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Abstract—The co-design problem of dual event-triggered
(DET) mechanism and polynomial dynamic output-feedback
(PDOF) controller is investigated for positive polynomial fuzzy
systems (PPFSs) with uncertainty and disturbance constraints.
Specifically, a 1-norm DET mechanism compatible with the pos-
itivity of PPFSs is proposed to asynchronously update measure-
ment outputs and PDOF control signals. However, synthesizing
this DET-PDOF controller proves challenging due to the coupling
of multiple unknown PDOF controller gain matrices within the
positivity and stability conditions, which results in complex non-
convex terms. By introducing auxiliary variables and constraints,
sufficient conditions for DET-PDOF controller solution are given
to ensure both the L1-gain performance and strict positivity
of PPFSs with uncertainty and disturbance. Moreover, existing
stability analysis results that ignore membership functions (MFs)
tend to be conservative, implying that the obtained DET-PDOF
controller is effective only within a limited triggered threshold
range, leading to worse transmission performance. Therefore, a
multivariate optimization method based on an improved genetic
algorithm (IGA), which accounts for the system states and PDOF
controller variables, is developed to substantially expand the
admissible DET threshold range while effectively suppressing
dual-triggering frequencies. Finally, a numerical example and a
two-linked tank system with parameter uncertainty are provided
to validate the feasibility of the proposed scheme.

Index Terms—Positive polynomial fuzzy systems, polynomial
dynamic output-feedback (PDOF) control, dual event-triggered
(DET), improved genetic algorithm (IGA).

I. INTRODUCTION

POSITIVE systems are dynamical systems whose state and
output variables are restricted to the nonnegative quad-

rant [1], [2]. The inherent positivity can more appropriately
describe practical applications in industrial engineering and
biomedical fields, such as pharmacokinetics and biomedicine
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[3]–[5]. The analysis and control of positive systems are
more challenging due to their dynamics being constrained to
the nonnegative quadrant, which makes many conventional
methods for analyzing general systems less effective. Metzler
matrix theory and linear copositive Lyapunov function (LCLF)
in [6] provide effective tools for the stability analysis and
control synthesis of positive systems, and have been extended
to broader fields, including positive singular systems [7],
positive Markov jump systems [8], and positive switched
systems [9].

Considering the widespread nonlinearity and positivity, the
T-S fuzzy model is broadly used in the control synthesis of
nonlinear systems due to its approximation ability [10], [11].
Recently, the polynomial fuzzy model (PFM) has emerged
as a powerful alternative to conventional T-S fuzzy models,
circumventing their restriction to local positive nonlinear sys-
tem (PNS) representation and complex modeling rules [12],
[13]. Although extensive PFM results exist in the literature
for PNS, such as state estimation and stabilization [14],
[15], the majority of PFMs are constructed using type-1
fuzzy sets, whose deterministic grades of membership lack
the adaptability to handle the varying parameter uncertainties
inherent in practical systems. To address this limitation, a new
class of Interval Type-2 (IT2) fuzzy sets is introduced [16],
where the primary membership grades form a footprint of
uncertainty (FOU) to capture parameter uncertainties, and the
secondary membership grades are invariably one [17], [18].
Recent research has focused on the design of IT2 polynomial
state-feedback controller and IT2 polynomial static output-
feedback controller in PPFSs [19].

In practice, not all state information of PPFSs can be ac-
curately measured, output-feedback control proves to be more
effective than state-feedback control [20]–[23]. While static
output-feedback frameworks for PPFSs have been established
in [24], [25], dynamic output-feedback (DOF) control can
achieve enhanced performance due to its superior capability in
handling complex dynamics through internal state compensa-
tion. Given this, some DOF results with research difficulty and
practical value have been applied in PNS, such as [26], [27].
It can be found that the proposed DOF controller needs to re-
ceive output information continuously, ignoring the excessive
occupation of limited communication resources by informa-
tion transmission. In [28]–[30], an event-triggered scheme is
designed for the communication channel from the sensor to the
DOF controller to reduce communication energy consumption.
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In particular, a novel separation design framework is developed
in [31] for dynamic event-triggered output feedback control,
which employs dual-channel triggering mechanisms to address
limited network resources in networked control systems. A
critical limitation of the above works is that the standard 2-
norm event-triggered mechanism [32]–[34] are incompatible
with the analysis framework of positive systems, which typi-
cally relies on LCLF. Although [8] initiated the exploration of
the DET-DOF control problem for positive linear systems via a
1-norm scheme suitable for positivity analysis, extending this
result to PPFSs is challenging due to the complex polynomial
structures in the fuzzy subsystems. Furthermore, the different
gain parameters in the PDOF control law affect the system’s
positivity and stability, introducing more nonconvex terms and
inevitably increasing the difficulty of solving the convexity
problem. To the best of the author’s knowledge, the DET-
PDOF control for PNS under nonconvex constraints remains
unsolved, which inspires the current study.

Most existing studies on event-triggered control for fuzzy
systems rely on the membership-function-independent (MFI)
method, which accommodates MFs of arbitrary shapes and
yields conservative results. This conservative results often
restrict the event-triggered threshold to a small range to ensure
system stability. However, such a small threshold leads to fre-
quent communications, undermining the primary advantage of
event-triggered control. In [19], the IT2 membership-function-
dependent (MFD) method is employed to incorporate MF
information into stability conditions, thereby enhancing the L1

performance index of fuzzy event-triggered filter. An event-
triggered fault-tolerant control strategy based on the MFD
method is developed in [35] to derive less conservative stability
conditions and address the mismatched premise variables
induced by the event-triggered mechanism. Nevertheless, the
potential of utilizing MF information to expand the allowable
triggering threshold range and enhance triggering performance
have not been deeply explored. Moreover, the considered MFs
in these works depend strictly on single variables. In contrast,
multivariable MFD methods offer a mechanism to coordinate
the asynchronous state variables between the system and
PDOF controller, which is the pivotal mechanism for achieving
superior control performance. Consequently, it is crucial to
develop novel multivariable MFD techniques that fully utilize
IT2-MF information to provide a broader threshold selection
domain and enhance event-triggered control performance.

To address these challenges, the combined DET and PDOF
control strategy is explored for PPFSs containing uncertain-
ties to improve control performance under the IGA-MFD
approach. The main contributions are as follows:

1) In this paper, the PDOF control problem under a DET
mechanism is investigated for PPFSs with parameter un-
certainties. Unlike the single-channel triggering strategy
[19], a more comprehensive DET mechanism is designed
to update both measurement output and PDOF con-
troller signals. Crucially, standard 2-norm event-triggered
schemes [32]–[34] are not applicable in the positive
system framework, as the resulting quadratic terms are
incompatible with the linear structure required for LCLF.
Therefore, a 1-norm DET mechanism is proposed that

naturally aligns with the inherent positivity of PPFSs.
2) To overcome the challenging nonconvexity arising from

the coupling of polynomial controller gains, a convexifi-
cation approach is proposed. In contrast to the existing
method in linear systems that achieves solvability via
matrix decomposition and linear programming [8], this
paper introduces auxiliary matrices and establishes a
crucial linear relationship among them to successfully
eliminate the coupling of polynomial terms. Thereby,
convex conditions guaranteeing system positivity and
stability are derived for the PPFSs.

3) The design flexibility of the DET mechanism regarding
trigger frequency and threshold selection is explored from
the perspective of MFs. In contrast to univariate MFD
[19], [36] or MFI [28] methods, the proposed IGA-MFD
method employs multivariate IT2-MFs approximation
to handle the asynchronous premise variables between
the coupled system dynamics and the PDOF controller.
Consequently, it provides a significantly larger upper
bound for the triggering threshold interval and achieves
a lower triggering frequency compared to conventional
approaches.

This paper is structured as follows. The preliminaries are
presented in Section II. In Section III, the positivity and
L1-gain performance stability analysis are shown. The less
conservative results based on IGA-MFD method are shown
in Section IV. The simulation and comparison results are
provided in Section V, followed by a summary of the paper
in Section VI.

Notation: A polynomial m (x) is an SOS if it satisfies
m (x) =

∑p
i=1 ni(x)

2, where p is a nonnegative integer.
A(f,s) is the f th row, sth column element of A. For a
function w (t) that belongs to L1 [0,∞) with its L1-norm
‖w (t)‖L1

=
∫∞
t=0
‖w (t)‖1 < ∞. The 1-norm ‖x‖1 and ∞-

norm ‖x‖∞ are defined as ‖x‖1 =
∑n
k=1 |xk| and ‖x‖∞ =

max{|x1| , ..., |xn|} with x ∈ <n, respectively. 1s×s is an
s× s dimensional matrix which has elements of 1. Define
1s = (1, ..., 1)T ∈ <s and 1fs = (0, ..., 0, 1, 0, ..., 0)T ∈ <s,
which 1 is the f th element of 1fs . i represents 1, 2, ..., i.

II. PRELIMINARIES

A. IT2 Positive Polynomial Fuzzy System

A PNS with disturbance and uncertainty described by the
following IT2 positive PFM with np plant rules.

