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Abstract

This thesis focuses on graded cluster algebras, looking specifically at degree growth.

We begin by considering the rank 3 skew-symmetric case, building on earlier work

by Booker-Price. We establish the existence of fastest growing paths, and compare

the behaviour for different initial conditions.

The central part of the thesis concerns the cluster algebra structure on the homo-

geneous coordinate ring of the Grassmannian. We construct a distinguished muta-

tion path with certain nice properties. In particular, we suggest a way of using this

mutation path to define a partial order on cluster variables, making use of perfect

matchings on the exchange quivers. We show that, at least in the finite type case,

the partial order we obtain coincides with the ‘standard’ partial order which appears

in work of Lenagan and Rigal on quantum graded algebras with a straightening law.

We hope that the connection with Lenagan and Rigal’s work could be used to trans-

fer the techniques they use in order to establish the homological properties of other

classes of (quantum) cluster algebra.

In the final part of the thesis we show that, under mild assumptions, the Segre

product of two graded cluster algebras has a natural cluster structure.
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CHAPTER 1

Introduction

The notion of a cluster algebra was introduced by Fomin and Zelevinsky in the early

2000s in the series of papers [FZ01, FZ03, BFZ03], the latter of which was coau-

thored by Berenstein. Their original goal was to provide an algebraic and combina-

torial tool with which to study total positivity and dual canonical bases in algebraic

Lie theory. Since their introduction, cluster algebras have found applications in a

diverse range of areas of mathematics, with representation theory, algebraic and

symplectic geometry, and mathematical physics being a few notable examples. An

introductory survey, including many useful references for the interested reader, can

be found in [Kel12].

Cluster algebras are a class of commutative algebras defined from some initial

data via a recursive process known as mutation. We will see that this often results

in having many more generators than one would expect, but with relations of a

particularly nice form. It is the case, for example, that an algebra can be finite

dimensional whilst still having infinitely many generators as a cluster algebra. Clus-

ter algebras have a rich combinatorial structure, in particular since the process of

mutation is governed by directed graphs, usually called quivers in this context.

In its simplest guise, the initial data required in order to define a cluster algebra

comes in the form of a pair (x,Q), where x is an n-tuple of algebraically independent

variables known as cluster variables, and Q is a quiver on n vertices. We also ask

that Q has no loops or 2-cycles. The pair (x,Q) is known as a seed, and x is called

a cluster. The process of mutation involves replacing one cluster variable in x with

a new one, a certain rational function in the elements of x, via a mutation rule

determined by the quiver Q. In addition to this, the quiver itself, and hence the

cluster variable mutation rule, is changed at each step via ‘quiver mutation’. The

resulting cluster algebra, denoted by A (x,Q), is the algebra generated by all cluster

variables obtained from the initial cluster via mutation in all possible directions.

Often, we will also consider cluster algebras with additional ‘frozen’ variables

(sometimes referred to as coefficient variables in the literature). Frozen variables

1



1. INTRODUCTION 2

are simply extra cluster variables at which we do not allow mutation, and which

therefore appear in every cluster. It should be pointed out that the cluster algebras

described above are, specifically, skew-symmetric cluster algebras of geometric type.

In fact, the majority of the cluster algebras considered in this thesis will be of this

type. In the more general setting, we may no longer consider an exchange quiver,

but rather an exchange matrix. In the skew-symmetric case, we can recover this

matrix by simply taking the skew-symmetrisation of the adjacency matrix of the

exchange quiver Q.

One of the main results in Fomin and Zelevinsky’s initial series of papers is the

Laurent Phenomenon. This states that every cluster variable can be expressed as

a Laurent polynomial with integer coefficients in the elements of any given cluster.

This is a surprising result—it is not at all obvious, a priori, that cluster variables

should have such a nice form. The expressions obtained after mutation often look

very complicated, but the Laurent Phenomenon tells us that there is always a way

to simplify them into the form described above. Moreover, it is conjectured that

every cluster variable can be expressed as a Laurent polynomial with positive integer

coefficients in the elements of a given cluster. This has been proven to be true in

several cases, including for all skew-symmetric cluster algebras in [LS15], but it

remains open in full generality.

It was shown in [FZ03] that ‘finite type’ cluster algebras, i.e. those with finitely

many seeds, admit a classification in terms of Dynkin diagrams or, equivalently,

finite type Cartan matrices:

Theorem 1.0.1 ([FZ03, Theorem 1.8]). For a cluster algebra A , the following

are equivalent:

(i) A is of finite type;

(ii) the set of all cluster variables is finite;

(iii) for every seed (x,B) in A , the entries of the matrix B satisfy the inequal-

ities |bijbji| ≤ 3, for all xi, xj ∈ x;

(iv) the (principal part of the) exchange matrix B is mutation equivalent to a

matrix whose ‘Cartan counterpart’ is of finite type.

A very accessible, though quite long, proof of this result can be found in Chapter

5 of [FWZ21d]. The definition of the Cartan counterpart of a matrix can also be

found in [FWZ21d].
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In this thesis the focus will be on graded cluster algebras, as defined in [Gra15].

An additional piece of initial data is required to define a grading on a cluster alge-

bra A (x,B)—a grading vector G ∈ Zn such that BTG = 0. In his thesis, [BP17],

Booker-Price studies gradings on rank 3 skew-symmetric cluster algebras. In par-

ticular, he determines which initial exchange matrices yield infinitely/finitely many

cluster variables of each degree. We wish to further understand the behaviour of

this class of cluster algebras by looking at the growth of cluster variable degrees

along certain mutation paths.

Many already well-known algebras have been shown to admit a cluster struc-

ture. One important example of such an algebra is C[Gr(k, n)]; the homogeneous

coordinate ring of the Grassmannian, i.e. the space of k-dimensional subspaces of

an n-dimensional vector space. This was shown to have a cluster structure by Scott

in [Sco06], though the k = 2 case appeared already in [FZ01]. The Grassmannian

will be our main focus in Chapter 4.

In [GL09] the quantisation, Cq[Gr(k, n)], of the coordinate ring of the Grass-

mannian was shown to have the structure of a quantum cluster algebra. Quantum

cluster algebras were introduced in [BZ05] and, like graded cluster algebras, involve

an extra piece of initial data. This comes in the form of a matrix Λ which deter-

mines a rule for quasi-commutation of cluster variables. In [LR04], the notion of

a quantum graded algebra with a straightening law (QGASL) was introduced as a

tool for establishing some nice homological properties of certain rings. In particular,

they show that Cq[Gr(k, n)] is a QGASL. This structure is then utilised to show

that Cq[Gr(k, n)] is both ‘AS-Cohen-Macaulay’ and ‘AS-Gorenstein’. An important

aspect of Lenagan and Rigal’s work is the use of the standard partial order on the

generators of Cq[Gr(k, n)]. We wish to study the connection between this partial

order and the (quantum) cluster structure.

It is a very natural question to ask how, if given two cluster algebras, we can com-

bine them to make a new cluster algebra. In [Pre23], the Segre product of two clus-

ter algebras is shown to have a cluster structure in one particular case—coordinate

rings of positroid varieties in the Grassmannian. In Chapter 5 we generalise this

construction to the case of graded skew-symmetric cluster algebras.
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1.1. Thesis Outline

In Chapter 2 we provide an introduction to the basic theory of (quantum, graded)

cluster algebras used throughout this thesis. We begin by covering background on

cluster algebras and discussing the main results obtained in Fomin and Zelevin-

sky’s original papers—the Laurent Phenomenon, and the classification of finite type

cluster algebras. We give a brief introduction to both graded and quantum cluster

algebras, the former being the main focus of this thesis. Our attention then turns to

two main examples—the cluster structures on the homogeneous coordinate rings of

the Matrix algebra and the Grassmannian respectively. These examples will be of

particular importance in Chapter 4. Finally, we briefly outline the work carried out

in [LR04] on quantum graded algebras with a straightening law. Whilst the majority

of this work will not be used directly in this thesis, we include it here as motivation

and to help illustrate a possible future direction for research.

In his thesis, [BP17], Booker-Price studies gradings on rank 3 skew-symmetric

cluster algebras. He provides a classification of such cluster algebras, detailing which

initial gradings produce (in)finitely many cluster variables of each degree. In Chap-

ter 3, we begin by summarising Booker-Price’s work. Inspired by this, we then

study ‘growth’ of cluster variable degrees along certain mutation paths in the rank

3 skew-symmetric case. Our goal is to determine a suitable growth function, akin

to GK-dimension (see e.g. [KL00] for details), which captures the different be-

haviour occurring dependent upon initial grading conditions. We define the notion

of a ‘fastest growing path’, and compare the growth rates for different initial grad-

ing conditions. Unfortunately, with this approach, we were unable to determine a

suitable growth function to capture different behaviour coming from different initial

grading vectors. What we see instead is that, in general, cluster variable degrees

seem to grow extremely fast.

Chapter 4 contains the most significant portion of this thesis. Our focus turns

to the Grassmannian cluster algebra, and we construct a distinguished sequence of

mutations in C[Gr(k, n)] satisfying certain ‘nice’ properties. In the finite type cases,

we have been able to explicitly compute this sequence of mutations (mutation path),

and we see that it has the following properties:

(P1) The path includes all Plücker coordinates.
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(P2) The sequence of Plücker coordinates obtained is monotonically increasing

with respect to the partial order ≤st.

(P3) The path begins (resp. ends) at some well-defined ‘minimal’ (resp. ‘maxi-

mal’) cluster.

We conjecture that a path with these properties can be found in the infinite type

case, and we suggest a potential connection with perfect matchings on the exchange

quivers. We see, by explicit computation, that in the finite type case the partial

order arising from this mutation path coincides with the standard partial order on

Plücker coordinates used in [LR04].

A potential future direction would be to further explore possible connections to

the work of Lenagan and Rigal. The hope would be to extend the techniques used in

their work to other (quantum) cluster algebras, utilising a mutation path to define

a partial order on a set of generators. In Section 4.3 we describe a ‘nice’ mutation

path for the coordinate ring of the (quantum) matrix algebra. Whilst this case is

very closely related to the Grassmannian, the fact that the techniques carry over

so nicely supports the idea that it may be possible to extend this further to other

classes of (quantum) graded cluster algebras.

Chapter 5 is joint work with Jan E. Grabowski and can be found at [GH24].

Drawing inspiration from [Pre23] we show that, with suitable assumptions, the

Segre product of two graded cluster algebras has a natural cluster algebra structure.

We show that the Segre product is formed via a gluing operation on suitable frozen

variables, this is illustrated in the example below. We obtain the following result,

and state some basic properties of the Segre product of two cluster algebras.

Theorem 5.2.7. Let Ai = (x̃i, xi, Bi, Gi), i = 1, 2 be graded cluster algebras such

that there exist x ∈ x̃1 \ x1 and y ∈ x̃2 \ x2 both of degree 1.

Then the map φ : A1□A2 → A1⊗A2 given on initial cluster variables by

φ(xj) = xj ⊗ ydeg xj for xj ∈ x̃1 \ {x},

φ(yj) = xdeg yj ⊗ yj for yj ∈ x̃2 \ {y} and

φ(z) = x⊗ y

is a graded algebra isomorphism, with the property that the above formulæ hold for

any cluster of A1□A2.
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Thus the construction above endows A1⊗A2 with the structure of a cluster alge-

bra.

Example 5.2.2. Let A1 = (x̃1 = {x1, x2, x3}, x1 = {x1}, Q1, G1 = 1) and A2 =

(x̃2 = {y1, y2, y3}, x2 = {y1}, Q2, G1 = 1) be cluster algebras with exchange quivers

as follows:

x2

Q1 :
x1 x3 y3

Q2 :
y1 y2

The quiver obtained by ‘gluing’ at the frozen variables x3 and y3 is shown below—we

denote the new variable by z.

x2

Q :
x1 z y1 y2

The cluster algebra A1□A2 is then given by the initial data

(x̃ = {x1, x2, y1, y2, z}, x = {x1, y1}, Q,G = 1).

Theorem 5.2.7 shows that this gives a cluster structure on the Segre product A1⊗A2.

The Segre product construction above should be useful for gaining a greater

understanding of Segre products of those algebraic varieties known to have cluster

structures.



CHAPTER 2

Preliminaries

2.1. Background on Cluster Algebras

2.1.1. Basic Definitions. We begin by setting up notation and recalling the

basic definitions and concepts required in order to define a cluster algebra. We

broadly follow the notation used in Section 2 of [BZ05]. The reader unfamiliar with

cluster algebras may also wish to consult e.g. [FWZ21c], [Mar13].

Definition 2.1.1 (Ambient field). Let m ≥ n be positive integers. The ambient

field F is the field of rational functions over Q in m algebraically independent

variables.

Cluster algebras, as we will see in what follows, are subrings of the ambient field

F defined above. We start by defining (extended) seeds—these will form the initial

data required to define a cluster algebra.

Definition 2.1.2 (Extended seed). An extended seed in F is a pair (x̃, B̃) where

(i) x̃ = {x1, . . . , xm} is a transcendence basis of F which generates F .

(ii) B̃ is an m× n integer matrix with rows labelled by [1,m] and columns by

the subset ex = [1, n] of [1,m].

(iii) The upper n× n submatrix B of B̃ is skew-symmetrisable.

The set x̃ (sometimes considered as a tuple) is called the extended cluster, and B̃ is

the extended exchange matrix. The elements of x̃ are referred to as cluster variables.

Let (x̃, B̃) be an extended seed, B the principal part of B̃, and x = {x1, . . . , xn} ⊆
x̃. The pair (x,B) is known as a seed—x and B are called the cluster and exchange

matrix respectively.

The definition of an extended seed allows us to consider cluster algebras in which

some of the cluster variables are ‘frozen’. A frozen variable is simply one at which

we will not be allowed to mutate. As a result, we will see that frozen variables

appear in every cluster. The set of frozen variables is precisely the set x̃\x, where
x̃ and x are as above. Cluster variables which are not frozen are called mutable or,

7
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sometimes, exchangeable. We note that in the literature it is common to refer to

frozen variables as coefficient variables.

The recursive procedure by which a cluster algebra is defined, known as mutation,

is governed by the (extended) exchange matrix B̃. In order to state the definition

of a cluster algebra, we must first describe how to mutate an (extended) seed. Let

us begin with cluster mutation.

Given an (extended) seed (x̃ = (x1, . . . , xn, . . . , xm), B̃), the cluster mutation at

xk for k ∈ {1, . . . , n} is defined as follows:

µk(xi) =


1
xk

( ∏
bjk>0

x
bjk
j +

∏
bjk<0

x
−bjk
j

)
if i = k,

xi otherwise.

