

1 Association and Agreement of Contact-Based Smartphone
2 Photoplethysmography (PPG) Compared with Electrocardiography (ECG): A
3 Protocol for a Systematic Review and Meta-Analysis

4 **James D Mather¹; Nicholas F Sculthorpe¹; Ethan Berry¹; Jacqueline L. Mair^{2,3}; Nilihan
5 E.M. Sanal-Hayes⁴; Lawrence D. Hayes^{5*}**

6 *¹Sport and Physical Activity Research Institute, School of Health and Life Sciences,
7 University of the West of Scotland, Glasgow, UK*

8 *²Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and
9 Technological Enterprise (CREATE), Singapore*

10 *³ Saw Swee Hock School of Public Health, National University of Singapore, Singapore*

11 *⁴School of Health and Society, University of Salford, Salford, UK*

12 *⁵Lancaster University Medical School, Lancaster University, Lancaster, UK*

13 *** Correspondence:**

14 Lawrence D Hayes

15 l.hayes4@lancaster.ac.uk

16

17 Co-author emails:

18 James Mather: jamiemather1993@gmail.com

19 Nicholas Sculthorpe: Nicholas.Sculthorpe@uws.ac.uk

20 Nilihan Sanal-Hayes: n.e.m.sanal-hayes@salford.ac.uk

21 Ethan Berry: Ethan.Berry@uws.ac.uk

22 Jacqueline Mair: jacqueline.mair@sec.ethz.ch

23

24

25 **Abstract**

26 **Background:** Mobile health (mHealth), leveraging mobile devices for health measurement and
27 promotion, is rapidly growing. Smartphone cameras can perform photoplethysmography
28 (PPG) to estimate pulse rate (PR-PPG) and other features of the cardiac cycle. However,
29 establishing the validity of PR-PPG is essential before it can be adopted for healthcare
30 applications. There is a pervasive belief that PR-PPG is analogous to heart rate derived using
31 electrocardiogram (HR-ECG), and we will conduct a systematic review and meta-analysis to
32 support or challenge this supposition.

33 **Objectives:** To synthesise quantitative evidence on the validity of PPG derived from mobile
34 devices (i.e. smartphones) for the assessment of compared to the gold standard ECG assessment
35 of HR.

36 **Methods:** A comprehensive literature search will be performed on CINAHL Ultimate,
37 MEDLINE, ScienceDirect, and Scopus using a predefined search strategy. All retrieved
38 citations will be imported into Rayyan for screening and data management. A minimum of two
39 independent reviewers will conduct the title and abstract screening, followed by two
40 independent reviewers who will perform full-text screening and data extraction. All stages will
41 be guided by predefined inclusion and exclusion criteria, which will be pilot tested to ensure
42 consistency and reliability. Any discrepancies will be resolved through discussion with a third
43 reviewer or during a research team meeting. Intra-rater reliability will be quantified at the title
44 and abstract stage, and the full-text review stage using Cohen's Kappa. To ensure clarity and
45 consistency in the presentation of study characteristics and findings, both narrative synthesis
46 and tabular formats will be employed. This review will include studies that report the
47 association and agreement between resting HR and PR from PPG utilising contact-based
48 smartphone devices versus ECG as the gold standard. PPG signals will be obtained using a
49 contact-based approach, defined as finger-on-camera measurements with the smartphone's
50 built-in camera and flash. Studies will be excluded if they (a) do not use PPG utilising contact-
51 based smartphone devices (b) compare PPG to another collection method other than ECG, or
52 (c) are review articles or case studies.

53 **Results:** In order to inform clinical procedures and future studies, the results will contain data
54 on PR-PPG and HR-ECG association (correlations) and agreement (Bland-Altman's), sampling
55 devices, and operating systems. This project is unfunded, and the initial screening is expected
56 to start in Q1 2026, with results published in Q1 2027.

57 **Conclusions:** This review will provide a comprehensive understanding of the association and
58 agreement between PR-PPG and HR-ECG. The findings may inform future adoption of PR-
59 PPG and HR-ECG with insight into device or setting characteristics for best agreement or
60 association.

61 **Review registration:** <https://doi.org/10.17605/OSF.IO/83V7A>

62

63 **Keywords:** Photoplethysmography; PPG; mobile; heart rate; validity.

64

65 **Introduction**

66 Photoplethysmography (PPG) has been widely employed over several decades for the
67 diagnosis, monitoring, and screening of various diseases and disorders, offering clinically
68 relevant physiological insights [1–4]. The term "photoplethysmography" derives from its
69 functional components: "photo" (light), "plethysmo" (volume), and "graphy" (recording) [5].
70 Initially introduced by Hertzman in 1937 to detect blood volume changes [4,6], PPG operates
71 by measuring either transmitted (transmissive PPG) or reflected (reflective PPG) light as it
72 interacts with biological tissues [7]. This technique relies on the optical properties of tissue,
73 including absorption, scattering, and transmission [8]. Transmissive PPG detects light that has
74 passed through relatively thin tissue regions, such as the fingers, toes, or earlobes. In contrast,
75 reflective PPG captures light that is scattered back from the skin, which results in a reduction
76 in detected light intensity [9]. While transmissive PPG generally provides more stable signal
77 quality[10], reflective PPG offers greater versatility in terms of measurement site, enabling its
78 application in anatomical regions such as the forehead, wrist, carotid artery, and esophagus—
79 locations where transmissive PPG is less feasible [11–14].