Rule i : If f1(x(t)) is M̃ i
1 and · · · and fΨ (x(t)) is M̃ i

Ψ , then
ẋ(t) = Ai(x(t))x(t) + Bi(x(t))û(tuq )

+Bwi(x(t))w(t) t ∈ [tuq , t
u
q+1]

y(t) = Ci(x(t))x(t)
z(t) = Di(x(t))x(t) + Ewi(x(t))w(t),

in which x(t) ∈ <n, û(tuq ) ∈ <m, w(t) ∈ <r+, y(t) ∈ <l
and z(t) ∈ <q are the system state, the last transmitted value
of the control input û(t), disturbance input, measurement and
control output, respectively; M̃ i

α is an IT2 fuzzy set based
on the premise variable fα(x(t)) of rule i, i = 1, ..., np,
α = 1, . . . ,Ψ , Ψ is a positive integer; Ai(x(t)) ∈ <n×n,
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Fig. 1. Block diagram of the dual event-triggered control.

Bi(x(t)) ∈ <n×m, Bwi(x(t)) ∈ <n×r, Ci(x(t)) ∈ <l×n,
Di(x(t)) ∈ <q×n and Ewi(x(t)) ∈ <q×r are matrices with
appropriate dimension. The firing strength of the ith rule is
given by the following expression:

Wi(x(t)) =

[∏Ψ

α=1
µ
M̃i
α

(fα(x(t))),
∏Ψ

α=1
µ̄M̃i

α
(fα(x(t)))

]
= [wi(x(t)), wi(x(t))] , (1)

where wi(x(t)) and wi(x(t)) denote the lower and upper
grades of membership governed by the upper and lower
MFs µ

M̃i
α

(fα(x(t))) ≥ 0 and µ̄M̃i
α

(fα(x(t))) ≥ 0, re-
spectively. Furthermore, it exhibits the property that 0 ≤
µ
M̃i
α

(fα(x(t))) ≤ µ̄M̃i
α

(fα(x(t))) ≤ 1, which leads to
0 ≤ wi(x(t)) ≤ wi(x(t)) ≤ 1 for all i. Then, the dynamics
of IT2-PFM is described by

ẋ(t) =
np∑
i=1

w̃i(x(t))
(
Ai(x(t))x(t) + Bi(x(t))û(tuq )

+Bwi(x(t))w(t)
)

t ∈ [tuq , t
u
q+1]

y(t) =
np∑
i=1

w̃i(x(t))Ci(x(t))x(t)

z(t) =
np∑
i=1

w̃i(x(t))
(
Di(x(t))x(t) + Ewi(x(t))w(t)

)
,

(2)

where
w̃i(x(t)) = εi(x(t))wi(x(t)) + ε̄i(x(t))w̄i(x(t)), (3)∑np

i=1
w̃i(x(t)) = 1, w̃i(x(t)) ≥ 0, ∀i, (4)

εi(x(t)) ∈ [0, 1] and ε̄i(x(t)) ∈ [0, 1] are nonlinear type
reduction functions not necessarily be known but exist, for all
i, owning the properties εi(x(t)) + ε̄i(x(t))= 1.

Definition 1 ( [8]): If all states and outputs of the system
are kept x (t) ≥ 0, y (t) ≥ 0 for any non-negative initial
conditions, inputs and external disturbances, the system is
positive.

Lemma 1 ( [8]): If Ai(x(t)) is the Metzler matrix and
Di(x(t)) ≥ 0, Bwi(x(t)) ≥ 0 and Ewi(x(t)) ≥ 0, then the
system {

ẋ(t) = Ai(x(t))x(t) +Bwi(x(t))w(t)
z(t) = Di(x(t))x(t) + Ewi(x(t))w(t)

is positive.

B. Dual-event-based IT2 Positive Polynomial Dynamic
Output-feedback Controller

The block diagram of the DET control is depicted in
Fig. 1. event-triggered mechanism 1 (ETM1) governs the
transmission of output data for the sensor-to-controller (S-
C) channel, while ETM2 handles the latest input data sent

to the controller, operating asynchronously with ETM1. The
triggering sequences of ETM1 and ETM2 are denoted by {typ},
p ∈ Z and {tuq }, q ∈ Z. A DET-PDOF controller is designed
based on the IPM concept [37] as follows:

Rule j : If g1(yc(t
u
q )) is Ñ j

1 AND · · ·AND gΩ (yc(t
u
q )) is Ñ j

Ω ,

then
ẋc(t) = Acij(xc(t))xc(t) + Bcj(xc(t))ŷ(typ), t ∈ [typ, t

y
p+1]

u (t) = Kcj(xc(t))yc(t),
yc(t) = Ccxc(t),
ŷ(typ) = y(typ),
û(tuq ) = u(tuq ),

in which xc(t), yc(t) and ŷ(typ) ∈ <l are the controller state,
controller output and the last transmitted value of the output
measurement y(t), respectively. Ñ j

β is an IT2 fuzzy set based
on the premise variable gβ(yc(t

u
q )) of rule j, j = 1, ..., nc,

β = 1, ...,Ω; Acij(xc(t)) ∈ <n×n, Bcj(xc(t)) ∈ <n×l and
Kcj(xc(t)) ∈ <m×n. The firing strength of the jth rule is
given as follows:

m̃j(yc(t
u
q ))=

[∏Ω

β=1
µ
Ñjβ

(gβ(yc(t
u
q ))),

∏Ω

β=1
µ̄Ñjβ

(gβ(yc(t
u
q )))

]
=
[
mj(yc(t

u
q )),mj(yc(t

u
q ))
]
, (5)

where mj(yc(t
u
q )) and mj(yc(t

u
q )) denote the lower and

upper grades of membership governed by the upper and
lower MFs µ

Ñjβ
(gβ(yc(t

u
q ))) ≥ 0 and µ̄Ñjβ

(gβ(yc(t
u
q ))) ≥ 0,

respectively. Furthermore, it exhibits the property that 0 ≤
µ
Ñjβ

(gβ(yc(t
u
q ))) ≤ µ̄Ñjβ

(gβ(yc(t
u
q )) ≤ 1, which leads to

0 ≤ mj(yc(t
u
q )) ≤ mj(yc(t

u
q )) ≤ 1 for all j. Then the IT2

PDOF controller is described by

ẋc(t) =
np∑
i=1

nc∑
j=1

w̃i(x(t))m̃j(yc(t
u
q ))(Acij(xc(t))

×xc(t) + Bcj(xc(t))ŷ(typ)), t ∈ [typ, t
y
p+1]

u (t) =
nc∑
j=1

m̃j(yc(t
u
q ))Kcj(xc(t))yc(t),

yc(t) =
nc∑
j=1

m̃j(yc(t
u
q ))Ccxc(t),

ŷ(typ) = y(typ),
û(tuq ) = u(tuq ),

(6)

where
m̃j(yc(t

u
q )) =

κj(yc(t
u
q ))mj(yc(t

u
q )) + κ̄j(yc(t

u
q ))mj(yc(t

u
q ))∑c

k=1 (κj(yc(t
u
q ))mk(yc(tuq )) + κ̄j(yc(tuq ))mk(yc(tuq ))

, (7)∑nc

j=1
m̃j(yc(t

u
q )) = 1, m̃j(yc(t

u
q )) ≥ 0, ∀j, (8)

(7) is the type reduction. κj(yc(t
u
q )) and κ̄j(yc(tuq )) are prede-

fined functions, for all j, have properties of 0 ≤ κj(yc(tuq )) ≤
1, 0 ≤ κ̄j(yc(tuq )) ≤ 1 and κj(yc(t

u
q )) + κ̄j(yc(t

u
q ))= 1.

Remark 1: It should be noted that this paper employs the
IT2 fuzzy MFs to handle the uncertainties and nonlinear issues
present in the system (2). Unlike type-1 fuzzy sets, IT2 fuzzy
sets effectively capture parameter uncertainties through their
upper and lower MFs (3).

Remark 2: In contrast to traditional static output-feedback
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control law, this work establishes a more flexible PDOF
control law by introducing an internal controller state xc.
Crucially, unlike most existing T-S fuzzy controllers [28]
whose gains are restricted to linear variations, the proposed
PDOF controller gains vary nonlinearly and smoothly with
the controller state xc. This dynamic adaptability makes it
especially suitable for practical applications such as the pop-
ulation model in biomedicine [3], lipoprotein metabolism and
potassium ion transfer model in pharmacokinetics [4].

Then, for generating the S-C channel and controller-to-
actuator (C-A) channel data transmission instants {typ} and
{tuq }, the following DET schemes are designed.

In the S-C channel, the 1-norm ETM1 applicable to PPFS
is introduced, described as

ŷ
(
typ
)

= y
(
typ
)
, ∀t ∈

[
typ, t

y
p+1

)
typ+1 = inf

{
t > typ

∣∣ ‖ey(t)‖1 > ky‖y(t)‖1
}
, (9)

where ey (t) = ŷ
(
typ
)
− y (t) is triggering error.