The mutated cluster is then µk(x). As mentioned earlier, the exchange matrix is

also changed at each step along a sequence of mutations—the matrix mutation at k

is defined as follows:

µk(B̃)ij =

−bij if i = k or j = k,

bij + [bik]+bkj + bik[−bkj]+ otherwise

where [n]+ = max{n, 0} and [n]− = max{−n, 0}.
We are now able to define the mutated seed µk((x̃, B̃)) := (µk(x̃), µk(B̃)). It

is a fairly straightforward exercise to verify that both cluster and matrix mutation

are involutions, that is, two successive mutations at the same position will return

the seed you began with. Note that we often refer to k above as the ‘direction’ of

mutation.

Informally speaking, the cluster algebra with initial (extended) seed (x̃, B̃), which

we will denote by A (x̃, B̃), is the algebra whose generating set is the set of all cluster

variables obtained by repeated mutation of (x̃, B̃) in all possible directions. Before

we can proceed with a more formal definition, we must define mutation paths and

the notion of mutation equivalence.

Definition 2.1.3 (Mutation path). A mutation path is a sequence of mutations;

µpr ◦ · · · ◦ µp1 . For convenience, since our mutation paths will sometimes be fairly

long, we borrow the following notation from [BP17] and write [p] = [pr, . . . , p1]

to denote the mutation path µpr ◦ · · · ◦ µp1 . Note that in what follows we use the

convention that mutations are carried out from right to left.



2.1. BACKGROUND ON CLUSTER ALGEBRAS 9

Definition 2.1.4 (Mutation equivalence). Two (extended) seeds (or clusters,

or exchange matrices) are called mutation equivalent if one can be obtained from

the other via a sequence of mutations, and essentially equivalent if they are equal

up to permutation of indices.

We are now ready to give a formal definition of a cluster algebra (of geometric

type).

Definition 2.1.5 (Cluster algebra). The cluster algebra A (x̃, B̃) is the subring

of F generated by the union of all (extended) clusters mutation equivalent to x̃.

Associated to a cluster algebra A are the following two combinatorial objects.

Definition 2.1.6 (Exchange tree/exchange graph).

(i) The exchange tree of a cluster algebra is the n-regular tree whose vertices

correspond to seeds, and whose edges correspond to mutations.

(ii) The exchange graph of a cluster algebra is the exchange tree modulo essen-

tial equivalence of seeds.

Definition 2.1.7 (Rank). A cluster algebra has rank m if it has m variables in

each extended cluster.

Definition 2.1.8 (Finite type). A cluster algebra is of finite type if it has finitely

many seeds, otherwise it is of infinite type.

Example 2.1.9. The exchange graph for the cluster algebra with initial seed

(x,B) = ((x1, x2), (
0 1
−1 0 )) is shown below. Note that this is an example of a finite

type cluster algebra with five cluster variables.

(x1, x2), (
0 1
−1 0 )

(
1+x2

x1
, x2

)
, ( 0 −1

1 0 )

(
1+x2

x1
, 1+x1+x2

x1x2

)
, ( 0 1

−1 0 )
(

1+x1

x2
, 1+x1+x2

x1x2

)
, ( 0 −1

1 0 )

(
1+x1

x2
, x1

)
, ( 0 1

−1 0 )

(x2, x1) , (
0 −1
1 0 )

µ1

µ2

µ1

µ2

µ1

∼=
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2.1.2. Cluster Algebras from Quivers. Throughout this thesis, we will usu-

ally work with skew-symmetric cluster algebras.

Definition 2.1.10 (Skew-symmetric). A cluster algebra A (x,B) is skew-symm-

etric if its exchange matrix B is a skew-symmetric matrix, i.e. if BT = −B.

When working with skew-symmetric cluster algebras, in place of the exchange

matrix, we will often consider the exchange quiver. By quiver, we simply mean

directed graph. In order for a quiver Q to be an exchange quiver, we require the

following:

• No loops, i.e. no arrows i→ i.

• No 2-cycles, i.e. no pairs of arrows i ⇄ j.

Definition 2.1.2 remains unchanged; we simply replace the (extended) exchange

matrix with an exchange quiver.

Working with exchange quivers over exchange matrices where possible is often

convenient, in particular since it provides a nice way to visualise mutation. It also

allows us to have the data of both the cluster and the exchange matrix in one picture.

In Section 2.1.1 we saw how to mutate an exchange matrix—we now describe the

corresponding procedure for exchange quivers.

Let (x̃, Q̃) be an extended seed. Then the cluster mutation at xk ∈ x̃ is defined

as follows:

µk(xi) =


1
xk

(∏
i→k∈Q x

|{i→k∈Q}|
i +

∏
k→i∈Q x

|{k→i∈Q}|
i

)
if i = k,

xi otherwise.

The mutated cluster is then µk(x̃) = (x1, . . . , µk(xk), . . . , xm). The mutation µk(Q)

of a quiver Q in direction k is obtained in the following way:

(i) For any pair i→ k → j in Q, add an arrow i→ j.

(ii) Reverse arrows incident to k.

(iii) Remove any resulting 2-cycles.

The mutated seed µk(x,Q) is (µk(x), µk(Q)). An example of quiver mutation is

illustrated in Figure 2.1.

Remark 2.1.11. We can recover the corresponding exchange matrix B = (bij)

by taking the skew-symmetrisation of the adjacency matrix of Q̃, i.e. by setting

bij = |{arrows i→ j}| − |{arrows j → i}|.
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x
→

x
→

x
→

x

Figure 2.1. A step-by-step example of quiver mutation at the
vertex x. New or reversed arrows are shown in red at each stage.

Remark 2.1.12. We typically omit any arrows between pairs of vertices corre-

sponding to frozen variables, since these play no role in mutation. However, we will

see in Chapter 4 that these arrows are useful when we wish to consider an exchange

quiver as a ‘quiver with faces’.

Example 2.1.13. The exchange graph for the cluster algebra with initial seed

(x,Q) = ((x1, x2), 1→ 2) is shown below.

x1 → x2

1+x2

x1
← x2

1+x2

x1
→ 1+x1+x2

x1x2

1+x1

x2
← 1+x1+x2

x1x2

1+x1

x2
→ x1

x2 ← x1

µ1

µ2

µ1

µ2

µ1

∼=

We see that after 5 mutation steps, the seed we obtain is essentially equivalent to our

initial seed. We can therefore conclude that we have found all cluster variables—in

this case there are five:{
x1, x2, x3 =

1 + x2

x1

, x4 =
1 + x1 + x2

x1x2

, x5 =
1 + x1

x2

}
.

The resulting cluster algebra is generated by this set of 5 cluster variables, and is

hence a cluster algebra of finite type. In fact, this is precisely the cluster algebra

from Example 2.1.9 framed in terms of quivers instead of matrices.

2.1.3. Main Results. In Example 2.1.13 above, we notice that all of the cluster

variables have a particularly nice form—they are Laurent polynomials in the initial

cluster variables. It is not at all obvious, a priori, that this should be the case, but
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it turns out that this is just one instance of a phenomenon that occurs in all cluster

algebras. In fact the following result, which appeared in [FZ01], is one of the most

important results in the study of cluster algebras.

Theorem 2.1.14 (The Laurent Phenomenon). Every cluster variable can be

expressed as a Laurent polynomial with integer coefficients in the elements of any

single (extended) cluster.

It was conjectured by Fomin and Zelevinsky that an even stronger result should

hold—that every cluster variable can be expressed as a Laurent polynomial with

positive integer coefficients in the elements of any single (extended) cluster. This

result has now been proven in several cases, including for all skew-symmetric cluster

algebras in [LS15], though it remains open in full generality.

It was shown in [FZ03] that cluster algebras of finite type, i.e. those with only

finitely many cluster variables, admit a classification in terms of finite type Cartan

matrices. This classification uses the following relationship between Cartan matrices

and skew-symmetrisable matrices.

Definition 2.1.15 (Cartan counterpart). LetB = (bij) be a skew-symmetrisable

integer matrix, e.g. an exchange matrix. Then its Cartan counterpart is the sym-

metrisable generalised Cartan matrix

A = A(B) = (aij)

of the same size, defined by

aij =

2 if i = j;

−|bij| if i ̸= j.

Theorem 2.1.16 (Finite type classification). A cluster algebra is of finite type

if and only if the exchange matrix B is (mutation equivalent to) a matrix whose

Cartan counterpart is a Cartan matrix of finite type.

Rephrasing in terms of exchange quivers, Theorem 2.1.16 says that a cluster

algebra is of finite type if and only if the mutable part of the exchange quiver is

mutation equivalent to some orientation of a finite type Dynkin diagram. A very

accessible, though quite long, proof of Theorem 2.1.16 can be found in [FWZ21c].
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We do not repeat this here, but note that a key tool used throughout is the cor-

respondence between quivers and triangulations. This can be seen for the type An

case in Section 2.2.1 below.

2.1.4. Graded Cluster Algebras. We now turn our attention to graded clus-

ter algebras as defined in [Gra15], building on earlier work carried out in [BZ05]

and [GSV03]. In order to define a grading on a cluster algebra we require an ad-

ditional piece of initial data, which we call a grading vector, assigning a degree to

each initial cluster variable.

Definition 2.1.17 (Graded seed). A graded seed is a triple (x,B,G) such that:

(i) (x,B) is a seed, with |x| = n,

(ii) G = (g1, . . . , gn) ∈ Zn is such that BTG = 0.

We have deg(xi) := gi for i = 1, . . . , n.

Remark 2.1.18. In [Gra15], the more general concept of a multi-graded seed is

defined. In that case, G is an n× d integer matrix, and the resulting cluster algebra

is a Zd-graded algebra. In what follows, we will only consider the case in which

d = 1.

Definition 2.1.19 (Graded cluster algebra). The graded cluster algebra denoted

A (x,B,G) is the cluster algebra A (x,B) with the grading given on initial cluster

variables by G extended in the obvious way via mutation.

Proposition 2.1.20 ([Gra15, Prop. 3.2]). The cluster algebra A (x,B,G) as-

sociated to an initial graded seed (x,B,G), with G ∈ Zn, is a Z-graded algebra.

Every cluster variable of A (x,B,G) is homogeneous with respect to this grading.

In Chapter 3 we will be interested solely in the degrees of cluster variables, rather

than their precise forms. It will therefore be useful to work with degree seeds.

Definition 2.1.21 (Degree seed). A degree seed is a pair (G,B) of a grading

vector G and a corresponding exchange matrix B.

We may then directly mutate the degree seed, conveniently forgetting the cluster

variables when we do not need to know them explicitly. This is illustrated in the

example below.
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Example 2.1.22. The diagram below shows two mutation steps starting from the

initial degree seed G = (4, 3, 5), B =
(

0 5 −3
−5 0 4
3 −4 0

)
.

4

3

5

5 4

3

µ2−→

4

17 = 5 · 4− 3

5
17

45 µ3−→

4

17

63 = 17 · 4− 5

63 4

17

2.1.5. Quantum Cluster Algebras. Quantum analogues of cluster algebras

were introduced in [BZ05] by Berenstein and Zelevinsky. A quantum cluster algebra

is a Q(q)-algebra in which every cluster is a quasi-commuting family, and defining

these will again involve an additional piece of initial data, this time in the form of

a matrix Λ which determines the rule for quasi-commutation. Whilst we will not

directly refer to the quantum cluster algebra structure, the results in Chapter 4

will hold in the quantum setting, and so we provide a brief overview here. We do

not include proofs in this section—these, as well as more details, can be found in

[BZ05].

Definition 2.1.23 (Compatible pair). Let B̃ be an m× n integer matrix with

rows labelled by [1,m] and columns by [1, n]. Let Λ be a skew-symmetric m × m

integer matrix with both rows and columns labelled by [1,m]. We call the pair

(Λ, B̃) compatible if, for every j ∈ [1, n] and every i ∈ [1,m], we have

m∑
k=1

bkjλki = δijdj

for some dj ∈ Z>0.

We now wish to understand how to mutate a compatible pair. Fix k ∈ [1, n]

(the direction in which we will mutate) and ε ∈ {±1}. Then the matrix µk(B̃) can

be expressed as µk(B̃) = EεB̃Fε, where

• Eε is the m×m matrix with entries

eij =


δij if j ̸= k;

−1 if i = j = k;

max(0,−εbik) if i ̸= j = k.
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• Fε is the n× n matrix with entries

fij =


δij if i ̸= k;

−1 if i = j = k;

max(0, εbkj) if i = k ̸= j.

For a compatible pair (Λ, B̃), we set µk(Λ) = ET
ε ΛEε, and we call this the

mutation of Λ in direction k.

Proposition 2.1.24. Let (Λ, B̃) be a compatible pair. Then:

(i) The pair (µk(Λ), µk(B̃)) is again compatible.

(ii) The mutated matrix µk(Λ) is independent of the choice of sign ε.

(iii) Mutation of compatible pairs is involutive.

A quantum cluster algebra will be defined as a Z[q± 1
2 ]-subalgebra of F , where

F is the skew-field of fractions of the ‘based quantum torus’ T , and q is a formal

variable.

Definition 2.1.25 (Based quantum torus). Let L be a lattice of rank m, with

skew-symmetric bilinear form Λ : L×L→ Z, and let q be a formal variable. Denote

by Z[q± 1
2 ] the ring of Laurent polynomials with integer coefficients in the variable q

1
2 .

Then the based quantum torus associated with L is the Z[q± 1
2 ]-algebra T = T (Λ)

with Z[q± 1
2 ]-basis {Xe : e ∈ L} and multiplication

XeXf = qΛ(e,f)/2Xe+f for e, f ∈ L.

Definition 2.1.26 (Toric frame). A toric frame in F is a mapping M : Zm →
F\{0} of the form

M(c) = φ(Xη(c)),

where φ is an automorphism of F , and η : Zm → L is a lattice isomorphism.

The elements M(c) form a Z[q± 1
2 ]-basis of the image of T under φ, with multi-

plication and commutation relations

M(c)M(d) = qΛM (c,d)/2M(c+ d)

M(c)M(d) = qΛM (c,d)M(d)M(c).
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Here, ΛM is the bilinear form on Zm obtained from Λ via the isomorphism η. We

have

M(0) = 1 and M(c)−1 = M(−c) for c ∈ Zm.

We denote also by ΛM the m×m integer matrix whose entries are λij = ΛM(ei, ej),

where {e1, . . . , em} is the standard basis of Zm.

Given a toric frame M , we set Xi = M(ei) for i ∈ [1,m]. The elements Xi

quasi-commute, i.e. we have

XiXj = qλijXjXi.