80 Photoplethysmography operates based on the Beer–Lambert Law, which describes the
81 attenuation of light intensity as a function of the extinction coefficient, concentration of the
82 absorbing medium, and the optical path length through which light travels [15]. Leveraging
83 this principle, a range of PPG devices are utilised in clinical settings to measure physiological
84 parameters such as pulse rate, a key vital sign [7]. Clinically, PPG is commonly employed to
85 monitor cardiac-induced fluctuations in blood volume within microvascular beds at peripheral
86 anatomical sites including the finger, forehead, earlobe, and toe [16,17].

87 Since the introduction of the first iPhone in 2007, smartphones have become ubiquitous
88 worldwide and are increasingly recognised as practical tools for data collection, addressing
89 several limitations inherent in traditional methods [18]. Conventional health monitoring
90 typically involves periodic, scheduled clinical visits, which may fail to capture dynamic
91 physiological changes that occur longitudinally or during routine daily activities [3,19,20]. In
92 this context, smartphones equipped with integrated cameras offer a cost-effective alternative
93 for PPG acquisition, eliminating the need for additional external devices such as
94 wearables [21].

95 Consequently, smartphone-based PPG has the potential to extend access to underserved
96 populations, particularly those facing demographic, geographic, or socioeconomic barriers to
97 healthcare access and delivery [22–24]. The adoption of mobile health (mHealth) technologies
98 has accelerated in recent years, particularly following the COVID-19 pandemic, which
99 underscored the utility of remote and prospective health and symptom monitoring [21,25–27].
100 As such, the increasing prevalence of smartphone-enabled telemedicine is likely to persist and
101 may play a significant role in advancing global health equity, aligning with targets outlined in
102 the United Nations Sustainable Development Goals (UN SDGs), specifically SDG 3: Good
103 Health and Well-being [28,29].

104 Smartphone PPG can estimate resting pulse rate through the measurement of distal pulse rate
105 (PR) at rest, and whilst completing other activities such as exercise or cognitive tasks [7]. While
106 smartphone-based PPG can measure resting PR through peripheral pulse detection, accuracy
107 hinges on proprietary algorithms that are often undisclosed in the literature. The lack of
108 algorithmic transparency can hinder reproducibility and trust in the results. This is problematic
109 given the proliferation of mHealth, and therefore the necessity that technologies are reliable
110 and valid compared to gold standard measurements prior to universal adoption [30]. An earlier
111 meta-analysis by De Ridder *et al.* [31] showed that smartphone PPG could yield results
112 consistent with ECG, pulse oximetry, and radial pulse measurements. However, they identified
113 significant variability due to sample characteristics, environmental conditions, and the diversity
114 of smartphone hardware. Their review also reflected on the outdated technology assessed at
115 the time, such as iPhone 5 and Galaxy S4 models. Subsequent technological advancements,
116 including higher-resolution cameras and improved sensors, warrant an updated synthesis of the
117 evidence [21]. Our recent scoping review [3] identified ten studies directly comparing PR-PPG
118 and HR-ECG but did not quantify their agreement or association. This protocol aims to address

119 that gap by conducting a rigorous meta-analysis of studies evaluating the association and
120 agreement between smartphone-based PR-PPG and HR-ECG.

121 Review questions:

122 Primary research question: What is the level of association and agreement between pulse rate
123 derived from smartphones PPG and heart rate derived from ECG at rest?

124 Secondary research questions:

125 1. Does device type or operating system (e.g., iOS vs. Android) influence the association and
126 agreement of PR-PPG?

127 2. What is the methodological quality and risk of bias among included studies?

128 We hypothesise that smartphone-derived PR-PPG may provide a valid alternative to HR-ECG
129 at rest. Nonetheless, the current evidence base is likely to be limited and methodologically
130 heterogeneous due to variations in device specifications, study design, and participant
131 characteristics.

132

133 Methods

134 Eligibility Criteria

135 Participants

136 The eligibility criteria were assessed by PICO (Population, Intervention, Comparison, and
137 Outcome) framework. For the Population component, we will only accept studies that involve
138 humans. For the Intervention component, as this is an analysis of association and agreement,
139 rather than a magnitude of change, there will be no intervention *per se*. However, this
140 systematic review will investigate studies that measure PR-PPG via front or rear facing camera
141 of a smartphone by contact-based, and HR-ECG. Contact-based smartphone PPG was defined
142 as a finger-on-camera measurement using the device's built-in camera and flash. Participants
143 placed the fingertip over the camera lens while the flash illuminated the skin to capture PPG
144 signals. Non-contact methods such as facial video PPG were not included in this study. We will
145 restrict inclusion to studies that report agreement or correlation, and we will not compute
146 association or agreement from summary data. For the Comparison (C) component, the

147 inclusion of a control group is not necessary in this analysis. In terms of outcome measures,
148 resting pulse rate ($b \cdot \text{min}^{-1}$) from PR-PPG and resting heart rate ($b \cdot \text{min}^{-1}$) from HR-ECG will
149 be reported in the original studies. Moreover, to quantify association and agreement, studies
150 must report a correlation coefficient (Pearson's, concordance correlation coefficient [CCC] or
151 inter-class correlation coefficient [ICC]) or a Bland-Altman analysis between PR-PPG and HR-
152 ECG.

153 The following exclusion criteria will apply: Studies utilising external devices (e.g., medical
154 sensors, wearables) connected to smartphones for data acquisition; Papers that do not assess
155 the validity of PR-PPG against HR-ECG as an outcome measure. Only original research
156 articles presenting at least preliminary quantitative findings will be included. Qualitative
157 studies, case reports, and literature reviews will not be eligible for inclusion in this review.