In the C-A channel, the 1-norm ETM2 applicable to PPFS
is introduced, described as

û
(
tuq
)

= u
(
tuq
)
, ∀t ∈

[
tuq , t

u
q+1

)
tuq+1 = inf

{
t > tuq

∣∣ ‖eu(t)‖1 > ku‖u(t)‖1
}
, (10)

where eu (t) = û
(
tuq
)
− u (t) =∑nc

j=1 m̃j(yc(t
u
q ))Kcj(xc(t))Cc(xc(t

u
q )−xc(t)) is triggering

error. ky, ku ∈ [0, 1) are constant thresholds to be designed.
The PDOF controller gains can be synthesized via matrix
decomposition into non-negative and non-positive matrices
Kcj(xc(t)) = K+

cj(xc(t)) + K−cj(xc(t)). Then, we can obtain
from event-triggered condition (9) and (10) that

− ky1l×ly(t) ≤ ey(t) ≤ ky1l×ly(t), (11)

− ku1m×m
nc∑
j=1

m̃j(yc(t
u
q ))
(
K+
cj(xc(t))

−K−cj(xc(t))
)
yc(t) ≤ eu(t) ≤ ku1m×m

nc∑
j=1

m̃j(yc(t
u
q ))
(
K+
cj(xc(t))−K−cj(xc(t))

)
yc(t). (12)

C. Dual-event-based Augmented Closed-Loop System

In the following, x (t), xc (t) and yc
(
tuq
)

are represented
by x, xc and ŷc to enhance readability. Denote ē = x − xc
as the state error, we obtain the augmented PPFSs formed by
IT2-PFM (2) and IT2-PDOF controllers (6) as follows:
χ̇ =

np∑
i=1

nc∑
j=1

w̃i(x)m̃j(ŷc)

×
(
Aij(x,xc)χ+ Bij(x,xc)ê + Bwij(x)w

)
z =

np∑
i=1

nc∑
j=1

w̃i(x)m̃j(ŷc)
(
Dij(x,xc)χ+ Ewi(x)w

) , (13)

where χ=
[
xT , ēT

]T
, ê=

[
eTy , e

u
j
T
]T

, eu =∑nc
j=1 m̃j(yc(t

u
q ))euj , and then

Aij(x,xc) =

[
A11
ij (x,xc) A12

ij (x,xc)

A21
ij (x,xc) A22

ij (x,xc)

]
,

Bij(x,xc) =

[
0 Bi(x)

−Bcj(xc) Bi(x)

]
,Bwij(x) =

[
Bwi(x)
Bwi(x)

]
,

Dij(x,xc) = [ Di(x) 0 ],Ewi(x) = Ewi(x),

with

A11
ij (x,xc) =Ai(x) + Bi(x)Kcj(xc)Cc,

A12
ij (x,xc) =−Bi(x)Kcj(xc)Cc,

A21
ij (x,xc) =Ai(x) + Bi(x)Kcj(xc)Cc

−Acij(xc)−Bcj(xc)C(x),

A22
ij (x,xc) =Acij(xc)−Bi(x)Kcj(xc)Cc.

III. DUAL-EVENT-BASED POLYNOMIAL FUZZY DYNAMIC
OUTPUT-FEEDBACK CONTROL FOR IT2 POSITIVE

POLYNOMIAL FUZZY SYSTEMS

Lemma 2: The system (2) is said to be stable with L1-gain
performance if the following conditions hold.

1) The PPFS is positive and asymptotically stable; specifi-
cally, for w (t) = 0,

∫∞
0
‖χ (t)‖1dt <∞ holds.

2) The following inequality satisfies∫ ∞
t=0

‖z (t)‖1dt < γ

∫ ∞
t=0

‖w (t)‖1dt

for w (t) ∈ L1 [0,∞) and a positive prescribed perfor-
mance γ.

A. L1-Gain Performance Stability for Dual-Event-based Aug-
mented Closed-Loop System

For w(t) = 0, a LCLF candidate for PPFSs is constructed
to ensure asymptotic stability at L1-gain performance level for
dual-event-based augmented closed-loop systems (13).

V(x,xc) = ξTχ, (14)

where ξT =
[
ξ1
T ξ2

T
]
, ξ1, ξ2 � 0 are constant vectors.

According to (11), (12) and Bcj(xc) ≥ 0, then

V̇(x,xc) = ξT χ̇

=

np∑
i=1

nc∑
j=1

w̃i(x)m̃j(ŷc)
(
ξTAij(x,xc)χ+ ξTBij(x,xc)ê

)
≤

np∑
i=1

nc∑
j=1

w̃i(x)m̃j(ŷc)

{[
ξ1
T ξ2

T
][A11

ij (x,xc) A12
ij (x,xc)

A21
ij (x,xc) A22

ij (x,xc)

]
×
[

x
ē

]
+ ξ2

TBcj(xc)ky1l×lCi(x)x

+ (ξ1
T + ξ2

T )Bi(x)ku1m×m
(
K+
cj(xc)−K−cj(xc)

)
Ccxc

}
=

np∑
i=1

nc∑
j=1

w̃i(x)m̃j(ŷc)
[
Ξ1
ij (x,xc) Ξ2

ij (x,xc)
][x

ē

]
. (15)

Remark 3: Due to the nonnegativity of the system states,
the 1-norm used in (9) and (10) is equivalent to the sum of
the state variables, such as the size of biological populations,
the liquid level and the density of matter in physics, which the
2-norm [32], [33] fails to capture intuitively. From (15), the
principal advantage of the 1-norm event-triggered condition
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is its linearity [8], and this linearity perfectly aligns with the
LCLF framework, significantly facilitating the scaling of state
variables.

When w(t) = 0 is applied to the system (13), we get

z =

np∑
i=1

nc∑
j=1

w̃i(x)m̃j(ŷc)Dij(x,xc)χ, (16)

it holds that Dij(x,xc) ≥ 0 because of the positive constraint.
So, V̇(x,xc) ≤ 0 can be guaranteed by follows[

Ξ1
ij (x,xc) Ξ2

ij (x,xc)
]

+ 1Tq Dij(x,xc)

=
[

Ξ̂1
ij(x,xc) Ξ̂2

ij(x,xc)
]
≤ 0. (17)

Define σ11l×n ≤ Cc ≤ σ21l×n, σ2 ≥ σ1 ≥ 0, it follows
from (17) that

Ξ̂1
ij(x,xc) ≤

(
ξ1
T + ξ2

T
)
Ai(x)− ξ2

TAcij(xc)

+
(
ξ1
T + ξ2

T
)
Bmaxσ2

(
I + ku1m×m

)
K+
cj(xc)1l×n

+
(
ξ1
T + ξ2

T
)(

Bminσ1I−Bmaxkuσ21m×m
)
K−cj(xc)1l×n

− ξ2
TBcj(xc)

(
I− ky1l×l

)
Ci(x) + 1Tq Di(x), (18)

Ξ̂2
ij(x,xc) ≤ ξ2

TAcij(xc)

−
(
ξ1
T + ξ2

T
)
Bminσ1

(
I + ku1m×m

)
K+
cj(xc)1l×n

−
(
ξ1
T + ξ2

T
)(

Bmaxσ2I −Bminkuσ1Im×m
)
K−cj(xc)1l×n,

(19)

where Bmax = [bfs,max] ∈ Rn×m is a matrix whose element
in the f -th row and s-th column is bfs = max

x∈X
{bfs,i (x)} , f =

1, ..., n, s = 1, ...,m, i = 1, ..., np. Bmin = [bfs,min],
similarly. Next, the polynomial terms formed by multiplying
ξ1
T + ξ2

T by K+
cj(xc) or K−cj(xc) in (18) and (19) are

nonconvex terms that cannot be resolved by the Matlab
SOSTOOLS, so we construct the following auxiliary matrices
to replace the nonconvex terms.

α1O
+
cj(xc) ≤ (ξ1

T + ξ2
T )BminK+

cj(xc)

≤ (ξ1
T + ξ2

T )BmaxK+
cj(xc) = O+

cj(xc), (20)

O−cj(xc) = (ξ1
T + ξ2

T )BmaxK−cj(xc)

≤ (ξ1
T + ξ2

T )BminK−cj(xc) ≤ α2O
−
cj(xc), (21)

ξ2
TAcij(xc) =

∑n

f=1
mcij
f (xc), (22)

ξ2
TBcj(xc) =

∑n

f=1
ncjf (xc), (23)

where 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1.
Then, taking (20), (21), (22) and (23) into (18) and (19),

we can summarize as follows

V̇(x,xc) ≤
np∑
i=1

nc∑
j=1

w̃i(x)m̃j(ŷc)
[

Ξ̃1
ij (x,xc) Ξ̃2

ij (x,xc)
]
χ,

Ξ̃1
ij(x,xc) =

(
ξ1
T + ξ2

T
)
Ai(x) + O−cj(xc)

(
α2σ1 −mkuσ2

)
× 1l×n + O+

cj(xc)σ2

(
I +mku1l×l

)
1l×n −

n∑
f=1

mcij
f (xc)

−
n∑
f=1

ncjf (xc)
(
I− ky1l×l

)
Ci(x)+1Tq Di(x)≤−ε1n, (24)

Ξ̃2
ij(x,xc) =

n∑
f=1

mcij
f (xc)−O+

cj(xc)α1σ1

(
I +mku1l×l

)
× 1l×n −O−cj(xc)

(
σ2 −mkuα2σ1

)
1l×n ≤ −ε1n, (25)

from (24) and (25), there is a positive constant ε satisfying
V̇(x,xc) ≤ −ε‖χ‖1, it is easily obtained that

∫∞
t=t0
‖χ‖1dt ≤

∞. Then, the stability of PPFS (13) can be confirmed.
Remark 4: Compared with a commonly used quadratic

Lyapunov function, the LCLF fully captures the inherent
positivity of positive systems, naturally matches positive state
trajectories, and typically yields less conservative results.
Furthermore, the 1-norm DET conditions are highly consistent
with this type of LCLF, which facilitates the stability analysis
of positive systems and the design of triggering controllers.