Proposition 2.1.27. A toric frame M is uniquely determined by the elements

Xi = M(ei) for i ∈ [1,m].

Definition 2.1.28 (t-binomial coefficient). The t-binomial coefficient ( r
p )t is

defined as follows: r

p


t

=
(tr − t−r) · · · (tr−p+1 − tr+p−1)

(tp − t−p) · · · (t− t−1)
.

Definition 2.1.29 (Quantum seed, [BZ05, Def 4.5]). A quantum seed is a pair

(M, B̃) where

• M is a toric frame in F .

• B̃ is an m × n integer matrix with rows labelled by [1,m] and columns

labelled by an n-element subset ex ⊂ [1,m].

• The pair (ΛM , B̃) is compatible in the sense of Definition 2.1.23.

Let (M, B̃) be a quantum seed. Fix an index k ∈ ex and a sign ε ∈ {±1}. Define
the mapping M ′ : Z→ F\{0} by

M ′(c) =
ck∑
p=0

( ck
p )qdk/2 M(Eεc+ εpbk) and M ′(−c) = M ′(c)−1

for c = (c1, . . . , cm) ∈ Zm with ck ≥ 0 . Here, ( ck
p )qdk/2 is the t-binomial coefficient

as in Definition 2.1.28, and bk is the kth column of B̃.

Proposition 2.1.30. (i) The mapping M ′ is a toric frame.

(ii) We have µk(ΛM) = ΛM ′.

(iii) The pair (µk(M), µk(B̃)) is a quantum seed as in Definition 2.1.29. We

call this the mutation of (M, B̃) in direction k, and we write µk(M, B̃).
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(iv) Mutation of quantum seeds is involutive, i.e. we have µk(µk(M, B̃)) =

(M, B̃).

As in the classical setting, two (quantum) seeds are called mutation equivalent if

one can be obtained from the other via a sequence of quantum seed mutations. Given

a quantum seed (M, B̃), we denote by X̃ = {X1, . . . , Xm} the extended (quantum)

cluster given by taking Xi = M(ei). The subset X = {Xj : j ∈ ex} ⊂ X̃ is called

the (quantum) cluster.

We can now give the quantum analogue of Definition 2.1.5.

Definition 2.1.31 (Quantum cluster algebra). Let (M, B̃) be a quantum seed.

The associated quantum cluster algebra A (M, B̃) is the Z[q± 1
2 ]-subalgebra of F ,

generated by the union of clusters of all seeds mutation equivalent to (M, B̃), to-

gether with the set of frozen variables X̃\X and their inverses.

Remark 2.1.32. In [GL13] the notion of a Z-grading for a quantum cluster

algebra was introduced—we do not use this directly, and so refer the reader to

[GL13] for details. Note, however, that the grading data is independent of the

quasi-commutation data. The theory of graded quantum cluster algebras therefore

mirrors that of graded cluster algebras. The main theorem of [BZ05] states that

quantum cluster variables are in bijection with those in the q = 1 case. Hence,

without loss of generality, it is possible to study graded quantum cluster algebras by

looking at their q = 1 specialisations.

2.2. Examples of Cluster Algebras

We now present two explicit examples of algebras which admit cluster structures;

both of which will play a significant role in Chapter 4. The first of these examples

is the Grassmannian, Gr(k, n). Roughly following [Bau21], we will describe the

cluster algebra structure on its homogeneous coordinate ring C[Gr(k, n)]. We will

then discuss a second closely related example—the homogeneous coordinate ring of

matrices. For completeness, we briefly recall two definitions from algebraic geometry.

For further background on projective varieties see, for example, [Vak] or [Har77].

Definition 2.2.1 (Projective variety). Let n ∈ N, and let S ⊂ C[x0, . . . , xn] be

a set of homogeneous polynomials. The zero locus of S is the set

V (S) := {x ∈ Pn : f(x) = 0 for all f ∈ S}.
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Subsets of the projective n-space Pn of this form are called projective varieties.

Definition 2.2.2 (Homogeneous coordinate ring). Let Y ⊂ Pn be a projective

variety. The homogeneous coordinate ring of Y is

S(Y ) := K[x0, . . . , xn]/I(Y ).

Here, I(Y ) denotes the ideal of Y , defined as follows:

I(Y ) := ⟨f ∈ K[x0, . . . , xn] homogeneous : f(x) = 0 for all x ∈ Y ⟩ .

2.2.1. The Grassmannian. The cluster algebra structure on the homogeneous

coordinate ring of the Grassmannian was first established by Scott in [Sco06],

though the Gr(2, n) case appeared already in [FZ03]. In this section we recall

the definition of the Grassmannian—for more details see [MS04]. We will focus on

describing the cluster structure on its homogeneous coordinate ring.

Definition 2.2.3 (The Grassmannian). Let 1 < k < n. The Grassmannian

Gr(k, n) is the set of k-dimensional subspaces of Cn.

There is a map from Gr(k, n) into projective N -space, for N = ( n
k )− 1, defined

as follows.

Definition 2.2.4 (The Plücker embedding). Let U ∈ Gr(k, n) with basis

{v1, . . . , vk}, and consider w := v1 ∧ . . .∧ vk ∈ Λk(Cn). Define a map φ : Gr(k, n)→
PN by

φ(U) = (∆i1,...,ik(w))i1<···<ik

where ∆i1,...,ik denotes the minor of a k×n matrix with column set {i1, . . . , ik} which
we call a Plücker coordinate. The map φ is known as the Plücker embedding.

In the above definition, Λk(Cn) is the subspace of the exterior algebra Λ(C)

spanned by the elements v1 ∧ v2 ∧ · · · ∧ vk, where vi ∈ C for all i. Here, ∧ denotes

the product in Λ(C).

To define the Plücker coordinate ∆i1,...,ik corresponding to an arbitrary multi-set

{i1, . . . , ik} such that ij ∈ {1, . . . , n}, we set

∆i1,...,ik

0 if ir = is for some r ̸= s,

sgn(π)∆j1,...,jk if {i1, . . . , ik} = {j1 < · · · < jk}.
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In the above, π is the permutation such that π(ir) = jr for all r. We are now able

to write down the relations satisfied by the image φ(Gr(k, n)).

Definition 2.2.5 (Plücker relations). The Plücker relations for Gr(k, n) are:

k∑
r=0

(−1)r∆i1,...,ik−1,jr∆j0,...,ĵr,...jk = 0.

The sum is taken over all tuples (i1, . . . , ik−1), (j0, . . . , jk) such that 1 ≤ i1 < · · · <
ik−1 ≤ n and 1 ≤ j0 < · · · < jk ≤ n. We denote by â an omitted index a.

As suggested by Definition 2.2.4, we have the following proposition.

Proposition 2.2.6. The map φ is injective.

Proof. See [MS04]. □

The homogeneous coordinate ring C[Gr(k, n)] is the quotient of the polynomial

ring in the Plücker coordinates ∆I , where |I| = k, subject to the Plücker relations

as in Definition 2.2.5.

2.2.1.1. The Cluster Structure on the Grassmannian for k = 2. When k = 2 the

Plücker relations are simply

∆ab∆cd −∆ac∆bd +∆ad∆bc = 0 for 1 ≤ a < b < c < d ≤ n. (1)

The homogeneous coordinate ring C[Gr(2, n)] is therefore the quotient of the poly-

nomial ring in ∆ab for 1 ≤ a < b ≤ n subject to the relations (1).

Let T be a triangulation of the regular polygon P n. Then we can define a quiver

QT such that:

(i) The vertices of QT correspond to the diagonals/edges in T .

(ii) We have an arrow i→ j whenever i and j are edges of the same triangle in

T , and j is clockwise from i. Note that we do not include arrows between

vertices corresponding to boundary edges.

As mentioned earlier, a key tool used to prove Theorem 2.1.16 was the relation-

ship between quivers and triangulations. The Gr(2, n) case corresponds to Dynkin

diagrams of type A. We illustrate this correspondence here.

First, notice that Plücker coordinates can be parameterised by the diagonals

(and edges) of a regular polygon with n vertices, labelled clockwise. The Plücker
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a b

d c

→

a b

d c

∆ab

∆bc

∆cd

∆ad

∆bd

∆ab

∆bc

∆cd

∆ad

∆ac

Figure 2.2. Cluster mutation corresponds to the quadrilateral flip
as shown above. The diagram represents a quadrilateral within a

triangulation—we replace the diagonal bd with the diagonal ac. The
corresponding quiver is shown in blue.

coordinate ∆ij with i < j corresponds to the diagonal connecting vertices i and

j—this is illustrated in Figure 2.2.

Theorem 2.2.7 ([FZ03]). Let Pn be a convex n-gon, with n ≥ 5. The homoge-

neous coordinate ring C[Gr(2, n)] is a cluster algebra of type An−3 where:

(i) The (mutable) cluster variables are the Plücker coordinates ∆ij where (i, j)

are the diagonals in P n, and the frozen variables are the Plücker coordinates

corresponding to the boundary edges of P n.

(ii) The seeds are in bijection with the triangulations T of P n, with exchange

quiver QT .

(iii) Cluster mutation corresponds to the quadrilateral flip (see Figure 2.2) in

the triangulation T .

2.2.1.2. The Cluster Structure on the Grassmannian for k > 2. In the general

case, for Gr(k, n), things get somewhat more complicated. In this setting the Plücker

coordinates are only a subset of the set of all cluster variables, and in place of tri-

angulations we must consider ‘Postnikov diagrams’—see Figure 2.3 for an example.

Since we do not explicitly use this in what follows, we refer the reader to [Sco06]

for the details.

The cluster algebra structure on C[Gr(k, n)] has a well-known natural grading

given by setting the degree of all Plücker coordinates to be one—see [BP17] for

details. This grading endows C[Gr(k, n)] with the structure of a graded cluster

algebra as in Definition 2.1.19.

Remark 2.2.8. The quantum cluster structure on the quantum analogue of the

homogeneous coordinate ring of the Grassmannian was given in [GL13], by lifting

the quantum cluster algebra on quantum matrices given by [GLS11a]. Since we do
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Figure 2.3. An example of the Postnikov diagram for a cluster in
C[Gr(3, 7)] and its corresponding quiver. The boundary segments
correspond to frozen variables, indicated in blue on the quiver.

not directly utilise the quantum cluster structure we will not repeat this here but note

that, as detailed in Remark 2.1.32, the underlying combinatorics is identical to the

commutative case—as such, all of our results in Chapter 4 will continue to hold in

the quantum setting.

Remark 2.2.9. It was established in [Sco06] that the cluster algebra structures

on the following Grassmannians are finite-type:

C[Gr(2, n)],C[Gr(3, 6)],C[Gr(3, 7)],C[Gr(3, 8)].

The cluster algebra structure for any other Grassmannian is of infinite type.

2.2.2. The Matrix Algebra. Another example of a (quantum) graded cluster

algebra closely related to the Grassmannian is the (quantum) matrix algebra. This

was shown to have a cluster algebra structure in [GLS11b], and quantum cluster

structure in [GLS11a]. We briefly describe the cluster structure here.

Definition 2.2.10 (Coordinate ring of M(k, j)). Denote by M(k, j) the set of

k × j matrices. The coordinate ring is defined to be C[M(k, j)] = C[xr,s], where

1 ≤ r ≤ k, 1 ≤ s ≤ j, and xr,s : M(k, j)→ C is given by xr,s(A) = ars.

Let [ JI ] denote the minor of the matrix




x11 . . . x1j
...

. . .
...

xk1 . . . xkj


corresponding to the row set

I and column set J .
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(1, 1) (2, 1) (k − 1, 1) (k, 1)

(1, 2) (2, 2) (k − 1, 2) (k, 2)

(1, j − 1) (2, j − 1) (k − 1, j − 1) (k, j − 1)

(1, j) (2, j) (k − 1, j) (k, j)

Figure 2.4. The initial quiver for the cluster structure on
C[M(k, j)].

Now, for 1 ≤ r ≤ k and 1 ≤ s ≤ j, we define the following sets:

R(r, s) = {k − r + 1, k − r + 2, . . . k − r + s} ∩ {1, . . . , k},

C(r, s) = {j − s+ 1, j − s+ 2, . . . j − s+ r} ∩ {1, . . . , j}.

The quiver corresponding to the initial cluster is shown in Figure 2.4; the cluster

variable in position (r, s) is the minor
[
C(r,s)
R(r,s)

]
.

Remark 2.2.11. The cluster structure on C[M(k, j)] has a well-known natural

grading given by declaring all matrix entries xrs to have degree one, and extending

this in the obvious way using mutation. See [BP17] for details. We may also endow

the quantisation Cq[M(k, j)] with the structure of a quantum cluster algebra. We

do not directly use the quantum structure but, as with the Grassmannian case, our

results in Chapter 4 will continue to hold in the quantum setting since the underlying

combinatorics is unchanged.

2.3. Quantum Graded Algebras with a Straightening Law

In [LR04], Lenagan and Rigal introduce the idea of a quantum graded algebra with a

straightening law (QGASL). They show that Cq[Gr(k, n)] is a QGASL, utilising this
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structure to prove that it has some nice homological properties—it is AS-Cohen-

Macaulay and AS-Gorenstein. The definition of a QGASL involves a partial order

on a generating set—we will make use of this partial order on the Grassmannian in

Chapter 4.

Definition 2.3.1 ([LR04, Def 1.1.1]). Let A be an N-graded C-algebra, and

Π a finite subset of A equipped with a partial order ≤st. We say that A is a

quantum graded algebra with a straightening law (QGASL) on the poset (Π,≤st) if

the following conditions are satisfied.

(i) The elements of Π are homogeneous with positive degree.

(ii) The elements of Π generate A as a k-algebra.

(iii) The set of standard monomials on Π is a linearly independent set.

(iv) If α, β ∈ Π are not comparable for ≤st, then αβ is a linear combination of

terms λ or λµ, where λ, µ ∈ Π, λ ≤st µ and λ ≤st α, β.

(v) For all α, β ∈ Π, there exists cαβ ∈ C∗ such that αβ − cαββα is a linear

combination of terms λ or λµ, where λ, µ ∈ Π, λ ≤st µ and λ ≤st α, β.

As mentioned above, it has been shown that the quantised coordinate ring of the

Grassmannian Gr(k, n) is a QGASL. In this case, the poset Π consists of all Plücker

coordinates, with partial order defined as follows.