158

159 **Search strategy**

160 This meta-analysis will be performed in accordance with the PRISMA (Preferred Reporting
161 Items for Systematic Reviews and Meta-Analyses) guidelines. The study protocol has been
162 registered on the Open Science Framework (OSF) and can be accessed via:
163 <https://doi.org/10.17605/OSF.IO/83V7A>. Any deviations from this protocol during the review
164 will be documented with justifications and timestamps to ensure full transparency, and
165 searches will be updated close to analysis.

166

167 A comprehensive search strategy has been developed to strike a balance between thorough
168 coverage and practical scope, ensuring methodological rigor. Four electronic databases will be
169 searched: CINAHL Ultimate, MEDLINE, ScienceDirect, Scopus, and EMBASE.. These
170 databases were selected for their relevance across health sciences, biomedical research, signal
171 processing, and behavioural science. CINAHL Ultimate is included for its strong representation
172 of allied health literature. MEDLINE, accessed via EBSCOhost, provides authoritative sources
173 in biomedical and cardiovascular research. ScienceDirect was chosen for its wide range of
174 journals covering computational and physiological aspects of PPG. Scopus is used for its
175 comprehensive indexing and citation tracking capabilities. Embase was searched because it
176 offers broader, deeper, and more clinically oriented coverage than many other databases,
177 especially for medical, pharmaceutical, and health-related research. In addition to peer-

178 reviewed literature, grey literature will be searched. This includes preprint servers (e.g.,
179 MedRxiv, arXiv), theses and dissertations (ProQuest), conference proceedings (e.g., Web of
180 Science), and institutional repositories like DSpace. Citation chaining will also be used by
181 examining reference lists and citing articles (via Google Scholar and CrossRef), along with
182 CoCites to identify related work through citation patterns. The search strategy will be refined
183 iteratively if it produces excessive irrelevant records, with adjustments made to keyword
184 combinations, Boolean logic, and subject headings. Known relevant studies will be used to test
185 the sensitivity and specificity of the search. If required data are missing or unclear, the
186 corresponding authors will be contacted using a standardised template. Follow-up emails will
187 be sent two and four weeks after the initial message if no reply is received. All correspondence
188 will be logged and summarised in the manuscript and supplementary materials. A final search
189 update will be conducted prior to manuscript submission if more than six months have passed
190 since the initial search.

191

192 **Search Terms**

193 Example Boolean string (Scopus):

194 TITLE-ABS-KEY ("heart rate" OR hr) AND TITLE-ABS-KEY (photoplethysmography OR
195 ppg OR "remote ppg" OR "camera-based ppg" OR "remote photoplethysmography" OR
196 "camera based photoplethysmography") AND TITLE-ABS-KEY (smartphone* OR "mobile
197 phone" OR "mobile device" OR camera* OR "smartphone photoplethysmography" OR
198 "phone-based ppg" OR "smartphone ppg") AND TITLE-ABS-KEY (electrocardiogram OR
199 ecg OR ekg OR electrocardiography) AND TITLE-ABS-KEY (validity OR valid OR
200 accuracy OR agreement OR correlation OR reliability)

201 The example search string includes Scopus syntax; these terms and syntax will be adapted
202 across all the databases that are planned to be searched. The search period will begin in 2007
203 to ensure inclusion of early studies related to the first smartphone models (e.g., iPhone released
204 in 2007) through the end of 2025. The review will focus on correlation coefficients comparing
205 heart rate estimates from PPG to ECG. Supplementary data will include study setting,
206 participant demographics, smartphone model, app characteristics, sampling frequency, camera
207 specifications, ECG details, and environmental conditions during data collection.

208

209 **Study/Source of Evidence Selection**

210 All references retrieved from the database search will be imported into Rayyan [32], where
211 duplicate entries will be automatically identified and removed. The screening process will take
212 place in two stages: (1) title and abstract screening, and (2) full-text screening.

213 In both stages, two independent reviewers will apply *a priori* inclusion and exclusion criteria.
214 Reviewers will work in a blinded manner, with Rayyan's platform enabling independent
215 decisions without revealing each other's judgments. Disagreements will be flagged
216 automatically and resolved through discussion. If consensus cannot be achieved, a third
217 reviewer will serve as an adjudicator.

218 To improve consistency, a calibration phase will be conducted prior to formal screening.
219 Reviewers will test the inclusion/exclusion criteria on a sample of records to align
220 interpretation and application. Inter-rater reliability will be evaluated using Cohen's Kappa
221 statistic, which measures agreement beyond chance. This metric will be calculated at both the
222 abstract and full-text screening phases. Screening decisions and bibliographic metadata will be
223 exported in RIS and CSV formats and archived in an open-access repository (e.g., OSF) at the
224 time of submission or acceptance.

225

226 **Data Extraction**

227 Prior to full-scale data extraction, a pilot phase will be conducted where all reviewers
228 independently extract data from a small subset of studies (5–10%). This exercise will be used
229 to refine the extraction template and standardise the approach.

230 In the main extraction phase, two reviewers will independently extract data using a structured
231 and pre-tested form. Extracted variables will include correlation coefficients and mean bias and
232 limits of agreement between PR-PPG and HR-ECG, participant demographics, smartphone
233 specifications, ECG characteristics, and data collection procedures. As we will include
234 correlation coefficients and Bland-Altman analysis, these tests will report both r values (-1 to
235 1), and agreement values (in bpm or Hz), it is important to outline our harmonisation strategy.
236 Where a study reports HR or PR in Hz, we will apply the following formula:

237

$$239 \quad \text{Hz} = \frac{\text{bpm}}{60}$$

238

240 During the risk of bias assessment, the Quality Assessment of Diagnostic Accuracy Studies
241 (QUADAS-2) will be employed independently by two reviewers. QUADAS-2 evaluates four
242 domains: patient selection, index test, reference standard, and flow and timing. Each domain
243 will be rated as low, high, or unclear risk of bias, and applicability concerns were assessed for
244 patient selection, index test, and reference standard.