Next, for the system with w(t) 6= 0, consider the perfor-
mance index defined as J(x,xc) =

∫∞
t=0

(‖z‖1 − γ‖w‖1)dt.
Then, we have

J(x,xc) =

∫ ∞
t=0

(
V̇(x,xc) + ‖z‖1 − γ‖w‖1

)
dt−V(x,xc)

=

np∑
i=1

nc∑
j=1

w̃i(x)m̃j(ŷc)
{(
ξTAij(x,xc) + 1Tq Dij(x,xc)

)
χ

+
(
ξTBwij(x) + 1Tq Ewi(x)− γ1Tr

)
w + ξTBij(x,xc)ê

}
−V(x,xc)

=

np∑
i=1

nc∑
j=1

w̃i(x)m̃j(ŷc)
(
Ξ̃ij(x,xc)χ+Ψi(x)w

)
−V(x,xc). (26)

The stability and L1-gain performance of the PPFS (13)
are guaranteed if Ψi(x) ≤ 0, which leads to the L1-gain per-
formance condition J(x,xc) ≤ 0. Then, the PDOF controller
design forms in (20), (21), (22) and (23) are provided such
that the augmented system (13) is asymptotically stable and
satisfies the L1-gain performance.

Next, the SOS-based conditions are derived as follows.
Theorem 1: For given positive scalars ε, γ, 0 < k ≤ 1,

0 < kc ≤ 1, 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, vectors ξ1, ξ2 � 0, the
dual-event-based PPFS (13) is asymptotically stable with L1

performance such that

−
(

Ξ̃
1,(1,s)
ij (x,xc) + ε+ ν (x,xc)

)
is SOS,

i ∈ np, j ∈ nc, s ∈ n

−
(

Ξ̃
2,(1,s)
ij (x,xc) + ε+ ν (x,xc)

)
is SOS,

i ∈ np, j ∈ nc, s ∈ n

−
(
Ψ

(1,s)
i (x) + ν (x)

)
is SOS, i ∈ np, s ∈ r

−
(
O
cj,(1,s)
− (xc) + ν (xc)

)
is SOS, j ∈ nc, s ∈ l

O
cj,(1,s)
+ (xc)− ν (xc) is SOS, j ∈ nc, s ∈ l

N
(f,s)
cj (xc)− ν (xc) is SOS, j ∈ nc, f ∈ n, s ∈ l

where ν (x) > 0, ν (xc) > 0 and ν (x,xc) > 0

are predefined scalar polynomials. Ξ̃
m,(1,s)
ij (x,xc),

m ∈ {1, 2}, Ψ
(1,s)
i (x) are defined in (24), (25) and (26).
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ξ1 = [ξ11, ξ12, ..., ξ1n]T � 0, ξ2 = [ξ21, ξ22, ..., ξ2n]T � 0,
O+
cj(xc) =

[
ocj,1+ (xc) , o

cj,2
+ (xc) , ..., o

cj,l
+ (xc)

]
,

O
cj,(1,s)
+ (xc) = ocj,s+ (xc); Mcij(xc) =[
mcij

1 (xc) , ...,m
cij
f (xc)

]T
=
(
mcij
fs (xc)

)
∈ <n×n and

Ncj(xc) =
[
ncj1 (xc) , ..., n

cj
f (xc)

]T
=
(
ncjfs(xc)

)
∈ <n×l,

N
(f,s)
cj (xc) = ncjfs (xc), ∀i ∈ np, j ∈ nc.

B. The Positivity for Dual-event-based Augmented Closed-
Loop System

According to DET errors (11), (12) and (13), we can get

χ̇≥
np∑
i=1

nc∑
j=1

w̃i(x)m̃j(ŷc)
(
Âij(x,xc)χ+ Bwij(x)w

)
, (27)

where

Â
11

ij (x,xc) =Ai(x) + Bi(x)
(
σ1I− kuσ21m×m

)
K+
cj(xc)1l×n

+ Bi(x)σ2

(
I + ku1m×m

)
K−cj(xc)1l×n,

Â
12

ij (x,xc) =−Bi(x)
(
σ2I− kuσ11m×m

)
K+
cj(xc)1l×n

−Bi(x)σ1

(
I + ku1m×m

)
K−cj(xc)1l×n,

Â
21

ij (x,xc) =Ai(x) + Bi(x) (σ1I− kuσ21m×m) K+
cj(xc)1l×n

+ Bi(x)σ2

(
I + ku1m×m

)
K−cj(xc)1l×n

−Acij(xc)−Bcj(xc)
(
I + ky1l×l

)
Ci(x),

Â
22

ij (x,xc) =Acij(xc)−Bi(x)
(
σ2I− kuσ11m×m

)
K+
cj(xc)1l×n

−Bi(x)σ1

(
I + ku1m×m

)
K−cj(xc)1l×n.

Form (20), (21), (22) and (23), the DET-PDOF controller
gains are given as below:

K+
cj(xc) =

1mO+
cj(xc)(

ξ1
T + ξ2

T
)

Bmax1m
, (28)

K−cj(xc) =
1mO−cj(xc)(

ξ1
T + ξ2

T
)

Bmax1m
, (29)

acijf (xc) =
mcij
f (xc)

ξ2
T1

(f)
n

, (30)

bcjf (xc) =
ncjf (xc)

ξ2
T1

(f)
n

. (31)

Combining β1

(
ξ1
T + ξ2

T
)
Bmax1m ≤ ξ2

T1
(f)
n ≤

β2

(
ξ1
T + ξ2

T
)
Bmax1m, it holds that

Ãij(x,xc) ≥ Âij(x,xc),

Ã
11

ij (x,xc) ≥
(
ξ1
T + ξ2

T
)
Bmax1mAi(x)

+ Bi(x)σ2

(
I + ku1m×m

)
1mO−cj(xc)1l×n

+ Bi(x)
(
σ1I− kuσ21m×m

)
1mO+

cj(xc)1l×n, (32)

Ã
12

ij (x,xc) ≥ −Bi(x)σ1

(
I + ku1m×m

)
1mO−cj(xc)1l×n

−Bi(x)
(
σ2I− kuσ11m×m

)
1mO+

cj(xc)1l×n, (33)

Ã
21

ij (x,xc) ≥ ξ2
T1(f)

n Ai(x)− ncjf (xc)
(
I + ky1l×l

)
Ci(x)

−mcij
f (xc) + Bi(x)

(
β1σ1I− β2kuσ21m×m

)
1mO+

cj(xc)1l×n

+ β2Bi(x)σ2

(
I + ku1m×m

)
1mO−cj(xc)1l×n, (34)

Ã
22

ij (x,xc)≥−Bi(x)
(
β2σ2I− β1kuσ11m×m

)
1mO+

cj(xc)1l×n

− β1Bi(x)σ1

(
I + ku1m×m

)
1mO−cj(x,xc)1l×n + mcij

f (xc) .

(35)

Therefore, the augmented system (13) is proved to be
positive if conditions Ãij(x,xc) are Metzler,Bwij(x) ≥
0,Dij(x,xc) ≥ 0,Ewi(x) ≥ 0 are fulfilled. The SOS-based
positivity sufficiency conditions for the augmented system (13)
can be derived in follow Theorem.

Theorem 2: For given positive scalars ε, γ, 0 < k ≤ 1,
0 < kc ≤ 1, 0 ≤ β1 ≤ β2, 0 ≤ σ1 ≤ σ2, vectors ξ1, ξ2 � 0,
the dual-event-based PPFS (13) is positive such that

Ã
11,(f,s)

ij (x,xc)− ν (x,xc) is SOS, i ∈ np, j ∈ nc, f 6= s ∈ n

Ã
12,(f,s)

ij (x,xc)− ν (x,xc) is SOS, i ∈ np, j ∈ nc, f = s ∈ n

Ã
21,(f,s)

ij (x,xc)− ν (x,xc) is SOS, i ∈ np, j ∈ nc, f = s ∈ n

Ã
22,(f,s)

ij (x,xc)− ν (x,xc) is SOS, i ∈ np, j ∈ nc, f 6= s ∈ n

ξ2
T1(f)

n − β1

(
ξ1
T + ξ2

T
)
Bmax1m − ν (x) is SOS, f ∈ n

β2

(
ξ1
T + ξ2

T
)
Bmax1m − ξ2

T1(f)
n − ν (x) is SOS, f ∈ n

σ2 −C(f,s)
c − ν is SOS, j ∈ nc, f ∈ l, s ∈ n

C(f,s)
c − σ1 − ν is SOS, j ∈ nc, f ∈ l, s ∈ n

C
(f,s)
i (x)− ν (x) is SOS, i ∈ np, f ∈ l, s ∈ n

B
(f,s)
wi (x)− ν (x) is SOS, i ∈ np, f ∈ n, s ∈ r

E
(f,s)
wi (x)− ν (x) is SOS, i ∈ np, f ∈ q, s ∈ r

where ν > 0 is predefined scalar. Cc =
(
ccfs
)
∈ <l×n,

C
(f,s)
c = ccfs, Bwi(x) =

(
bwifs(x)

)
∈ <n×r, B

(f,s)
wi (x) =

bwifs(x) and Ewi(x) =
(
ewifs
)
∈ <q×r, E

(f,s)
wi (x) = ewifs(x).