Denote by J = {j1 < · · · < jk} the index set J = {j1, . . . , jk} ⊆ {1, . . . , n} with
1 ≤ j1 < · · · < jk ≤ n. The set of all index sets of cardinality k is denoted by Πk,n,

or simply Π when k and n are clear (note that, as the two can be identified, we will

also denote by Π the set of all Plücker coordinates). The standard partial order,

≤st, on Π = Πk,n is defined as follows:

{i1 < · · · < ik} ≤st {j1 < · · · < jk} if and only if is ≤ js for all 1 ≤ s ≤ k. (2)

We may then consider the induced partial order on the set of all Plücker coordinates,

which we again denote by ≤st.

Lenagan and Rigal use the QGASL structure on Cq[Gr(k, n)] in order to prove

that it is both AS-Cohen-Macaulay and AS-Gorenstein. They also show that the

coordinate ring C[M(k, j)] has both of these properties. An interested reader may

find more details about these homological properties in [JZ00]—we will not make

use of them, and so will not define them here.
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The goal in Chapter 4 of this thesis will be to identify a connection between the

QGASL structure and the cluster algebra structure. The hope is that doing this

will make it possible in future to extend the techniques used by Lenagan and Rigal

to prove results regarding the homological properties of other classes of (quantum)

cluster algebras.



CHAPTER 3

Growth in Graded Cluster Algebras of Rank 3

In this chapter, we study gradings on rank 3 cluster algebras. Building on work done

in [BP17], we wish to further understand the growth of cluster variable degrees along

mutation paths, with a focus on the differences in behaviour in the ‘mutation-cyclic’

and ‘mutation-acyclic’ cases.

Definition 3.0.1 (Mutation-(a)cyclic). A quiver Q is called mutation-cyclic if

every quiver mutation equivalent to Q is cyclic, otherwise it is called mutation-

acyclic. We will also use this terminology to refer to the corresponding exchange

matrices.

In [BP17], the classification shown in Figure 3.1 is given for rank 3 graded

cluster algebras with initial degree seed(
(b, c, a),

(
0 a −c
−a 0 b
c −b 0

))
(3)

where a, b, c ∈ N0 and a ≥ b ≥ c. For the mutation-infinite, mutation-acyclic case,

it was shown in [BP17] that we have the following cases:

a, b, c ≥ 2

a, b ≥ 2, c = 1

a ≥ 2, b = c = 1

a, b ≥ 2, c = 0

a ≥ 2, b = 1, c = 0.

The intention was to define a suitable ‘growth function’, similar to GK-dimension,

which should capture the differences shown in Figure 3.1 between the mutation-cyclic

and mutation-acyclic cases, since having infinitely (resp. finitely) many variables in

each degree corresponds to slow (resp. fast) growth. See, for example, [KL00] for

details regarding GK-dimension. Unfortunately, we have not been able to define

25
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Figure 3.1. The classification of rank 3 graded cluster algebras
given in [BP17].

such a function—it appears that degree growth is simply very fast, and we do not

obtain significantly different results for different initial conditions.

Throughout this section, we will be working with degree seeds, as illustrated in

Example 2.1.22. This will simplify computations as we do not need to keep track of

the cluster variables themselves. We first provide an overview of the work carried

out by Booker-Price.

3.1. Gradings in the Rank 3 Case

Here, we summarise the results obtained by Booker-Price in Chapter 4 of his thesis—

full details, including proofs, can be found in [BP17].

Rank 3 graded cluster algebras can be classified in terms of:

(i) the cardinality of the set of degrees occurring,

(ii) how the cluster variables are distributed with respect to the degrees.

The first important realisation is as follows.

Proposition 3.1.1 ([BP17, Prop. 4.1.3]). Every 3× 3 skew-symmetric matrix

is either essentially equivalent to the matrix A =
(

0 a −c
−a 0 b
c −b 0

)
, for some a, b, c ∈ N0

and a ≥ b ≥ c, or mutation equivalent to a matrix which is essentially equivalent to

A. Here, essentially equivalent is as in Definition 2.1.4.

This result simplifies the classification problem, since now we only have to con-

sider matrices of the form described above. We have the following.
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Theorem 3.1.2 ([BP17][Thm. 4.1.10]). A partial classification of graded cluster

algebras of the form A
(
(x1, x2, x3),

(
0 a −c
−a 0 b
c −b 0

)
, (b, c, a)

)
, with a, b, c ∈ N0 and a ≥

b ≥ c, is given in Figure 3.1.

Only one case is not covered in Figure 3.1—the so-called singular cyclic case,

i.e. matrices of the form
(

0 a −2
−a 0 a
2 −a 0

)
where a ≥ 3. Booker-Price conjectures that

this case should have infinitely many variables in each occurring degree, but this

remains unproven.

An important tool for the proof of Theorem 3.1.2 is an algorithm which deter-

mines whether or not a given 3 × 3 matrix is mutation-cyclic. In the acyclic case,

an important result is as follows.

Theorem 3.1.3 ([BP17][Thm. 4.4.1]). Let A be a cluster algebra arising from

a mutation-acyclic matrix. For any cluster variable x in A , the seeds whose clusters

contain x form a connected subgraph of the exchange graph.

This result was first conjectured in [GSV03], before being proven in the acyclic

case in [CK06].

3.2. Fastest Growing Mutation Paths

We begin by considering the notion of a fastest growing path, i.e. the path producing

the largest possible degree at each mutation step.

Definition 3.2.1 (Fastest growing path). Given an initial degree seed (d,B),

a fastest growing path is a mutation path in which, at each step, we mutate in a

direction yielding the largest possible degree (without two consecutive mutations at

the same vertex).

Lemma 3.2.2. Mutation of a degree seed of the form (3) along a fastest growing

path produces another degree seed of the form (3). In the mutation-infinite case, we

moreover have ab− c ≥ b. In other words, b is the new smallest degree.

Proof. Consider the initial degree seed ((b, c, a), A), where the exchange matrix

A is as in Proposition 3.1.1. We have

µc(c) = ab− c and µc(A) =
(

0 −a ab−c
a 0 −b

c−ab b 0

)
.

Up to relabelling, this is again a seed of the form (3).
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In the mutation-infinite case, we have

ab− c ≥ ab− b

≥ (a− 1)b

≥ b

The first inequality is a consequence of the fact that b ≥ c, and the final inequality

is due to A being mutation-infinite, since this rules out a < 2. □

Proposition 3.2.3. Suppose we begin with a degree seed of the form (3). The

fastest growing path is precisely the path in which we mutate at the cluster variable

of smallest possible degree at each step, without mutating at the same variable twice

in a row.

Proof. First, note that mutation at x, y, and z yields new cluster variables of

the following degrees, respectively:

ac− b, ab− c, bc− a.

It is then straightforward to see that the largest possible degree is obtained via

mutation at y. Noting that, by Lemma 3.2.2, the degree seed we obtain after

mutation is of the same form, the claim follows iteratively. □

Example 3.2.4. Consider the cluster algebra with initial degree seed(
d = (1, 1, 3), B =

(
0 3 −1
−3 0 1
1 −1 0

))
.

This is an example of a mutation-acyclic cluster algebra. Figure 3.2 shows a portion

of the exchange tree, with the degree of the mutated variable at each vertex. The

fastest growing path is highlighted in blue, and it produces the following sequence of

degrees:

2, 5, 13, 62, 801, 49649, 39768787, . . .

Example 3.2.5. Figure 3.3 shows a portion of the exchange tree for the ini-

tial degree seed
(
d = (5, 3, 6), Q =

(
0 6 −3
−6 0 5
3 −5 0

))
. This is a mutation-cyclic cluster

algebra. The fastest growing path is again highlighted in blue, and we obtain the

following sequence of degrees:

27, 157, 4233, 664554, . . .
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In both of the examples above, we see that the degrees produced along the fastest

growing path get very large very fast. We have the following results.

Let (b, c, a) be a grading vector of the form (3) where b, c, a are strictly greater

than two. In what follows, denote by (di)i∈N0
the sequence defined by

d0 = c, d1 = ab− c, d2 = d1a− b, and di+1 = didi−1 − di−2 for i > 2. (4)

Remark 3.2.6. Note that one of the cases we have excluded above, (2, 2, 2), is

precisely the Markov quiver. In this case the cluster variable degrees do not grow at

all, and every path is essentially ‘fastest growing’ with zero growth.

Lemma 3.2.7. The sequence (di)i∈N0, where di is as in (4) above, is strictly

increasing.

Proof. First recall that c ≤ b ≤ a since our grading vector is of the form

(3). We additionally require that c > 2. Then d0 < d1 since a, b ≥ c implies that

d1 = ab− c > c = d0.

For d1 < d2 we will show that the difference ∆ = d2− d1 is strictly positive. We

have

∆ = d2 − d1 = (ab− c)a− b− (ab− c)

= a2b− ac− b− ab+ c

= b(a2 − a− 1)− c(a− 1)

≥ b(a2 − a− 1)− b(a− 1) = b(a2 − 2a) = ab(a− 2).

Since c > 2 we have a ≥ 3 and b ≥ 3, hence ab(a− 2) ≥ a > 0 and the claim holds.

We proceed by induction. Assume that the claim holds for i < N . We wish to

show that

∆N = dN+1 − dN > 0.
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We have

∆N = dNdN−1 − dN−2 − dN

= dN(dN−1 − 1)− dN−2

≥ (dN−1 + 1)(dN−1 − 1)

= d2N−1 − 1

≥ dN−1 − 1

≥ dN−2 ≥ 0.

Hence ∆N > 0 whenever dN−2 > 0. □

Conjecture 3.2.8. The sequence
(

ln di
ln di−1

)
i∈N0

converges.

Proposition 3.2.9. Suppose that Conjecture 3.2.8 holds. Let (di)i∈N0 be the

sequence of degrees along a fastest growing path, starting with the initial degree seed(
d = (b, c, a), B =

(
0 a −c
−a 0 b
c −b 0

))
, where a, b, c ∈ N0 are such that a ≥ b ≥ c > 2, and

B is mutation-infinite. Then lim
i→∞

ln (di+1)
ln (di)

= φ or 1− φ, where φ is the golden ratio

1+
√
5

2
.

Proof. First, recall that by Lemma 3.2.2 we know that mutation of a degree

seed of the form (3) along a fastest growing path produces another degree seed of

the same form. Proposition 3.2.2 also tells us that in the mutation-infinite case, we

have ab − c ≥ b. Now, notice that we have d0 = c, d1 = ab − c, and d2 = d1a − b.

For i > 2 we have di+1 = didi−1 − di−2. Hence, we have a sequence of the form (4).

We will show that, assuming Conjecture 3.2.8, this sequence tends to φ.
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lim
i→∞

ln (di+1)

ln (di)
= lim

i→∞
ln (didi−1 − di−2)

ln (di)

= lim
i→∞

ln (didi−1 − di−2)− ln (didi−1) + ln (didi−1)

ln (di)

= lim
i→∞

ln
(
1− di−2

didi−1

)
+ ln (didi−1)

ln (di)

= lim
i→∞

ln (didi−1)

ln (di)

= lim
i→∞

ln (di) + ln (di−1)

ln (di)

= 1 + lim
i→∞

ln (di−1)

ln (di)

= 1 +
1

lim
i→∞

ln (di+1)
ln (di)

The fourth equality is a result of Lemma 3.2.7 since the fact that di−2 < di−1 < di,

for all i, implies that di−2

didi−1
→ 0. Hence we have(

lim
i→∞

ln (di+1)

ln (di)

)2

− lim
i→∞

ln (di+1)

ln (di)
− 1 = 0 and lim

i→∞
ln (di+1)

ln (di)
=

1±
√
5

2
.

□

Remark 3.2.10. It would seem that Conjecture 3.2.8 is closely related to the fact

that the ratio of terms in a generalised Fibonacci sequence (i.e. a sequence starting

with any two real numbers and continuing with the usual Fibonacci rule) tends to φ.

See [Kos01] for details. It can be seen in the fifth equality of the proof above that

what we have closely resembles the ratio of terms in such a generalised Fibonacci

sequence. Moreover, computation of a large number of examples has failed to find a

situation in which the sequence does not tend to φ.

Further examples, together with additional details, can be found in Appendix

A.

Remark 3.2.11. Another reasonable suggestion would be to consider the average

degree of all cluster variables at a given radius of mutation from the initial cluster,

but examining examples reveals that the fastest growing path dominates, and the

resulting sequence of degrees does not produce significantly different results to those

detailed above. See Appendix A for examples of this.
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Unfortunately, looking at areas of fast growth in the exchange tree does not

appear to provide any way of distinguishing between different initial seeds, but

rather illustrates the fact that cluster variable degrees can grow extremely fast. We

note that it is not so surprising that this approach fails to distinguish between the

mutation-cyclic and mutation-acyclic cases since, by the proof of Proposition 3.2.9,

the fastest growing path does not encounter any acyclic exchange quivers.
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3.3. Slow Growth in Rank 3 Cluster Algebras

An alternative approach could be to instead look at areas of the exchange tree

exhibiting slower growth. One way to do this is by ‘pruning’ the exchange tree as

follows:

(i) Begin with an exchange tree Tn, with initial degree cluster d.

(ii) At each radius of mutation (starting from d), remove the branch starting

with the vertex of highest degree.

The ‘pruned’ version of the exchange tree with initial degree seed(
(5, 3, 6),

(
0 6 −3
−6 0 5
3 −5 0

))
is shown in Figure 3.4. In theory, this process should remove all ‘fastest growing’

paths, starting from each possible initial seed. It seems, however, that the remaining

portion of the exchange tree still exhibits very fast growth, and we remain unable

to differentiate between the mutation-cyclic and mutation-acyclic cases with this

method. See Appendix A for more examples and further details.

Figure 3.4. The ‘pruned’ exchange tree with initial degree vector
(5, 3, 6)
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The final possible approach attempted was to define a slowest growing path,

essentially dualising the notion of Definition 3.2.1. Here, we mutate at the vertex of

largest possible degree (without two consecutive mutations in the same direction).

This does not appear to provide any useful information. In fact, it appears to depend

only upon the value of c in the initial seed—this is illustrated in the examples in

Section A.4.



CHAPTER 4

A Partial Order on a Generating Set for C[Gr(k, n)]

All results from this chapter will remain true in the quantum cluster algebra setting

but, to simplify notation, we only explicitly work in the classical setting. We start

by setting up some notation for higher degree cluster variables in C[Gr(k, n)].

Let {a, b, c, d, e, f} be a subset of {1, . . . , n}, written in increasing order. Define

Xabcdef := ∆cef∆abd −∆def∆abc

and

Y abcdef := ∆bcf∆ade −∆def∆abc.