245 Disagreements will be resolved through consensus or by involving a third adjudicator. Any
246 ambiguities in reported data will be flagged for discussion. Missing values will be marked as
247 "NR" (not reported), and no estimations will be made unless explicitly stated. All data entries
248 will be double-checked by a second reviewer for accuracy. Where appropriate, AI-assisted tools
249 may be used to support metadata extraction or to highlight relevant text, but all final data entries
250 will be manually reviewed and verified. Reconciliation logs and resolution steps will be
251 documented throughout the process. Data collection will adhere to PRISMA and Cochrane
252 Handbook guidelines. Finalised data will be formatted for meta-analysis and saved using a
253 standardised file naming convention. These files will also be uploaded to the OSF repository.

254 Details on each included study will be systematically documented, beginning with key
255 bibliographic information such as the study title, authors, publication year, journal name, and
256 study setting (e.g., academic or clinical environments). Further extracted information will
257 include total sample size, participant demographics (age, sex, health status, skin pigmentation),
258 country of study, smartphone model and specifications (e.g., camera resolution, flash use),
259 application name and whether it is proprietary commercial application, open-source software,
260 or custom-developed code, sampling rate of the PPG signal, camera orientation used (front vs.
261 rear-facing), channel used in data computation, ECG equipment used, electrode placement
262 details, and ECG processing methods, environmental conditions and participant preparation
263 (e.g., posture, breathing instructions, dietary control), duration of recording, and number of
264 measurement trials.

265 In addition to the above, the extraction form will capture relevant statistical outcomes, such as
266 correlation coefficients, confidence intervals, mean bias, limits of agreement and any additional
267 reported metrics that relate to association of agreement. Risk of bias for each study will be
268 evaluated using the QUADAS-2 tool, with domain-specific judgments recorded and justified.

269 To ensure data accuracy, each extraction will be independently performed by two reviewers.
270 Their entries will be compared side-by-side, with discrepancies resolved through consensus. If
271 a resolution cannot be reached, a third reviewer will arbitrate. All final decisions and
272 justifications will be recorded in a reconciliation log. Each data extraction file will follow a
273 standardised naming convention (e.g., StudyID_Initials_Extraction.xlsx) and be uploaded to
274 the OSF repository upon completion. Once finalised, the cleaned and verified dataset will be
275 formatted for meta-analysis and made available for public access alongside the manuscript,
276 unless restricted by publisher guidelines.