Ã
mn,(f,s)

ij (x,xc), m,n ∈ {1, 2} are defined in (32), (33), (34)
and (35). The PDOF controller gains are defined in (28), (29),
(30) and (31).

Remark 5: Due to the introduction of new state vari-
ables, the order of the dual-event-based augmented systems
(13) increases, and the nonconvex conditions become more
complex. To handle the nonconvex terms introduced by the
coupled PDOF gains Acij(xc), Bcj(xc), Cc and Kcj(xc), we
design a novel convexification strategy by establishing specific
bounds on Cc and constructing auxiliary variables (20)-(23)
to replace the nonconvex terms in the stability conditions. In
the positivity analysis, the inconsistent denominators among
the control gains in (28)-(31) are resolved by imposing a
bounding constraint β1

(
ξ1
T + ξ2

T
)
Bmax1m ≤ ξ2

T1
(f)
n ≤

β2

(
ξ1
T + ξ2

T
)
Bmax1m. This critical step successfully trans-

forms the intractable nonconvex positivity constraints into
convex SOS-based conditions, thereby ensuring the solvability
of the proposed scheme via SOSTOOLS.

Remark 6: A positive system is defined by the non-
negativity of its closed-loop state response, rather than by
non-negative control inputs. Even if the input is negative,
the system can still maintain positivity provided that the
system matrix Ai(x) is Metzler and the input matrix satisfies
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Bi(x) ≥ 0.

IV. IT2 MFD CONTROL FOR IT2 DUAL-EVENT-BASED
AUGMENTED CLOSED-LOOP SYSTEM

A. Multivariable Chebyshev Embedded Type-1 Membership
Functions Based on IGA

Inspired by [38], multivariable Chebyshev MFs with mini-
mum approximation error are used as the polynomial function
with the best approximation degree to deal with the embedded
type-1 MFs h̃ij (x, ŷc) = w̃i (x) m̃j (ŷc). It takes the follow-
ing form

ĥ∗ij
(
ζ∗ij
∣∣x,xc) =

∑s

g=1
a∗ijgςg (x,xc)

= h̃ij (x, ŷc)−
∥∥∆h∗ijι

(
ζ∗ij
∣∣x,xc)∥∥∞, (36)∥∥∆h∗ijι

(
ζ∗ij
∣∣x,xc)∥∥∞

= inf
ĥij( ζ∗ij|x,xc)∈H

max
x,ŷc∈X

∣∣∣h̃ij (x, ŷc)− ĥij (ζij |x,xc)
∣∣∣ , (37)

where H = span{ςs (x,xc) , ςs−1 (x,xc) , ..., ς1 (x,xc) , 1},
X is a predefined compact subset of Banach space.

However, how to obtain more accurate multivariable Cheby-
shev MFs by optimizing the Chebyshev error is the critical
issue. The process of multivariable Chebyshev MFs optimiza-
tion is represented by the following Algorithm.

P: min max
x,xc∈X

∣∣∣h̃ij (x, ŷc)− ĥij (ζij |x,xc)
∣∣∣

subject to X = { (x1, ..., xn)| −∞ ≺ xs ≺ ∞, s ∈ [1, n]} .

Remark 7: As shown in (36) and (37), the Chebyshev MFs
ĥ∗ij
(
ζ∗ij
∣∣x,xc) constitute the optimal solution in a given finite

dimensional linear subspace H [38]. Note that the solution to
the optimization problem P (finding the minimal multivariate
polynomial error) involves a multi-dimensional space spanned
by the state x and xc. Therefore, we propose an IGA to solve
this multidimensional function extremum problem, which is
suitable for the optimization process of problem P, and can
quickly find more accurate multivariate Chebyshev MFs.

Remark 8: The innovation of IGA is embodied in two
aspects. One is Step 9 of the IGA, which selects the n = mp·P
elite individuals to be retained before the selection operation,
so as to avoid the elite individuals being accidentally elim-
inated in the subsequent operation. The second is Step 11
of the algorithm, in the crossover operation, the population
after the crossover and the population before the crossover
are combined. The combined population is sorted by the
Chebyshev error and the optimal individuals are selected
to form a new population, which will provide an excellent
population base for the subsequent operations.

B. Multivariable IT2-MFD Analysis for Dual-event-based
Augmented Closed-Loop System

Now, the relaxed IT2 stability conditions can be obtained by
introducing multivariable embedded type-1 MFs and cheby-
shev error calculated by the IGA. Define slack matrices

Algorithm: Multivariable Chebyshev MFs Optimization
Based on IGA
1: Initialize the number of population, chromo-

some lchrom and maximum generation as:
P ← popsize, I ← lchrom and G ← generation

2: OLDPOP ← generateRandomPopulation (P , I)
3: for gen=1:maxgen
4: asij ∈

[
alsij , au

s
ij

]
← applyTaylor (h̃ij)

5: for i = 1 : P

6: Calculates the state quantity in the interval that
maximizes the error |∆hij (ζij |x,xc)| as:[
xim,x

i
cm

]
← solveMax (asij)

7: The maximum error is defined as:

Fit(i) =
∣∣∣h̃ij (xim,xicm)− ĥij (ζij |xim,xicm)∣∣∣

8: Rank the Fitness from largest to smallest and find
the MaxFitness and its asij

9: EPOP← retainEliteIndividuals (OLDPOP, mp ·P )
10: TEMP ← applySelect (OLDPOP)
11: if rand < pcross then

cTEMP ← applyCrossover (TEMP, Pcross)
end

12: if rand < Pmuta then
OLDPOP ← applyMutation (cTEMP, Pmuta)

end
13: OLDPOP← retainEliteIndividuals (EPOP, mp ·P )
14: end
15: end
16: (BestGEN, BestFIT)← getBest (OLDPOP)
17: Output:

∥∥∆h∗ijι
(
ζ∗ijι
∣∣x,xc)∥∥∞, a∗ij and Gbest

0 < Yijι(x,xc) ∈ <1×n, satisfy
∑ε
ι=1 ϑιYijι(x,xc) −

Ξ̃ij(x,xc) ≥ 0. Combining (36) and (37),

V̇(x,xc) ≤
np∑
i=1

nc∑
j=1

h̃ij(x, ŷc)Ξ̃ij(x,xc)χ

≤
np∑
i=1

nc∑
j=1

(
ĥ∗ij
(
ζ∗ijι
∣∣x,xc) Ξ̃ij(x,xc) +

ε∑
ι=1

ϑι

×
∥∥∆h∗ijι

(
ζ∗ijι
∣∣x,xc)∥∥∞Yijι(x,xc)

)
χ. (38)

In addition, by introducing the boundary information of
the operating domain, we restrict the stability conditions to
the local subspaces defined by xg ∈ [xg1, xg2] and xcg ∈[
xcg1, x

c
g2

]
, g = 1, 2, ..., n, thereby reducing the conservatism

of the stability analysis. For this reason, we have the following
constraints:

ε∑
ι=1

ϑι

( n∑
g=1

(xg − xg1ι) (xg2ι − xg)

+

n∑
g=1

(
xcg − xcg1ι

) (
xcg2ι − xcg

))
Ngι(x,xc) ≥ 0. (39)
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where define slack matrices Ngι(x,xc) ∈ <1×n, satisfy
Ngι(x,xc) ≥ 0. From (39),

V̇(x,xc) ≤
ε∑
ι=1

ϑι

np∑
i=1

nc∑
j=1

(
ĥ∗ij
(
ζ∗ijι
∣∣x,xc) Ξ̃ij(x,xc)

+
∥∥∆h∗ijι

(
ζ∗ijι
∣∣x,xc)∥∥∞Yijι(x,xc) +

( n∑
g=1

(xg − xg1ι)

×(xg2ι − xg)+
n∑
g=1

(
xcg − xcg1ι

)(
xcg2ι − xcg

))
Ngι(x,xc)

)
χ. (40)

Besides, define slack matrices 0 < Ziι(x,xc) ∈ <1×n,
satisfy

∑ε
ι=1 ϑιZiι(x,xc)−Ψi(x,xc) ≥ 0. Combining (26),

(36) and (37),

J(x,xc) ≤
ε∑
ι=1

ϑι

np∑
i=1

nc∑
j=1

(
ĥ∗ij
(
ζ∗ijι
∣∣x,xc)Ψi(x)

+
∥∥∆h∗ijι

(
ζ∗ijι
∣∣x,xc)∥∥∞Ziι(x,xc)+( n∑

g=1

(xg − xg1ι)(xg2ι − xg)

+

n∑
g=1

(
xcg − xcg1ι

)(
xcg2ι − xcg

))
Ngι(x,xc)

)
w−V(x,xc). (41)

Remark 9: Since Theorem 1 ignores the IT2-MFs, the
stability conditions are conservative. From (38), the IT2-MFs
h̃ij (x, ŷc) = w̃i (x) m̃j (ŷc) are transformed into approximat-
ing embedded type-1 MFs and their bounded approximation
errors, leading to the relaxation of the stability conditions.
Consequently, this relaxation allows for a wider feasible range
of event-triggered threshold selection, enhancing the design
flexibility.