In what follows, we write [a, b], where a < b, to denote the integer interval

between a and b and [a] to denote the integer interval [1, a]. To simplify notation,

we also write [a, b][c, d] to mean [a, b] ∪ [c, d], for a ≤ b < c ≤ d.

We wish to obtain a mutation path in C[Gr(k, n)] which behaves ‘nicely’ with

respect to the poset structure defined in Section 2.3. More specifically, we wish to

find a path with the following properties:

(P1) The path includes all Plücker coordinates.

(P2) The sequence of Plücker coordinates obtained is monotonically increasing

with respect to the partial order ≤st as in (2).

(P3) The path begins (resp. ends) at some well-defined ‘minimal’ (resp. ‘maxi-

mal’) cluster.

In order to define the minimal and maximal clusters, we use the notion of weak

separability.

Definition 4.0.1 (Weak separation, [Sco00]). Given two index sets I and J ,

we write I ≺ J if i < j for all i ∈ I and all j ∈ J . We say I and J are weakly

separated if at least one of the following conditions holds:

(i) |I| ≥ |J | and J − I can be partitioned into a disjoint union J − I = J ′ ⊔ J ′′

so that J ′ ≺ I − J ≺ J ′′.

37
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(ii) |J | ≥ |I| and I − J can be partitioned into a disjoint union I − J = I ′ ⊔ I ′′

so that I ′ ≺ J − I ≺ I ′′.

In what follows, by maximal weakly separated collection, we refer to a set W of

pairwise weakly separated Plücker coordinates such that |W| is as large as possible.
In other words, there exist no Plücker coordinate ∆I /∈ W such that I is weakly

separated from all J such that ∆J ∈ W .

Theorem 4.0.2 ([OPS11, Thm 1.6]). Let C be a subset of
(
[n]
k

)
. The following

are equivalent:

(i) The set of Plücker coordinates {∆I}I∈C is a cluster in the cluster algebra

structure on C[Gr(k, n)].

(ii) C is a maximal weakly separated collection.

Here,
(
[n]
k

)
denotes the set of k-element subsets of [n].

Remark 4.0.3. A result by Leclerc and Zelevinsky, [LZ98, Theorem 1.1], states

that weak separation in the Grassmannian corresponds precisely to quasi-commutation

in the quantum setting. Theorem 4.0.2 is therefore analogous to the fact that quan-

tum clusters are maximal quasi-commuting sets.

Definition 4.0.4 (Minimal/maximal cluster). A minimal cluster for C[Gr(k, n)]

corresponds to a maximal weakly separated set W such that for any I ∈ W , and

for any J /∈ W such that J ≤st I, the set (W \{I}) ∪ {J} is no longer weakly

separated. Maximal clusters are defined analogously. We denote these by m̃in and

m̃ax respectively. Note that, by [OPS11, Thm 1.6], these are indeed clusters in

C[Gr(k, n)].

4.1. Minimal and Maximal Clusters for C[Gr(k, n)]

We now show that there exist well-defined minimal and maximal clusters for C[Gr(k, n)].

We begin by defining the following subsets of Πk,n:

Cfrozen := {[1, k − 1][n], [1, k − 2][n− 1, n], . . . , [n− k + 1, n],

[n− k, n− 1], . . . , [2, k + 1], [1, k]}

Cm̃in := {I = [1, i1][i2, i3] ∈ Πk,n} ∪ Cfrozen
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[n− k + 1, n] [n− k, n− 1] [2,k+1]

[1][n− k + 2, n] [1][n− k + 1, n− 1] [1][3, k + 1]

[1, k − 1][n] [1, k − 1][n− 1] [1, k − 1][k + 1] [1, k]

Figure 4.1. The exchange quiver Qm̃in. The frozen variables are
shown in boxes.

Cm̃ax := {J = [j1, j2][j3, n] ∈ Πk,n} ∪ Cfrozen

Where i1, i2, i3 ∈ Z are such that 1 ≤ i1 < i2 ≤ i3 ≤ n, and j1, j2, j3 ∈ Z are such

that 1 ≤ j1 ≤ j2 < j3 ≤ n,. We show in Proposition 4.1.2 that the following are

minimal and maximal clusters respectively:

m̃in = {∆I : I ∈ Cm̃in} and m̃ax = {∆I : I ∈ Cm̃ax} (5)

where {∆I : I ∈ Cfrozen} are the frozen variables.

The exchange quiver for the minimal seed (m̃in, Qm̃in) is shown in Figure 4.1

below, with arrows between mutable vertices as follows.

[1, i1][i2, i3] [1, i1][i2 − 1, i3 − 1]

[1, i1 + 1][i2 + 1, i3] [1, i1 + 1][i2, i3 − 1]
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[1, k] [2, k + 1] [n− k, n− 1]

[1, k − 1][n] [2, k][n] [n− k, n− 2][n]

[1][n− k + 2, n] [2][n− k + 2, n] [n− k][n− k + 2, n] [n− k + 1, n]

Figure 4.2. The exchange quiver Qm̃ax. The frozen variables are
shown in boxes.

The exchange quiver for the maximal seed (m̃ax, Qm̃ax) is shown in Figure 4.2

below. The arrows between mutable vertices are as follows.

[i1, i2][i3, n] [i1 + 1, i2 + 1][i3, n]

[i1, i2 − 1][i3 − 1, n] [i1 + 1, i2][i3 − 1, n]

Proposition 4.1.1. The sets m̃in and m̃ax defined in (5) above occur as clusters

in C[Gr(k, n)].

Proof. Recall that the set Cfrozen corresponds to the set of frozen variables.

Since these will appear in all clusters, we begin by showing that each I ∈ Cfrozen is

weakly separated from each J ∈ Πk,n.

Let I = [1, i1][i2, n] ∈ Cfrozen and J ∈ Πk,n. Then I and J are weakly separated

since

I ′ = [1, i1]\J ≺ J\I ≺ I ′′ = [i2, n]\J.
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Now, let I = [i1, i2] ∈ Cfrozen and J ∈ Πk,n. Then I and J are weakly separated

since

J ′ = {j ∈ J : j < i1} ≺ I\J ≺ J ′′ = {j ∈ J : j > i2}.

We now deal with the remaining elements of Cm̃in. Let I = [1, i1][i2, i3], J =

[1, j1][j2, j3] ∈ Cm̃in, and let J1 = [1, j1], J2 = [j2, j3]. Assume, without loss of

generality, that i1 ≤ j1. Then we have the following cases:

Case 1: 1 ≤ i1 < i2 ≤ j1 ≤ i3 < j2 ≤ j3 ≤ n.

Case 2: 1 ≤ i1 < i2 ≤ j1 < j2 ≤ i3 ≤ j3 ≤ n.

Case 3: 1 ≤ i1 < j1 ≤ i2 ≤ j2 ≤ i3 ≤ j3 ≤ n,

or 1 ≤ i1 ≤ j1 < i2 ≤ j2 ≤ i3 ≤ j3 ≤ n.

Case 4: 1 ≤ i1 < j1 ≤ i2 ≤ i3 < j2 ≤ j3 ≤ n,

or 1 ≤ i1 ≤ j1 < i2 ≤ i3 < j2 ≤ j3 ≤ n.

Case 5: 1 ≤ i1 < j1 ≤ i2 ≤ j2 ≤ j3 < i3 ≤ n,

or 1 ≤ i1 ≤ j1 < i2 ≤ j2 ≤ j3 < i3 ≤ n.

Case 6: 1 ≤ i1 ≤ j1 < j2 < i2 ≤ j3 ≤ i3 ≤ n.

Case 7: 1 ≤ i1 ≤ j1 < j2 ≤ j3 < i2 ≤ i3 ≤ n.

Case 8: 1 ≤ i1 < i2 ≤ j1 < j2 < j3 ≤ i3 ≤ n.

In cases 1-4, I and J are weakly separated since

J ′ = J1\I ≺ I\J ≺ J ′′ = J2\I.

In cases 5-8 I and J are weakly separated since

J ′ = J\I ≺ I\J ≺ J ′′ = ∅.

To see this, consider the following diagram, where blue corresponds to I\J , pink
corresponds to J\I, and grey corresponds to I ∪ J .

1 i1 i2 j1 i3 j2 j3 1 i1 j1 i2 j2 j3 i3

1 i1 i2 j1 j2 i3 j3 1 i1 j1 j2 i2 j3 i3

1 i1 j1 i2 j2 i3 j3 1 i1 j1 j2 j3 i2 i3

1 i1 j1 i2 i3 j2 j3

Cases 1-4

1 i1 i2 j1 j2 j3 i3

Cases 5-8
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We now turn our attention to the maximal cluster. Let I = [i1, i2][i3, n], J =

[j1, j2][j3, n] ∈ Cm̃ax, and let J1 = [j1, j2], J2 = [j3, n]. Assume that j3 ≥ i3. Then

we have the following cases:

Case 1: 1 ≤ i1 ≤ j1 ≤ j2 < j3 ≤ i2 < i3 ≤ n.

Case 2: 1 ≤ i1 ≤ i2 ≤ j1 ≤ j2 < j3 ≤ i3 ≤ n.

Case 3: 1 ≤ i1 ≤ j1 ≤ i2 < j2 < j3 ≤ i3 ≤ n.

Case 4: 1 ≤ i1 < j1 ≤ j2 ≤ i2 < j3 ≤ i3 ≤ n,

or 1 ≤ i1 < j1 ≤ j2 ≤ i2 ≤ j3 < i3 ≤ n.

Case 5: 1 ≤ j1 ≤ j2 ≤ i1 ≤ i2 < j3 ≤ i3 ≤ n,

or 1 ≤ j1 ≤ j2 ≤ i1 ≤ i2 ≤ j3 < i3 ≤ n.

Case 6: 1 ≤ j1 ≤ i1 ≤ j2 ≤ i2 < j3 ≤ i3 ≤ n,

or 1 ≤ j1 ≤ i1 ≤ j2 ≤ i2 ≤ j3 < i3 ≤ n.

Case 7: 1 ≤ j1 ≤ i1 ≤ j2 < j3 ≤ i2 < i3 ≤ n.

Case 8: 1 ≤ j1 ≤ j2 < i1 ≤ j3 ≤ i2 < i3 ≤ n.

In cases 1-4, I and J are weakly separated since

I ′ = I1\J ≺ J\I ≺ I ′′ = ∅.

In cases 5-8, I and J are weakly separated since

J ′ = J1\I ≺ I\J ≺ J ′′ = J2\I.

This is illustrated in the following diagram, where blue corresponds to I\J , pink
corresponds to J\I, and grey corresponds to I ∪ J .

i1 j1 j2 j3 i2 i3 n j1 j2 i1 i2 j3 i3 n

i1 i2 j1 j2 j3 i3 n j1 i1 j2 i2 j3 i3 n

i1 j1 i2 j2 j3 i3 n j1 i1 j2 j3 i2 i3 n

i1 j1 j2 i2 j3 i3 n

Cases 1-4

j1 i1 j2 j3 i2 i3 n

Cases 5-8

Note that, in both sets of diagrams above, it is not a problem to have ir = js for

some r, s ∈ {1, 2, 3}. In this case, the result will be that a ‘grey’ region becomes

a single point, or that a ‘blue’/‘pink’ region becomes empty. Neither of these will

change that the two index sets in question are weakly separated. Thus, the sets

Cm̃in and Cm̃ax are weakly separated.
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In [OPS11, Thm 3.3], it is established that any maximal weakly separated

collection must have cardinality k(n − k) + 1. It is clear, from counting rows and

columns of the quivers, that we have
∣∣Cm̃in

∣∣ = ∣∣Cm̃ax

∣∣ = k(n − k) + 1, and hence

these are indeed maximal weakly separated sets.

Finally, [OPS11, Thm 1.6] states that any maximal weakly separated set corre-

sponds to a cluster in C[Gr(k, n)]. □

Proposition 4.1.2. The cluster m̃in (resp. m̃ax) defined above is minimal (resp.

maximal) in the sense of Definition 4.0.4.

Proof. Let us begin with the minimal cluster. We claim that for any I ∈ Cm̃in,

and for any J /∈ Cm̃in such that J ≤st I, the set (Cm̃in\I) ∪ {J} is not weakly

separated.

First, note that if I is one of the following:

[1, k − 1][n], [1, k − 1][n− 1], ..., [1, k − 1][k + 1],

[1, k], [2, k + 1], [1][3, k + 1]..., [1, k − 2][k, k + 1] (6)

then it cannot be replaced by anything smaller, since all J ≤st I are already in Cm̃in.

Now, recall that each square in the mutable part of the exchange quiver is of the

following form:

I1 = [1, i1][i2, i3] I2 = [1, i1][i2 − 1, i3 − 1]

I3 = [1, i1 + 1][i2 + 1, i3] I4 = [1, i1 + 1][i2, i3 − 1]

We proceed by induction. Suppose the above claim holds for all I <st I1 in the

maximal cluster. We wish to show that the claim holds for I1. By assumption, we

need only to consider J /∈ Cm̃in such that I2, I3 ≤st J <st I1. Any such J is of

the form J = [1, i1][j2] ∪ J ′ ∪ [i3], where i1 + 1 < j2 < i2 and J ′ ⊂ [j2 + 1, i3 − 1].

However, elements of this form are not weakly separated from I4. In order to see

this, recall that J and I4 both have cardinality k; we may therefore deduce that

|J ′| < |[i2, i3 − 1]|. Hence, [i2, i3 − 1]\J ′ is non-empty, and so there is no choice

of J ′ such that J and I4 are weakly separated. This is illustrated in the following

diagram. Note that i2 = i3 − 1 and 1 = i1 are the only instances in which points

on the diagram coincide, and neither of these have any effect on the argument - the

grey or pink regions will simply consist of single points.
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1 i1 i1 + 1 j2 i2 i3 − 1 i3

It remains to deal with the elements of the form I1 = [i, i+ k − 1], i.e. we wish

to show that if the claim holds for I2 = [i− 1, i+k− 2], I3 = [1][i+1, i+k− 1], I4 =

[1][i, i+ k − 2] ∈ Cm̃in, then the claim holds for I1.

By assumption, we only need to consider I2, I3 ≤st J <st I1. Any such J is of

the form J = [j] ∪ J ′ ∪ [i+ k − 1], where j < i and J ′ ⊂ [j + 1, i+ k − 2]. However,

elements of this form cannot be weakly separated from I4. In order to see this we

first note that J and I4 are both of cardinality k. Hence, |J ′| < |[i, i + k − 2]| and
so [i, i + k − 2]\J ′ cannot be empty. This means that there is no choice of J ′ such

that J and I4 are weakly separated.

Hence, the claim holds for all I ∈ Cm̃in by induction.