277

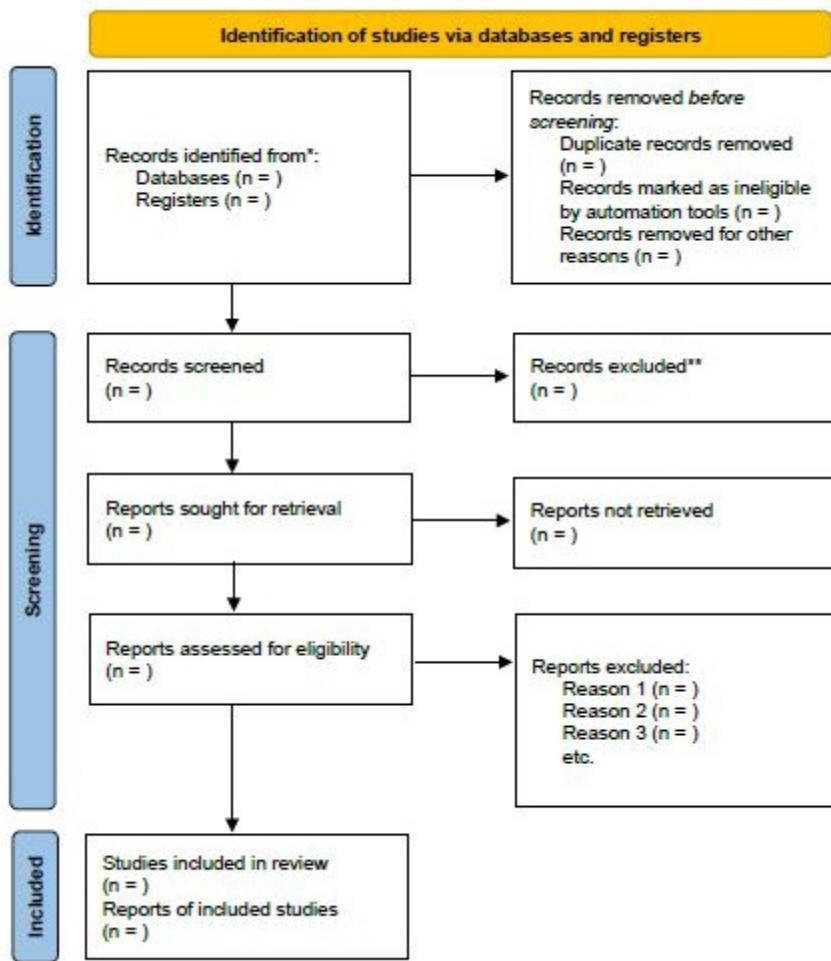
278 Data Analysis and Presentation

279 The analysis will utilise the Fisher r-to-z transformed correlation coefficient as the primary
280 outcome measure of association. The analysis will utilise the pooled mean difference and limits
281 of agreement as the primary outcome measure of agreement. A random-effects model will be
282 applied to the data, with all analyses performed in R Studio using the *metafor* package. Weltz
283 et al. [33] proposed that when conducting a meta-analysis involving Fisher r-to-z transformed
284 correlation coefficients, especially in the presence of study heterogeneity, employing a random-
285 effects model with appropriate variance estimation techniques yields more reliable and
286 generalisable results compared to fixed-effects models. Therefore, random effects models will
287 be utilised. Subgroup analyses will only be performed when there are at least five studies per
288 subgroup. Meta-regression will require a minimum of ten studies per covariate to reduce risk
289 of overfitting. Tests for funnel plot asymmetry will only be conducted when the meta-analysis
290 includes ten or more studies, as recommended by the Cochrane Handbook. Sensitivity analyses
291 will be interpreted cautiously when the evidence base is small.

292 To identify potential outliers and influential studies, studentised residuals and Cook's distances
293 will be examined [34]. Studies with studentised residuals exceeding the $100 \times (1 -$
294 $0.05/(2 \times k))$ th percentile of the standard normal distribution (applying a Bonferroni correction
295 with two-sided $\alpha = 0.05$ for k studies) will be flagged as potential outliers. Studies with Cook's
296 distances greater than the median plus six times the interquartile range of Cook's distances will
297 be deemed influential. Outliers and influential studies will be retained in the primary analysis
298 but flagged for sensitivity analyses to assess their impact on pooled estimates. Funnel plot
299 asymmetry will be assessed using the rank correlation test [35] and regression test [36], where
300 the standard error of observed outcomes serves as the predictor. Heterogeneity will be

301 evaluated through I^2 , *Cochran's Q*, and tau^2 statistics. Where possible, subgroup analyses will
302 explore variability in PR-PPG validity based on factors such as operating system, participant
303 characteristics (e.g., age, sex), and study design.

304 Moderator analyses will investigate the influence of PPG parameters and participant traits on
305 outcomes, while sensitivity analyses will test the effects of risk of bias. Additional sensitivity
306 checks will consider the impact of excluding high-risk studies, approaches to missing data, and
307 methodological quality. Provided sufficient data, meta-regression will examine relationships
308 between continuous variables and effect sizes. Results will be displayed using forest and funnel
309 plots. Conclusions concerning association will be based on effect sizes, with overall effect sizes
310 of $r > 0.9$ (approximately $z > 1.5$) considered valid. For context, $r = 0.70$ is typically regarded
311 as very large and roughly corresponds to $z = 0.8$. Conclusions concerning agreement will be
312 based on bias and limits of agreement ($Bias < 1 \text{ b} \cdot \text{min}^{-1}$ and $LoA < 5 \text{ b} \cdot \text{min}^{-1}$ =Excellent
313 agreement; acceptable for medical-grade; $Bias < 3 \text{ b} \cdot \text{min}^{-1}$ and $LoA < 10 \text{ b} \cdot \text{min}^{-1}$ =Acceptable for
314 general PR monitoring, may be borderline for medical-grade; $Bias > 5 \text{ b} \cdot \text{min}^{-1}$ or $LoA > 10$
315 $\text{b} \cdot \text{min}^{-1}$ =Poor agreement, not clinically interchangeable). High heterogeneity ($I^2 > 50\%$) will
316 warrant cautious interpretation and further exploration through subgroup or moderator
317 analyses. Confidence in conclusions will be guided by the QUADAS-2 framework depending
318 on quality of accuracy.


319

320 **Results**

321 In order to inform clinical procedures and future studies, the results will contain data on PR-
322 PPG and HR-ECG association (correlations) and agreement (Bland-Altman), sampling
323 devices, and operating systems. This project is unfunded, and the initial screening is expected
324 to start in Q1 2026, with results published in Q1 2027.

325

326 A summary of the study selection procedure is given in Figure 1. This process is now
327 explicitly detailed to ensure consistency and transparency during study selection.

328

329 Figure 1. The PRISMA flow diagram which visually summarises the screening process.

330

331

332 Discussion

333 This systematic review and meta-analysis aims to be the first to provide an updated
 334 quantification of the association and agreement of PR-PPG compared to HR-ECG at rest. The
 335 rapid development in technology required continuous assessment of validity, and this meta-
 336 analysis will provide important findings, indicating whether PR-PPG can be used with
 337 confidence. There is a pervasive belief that PR-PPG is analogous to HR-ECG, and herein we
 338 will provide an updated systematic review and meta-analysis to support or challenge this
 339 supposition. We hypothesise that smartphone-based PR-PPG will demonstrate strong
 340 association and acceptable agreement with HR-ECG at rest. These findings would support the

341 potential of PR-PPG as a valid alternative for remote monitoring in clinical and non-clinical
342 settings.