Remark 10: A major challenge arises from the mismatched
premise variables, where w̃i(x) depend on x and m̃j(ŷc)
depend on ŷc, complicating the MFD analysis. We combine
the DET mechanism (10) and output dynamics to address the
issue of asynchronous premise variables in the PDOF control
process. The method is divided into the following two steps:
Step 1. Estimate yc

(
tuq
)

by yc (t): According to the event-
triggered condition (10), (12) couples yc(t

u
q ) and yc(t), and

depends on the polynomial matrices Kcj(xc). We introduce
a linear constraint on the possible range of values for yc(t

u
q ),

which can be defined as∣∣yc(tuq )− yc(t)
∣∣ ≤ ωmax |yc(t)|+ ρmax1l, (42)

where ωmax and ρmax are positive constants.
Step 2. Output dynamics: Combining σ11l×n ≤ Cc ≤

σ21l×n, (42) can be rewritten as

Ccxc(t)− ωmaxCcxc(t)− ρmax1l ≤ yc(t
u
q )

≤ Ccxc(t) + ωmaxCcxc(t) + ρmax1l. (43)

Then, the relationship between the asynchronous premise
variables is as follows:

(σ1 − ωmaxσ2) 1l×nxc(t)− ρmax1l ≤ yc(t
u
q )

≤ (1 + ωmax)σ21l×nxc(t) + ρmax1l. (44)

Next, the SOS-based conditions are derived as follows.

Theorem 3: For given positive scalars ε, γ, 0 < k ≤ 1,
0 < kc ≤ 1, 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1, vectors ξ1, ξ2 � 0,
the dual-event-based PPFS (13) is asymptotically stable with
L1-gain performance such that

−

 ε∑
ι=1

ϑι

np∑
i=1

nc∑
j=1

(
ĥ∗ijι

(
ζ∗ijι
∣∣x,xc) Ξ̃fijι(x,xc)

+
∥∥∆h∗ijι

(
ζ∗ijι
∣∣x,xc)∥∥∞Y fijι(x,xc) +

( n∑
g=1

(xg − xg1ι)

× (xg2ι − xg) +

n∑
g=1

(
xcg − xcg1ι

) (
xcg2ι − xcg

) )
Nf
gι(x,xc)

)
+ν (x,xc)) is SOS, i ∈ np, j ∈ nc, f ∈ n (45)

−

 ε∑
ι=1

ϑι

np∑
i=1

nc∑
j=1

(
ĥ∗ijι

(
ζ∗ijι
∣∣x,xc)Ψf

iι(x)

+
∥∥∆h∗ijι

(
ζ∗ijι
∣∣x,xc)∥∥∞Zfiι(x,xc)+( n∑

g=1

(xg − xg1ι)

× (xg2ι − xg) +

n∑
g=1

(
xcg − xcg1ι

) (
xcg2ι − xcg

))
Nf
gι(x,xc)

)
+ν (x,xc)) is SOS, i ∈ np, j ∈ nc, f ∈ n (46)

Y fijι(x,xc)− Ξ̃fijι(x,xc) is SOS, i ∈ np, j ∈ nc, f ∈ n (47)

Zfiι(x,xc)−Ψf
iι(x) is SOS, i ∈ np, j ∈ nc, f ∈ n (48)

Y fijι(x,xc) is SOS, i ∈ np, j ∈ nc, f ∈ n (49)

Zfiι(x,xc) is SOS, i ∈ np, f ∈ n (50)

Nf
gι(x,xc) is SOS, i ∈ np, j ∈ nc, f ∈ n (51)

where Ξ̃fijι(x,xc), Ψf
iι(x), Y fijι(x,xc), Zfiι(x,xc) and

Nf
gι(x,xc) are the f th element of vector Ξ̃ijι(x,xc), Ψiι(x),

Yijι(x,xc), Zijι(x,xc) and Ngι(x,xc).

C. Analysis of Zeno Behavior

The following proof is used to exclude the Zeno behavior
in the DET mechanisms (9) and (10).

Part I: The derivative of error ey (t) on
[
typ, t

y
p+1

)
is

D+ey (t) = −
np∑
i=1

nc∑
j=1

h̃ij (x, ŷc)

np∑
s=1

w̃s (x) Cs(x)
(
Ai(x)

× x (t) + Bi(x)Kcj(xc)Ccxc
(
tuq
)

+ Bwi(x)w (t)
)
, (52)

Then, one obtains

D+ ‖ey (t)‖ ≤
np∑
i=1

nc∑
j=1

h̃ij (x, ŷc)

(
‖Ai(x)‖ ‖ey (t)‖

+

∥∥∥∥∥
np∑
s=1

w̃s (x)Cs(x)Ai(x)

∥∥∥∥∥∥∥x (typ)∥∥
+

∥∥∥∥∥
np∑
s=1

w̃s (x)Cs(x)Bi(x)Kcj(xc)Cc

∥∥∥∥∥ ∥∥xc (tuq )∥∥
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+

∥∥∥∥∥
np∑
s=1

w̃s (x)Cs(x)Bwi(x)

∥∥∥∥∥ ‖w (t)‖
)
, (53)

which means that D+ ‖ey (t)‖ ≤ a1 ‖ey (t)‖+ a2 with a1 =∑np
i=1

∑nc
j=1 h̃ij (x, ŷc)‖Ai(x)‖ and a2 is the upper bound of∑np

i=1

∑nc
j=1 h̃ij (x, ŷc)

(∥∥∑np
s=1 w̃s (x)Cs(x)Ai(x)

∥∥ ∥∥x (typ)∥∥
+
∥∥∑np

s=1 w̃s (x)Cs(x)Bi(x)Kcj(xc)Cc

∥∥∥∥xc (tuq )∥∥+∥∥∑np
s=1 w̃s (x) Cs(x)Bwi(x)‖ ‖w (t)‖). We denote w (t)

that is essentially bounded and belongs to L1 [0,∞)
with its L1-norm ‖w (t)‖L1

=
∫∞
t=0
‖w (t)‖1 < ∞. The

boundedness of x (t) and xc (t) can be ensured in the
stability analysis of the paper. Then, by integrating both sides
of D+ ‖ey (t)‖ ≤ a1 ‖ey (t)‖+a2 from typ to t, we can obtain

‖ey (t)‖ ≤ a2

a1

(
ea1(t−t

y
p) − 1

)
, (54)

from event-triggered condition (9), the next data transmission
instant typ+1 satisfies

ky

(∥∥ŷ (typ)∥∥1
−
∥∥ey (typ+1

)∥∥
1

)
≤
∥∥ey (typ+1

)∥∥
1
. (55)

Moreover, based on the relationship between the 1-norm
and 2-norm, it further indicates∥∥ey (typ+1

)∥∥
1
≤
√
n
∥∥ey (typ+1

)∥∥ , (56)

Then, combining with (54), (55) and (56), we obtain

ky
∥∥ŷ (typ)∥∥1√
n (1 + ky)

≤
∥∥ey (typ+1

)∥∥ ≤ a2

a1

(
ea1(t

y
p+1−t

y
p) − 1

)
, (57)

finally, noting ey
(
typ
)

= 0, the triggered interval is

typ+1 − typ ≥
1

a1
ln

(
1 +

a1ky
∥∥ŷ (typ)∥∥1

a2
√
n(1 + ky)

)
∆
= T ∗y > 0. (58)

Part II: The derivative of error eu (t) on
[
tuq , t

u
q+1

)
is

D+ ‖eu (t)‖ ≤
np∑
i=1

nc∑
j=1

h̃ij (x, ŷc)
(
‖Acij(xc)‖ ‖eu (t)‖

+

∥∥∥∥∥∥
np∑
s=1

nc∑
f=1

w̃s(x)m̃f (ŷc) Kcf (xc)CcBcj(xc)Cs(x)

∥∥∥∥∥∥∥∥x (typ)∥∥
+

∥∥∥∥∥∥
nc∑
f=1

m̃f (ŷc) Kcf (xc)CcAcij(xc)

∥∥∥∥∥∥ ∥∥xc (tuq )∥∥
)
, (59)

which means that D+ ‖eu (t)‖ ≤ b1 ‖eu (t)‖ + b2
with b1 =

∑np
i=1

∑nc
j=1 h̃ij (x, ŷc) ‖Acij(xc)‖ and

b2 is the upper bound of
∑np
i=1

∑nc
j=1 h̃ij (x, ŷc)(∥∥∥∑nc

f=1 m̃f (ŷc) Kcf (xc)CcAcij(xc)
∥∥∥∥∥xc (tuq )∥∥+

∥∥∑np
s=1

×
∑nc
f=1 w̃s(x)m̃f (ŷc) Kcf (xc)CcBcj(xc)Cs(x)

∥∥∥ ∥∥x (typ)∥∥).
Then, it follows that at t ∈

[
tuq , t

u
q+1

)
,

‖eu (t)‖ ≤ b2
b1

(
eb1(t−t

u
q ) − 1

)
, (60)

from event-triggered condition (10), the next data transmission

instant tuq+1 satisfies

ku(
∥∥û (tuq )∥∥1

−
∥∥eu (tuq+1

)∥∥
1
)

√
n

≤
∥∥eu (tuq+1

)∥∥
1√

n
≤
∥∥eu (tuq+1

)∥∥ ,
(61)

finally, noting eu
(
tuq
)

= 0, the triggered interval is

tuq+1 − tuq ≥
1

b1
ln

(
1 +

b1ku
∥∥û (tuq )∥∥1

b2
√
n(1 + ku)

)
∆
= T ∗u > 0. (62)

Consequently, for the DET schemes (9) and (10) in the S-C
and C-A channels, the Zeno behavior is excluded.