We now turn our attention to the maximal cluster. The proof will be almost

identical to that of the minimal case. The claim here is that for any I ∈ Cm̃ax, and

for any J /∈ Cm̃ax such that I ≤st J , the set (Cm̃ax\I)∪{J} is not weakly separated.

First, notice that if I is one of the following

[1][n− k + 2, n], [2][n− k + 2, n], . . . , [n− k + 1, n], [n− k, n− 1],

[n− k, n− 2][n], . . . , [n− k, n− k + 1][n− k + 3, n]

then all J such that I ≤st J are in Cm̃ax already, and so we cannot replace I by

anything larger.

Next, recall that the mutable part of the exchange quiver consists of squares of

the following form:

I1 = [i1, i2][i3, n] I2 = [i1 + 1, i2 + 1][i3, n]

I3 = [i1, i2 − 1][i3 − 1, n] I4 = [i1 + 1, i2][i3 − 1, n]

Once again, we proceed by induction. Suppose the claim above holds for all I

with I1 <st I. We show that the claim then holds for I1. By assumption, we need

to consider only J /∈ Cm̃ax such that I1 <st J ≤st I2, I3. Any such J is of the form

J = [i1] ∪ J ′ ∪ [j2][i3, n] where j2 > i2 and J ′ ⊆ [i1 + 1, j2 − 1]. However, any such

J will not be weakly separated from I4. To see this, notice that J and I4 both have
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cardinality k. We can therefore deduce that |J ′| < |[i1 +1, i2]|. Hence, [i1 +1, i2]\J ′

must be non-empty, so J and I4 cannot be weakly separated.

It remains to deal with the elements of Cm̃ax of the form I1 = [i, i + k − 1], i.e.

we wish to show that if the claim holds for I2 = [i + 1, i + k], I3 = [i, i + k − 2][n]

and I4 = [i+ 1, i+ k − 1][n], then the claim holds for I1.

By assumption, it suffices to consider J ∈ Cm̃ax such that I1 <st J ≤st I2, I3. Any

such J must have the form J = [i]∪J ′∪ [j], where j > i+k−1 and J ′ ⊆ [i+1, j−1].

However, elements of this form cannot be weakly separated from I4. To see this,

recall that J and I4 both have cardinality k. Therefore, |J ′| < |[i+1, i+k−1]|, and
so [i + 1, i + k − 1]\J ′ is non-empty. Thus, J and I4 cannot be weakly separated.

The claim holds for all I ∈ Cm̃ax by induction . □

4.2. The Finite Type Case for C[Gr(k, n)]

We demonstrate below that we may obtain a path satisfying the required properties

in the finite type case—it remains to determine whether this will still be the case

for infinite type.

4.2.1. The C[Gr(2, n)] Case. We first consider the Gr(2, n) case. For the

initial seed we take the cluster

m̃in = (∆1n,∆1(n−1), . . . ,∆13,∆12,∆23,∆34, . . . ,∆(n−2)(n−1),∆(n−1)n)

together with initial exchange matrix corresponding to the following quiver:

12 13 14 · · · 1(n− 1) 1n

23 34 · · · (n − 2)(n − 1) (n − 1)n

For clarity when dealing with mutation paths, we number the mutable vertices for

the initial quiver as follows:
1 2 · · · n− 3

· · ·

This enumeration is preserved when we mutate; when drawing the mutated quiver,

we keep the same vertex positions and change only the arrows.
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The maximal cluster is as follows

m̃ax = (∆1n,∆2n, . . . ,∆(n−2)n,∆12,∆23,∆34, . . . ,∆(n−2)(n−1), . . . ,∆(n−1)n)

and we consider the following mutation path, where the mutable vertices are num-

bered as above:

[p] = [1, (2, 1), . . . , (n− 4, n− 5, . . . , 1), (n− 3, n− 4, . . . , 1)]

= [p
n−3

, ..., p
1
], (7)

where p
i
= (n − 2 − i, ..., 1). We claim that the sequence of new cluster variables

obtained after each mutation is as follows:

∆24,∆25, . . . ,∆2n,∆35,∆36, . . . ,∆3n, . . . ,∆(n−2)n

Below we prove that this mutation path has the properties (P1)-(P3) as required.

In the previous Section, we have shown that m̃in and m̃ax are indeed clusters in

C[Gr(2, n)], and that these are minimal/maximal in the sense of Definition 4.0.4.

Theorem 4.2.1. The mutation path [p] defined above satisfies properties (P1)-

(P3).

Proof. Note that if n < 4 there is nothing to prove. Hence, assume that we

have n ≥ 4. By definition of the mutation path [p], we begin at the minimal cluster

m̃in as in (5), verifying the first part of (P3).

To address (P2) we first claim that, when mutating at ∆ij along the path [p],

the quiver appears locally as

[(i+ 1)j] [ij] [i(j + 1)] [i(j + 2)]

[i(i+ 1)]

[j(j + 1)] [(j + 1)(j + 2)]

where [ij] is the mutating vertex, corresponding to ∆ij for 1 ≤ i < j ≤ n−1. Hence

we have

µ[ij]([ij]) =
[i(i+ 1)][j(j + 1)] + [(i+ 1)j][i(j + 1)]

[ij]
= [(i+ 1)(j + 1)].
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When j = n−1 we simply remove the vertices labelled [i(j+2)] and [(j+1)(j+2)].

This claim holds for the first mutation by inspection of the minimal cluster, and

we see that

µ[13]([13]) =
[12][34] + [14][23]

[13]
= [24].

Now, assume that the claim holds up to mutation at the variable [ij] along the

mutation path [p]. We will show that it holds for mutation at [(i)(j + 1)].

After mutation at [ij] the quiver appears locally as follows, with indices taken

modulo n.

[(i+ 1)j] [(i+ 1)(j + 1)] [i(j + 1)] [i(j + 2)]

[i(i+ 1)]

[j(j + 1)] [(j + 1)(j + 2)]

The diagram above shows that the next vertex at which we mutate, [i(j + 1)],

has the required form and

µ[i(j+1)]([i(j + 1)]) =
[i(i+ 1)][(j + 1)(j + 2)] + [(i+ 1)(j + 1)][i(j + 2)]

[i(j + 1)]

= [(i+ 1)(j + 2)].

We note also that after mutation at [i(j+1)] the vertex [(i+1)(j+1)] will again

have the required form.

After applying p
1
, the mutable cluster variables are ∆24, ...,∆2n. Note that this

is the only time we mutate at vertex n − 3 along the path [p], and hence ∆2n will

remain in our final cluster.

In general, after applying p
r
, the mutable vertices are

∆(r+1)(r+3), ...,∆(r+1)n, ...∆2n.

The vertices n−3, ..., n−1−r do not appear again in the mutation path, and hence

∆(r+1)n, ...,∆2n will remain in the final cluster.

We may now observe that the path produces the variables claimed above, and

hence satisfies properties (P1) and (P2). For the second part of (P3) we note that
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the Plücker coordinates which remain in the final cluster are precisely those in the

maximal cluster defined above.

□

Example 4.2.2 (n = 6). In the n = 6 case, the initial seed consists of the cluster

m̃in = (∆16,∆15,∆14,∆13,∆12,∆23,∆34,∆45,∆56)

together with the following quiver:
12 13 14 15 16

23 34 45 56

12 13 14 15 16

23 34 45 56

1

12 24 14 15 16

23 34 45 56

2

12 24 25 15 16

23 34 45 56

3

12 24 25 26 16

23 34 45 56

1

12 35 25 26 16

23 34 45 56

2

12 35 36 26 16

23 34 45 56

1

12 46 36 26 16

23 34 45 56

Figure 4.3. The mutation path in the Gr(2, 6) case. Mutable
vertices are labelled 1-3 from left to right, and the labelled arrows

state the vertex at which mutation takes place.

As shown in Figure 4.3, we obtain the following mutation path, with mutable

vertices labelled 1-3 from left to right, and sequence of cluster variables:

[p] = [1, 2, 1, 3, 2, 1], ∆24,∆25,∆26,∆35,∆36,∆46.
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4.2.2. The C[Gr(3, n)] Case for n = 6, 7, 8. We now deal with the remaining

finite-type cases, namely C[Gr(3, n)], for n = 6, 7, 8.

4.2.2.1. The n = 6 Case. In the case of C[Gr(3, 6)], the initial seed is as follows:

m̃in = (∆145,∆134,∆125,∆124,∆123,∆234,∆345,∆456,∆156,∆126)

456 345 234

156

126

145 134

125 124 123

1 2

3 4

For ease when working with mutation paths, we label the mutable vertices as

shown on the above—this labelling will be preserved after mutation, by retaining

the vertex position and changing only the arrows.

The maximal cluster is the following

m̃ax = (∆236,∆256,∆346,∆356,∆123,∆234,∆345,∆456,∆156,∆126).

The first few mutations are shown in Figure 4.4, and we obtain the following muta-

tion path

[p] = [4, 2, 3, 4, 1, 2, 3, 4, 2, 3, 4].

This produces the following sequence of cluster variables

∆135,∆136,∆235, Y 123456,∆245,∆146,∆236,∆246,∆346,∆256,∆356.

This mutation path satisfies properties (P1)-(P3) as required. Note that precisely

half of the quadratic cluster variables appear in this mutation path (see [GL09] for

a full list of cluster variables)—this will also be the case when n = 7, 8.
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4.2.2.2. The n = 7 Case. For the C[Gr(3, 7)] case, we take the following initial

seed:

m̃in = (∆156,∆145,∆134,∆126,∆125,∆124,

∆123,∆234,∆345,∆456,∆567,∆167,∆127)

567 456 345 234

167

127

156

126

145

125

134

124 123

1

4

2

5

3

6

For mutation paths, we will use the labelling of mutable vertices shown above—

this labelling will be preserved after mutation, by retaining the vertex position and

changing only the arrows.

The maximal cluster is as follows:

m̃ax = (∆237,∆347,∆457,∆267,∆367,∆467,

∆123,∆234,∆345,∆456,∆567,∆167,∆127)

Here, we obtain the following mutation path, in which the numbers correspond to

mutable vertices labelled from left to right,

[p] = [6, 3, 5, 6, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 3, 4, 5, 6].

This yields the following sequence of cluster variables

∆135,∆136,∆137,∆235, Y 123456, Y 123457,∆245,∆146,∆236, Y 123467,∆246,∆346,

Y 123567,∆147,∆237, Y 124567, Y 134567,∆157,∆247,∆256, Y 234567,∆257,∆267,∆356,

∆347,∆357,∆367,∆457,∆467.

This mutation path satisfies the properties (P1)-(P3) as required.

4.2.2.3. The n = 8 Case. Finally, for the n = 8 case, the initial seed is as follows

m̃in = (∆167,∆156,∆145,∆134,∆127,∆126,∆125,∆124,

∆123,∆234,∆345,∆456,∆567,∆678,∆178,∆128)
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678

178

128

567 456 345 234

167

127

156

126

145

125

134

124 123

For mutation paths we will utilise the following labelling of mutable vertices:

1

5

2

6

3

7

4

8

This labelling will be preserved after mutation, by retaining the vertex position

and changing only the arrows.

We have

m̃ax = (∆238,∆348,∆458,∆568,∆278,∆378,∆478,∆578,

∆123,∆234,∆345,∆456,∆567,∆678,∆178,∆128)

We obtain the following mutation path, again with numbers corresponding to mu-

table vertices, labelled as above:

[p] = [8, 4, 7, 8, 3, 4, 6, 7, 8, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 2, 3,

4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4,

5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8].

This gives the following sequence of cluster variables

∆135,∆136,∆137,∆138,∆235, Y 123456, Y 123457, Y 123458,∆245,∆146,∆236, Y 123467,

Y 123468,∆246,∆346, Y 123567,∆147,∆237, B(8, 0), Y 124567, Y 134567,∆157, Y 123478,

Y 123568,∆148, B(3, 1), A(3), Y 123578, Y 123678, Y 124568,∆247,∆256,∆238, B(3, 0),

Y 124578, Y 124678,∆248, Y 234567, Y 134568,∆347, B(6, 1), A(6), Y 234568,∆356,

Y 134578,∆257,∆158, B(6, 0), Y 234578,∆357,∆457, Y 125678, Y 134678,∆267, B(1, 1),

Y 135678, Y 145678,∆168, Y 234678,∆258,∆348, Y 235678, Y 245678,∆268,∆278,∆358,∆367,

Y 345678,∆368,∆378,∆467,∆458,∆468,∆478,∆568,∆578

where A(i) and B(i, j) are the cubic regular functions shown in Table 2 of [GL09].

Again, this mutation path satisfies the required properties. Note also that we

now obtain precisely one third of the cubic cluster variables.
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Remark 4.2.3. It is natural at this point to ask whether the mutation paths de-

scribed above are maximal green sequences. Introduced in [Kel11], a maximal green

sequence is a certain path in the exchange graph of a cluster algebra, beginning at

the unique smallest element and ending at the unique largest element. The existence

of these sequences proves useful since, among other things, they provide explicit for-

mulas for a generic basis in the upper cluster algebra. See [DK20] for more details.

A straightforward check shows that the sequences we describe are not maximal green

sequences, even in the Gr(2, n) case.

4.3. The Finite Type Case for C[M(k, j)]

We now wish to apply the theory developed in Section 4 to another related class of

(quantum) cluster algebras, namely the coordinate ring of the matrix algebra as in

Definition 2.2.10. We will construct a partial order on the generators.

Rather than computing the relevant mutation paths from scratch in these cases,

we note that they may be obtained from the corresponding Grassmannian case via

the algebra isomorphism α given in [LR08]. For convenience, we give the definition

of this isomorphism below.

Proposition 4.3.1 ([GL13, Prop 6.1]). Let σ be the automorphism of

Kq[M(k, n− k)] defined by σ(Xij) = qXij. The map

α : Kq[M(k, n− k)][Y ±1;σ]→ Kq[Gr(k, n)]
[
[12 . . . k]−1

]
defined by

α(Xij) = [1 . . . ̂k − i+ 1 . . . k(j + k)][1 . . . k]−1, α(Y ) = [12 . . . k]

is an algebra isomorphism. Note that â denotes an omitted index.

4.3.1. The C[M(2, j)] Case. We first consider the M(2, j) case. For the initial

seed we take the cluster

m̃in =
(
(21), (11), . . . , (1, j), [ 1212 ] , . . . ,

[
(j−1)(j)

12

] )
together with initial exchange matrix corresponding to the following quiver:
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11 12 · · · 1(j − 1) 1j

21 [ 1212 ] · · ·
[
(j−2)(j−1)

12

] [
(j−1)(j)

12

]
The frozen variables are those in boxes.