343

344 The decision to undertake a meta-analysis was driven by the need to evaluate the level of
345 agreement between PR-PPG and HR-ECG, including modifying parameters such as frame rate,
346 camera location, skin pigmentation, operating system. Moreover, if there is an absence of
347 knowledge around modifying variables, this systematic review will provide opportunities for
348 future research. By providing context to current findings, this research can guide future studies
349 to concerning PR-PPG and its application. Previous reviews, such as De Ridder et al. [31],
350 indicated that smartphone-based PR-PPG could approximate HR-ECG. However, these
351 analyses were constrained by outdated technology and lacked detailed agreement metrics,
352 limiting their clinical applicability. The De Ridder et al. [31] meta-analysis included studies
353 published between 2009 and 2016, which means smartphone models assessed were from that
354 era. These typically included early-generation devices such as the Apple iPhone 4 and iPhone
355 5 series (released in 2010 and 2012), the Samsung Galaxy S3 and S4 (released in 2012 and
356 2013), and other similar Android models from that period. These devices are now 10–15 years
357 old, and their hardware (camera resolution, LED flash quality, processing power) is
358 significantly outdated compared to current smartphones. This is why De Ridder's findings,
359 while useful at the time, may not fully reflect the performance of modern devices with advanced
360 sensors and algorithms. Our meta-analysis aims to address these gaps by including studies that
361 use modern smartphones and operating systems, reflecting current technological capabilities.
362 By quantifying agreement using Bland–Altman analysis alongside correlation measures, we
363 will provide more robust assessment of interchangeability. Moreover, by exploring potential
364 moderators, such as device type, operating system, and participant demographics, we will be
365 able to better understand sources of variability.

366

367 This review has several strengths including a rigorous methodology following PRISMA-P
368 guidelines and pre-registration, clear eligibility criteria using PICO framework, a
369 comprehensive search strategy of multiple databases, robust screening and data extraction with
370 dual independent reviewers with calibration and Cohen's Kappa for reliability, and use of
371 structured extraction forms and QUADAS-2 for bias assessment. Our analysis plan includes
372 random-effects meta-analysis using Fisher r-to-z transformation, outlier diagnostics, funnel

373 plot asymmetry tests, and moderator analyses. The main limitations are that of the original
374 studies. These include potential ambiguity in reporting, heterogeneity in study design and
375 reporting, selective reporting, and lack of algorithm transparency due to proprietary software.
376 The results from this systematic review and meta-analysis could identify areas for future
377 research such as lack of diversity in participants, potential for integration with telehealth and
378 electronic health records, and device or OS-specific optimisation.

379

380 **Project Timeline**

381 The projected timeline for the study includes title and abstract screening from Q1 2026,
382 followed by full-text screening in Q2 2026. Results are anticipated by Q3 2026, with
383 publication in Q1 2027. Throughout this period, database searches will be regularly updated to
384 capture any newly published studies meeting the inclusion criteria.

385

386 **Acknowledgements**

387 None.

388 **Funding**

389 None.

390 **Conflicts of Interest**

391 There are no conflicts of interest in this meta-analysis.

392 **Data availability**

393 This is a protocol paper, so no data are currently available. Once the study is complete, the
394 dataset supporting the findings will be included in the main manuscript and Appendix.

395 **Authors contributions**

396 All authors contributed equally to the conceptualisation, preliminary search, search strategy,
397 writing – original draft, review and editing. No generative AI was used in any portion of the
398 manuscript generation

399

400

401 **References**

- 402 1. Humphreys K, Ward T, Markham C. Noncontact simultaneous dual wavelength
403 photoplethysmography: a further step toward noncontact pulse oximetry. *Rev Sci
404 Instrum* 2007 Apr;78(4):044304. PMID:17477684
- 405 2. Nilsson L, Goscinski T, Kalman S, Lindberg L-G, Johansson A. Combined
406 photoplethysmographic monitoring of respiration rate and pulse: a comparison between
407 different measurement sites in spontaneously breathing subjects. *Acta Anaesthesiol
408 Scand* 2007 Oct;51(9):1250–1257. PMID:17711563
- 409 3. Mather JD, Hayes LD, Mair JL, Sculthorpe NF. Validity of resting heart rate derived
410 from contact-based smartphone photoplethysmography compared with
411 electrocardiography: a scoping review and checklist for optimal acquisition and
412 reporting. *Front Digit Health* 2024 Feb 29;6:1326511. PMID:38486919
- 413 4. Photoelectric Plethysmography of the Fingers and Toes in Man - Alrick B. Hertzman,
414 1937. Available from: <https://journals.sagepub.com/doi/abs/10.3181/00379727-37-9630>
415 [accessed June 6, 2025]
- 416 5. Prospective assessment of lower-extremity peripheral arterial disease in diabetic patients
417 using a novel automated optical device - PubMed. Available from:
418 <https://pubmed.ncbi.nlm.nih.gov/18024941/> [accessed June 6, 2025]
- 419 6. Hertzman AB. The blood supply of various skin areas as estimated by the photoelectric
420 plethysmograph. *American Journal of Physiology-Legacy Content American
421 Physiological Society*; 1938 Oct 31;124(2):328–340. doi:
422 10.1152/ajplegacy.1938.124.2.328
- 423 7. Almarshad MA, Islam MS, Al-Ahmadi S, BaHammam AS. Diagnostic Features and
424 Potential Applications of PPG Signal in Healthcare: A Systematic Review. *Healthcare
425 (Basel)* 2022 Mar 16;10(3):547. PMID:35327025
- 426 8. Challoner AV, Ramsay CA. A photoelectric plethysmograph for the measurement of
427 cutaneous blood flow. *Phys Med Biol* 1974 May;19(3):317–328. PMID:4445210

428 9. Park J, Seok HS, Kim S-S, Shin H. Photoplethysmogram Analysis and Applications: An
429 Integrative Review. *Front Physiol* 2021;12:808451. PMID:35300400