Theorem 4: For any data transmission instants {typ} and
{tuq }, there exist two positive constants T ∗y and T ∗u such that
typ+1 − typ ≥ T ∗y , tuq+1 − tuq ≥ T ∗u , then the Zeno behavior is
eliminated in the designed DET schemes (9) and (10).

V. ILLUSTRATIVE EXAMPLES

Example 1. The matrices of the PPFSs with a 3-rule PFM
are presented as follows for the x(t) = [x1(t) x2(t)]T and
xc(t) = [xc1(t) xc2(t)]T .

A1(x)=

[
−0.6−0.01x1 0.50

0.50 −0.40

]
,A2(x)=

[
−0.70 0.60
0.40+0.01x1 −0.60

]
,

A3(x) =

[
−0.60 0.50 + 0.01x1
0.50 −0.54− 0.01x1

]
,

B1(x) =

[
0.02 + 0.01x1 0.10

0.20 0.10

]
,B2(x) =

[
0.12 0.10
0.20 0.10

]
,

B3(x) =

[
0.10 0.10

0.20− 0.01x1 + 0.001x21 0.10

]
,

C1 (x) =
[
0.11− 0.01x1 0.10

]
,C3 (x) =

[
0.11 0.10

]
,

C2 (x) =
[
0.11 0.1− 0.02x1 + 0.001x21

]
,

D1 (x) =
[
0.15 + 0.01x1 + 0.002x21 0.15

]
,

D2 (x) =
[
0.10 0.13

]
,D3 (x) =

[
0.10 0.12

]
,

Bw2 (x) =
[
0.02 0.02

]
,Bw3 (x) =

[
0.01 0.02

]
,

Bw1 (x) =
[
0.01− 0.001x21 0.02

]
,Ew2 (x) =

[
0.02

]
,

Ew1 (x) =
[
0.02− 0.001x21

]
,Ew3 (x) =

[
0.01

]
,

where the IT2-MFs of PFM are chosen as w1 (x) =
1− 1

/(
1 + e−(x1−4)

)
, w3 (x) = 1

/(
1 + e−(x1−6)

)
, w1 (x) =

1− 1
/(

1 + e−(x1−3)
)
, w3 (x) = 1

/(
1 + e−(x1−7)

)
, w2 (x) =

1 − w1 (x) − w3 (x) , w2 (x) = 1 − w1 (x) − w3 (x). The
embedded type-1 MF is denoted as w̃i(x) = εi(x)wi(x) +
εi(x)wi(x), the nonlinear type reduction functions are
ε1(x) = (sin(2x1) + 2)/3, ε3(x) = (cos(2x1) + 2)/3.
w̃2(x) can obtained by w̃2(x) = 1 − w̃1(x) −
w̃3(x). The PDOF controller IT2-MFs with 2 fuzzy
rules is selected as m̄1 (yc(t

u
s )) = e−(yc1(tus )−5)2/12,

m1 (yc(t
u
s )) = e−(yc1(tus )−5)2/10, m2 (yc(t

u
s )) = 1 −

m1 (yc(t
u
s )) ,m2 (yc(t

u
s )) = 1 − m1 (yc(t

u
s )). Similarly, the

type reduction functions are κ1(yc(t
u
s )) = κ2(yc(t

u
s )) =

0.5. To intuitively demonstrate the effectiveness of the IGA-
MFD method in approximating multivariable MFs, we set
the parameters as population size P = 30, I = 10,
maximum generations Gmax = 1000, crossover probability
Pcross = 0.6, mutation probability Pmuta = 0.01 and
protection probability mp = 0.1. Based on these settings,
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the corresponding polynomial approximations of the MFs and
their approximation errors are obtained.

To verify the effectiveness of the proposed IGA-MFD
method (Theorem 3), we present a comparison between the
IT2-MFD methods based on the staircase MFs [36](case 2)
and the piecewise linear MFs [19] (case 3) in Table I. The
two methods are the most representative in the recent IT2-
MFD methods. In addition, the PDOF control law based on the
MFI method [28] (case 1) is also selected as a control reference
for comparison. The controller parameters Ocj(xc), Mcij(xc),
Ncj(xc) and the slacked matrices Ngι(x,xc) are set to order
2. The slacked matrices Yijι(x,xc) and Zijι(x,xc) are set to
order 4.

First, we compare the ranges of event-triggered thresholds
that different cases could guarantee the stability of the system.
The DET parameters are defined as ky = 0.1+0.1a and ku =
0.1 + 0.1b for the S-C and C-A channels. It should be noted
that the settings of the matrix parameters and the threshold
parameters are identical to ensure a fair comparison. The stable
regions with respect to the event-triggered parameters over the
ranges a = [−1, 4.5] , b = [−1, 3] are depicted in Fig. 2. As
shown in Fig. 2, the proposed IGA-MFD method significantly
outperforms the existing MFI in [28] and IT2-MFD in [36]
and [19] methods by yielding a larger stable region. This
indicates that the IGA-MFD method effectively introduces
more information about the IT2-MFs into the stability analysis.
Consequently, it significantly extends the allowable set of the
DET threshold parameters ky and ku to a wider subset of the
feasible parameter space, thereby enhancing design flexibility.

Fig. 2. Comparison of the influence of different cases on the stable region
of the DET threshold.

TABLE I
COMPARISON RESULTS OF DIFFERENT CASES

Case Method Ny Nu
[28] 1 MFI 72 75
[36] 2 staircase IT2-MFs 67 71
[19] 3 piecewise linear IT2-MFs 61 67

Theo. 3 4 IGA-MFD 60 65

Next, to improve the reliability of the results, we select the
points a = 3 and b = 0.48 at the boundary of the stable region
of Theorem 3 in Fig. 2 for verification with the parameters set
as α1 = α2 = 0.99, β1 = 0.001, β2 = 0.5, σ1 = 0.18,

Fig. 3. The simulation results of points a = 3 and b = 0.48. (a) Phase plots
of the state variables x(t). (b) Phase plots of the state variables xc(t).

Fig. 4. The simulation results of points a = 3 and b = 0.48. (a) The
trajectories of output y(t) and ŷ(typ). (b) The trajectories of input u(t) and
û(tuq ). (c) Interevent times of output transmissions. (d) Interevent times of
control updates.

σ2 = 0.25, ωmax = 1 and ρmax = 0.1. The PDOF controller
gain parameters are shown in Table II. The phase plots under
different initial conditions of the state variables x(t), PDOF
controller state variables xc(t) under case 4 are shown in Fig.
3 (a)-(b). The trajectories of the PPFS output measurement
y(t) and the last transmitted value of the output ŷ(typ), PDOF
control input u(t) and the last transmitted value of the output
û(tuq ), the release intervals of y(t) and u(t) under case 4 are
shown in Fig. 4 (a)-(d). The results show that the DET-PDOF
controller can stabilize the PPFSs and effectively reduce the
frequency of information transmission.

To further demonstrate the effect of the presented IGA-
MFD approach on DET performance, we compare the number
of triggering events Ny and Nu for the dual channels in
different cases as shown in Fig. 5 and Fig. 6. The thresholds
ky ∈ (0, 1) and ku ∈ (0, 1) are selected at intervals of 0.05,
with all other settings kept identical. Table I summarizes the
obtained triggering times of Ny and Nu under different cases
where the trigger threshold is ky = 0.1 and ku = 0.1. It
is observed that existing methods [28], [36] and [19] fail to
yield feasible solutions as the threshold increases and IGA-
MFD method proposed in our paper maintains stability over a
wider range. Furthermore, the IGA-MFD method can stabilize
the PPFSs with fewer event-triggered times under the same
thresholds. This performance advantage stems from the IGA-
MFD method’s ability to utilize IT2-MFs information, leading
to fewer data transmissions and optimized network resource
utilization compared to existing approaches.

In addition, we conduct a comparative analysis between our
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TABLE II
DUAL-EVENT-BASED POLYNOMIAL DYNAMIC OUTPUT-FEEDBACK CONTROL PARAMETERS

PDOF
controller matrices Event-based PDOF controller parameters

PDOF controller
system gains Acij (xc)

Ac11 (xc) = [−0.0010x2
c1 − 0.0082xc1 − 0.8529,−0.0000x2

c1 − 0.0118xc1 + 0.2642;

0.0004x2
c1 − 0.0140xc1 + 0.2760,−0.0002x2

c1 − 0.0096xc1 + 0.5991];

Ac21 (xc) = [−0.0009x2
c1 − 0.0009xc1 − 0.9828,−0.0000x2

c1 − 0.0099xc1 + 0.3417;

−0.0002x2
c1 − 0.0067xc1 + 0.1856,−0.0012x2

c1 − 0.0037xc1 − 0.8098];

Ac31 (xc) = [−0.0001x2
c1 − 0.0085xc1 − 0.8473, 0.0002x2

c1 − 0.0072xc1 + 0.1653;

−0.0001x2
c1 − 0.0084xc1 + 0.2884,−0.0021x2

c1 − 0.0031xc1 − 0.8857];

Ac12 (xc) = [−0.0011x2
c1 − 0.0066xc1 − 0.8396,−0.0004x2

c1 − 0.0076xc1 + 0.2618;

−0.0001x2
c1 − 0.0111xc1 + 0.2920,−0.0006x2

c1 − 0.0064xc1 − 0.5979];

Ac22 (xc) = [−0.0015x2
c1 + 0.0023xc1 − 0.9745,−0.0007x2

c1 − 0.0062xc1 + 0.3638;

−0.0005x2
c1 − 0.0043xc1 + 0.1945,−0.0019x2

c1 − 0.0008xc1 − 0.7970];

Ac32 (xc) = [−0.0006x2
c1 − 0.0035xc1 − 0.8506, 0.0001x2

c1 − 0.0020xc1 + 0.1520;

−0.0005x2
c1 − 0.0048xc1 + 0.2896,−0.0025x2

c1 − 0.0032xc1 − 0.9470].