Using the mutation path for the corresponding Grassmannian, together with the

isomorphism α defined above, we obtain the following mutation path (note that the

mutable vertices are labelled from left to right)

[p] = [(1), (2, 1), . . . , (n− 1, n− 2, . . . , 1), (n, n− 1, . . . , 1)].

The sequence of new cluster variables obtained after each mutation is as follows:

(22), . . . , (2j), [ 1312 ] , . . . ,
[
1j
12

]
,
[
2j
12

]
, . . . ,

[
(j−2)j

12

]
Note that this mutation path has the properties (P1)-(P3) as required.

Example 4.3.2 (j = 4). In the j = 4 case, the initial seed consists of the cluster

m̃in =
(
(21), (11), (12), (13), (14), [ 1212 ] , [

23
12 ] , [

34
12 ]
)

together with the following quiver:

11 12 13 14

21 [ 1212 ] [ 2312 ] [ 3412 ]

As shown in Figure 4.5, we obtain the following mutation path and sequence of

cluster variables:

[p] = [1, 2, 1, 3, 2, 1], (22), (23), (24), [ 1312 ] , [
14
12 ] , [

24
12 ] .

The maximal cluster in this case is the following:

m̃ax =
(
(21), [ 2412 ] , [

14
12 ] , (24), [

12
12 ] , [

23
12 ] , [

34
12 ]
)
.

4.3.2. The C[M(3, j)] Case.

4.3.2.1. The j = 3 Case. In the case of C[M(3, 3)], the initial seed is as follows:

m̃in =
(
[ 1212 ] , (21), (12), (11), (31), [

12
23 ] , [

123
123 ] , [

23
12 ] , (13)

)
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11 12 13 14

21
[
12
12

] [
23
12

] [
34
12

]

1

22 12 13 14

21
[
12
12

] [
23
12

] [
34
12

]

2

22 23 13 14

21
[
12
12

] [
23
12

] [
34
12

]

3

22 23 24 14

21
[
12
12

] [
23
12

] [
34
12

]

1

[
13
12

]
23 24 14

21
[
12
12

] [
23
12

] [
34
12

]

2

[
13
12

] [
14
12

]
24 14

21
[
12
12

] [
23
12

] [
34
12

]

1

[
24
12

] [
14
12

]
24 14

21
[
12
12

] [
23
12

] [
34
12

]

Figure 4.5. The mutation path for the M(2, 4) case. The labelled
arrows correspond to mutable vertices, labelled from left to right and

top to bottom.

[
123
123

] [
12
23

]
31

[
23
12

]

13

[
12
12

]
21

12 11

The maximal cluster is the following

m̃ax =
(
(33), [ 2313 ] , [

13
23 ] , [

13
13 ] , (31), [

12
23 ] , [

123
123 ] , [

23
12 ] , (13)

)
.

We obtain the following mutation path

[p] = [4, 2, 3, 4, 1, 2, 3, 4, 2, 3, 4].
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[
123
123

] [
12
23

]
(31)

[
23
12

]

126

[
12
12

]
(21)

(12) (11)

4

[
12
23

][
123
123

]
(31)

[
23
12

]

126

[
12
12

]
(21)

(12) (22)

3

[
12
23

][
123
123

]
(31)

[
23
12

]

126

[
12
12

]

(23)

(21)

(22)

2

126

[
23
12

]

[
123
123

] [
12
23

]
(31)

[
12
12

]
(32)

(23) (22)

4

[
12
23

][
123
123

]
(31)

[
23
12

]

126

[
12
12

]
(32)

(23) Y123
123

...
4

[
12
23

][
123
123

]
(31)

[
23
12

]

126

(33)
[
23
13

]

[
14
23

] [
23
23

]

Figure 4.6. The mutation path for the M(3, 3) case. The labelled
arrows correspond to mutable vertices, labelled from left to right.

This produces the following sequence of cluster variables

(22), (23), (32), (32) [ 1312 ]− (31) [ 2312 ] , [
12
13 ] , [

13
12 ] , (33), [

13
13 ] , [

13
23 ] ,

[ 2313 ] , [
23
23 ] .

The first few steps in this mutation path are shown in Figure 4.6.

4.3.2.2. The j = 4 Case.

Definition 4.3.3. Let {a, b, c, d, e, f} be a subset of {1, . . . , n} written in in-

creasing order, and define the following:

Y abc
def = (fb) [ acde ]− (fa) [ bcde ] .
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In the case of C[M(3, 4)], the initial seed is as follows:

m̃in =
(
[ 2312 ] , [

12
12 ] , (21), (13), (12), (11), (31), [

12
23 ] , [

123
123 ] , [

234
123 ] , [

34
12 ] , (14)

)
[ 234123 ] [ 123123 ] [ 1223 ] (31)

[ 3412 ]

(14)

[ 2312 ]

(13)

[ 1212 ]

(12)

(21)

(11)

We obtain the following mutation path

[p] = [6, 3, 5, 6, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 3, 4, 5, 6].

This produces the following sequence of cluster variables

(22), (23), (24), (32), Y 123
123 , Y

124
123 , [

12
13 ] , [

13
12 ] , (33), Y

134
123 , [

13
13 ] , [

13
23 ] ,

Y 234
123 , [

14
12 ] , (34), (14)Y

123
123 , (24)Y

123
123 , [

24
12 ] , [

14
13 ] , [

23
13 ] , (34)Y

123
123 , [

24
13 ] ,

[ 3413 ] , [
23
23 ] , [

13
24 ] , [

23
24 ] , [

34
23 ] , [

23
34 ] , [

34
34 ] .

4.3.2.3. The j = 5 Case. The last finite type case to consider is M(3, 5), i.e. the

equivalent of Gr(3, 8) for the Grassmannian.

In this case, our initial seed is as follows:

m̃in =
(
[ 3412 ] , [

23
12 ] , [

12
12 ] , (21),(14), (13),

(12), (11), (31), [ 1223 ] , [
123
123 ] , [

234
123 ] , [

345
123 ] , [

45
12 ] , (15)

)
[ 234123 ] [ 123123 ] [ 1223 ] (31)

[ 3412 ]

(14)

[ 2312 ]

(13)

[ 1212 ]

(12)

(21)

(11)

[ 345123 ]

[ 4512 ]

(15)

Using the mutation path found earlier for Gr(3, 8), together with the isomor-

phism α defined above, we may obtain the sequence of cluster variables obtained

along the relevant mutation path.
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4.4. Perfect Matchings

In what follows, we describe a potential connection with perfect matchings. We

observe that enhancing the quivers appearing above with certain perfect matchings

suggests that one could construct an algorithm to produce the mutation paths from

Section 4.2 in a more general setting.

Remark 4.4.1. The interested reader may wish to consult [ÇKP24], [BKM16]

for other uses of perfect matchings in cluster theory. In [ÇKP24], the authors in-

troduce a class of modules for dimer algebras which correspond to perfect matchings

on the dimer model. This is then used to show that the associated cluster category

embeds into that of the appropriate Grassmannian.

We begin by stating some relevant definitions.

Definition 4.4.2 (Quiver with faces). A quiver with faces is a quiver Q =

(Q0, Q1), together with a set, Q2, of faces (i.e. oriented cycles). We write Q =

(Q0, Q1, Q2).

Definition 4.4.3 ( [BKM16, Def 2.4]). The quiver Q(D) of a Postnikov dia-

gram D has vertices Q0(D) = C(D) given by the labels of the alternating regions of

D. The arrows Q1(D) correspond to intersection points of two alternating regions,

with orientations as in [BKM16, Figure 4]. The diagram on the right of [BKM16,

Figure 4] indicates the boundary case. We refer to the arrows between boundary

vertices as boundary arrows.

Consider the quiver corresponding to the minimal cluster in the Grassmannian

case. We observe that, following the construction in [BKM16], the boundary ver-

tices are precisely the frozen vertices, and the boundary arrows are those between

frozen vertices, as shown in Figure 4.7. The remaining arrows are the internal ar-

rows. It can be observed that the incidence graphs at each vertex are indeed cycles

and hence connected, thus verifying that we have a dimer model with boundary as

in [BKM16, Def 3.2].

We note that Qm̃in, is a quiver with faces since it is a finite dimer model with

boundary in a disc. See [BKM16, Remark 3.4] for further details. Note also that,

although there is an orientation arising from the Postnikov diagram, we do not make

use of this in what follows. We choose the set of faces, Q2, to correspond precisely
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[n− k + 1, n] [n− k, n− 1] [2,k+1]

[1][n− k + 2, n] [1][n− k + 1, n− 1] [1][3, k + 1]

[1, k − 1][n] [1, k − 1][n− 1] [1, k − 1][k + 1] [1, k]

Figure 4.7. The red arrows indicate the initial perfect matching on
Qm̃in.

to the oriented regions in the Postnikov diagram as in [ÇKP24, Def 2.8]. These

faces consist of all 3-cycles of the forms shown below:

[1, i1][i2, i3] [1, i1][i2 − 1, i3 − 1]

[1, i1 + 1][i2, i3 − 1]

[1, i1][i2, i3]

[1, i1 + 1][i2 + 1, i3] [1, i1 + 1][i2, i3 − 1]

together with the following larger cycles arising from the addition of boundary ar-

rows:
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[1, k − 1][n] [1, k − 1][n− 1] [1, k − 1][k + 1] [1, k]

[2,k+1]

[1][3, k + 1]

[1, k − 1][k + 1] [1, k]

The mutation rule for boundary arrows is as follows:

(i) Mutate as usual, treating the boundary arrows as ordinary arrows.

(ii) If this results in a 2-cycle of boundary arrows, keep only the new arrow

added after mutation. Effectively, this will reverse the direction of the

original boundary arrow.

See Figure 4.8 for an example. Note that this is consistent with mutation of

Postnikov diagrams, and the same modified form of cluster mutation is detailed in

[BKM16, Remark 12.3].

x
→

x
→

x
→

x

Figure 4.8. An example of mutation with boundary arrows. The
dashed arrows are the boundary arrows, and we mutate at the vertex

x.

Definition 4.4.4 (Perfect matching, [ÇKP24, Def 4.1]). Let Q = (Q0, Q1, Q2)

be a quiver with faces. A perfect matching on Q is a set ν ⊂ Q1 such that the

boundary of each face in Q2 contains exactly one arrow in ν.

Proposition 4.4.5. The red arrows in Figure 4.7 form a perfect matching, which

we call νmin, on the quiver Qm̃in.
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Proof. We observe that each of the faces described above contains exactly one

perfect matching (red) arrow in Figure 4.7. Hence, the set of red arrows does indeed

form a perfect matching on Qm̃in. □

Definition 4.4.6. Given a quiver with faces Q and a perfect matching ν, we

denote by Q\ν = (Q0, Q1\ν) the quiver with the same vertex set as Q and with

arrow set Q1\ν.

Lemma 4.4.7. The quiver Qmin\νmin is connected and acyclic.

Proof. Observe from Figure 4.7 that removing the perfect matching arrows will

leave only the horizontal and vertical arrows remaining. In fact, what remains is

precisely a lattice together with an additional ‘initial’ vertex. Travelling along these

arrows we may only move ‘left’ or ‘up’, and hence the quiver is acyclic. We see that

the quiver is path connected. □

Definition 4.4.8. We define a partial order, ≤min, on the minimal cluster m̃in

as follows: y ≤min y′ if and only if there is an oriented path from y to y′ in Qmin\νmin.

Corollary 4.4.9. Definition 4.4.8 above defines a partial order on the minimal

cluster.

Proof. This follows from Lemma 4.4.7. Reflexivity is a consequence of the fact

that each vertex is connected to itself via a path of length zero. Antisymmetry

follows from acyclicity, since if we had a path from a vertex u to a vertex v and a

path from v to u then we must have a cycle u→ v → u. Finally transitivity follows

from connectedness; if we have a path from u to v and a path from v to w, we may

concatenate these paths to obtain a path from u to w. □

We expect that the additional data of a perfect matching can be utilised together

with the mutation paths described in Section 4.2 to construct a partial order on the

set of cluster variables. Figure 4.9 below shows the observed behaviour along the

mutation path from Section 4.2 when we attempt to find a notion of ‘mutation’ of

the initial perfect matching, obtaining a set of ‘red’ arrows on the mutated quiver. In

the third case, we can choose either of the dashed arrows to be ‘red’. This process

appears to continue along the paths described above, producing each quiver now

enriched with a subset of red arrows.

We have the following conjectures:
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y
→

y′

y
→

y′

y
→

y′

Figure 4.9. The observed behaviour of ‘mutation’ of a perfect
matching. The perfect matching arrows are shown in red.

Conjecture 4.4.10. There exists a mutation path for the Grassmannian cluster

algebras along which mutation of a perfect matching, following the rules suggested

by Figure 4.9, results in a perfect matching on the mutated quiver with respect to an

appropriate choice of faces.

The conjecture above holds in the finite type cases, and we will demonstrate this

in Sections 4.4.0.1-4.4.0.4 below. Note that, in order to ensure that what we obtain

after mutation might be a perfect matching, we do not mutate at vertices which are

both the source and target of red arrows—an example illustrating why this condition

is necessary can be found in Figure 4.10. We will call the vertices at which we can

mutate perfect matching source/sinks. The main difficulty with proving this result

in general is that it is not immediately obvious how the faces of a quiver with faces

should change under mutation, particularly when the quiver we obtain is no longer

planar.

x
→

x

Figure 4.10. An example in which mutating at a vertex with both
incoming and outgoing perfect matching arrows does not produce a
perfect matching. By the rules suggested in Figure 4.9, one of the
two dashed arrows must be red, but we can see that neither choice

results in a perfect matching on the mutated quiver.

Conjecture 4.4.11. In the setting of Conjecture 4.4.10, for each cluster along

the path with quiver Q and perfect matching ν, Q\ν is connected and acyclic.

Conjecture 4.4.12. In the setting of Conjecture 4.4.11, there is a partial order

on each cluster along the path, with Hasse diagram given by Q\ν. Furthermore,
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there is a consistent extension of these partial orders to a partial order on the union

of all clusters along the path: ≤ν.

The extent of the challenge of proving the latter part of Conjecture 4.4.12 is

clarified by the following observations. Firstly, we note that even if x1 ≤ν x2 is

witnessed by a path which does not pass through the vertex at which mutation

takes place, and which is hence unaltered by quiver mutation, one must either show

that perfect matching mutation is sufficiently local that the path is not interrupted

by a perfect matching arrow, or one must see that there is a different such path

witnessing x1 ≤ν′ x2 in the mutated quiver. Now, consider the case in which x1 ≤ν x2

is witnessed by a path x1 → y → x2, where y is the vertex at which we mutate.