430 10. Li K, Zhang S, Yang L, Jiang H, Chi Z, Wang A, Yang Y, Li X, Hao D, Zhang L, Zheng
431 D. Changes of Arterial Pulse Waveform Characteristics with Gestational Age during
432 Normal Pregnancy. *Sci Rep* 2018 Oct 22;8(1):15571. PMID:30349022

433 11. Venema B, Schiefer J, Blazek V, Blanik N, Leonhardt S. Evaluating Innovative In-Ear
434 Pulse Oximetry for Unobtrusive Cardiovascular and Pulmonary Monitoring During
435 Sleep. *IEEE J Transl Eng Health Med* 2013;1:2700208. PMID:27170855

436 12. Venema B, Blanik N, Blazek V, Gehring H, Opp A, Leonhardt S. Advances in reflective
437 oxygen saturation monitoring with a novel in-ear sensor system: results of a human
438 hypoxia study. *IEEE Trans Biomed Eng* 2012 July;59(7):2003–2010. PMID:22547451

439 13. Blanik N, Heimann K, Pereira C, Paul M, Blazek V, Venema B, Orlikowsky T,
440 Leonhardt S. Remote vital parameter monitoring in neonatology - robust, unobtrusive
441 heart rate detection in a realistic clinical scenario. *Biomed Tech (Berl)* 2016 Dec
442 1;61(6):631–643. PMID:27743509

443 14. Wannenburg J, Malekian R. Body Sensor Network for Mobile Health Monitoring, a
444 Diagnosis and Anticipating System. *IEEE Sensors Journal* 2015 Dec;15(12):6839–6852.
445 doi: 10.1109/JSEN.2015.2464773

446 15. Mayerhöfer TG, Pahlow S, Popp J. The Bouguer-Beer-Lambert Law: Shining Light on
447 the Obscure. *ChemPhysChem* 2020;21(18):2029–2046. doi: 10.1002/cphc.202000464

448 16. Elgendi M. On the analysis of fingertip photoplethysmogram signals. *Curr Cardiol Rev*
449 2012 Feb;8(1):14–25. PMID:22845812

450 17. Elgendi M, Fletcher R, Liang Y, Howard N, Lovell NH, Abbott D, Lim K, Ward R. The
451 use of photoplethysmography for assessing hypertension. *NPJ Digit Med* 2019;2:60.
452 PMID:31388564

453 18. Drijkoningen L, Lenaerts F, Vandervoort P, Grieten L. Validation of a smartphone based
454 photoplethysmographic beat detection algorithm for normal and ectopic complexes.

455 19. Goërtz YMJ, Braamse AMJ, Spruit MA, Janssen DJA, Ebadi Z, Van Herck M, Burtin C,
456 Peters JB, Sprangers MAG, Lamers F, Twisk JWR, Thong MSY, Vercoulen JH,
457 Geerlings SE, Vaes AW, Beijers RJHCG, van Beers M, Schols AMWJ, Rosmalen JGM,
458 Knoop H. Fatigue in patients with chronic disease: results from the population-based
459 Lifelines Cohort Study. *Sci Rep* 2021 Oct 25;11(1):20977. PMID:34697347

460 20. Mair JL, Hayes LD, Campbell AK, Sculthorpe N. Should We Use Activity Tracker Data
461 From Smartphones and Wearables to Understand Population Physical Activity Patterns?
462 *Journal for the Measurement of Physical Behaviour Human Kinetics*; 2022 Apr
463 25;1(aop):1–5. doi: 10.1123/jmpb.2021-0012

464 21. Raposo A, da Silva HP, Sanches J. Camera-based Photoplethysmography (cbPPG) using
465 smartphone rear and frontal cameras: an experimental study. *Annu Int Conf IEEE Eng
466 Med Biol Soc* 2021 Nov;2021:7091–7094. PMID:34892735

467 22. Kim BH, Glanz K. Text messaging to motivate walking in older African Americans: a
468 randomized controlled trial. *Am J Prev Med* 2013 Jan;44(1):71–75. PMID:23253653

469 23. Blumenthal D, Mort E, Edwards J. The efficacy of primary care for vulnerable
470 population groups. *Health Serv Res* 1995 Apr;30(1 Pt 2):253–273. PMID:7721596

471 24. Weitz TA, Freund KM, Wright L. Identifying and caring for underserved populations:
472 experience of the National Centers of Excellence in Women's Health. *J Womens Health
473 Gend Based Med* 2001 Dec;10(10):937–952. PMID:11788105

474 25. Sculthorpe NF, McLaughlin M, Cerexhe L, Macdonald E, Dello Iacono A, Sanal-Hayes
475 NEM, Ingram J, Meach R, Carless D, Ormerod J, Hayes LD. Tracking Persistent
476 Symptoms in Scotland (TraPSS): a longitudinal prospective cohort study of COVID-19
477 recovery after mild acute infection. *BMJ Open* 2025 Jan 15;15(1):e086646.
478 PMID:39819953

479 26. Hayes LD, Sanal-Hayes NEM, Ellam M, McLaughlin M, Swainson MG, Sculthorpe NF.
480 A method for determination of hematocrit using the mobile app “HaemoCalc”: Validity,
481 reliability, and effect of user expertise. *Physiological Reports* 2025;13(8):e70314. doi:
482 10.14814/phy2.70314

483 27. Hayes LD, Ingram J, Sculthorpe NF. More Than 100 Persistent Symptoms of SARS-
484 CoV-2 (Long COVID): A Scoping Review. *Frontiers in Medicine* 2021;8.

