delivered at Scale Anywhere, EP/V038087. We thank
Prof. Philip Jackson, Dr. Craig Cieciura, and especially the animator
Maggie Kosek, for their assistance in preparing digital assets for
the animated Changing Forest exemplar.



Temporary page!
LATEX was unable to guess the total number of pages correctly. As
there was some unprocessed data that should have been added to
the final page this extra page has been added to receive it.

If you rerun the document (without altering it) this surplus page
will go away, because LATEX now knows how many pages to expect
for this document.


	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Player
	3.2 Render Offload Protocol

	4 Exemplars
	4.1 Weather Forecast
	4.2 Formula 1
	4.3 Animated Feature

	5 Evaluation
	5.1 RQ1: How does video decode, transform, and render performance compare between WebAssembly and native implementations?
	5.2 RQ2: How viable is offloaded compute for on-demand object-based media?
	5.3 RQ3: How does storage and bandwidth compare between pre-baked and OBM?

	6 Discussion
	6.1 Systems Infrastructure
	6.2 Quality of Experience
	6.3 Production Considerations

	7 Conclusion
	Acknowledgments