PDOF controller
output gains Bcj (xc) and Cc

Bc1 (xc) = [0.0013x2
c1 + 0.0289xc1 + 1.1821; 0.0011x2

c1 + 0.0254xc1 + 0.9027];

Bc2 (xc) = [0.0052x2
c1 − 0.0082xc1 + 1.2072; 0.0043x2

c1 − 0.0015xc1 + 0.8988]. Cc = [0.2150; 0.2150].

PDOF controller
gains Kcj (x,xc)

Kc1 (xc) = [(−0.0085x2
c1 − 0.2119xc1 − 5.5070)/M];

Kc2 (xc) = [(−0.0108x2
c1 − 0.1945xc1 − 5.4805)/M].

1 M = (ξT1 + ξT2 )Bmax1m, where ξT1 = [18.2864 22.4810] and ξT2 = [2.5300 3.1878].

PDOF control law and the existing T-S fuzzy DOF controller
presented in [39]. Fig. 7 shows the evolution of the PDOF
controller gains Kcj(xc) and T-S fuzzy DOF controller gains
Kcj . In contrast to the fixed gains in [39], the proposed
PDOF gains vary with time, demonstrating higher flexibility.
As shown in Figs. 5 and 6, the PDOF scheme achieves fewer
triggering times (Ny, Nu) and superior performance under
identical thresholds, validating its efficiency.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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Fig. 5. Comparison of different cases on the triggering times Ny of S-C
trigger scheme.

Example 2. A system of two-linked tank is borrowed from
[40] to illustrate the applicability of the derived results.

ẋ1(t) = u1(t)− R̃1

√
x1(t)

−R12

√
|x1(t)− x2(t)|sign(x1(t)− x2(t))

ẋ2(t) = u2(t)− R̃2

√
x1(t)

+R12

√
|x1(t)− x2(t)|sign(x1(t)− x2(t))

, (63)

where ui(t) represents the flow of the i-th pump, measured
in liter/min. xi(t) holds for the level of i-th tank, i ∈ 1, 2.
R̃1 = γ1S1

√
2g, R̃2 = γ1S2

√
2g,R12 = γ12S1

√
2g, γi, γij

and g are physical constants, Si is the tank section. It is
assumed that the flow loss coefficient of each water tank is
easily affected by various uncertainties, such as manufacturing
errors or long-term deformation of parameters like the cross-
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Fig. 6. Comparison of different cases on the triggering times Nu of C-A
trigger scheme.
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Fig. 7. The evolution of the PFOD controller gains Kcj(xc) and T-S fuzzy
dynamic output-feedback controller gains Kcj .

sectional area and height of the water tank. Meanwhile, some
nonlinear behaviors in this system can be represented by
partial polynomial terms, such as valve opening degree and
flow loss coefficient. Therefore, the system parameters in this
paper are given by R̃1(x) = R̃2(x) = $ (0.95 + 0.01x1(t)),
R12 = 0.52 and $ ∈ [$,$] = [0.92, 1.05]. Considering the
uncertainty parameters in the modeling process, we set ηi(t) =
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$x
−1/2
i (t) with ηi(t) ∈ [$ui, $vi] = [µi, νi], by the sector

nonlinearity technique, we have ηi(t) = w̃i1(x)µi+ w̃i2(x)νi,
where w̃i1(x) = ηi(t)−µi

νi−µi and w̃i2(x) = 1 − w̃i1(x), νi and
µi represent the maximum and minimum values of ηi(t),
respectively. Then, the lower and upper MFs are defined

as wi1(x) =

(
$/
√
xi(t)

)
−µi

νi−µi , wi1(x) =

(
$/
√
xi(t)

)
−µi

νi−µi ,
wi2(x) = 1− wi1(x) and wi2(x) = 1− wi1(x).

Next, the dynamics of the two-linked tank system with
parameter uncertainties is described by a 4-rule IT2-PFM with

A1(x)=

−R1(x)µ1 − R12µ1µ2√
|µ1

2−µ2
2|

R12µ1µ2√
|µ1

2−µ2
2|

R12µ1µ2√
|µ1

2−µ2
2|

−R2(x)µ2 − R12µ1µ2√
|µ1

2−µ2
2|

,
A2(x)=

−R1(x)µ1 − R12µ1ν2√
|µ1

2−ν22|
R12µ1ν2√
|µ1

2−ν22|
R12µ1ν2√
|µ1

2−ν22|
−R2(x)ν2 − R12µ1ν2√

|µ1
2−ν22|

,
A3(x)=

−R1(x)ν1 − R12ν1µ2√
|ν12−µ2

2|
R12ν1µ2√
|ν12−µ2

2|
R12ν1µ2√
|ν12−µ2

2|
−R2(x)µ2 − R12ν1µ2√

|ν12−µ2
2|

,
A4(x)=

−R1(x)ν1 − R12ν1ν2√
|ν12−ν22|

R12ν1ν2√
|ν12−ν22|

R12ν1ν2√
|ν12−ν22|

−R2(x)ν2 − R12ν1ν2√
|ν12−ν22|

,
B1 = B2 = B3 = B4 = C1 = C2 = C3 = C4 =

[
1 0
0 1

]
,

where Di(x), Bwi(x) and Ewi(x) are illustrated in Ex-
ample 1. The upper and lower MFs of two-linked tank
system with 4 fuzzy rules are θ11(x) = w11(x)w21(x) =(
$/
√
x1(t)

)
−µ1

ν1−µ1

(
$/
√
x2(t)

)
−µ2

ν2−µ2
, θ11(x) = w11(x)w21(x) =(

$/
√
x1(t)

)
−µ1

ν1−µ1

(
$/
√
x2(t)

)
−µ2

ν2−µ2
, θ21(x) = w21(x)w12(x) =

ν1−
(
$/
√
x1(t)

)
ν1−µ1

(
$/
√
x2(t)

)
−µ2

ν2−µ2
, θ21(x) = w21(x)w12(x) =

ν1−
(
$/
√
x1(t)

)
ν1−µ1

(
$/
√
x2(t)

)
−µ2

ν2−µ2
, θ12(x) = w11(x)w22(x),

θ12(x) = w11(x)w̄22(x), θ22(x) = w21(x)w22(x), θ22(x) =
w21(x)w22(x). R1(x) = R2(x) = 0.95 + 0.01x1(t), u1 =
0.22, u2 = 0.26, v1 = 0.45, v2 = 0.41. The selection of IT2-
MFs and type reduction functions of the PDOF controller with
2 fuzzy rules for stabilizing the two-linked tank system is the
same as in Example 1.

The initial conditions are set to x(0) = [20, 16] and
xc(0) = [10, 8], aiming to track the reference liquid levels
xref = [13, 13]. ky and ku are chosen as 0.2 and 0.01. Under
the control of the PDOF controller, the trajectories of states
xi and controller states xci, the interevent times of y(t) and
u(t) are shown in Fig. 8 (a), (b), (c), and (d), respectively. Fig.
9 (a), (b), (c) and (d) present the trajectories of measurement
output yi(t) and the last transmitted value of output ŷi(typ), the
trajectories of control input ui(t) and the last transmitted value
of input ûi(tuq ), respectively. The results demonstrate that the
proposed PDOF controller ensures the stable operation of the
two-linked tank system (63), maintaining the liquid levels of
the two tanks at their setpoints. The triggering times Ny and
Nu are 998 and 44, respectively. This significant reduction
in communication effectively reduces system (63) loss and
prolongs the equipment’s service life.
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Fig. 8. The simulation results of two-linked tank system. (a) The trajectories
of state variables x(t). (b) The trajectories of state variables xc(t). (c)
Interevent times of output transmissions. (d) Interevent times of control
updates.
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Fig. 9. The simulation results of two-linked tank system. (a)-(b) The
trajectories of output y(t) and ŷ(typ). (c)-(d) The trajectories of control input
u(t) and û(tuq ).

VI. CONCLUSION

This paper presents a design framework for DET-PDOF
control of PPFSs under resource constraints. Firstly, a new
asynchronous 1-norm DET mechanism is designed for PPFSs
to update the system output and PDOF control input, thereby
reducing the network burden on the S-C and C-A channels.
Then, by utilizing a novel convexification approach and linear
copositive Lyapunov analysis, sufficient conditions ensuring
system positivity, stability, and L1-gain performance are de-
rived to address the nonconvex problems dependent on polyno-
mial terms. Subsequently, the Chebyshev MFs obtained via the
IGA are incorporated into the stability conditions, significantly
expanding stable region of DET thresholds and enhancing
triggering performance. Finally, numerical and two-linked tank
system simulations have verified the effectiveness. In future
work, the design of the fuzzy-rule-dependent event-triggered
schemes, online MF optimization policies, the application of
observer-based feedback and tracking controllers in PNS will
be addressed.
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