485 28. Goal 3 | Department of Economic and Social Affairs. Available from:
486 <https://sdgs.un.org/goals/goal3> [accessed June 6, 2025]

487 29. Asi YM, Williams C. The role of digital health in making progress toward Sustainable
488 Development Goal (SDG) 3 in conflict-affected populations. *International Journal of
489 Medical Informatics* 2018 June 1;114:114–120. doi: 10.1016/j.ijmedinf.2017.11.003

490 30. Vandenberk T, Stans J, Mortelmans C, Van Haelst R, Van Schelvergem G, Pelckmans C,
491 Smeets CJ, Lanssens D, De Cannière H, Storms V, Thijs IM, Vaes B, Vandervoort PM.
492 Clinical Validation of Heart Rate Apps: Mixed-Methods Evaluation Study. *JMIR
493 Mhealth Uhealth* 2017 Aug 25;5(8):e129. PMID:28842392

494 31. De Ridder B, Van Rompaey B, Kampen JK, Haine S, Dilles T. Smartphone Apps Using
495 Photoplethysmography for Heart Rate Monitoring: Meta-Analysis. *JMIR Cardio* 2018
496 Feb 27;2(1):e4. PMID:31758768

497 32. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile
498 app for systematic reviews. *Systematic Reviews* 2016 Dec 5;5(1):210. doi:
499 10.1186/s13643-016-0384-4

500 33. Fisher transformation based confidence intervals of correlations in fixed- and random-
501 effects meta-analysis - Welz - 2022 - *British Journal of Mathematical and Statistical
502 Psychology - Wiley Online Library*. Available from:
503 <https://bpspsychub.onlinelibrary.wiley.com/doi/full/10.1111/bmsp.12242> [accessed
504 June 6, 2025]

505 34. Viechtbauer W, Cheung MW-L. Outlier and influence diagnostics for meta-analysis. *Res
506 Synth Methods* 2010 Apr;1(2):112–125. PMID:26061377

507 35. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for
508 publication bias. *Biometrics* 1994 Dec;50(4):1088–1101. PMID:7786990

509 36. Sterne JAC, Egger M. Regression Methods to Detect Publication and Other Bias in
510 Meta-Analysis. *Publication Bias in Meta-Analysis* John Wiley & Sons, Ltd; 2005. p.
511 99–110. doi: 10.1002/0470870168.ch6 ISBN:978-0-470-87016-7

512

513

514 **PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis
515 Protocols) 2015 checklist: recommended items to address in a systematic review
516 protocol*** **Green text indicates completed.**

Section and topic	Item	Checklist item
	No	
ADMINISTRATIVE INFORMATION		
Title:		
Identification	1a	Identify the report as a protocol of a systematic review
Update	1b	If the protocol is for an update of a previous systematic review, identify as such
Registration	2	If registered, provide the name of the registry (such as PROSPERO) and registration number
Authors:		
Contact	3a	Provide name, institutional affiliation, e-mail address of all protocol authors; provide physical mailing address of corresponding author
Contributions	3b	Describe contributions of protocol authors and identify the guarantor of the review
Amendments	4	If the protocol represents an amendment of a previously completed or published protocol, identify as such and list changes; otherwise, state plan for documenting important protocol amendments
Support:		
Sources	5a	Indicate sources of financial or other support for the review
Sponsor	5b	Provide name for the review funder and/or sponsor
Role of sponsor or funder	5c	Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol

INTRODUCTION

Rationale	6	Describe the rationale for the review in the context of what is already known
Objectives	7	Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)

METHODS

Eligibility criteria	8	Specify the study characteristics (such as PICO, study design, setting, time frame) and report characteristics (such as years considered, language, publication status) to be used as criteria for eligibility for the review
Information sources	9	Describe all intended information sources (such as electronic databases, contact with study authors, trial registers or other grey literature sources) with planned dates of coverage
Search strategy	10	Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it could be repeated

Study records:

Data management	11a	Describe the mechanism(s) that will be used to manage records and data throughout the review
Selection process	11b	State the process that will be used for selecting studies (such as two independent reviewers) through each phase of the review (that is, screening, eligibility and inclusion in meta-analysis)
Data collection process	11c	Describe planned method of extracting data from reports (such as piloting forms, done independently, in duplicate), any processes for obtaining and confirming data from investigators
Data items	12	List and define all variables for which data will be sought (such as PICO items, funding sources), any pre-planned data assumptions and simplifications
Outcomes and prioritization	13	List and define all outcomes for which data will be sought, including prioritization of main and additional outcomes, with rationale
Risk of bias in individual studies	14	Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis
Data synthesis	15a	Describe criteria under which study data will be quantitatively synthesised
	15b	If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data and methods of combining

data from studies, including any planned exploration of consistency (such as I^2 , Kendall's τ)

15c Describe any proposed additional analyses (such as sensitivity or subgroup analyses, meta-regression)

15d If quantitative synthesis is not appropriate, describe the type of summary planned

Meta-bias(es) 16 Specify any planned assessment of meta-bias(es) (such as publication bias across studies, selective reporting within studies)

Confidence in cumulative evidence 17 Describe how the strength of the body of evidence will be assessed (such as GRADE)

517 * **It is strongly recommended that this checklist be read in conjunction with the PRISMA-P Explanation
518 and Elaboration (cite when available) for important clarification on the items. Amendments to a review
519 protocol should be tracked and dated. The copyright for PRISMA-P (including checklist) is held by the
520 PRISMA-P Group and is distributed under a Creative Commons Attribution Licence 4.0.**

521

522 *From: Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart L, PRISMA-P
523 Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015:
524 elaboration and explanation. BMJ. 2015 Jan 2;349(jan02 1):g7647.*

525

526