While it should be helpful that such a mutation yields an arrow x1 → x2, one must

check carefully that the choice of faces and perfect matching arrows is not such that

x1 → x2 is in the perfect matching.

Obtaining partial orders for each cluster is not trivial, though there are features

for Grassmannian cluster structures which mean that this is plausible. Showing,

however, that these partial orders patch together consistently is much more difficult,

particularly in the presence of higher degree cluster variables.

We will observe that such a partial order can be obtained in the finite type cases,

and that it coincides with the standard partial order used in [LR04].

Definition 4.4.13 (Minimal mutable element). Let (x,Q) be a seed. Given

a perfect matching ν on the exchange quiver Q such that Q\ν is connected and

acyclic, we say that an element x ∈ x is minimal mutable if it is:

(i) Mutable (i.e. not frozen)

(ii) A minimal element with respect to ≤ν restricted to mutable cluster vari-

ables.

(iii) A perfect matching sink (i.e. not the source of any perfect matching arrow)

with at least one incoming perfect matching arrow.

We will call a vertex corresponding to a minimal mutable element a minimal mutable

vertex.

4.4.0.1. Perfect Matchings in the C[Gr(2, n)] Case. Recall that when we mutate

at the vertex [ij] along path [p] in the C[Gr(2, n)] case, the quiver appears locally

as follows, now with ‘red’ arrows and boundary arrows included.
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[(i+ 1)j] [ij] [i(j + 1)] [i(j + 2)]

[i(i+ 1)]

[j(j + 1)] [(j + 1)(j + 2)]

Notice that the vertex [ij] is a minimal mutable element as in Definition 4.4.13.

Note also that the red arrows appear to form part of perfect matching on the mutated

quiver below, with a suitable choice of faces.

[(i+ 1)j] [(i+ 1)(j + 1)] [i(j + 1)] [i(j + 2)]

[i(i+ 1)]

[j(j + 1)] [(j + 1)(j + 2)]

Conjecture 4.4.14. For C[Gr(2, n)], applying the mutation path [p] to the min-

imal quiver enriched with the perfect matching described above results in the partial

order shown in Figure 4.11.

We may observe that Conjecture 4.4.14 holds when n = 6. The minimal quiver

is as follows:

12 13 14 15 16

23 34 45 56

The mutation path [p] is shown in Figure 4.12, with red arrows determined by

the rules from Figure 4.9.

We observe that, with the correct choice of faces, the red arrows do indeed form

a perfect matching on each quiver along the path [p]—we expect that this will be

the case for any value of n.

Moreover, we observe that the partial order obtained as described in Conjecture

4.4.12 is precisely the standard partial order used by Lenagan and Rigal. The Hasse

diagram is shown in Figure 4.13 below.

4.4.0.2. Perfect Matchings in the C[Gr(3, 6)] Case. For the C[Gr(3, 6)] case, we

may write down the mutation path [p] in its entirety with red arrows as determined
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12

13

14 23

24

1(n− 1)

1n 2(n− 1)

2n

(n− 3)(n− 1)

(n− 3)n (n− 2)(n− 1)

(n− 2)n

(n− 1)n

Figure 4.11. The poset for the partial order <ν in the Gr(2, n)
case. The minimal and maximal clusters are shown in green and red

respectively.

by the rules in Figure 4.9. This is shown in Figure 4.14 below. We may observe

that, with the correct choice of faces, the red arrows do form a perfect matching on

each of the quivers occurring along this path.

We observe also that the resulting partial order, defined as outlined in Conjecture

4.4.12, coincides with the standard partial order in the sense that if x <st y then we

cannot have x >ν y. Note that we obtain one cluster variable which is not a Plücker

coordinate—any cluster variables which are comparable in the ν partial order but

not the standard one are connected through this higher degree variable in the Hasse

diagram. The Hasse diagram is shown in Figure 4.15 below.
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12 13 14 15 16

23 34 45 56

1

12 24 14 15 16

23 34 45 56

2

12 24 25 15 16

23 34 45 56

3

12 24 25 26 16

23 34 45 56

1

12 35 25 26 16

23 34 45 56

2

12 35 36 26 16

23 34 45 56

1

12 46 36 26 16

23 34 45 56

Figure 4.12. The Gr(2, 6) case. Mutable vertices are labelled 1-3
from left to right, and the labelled arrows state the vertex at which

mutation takes place.
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12

13

14

15

23

24

16 25 34

26 35

4536

46

56

Figure 4.13. The poset for the partial order <ν in the Gr(2, 6)
case.
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356

346

246

245

Y 123456

136

135

125

124

256

236 146

145 235

134

456

345 156

126 234

123

Figure 4.15. The poset for the partial order <ν in the Gr(3, 6)
case. The minimal and maximal clusters are shown in green and red

respectively.

4.4.0.3. Perfect Matchings in the C[Gr(3, 7)] Case. The quivers produced along

the path [p] in the C[Gr(3, 7)] case have also been explicitly computed, although we

do not include these here as the path is long. What we see, however, is that the set

of red arrows produced still forms a perfect matching on the mutated quivers with

an appropriate choice of faces. The resulting Hasse diagram is shown in Figure 4.16

below, and we again see that the partial order coincides with the standard partial

order, the only difference being that some cluster variables are newly comparable in

the ν partial order via a higher degree cluster variable.

4.4.0.4. Perfect Matchings in the C[Gr(3, 8)] Case. The last finite type case to

consider for the Grassmannian is the C[Gr(3, 8)] case. One can check that the red

arrows produced along the path [p] again form a perfect matching on the quivers,

given an appropriate choice of faces. One may also see that the resulting poset

again coincides with the standard one, apart from some cluster variables being newly

comparable via a higher degree cluster variable. We do not include the full list of

quivers or the Hasse diagram here explicitly, since the path is long and the resulting
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467

367

267

257

157

Y 134567

346

246

245

Y 123457

137

136

126

125

124

457

357

347

Y 234567

256

Y 124567

147

Y 123467

236

Y 123456

145

135

134

356

247

237

Y 123567

156

146

235

123

127

345

167

234

456

567

Figure 4.16. The poset for the partial order <ν in the Gr(3, 7)
case. The minimal and maximal clusters are shown in green and red

respectively.

quivers are fairly complex. The interested reader may reconstruct these by using

the path [p] stated in Section 4.2 along with the mutation rules for red arrows given

in Figure 4.9.

4.4.0.5. Perfect Matchings in the Matrix Case. Let us now briefly turn our at-

tention back to the Matrix case. Rather than computing the Hasse diagrams from

scratch in these cases, we may again make use of the algebra isomorphism α given in

[LR08] to obtain these from the corresponding Grassmannian cases. The resulting
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[
23
23

]

[
13
23

]

[
13
13

]

[
12
13

]

Y 123
123

(23)

(22)

(12)

(11)

[
23
13

]

(33)
[
13
12

]

[
12
12

]
(32)

(21)

[
123
123

]

[
12
23

] [
23
12

]

(13) (31)

Figure 4.17. The poset for the partial order <ν in the M(3, 3)
case. The minimal and maximal clusters are shown in green and red

respectively.

Hasse diagrams for the M(3, 3) and M(3, 4) cases are shown in Figures 4.17 and

4.18 below.
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[
134
123

]

[
34
23

]

[
34
13

]

[
24
13

]

[
24
12

]

(24)Y 123
123

[
13
23

]

[
13
13

]

[
12
13

]

Y 124
123

(24)

(23)

(13)

(12)

(11)

[
124
123

]

[
24
23

]

[
14
23

]

(34)Y 123
123

[
23
13

]

Y 124567

[
14
12

]

Y 134
123

(33)

Y 123
123

[
12
12

]

(22)

(21)

[
23
23

]

[
14
13

]

(34)

Y 234
123

[
23
12

]

[
13
12

]

(32)(14)

[
12
23

]

[
34
12
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Figure 4.18. The poset for the partial order <ν in the M(3, 4)
case. The minimal and maximal clusters are shown in green and red

respectively.



CHAPTER 5

Segre Products of Graded Cluster Algebras

The following Chapter is joint work with Jan E. Grabowski - see [GH24].

5.1. The Segre Product

The map σ : Pn × Pm ↪→ Pn+m+nm of projective spaces defined by

σ((x0 : . . . : xn), (y0 : . . . : ym)) = (x0y0 : x0y1 : . . . : xiyj : . . . : xnym)

is known as the Segre embedding—it is injective and its image is a subvariety of

Pn+m+nm. We may then define the Segre product of two projective varieties X ⊆ Pn

and Y ⊆ Pm as the image of X×Y with respect to the Segre embedding. We denote

the Segre product by X⊗̄Y def
= σ(X × Y ).

In what follows, rather than the geometric setting described above, we will be

interested in the dual notion of the Segre product of graded algebras. Let A =⊕
i∈NAi and B =

⊕
i∈N Bi be N-graded K-algebras. Then their Segre product

A⊗̄B is the N-graded algebra

A⊗̄B def
=
⊕
i∈N

Ai ⊗K Bi (8)

with the usual tensor product algebra multiplication. Letting X and Y be projective

varieties with homogeneous coordinate rings A and B respectively, the Segre product

A⊗̄B is the homogeneous coordinate ring of X⊗̄Y .

In all known examples when a cluster algebra is the coordinate algebra of a

projective variety, we have a compatible grading on the cluster algebra, with all

cluster variables being homogeneous. Such cluster algebras are naturally called

graded cluster algebras and the general theory of these is set out in work of the first

author ([Gra15]).

In this chapter, inspired by [Pre23, Remark 4.14], we define a cluster algebra

structure on the Segre product of graded cluster algebras. This generalises the par-

ticular case arising in [Pre23] in the study of cluster algebra structures on positroid

73
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varieties and in doing so, we are able to clarify the required input data to be able

to form a Segre product.

We show that from the point of view of cluster algebras, forming the Segre prod-

uct is given by a gluing operation on suitable frozen variables. We also record some

simple observations on the preservation or otherwise of cluster-algebraic properties

under taking Segre products.

5.2. Segre Products of Graded Cluster Algebras

It was shown by Galashin and Lam in [GL19] that coordinate rings of positroid

varieties in the Grassmannian have cluster algebra structures. This class is closed

under Segre product and in [Pre23], Pressland shows how the Galashin–Lam cluster

structure on the product is related to that on the factors.

In what follows, we aim to generalise this construction to the case of graded skew-

symmetric cluster algebras: we start with two graded cluster algebras and show that

their Segre product has a natural cluster structure. For coordinate rings of positroid

varieties, Pressland’s result shows that the Galashin–Lam cluster structure on the

product is equal to that obtained by the Segre product construction we give here.

We start by establishing some notation; readers unfamiliar with graded cluster

algebras may wish to refer to [Gra15] for further details and examples.

First, let Ai = (x̃i, xi, Bi, Gi) be (skew-symmetric) graded cluster algebras, for

i ∈ {1, 2}, such that

• x̃1 = {x1, . . . , xn1} and x̃2 = {y1, . . . , yn2} are the respective initial clusters;
• xi ⊊ x̃i is the set of mutable cluster variables;

• every frozen variable (i.e. those elements in x̃i \ xi) is invertible;

• Bi is an exchange matrix (with rows indexed by x̃i and columns by xi) with

skew-symmetric principal part;

• Gi ∈ Zni is a grading vector, i.e. a vector such that BT
i Gi = 0.

Throughout, we will work over a field K, so that our cluster algebras are K-

algebras and we take all tensor products to be over K. As we will see, the underlying

field plays essentially no role in our construction.

Let x̃ be a cluster with x a cluster variable and B the exchange matrix associated

to x̃. We denote by Bx the row of B indexed by x and by B̂x the matrix obtained

from B by removing the row Bx. If x is frozen, B̂x is again an exchange matrix.
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Remark 5.2.1. In the above we require at least one frozen cluster variable in

each cluster algebra—this will be important when defining a cluster structure on their

Segre product since this will involve ‘gluing’ at frozen variables.

We have also asked that every frozen variable is invertible, which is a common

but not universal assumption in cluster theory. In fact, an examination of our

construction shows that this assumption can be weakened to only asking that the

glued frozen variables are invertible, which may be a more appropriate assumption

for geometric applications.

We wish to define a cluster algebra structure on the Segre product A1⊗A2.

Following the approach of [Pre23], we aim to construct a new cluster algebra from

A1 and A2 by gluing at frozen variables of the same degree, which we will show

coincides with the Segre product under suitable further conditions.

5.2.1. A Gluing Construction. Fix x ∈ x̃1 \ x1 and y ∈ x̃2 \ x2 such that

(G1)x = (G2)y. That is, x and y are frozen variables in their respective clusters and

their degrees are equal. We will identify the frozen variables x and y, denoting a

new proxy variable replacing both of these by z.

The initial data for our new cluster algebra is as follows. For the initial cluster,

we take

x̃1□x̃2
def
= (x̃1 \ {x}) ∪ (x̃2 \ {y}) ∪ {z}.

The mutable variables are x1 ∪ x2, and for the initial exchange matrix, we form the

block matrix

B1□B2
def
=


B̂x

1 0

0 B̂y
2

Bx
1 By

2

 .

Finally, for the initial grading vector we take

G1□G2
def
=


Ĝx

1

Ĝy
2

Gz
1


where Ĝx

1 is the grading vectorG1 with the entry indexed by x removed (and similarly

for Ĝy
2) and Gz

1
def
= (G1)x = (G2)y. We can now define a cluster algebra

A1□A2 = A (x̃1□x̃2, x1 ∪ x2, B1□B2, G1□G2)
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from this initial data.

Let us extend the above notation to write

x̃′
1□x̃′

2 = (x̃′
1 \ {x}) ∪ (x̃′

2 \ {y}) ∪ {z},

where x̃′
1, x̃

′
2 are now allowed to be any clusters of A1 and A2, respectively, and say

that x̃′
1□x̃′

2 is obtained by gluing x and y. This is well-defined since x and y are

frozen. Similarly, we extend the notation B1□B2 and G1□G2 to any appropriate

input matrices/vectors.

The process of gluing at frozen variables with matching degree is illustrated in

the example below. Here and elsewhere, 1 denotes the vector (1, . . . , 1)T .

Example 5.2.2. Let A1 = (x̃1 = {x1, x2, x3}, x1 = {x1}, Q1, G1 = 1) and A2 =

(x̃2 = {y1, y2, y3}, x2 = {y1}, Q2, G1 = 1) be cluster algebras with exchange quivers

as follows:

x2

Q1 :
x1 x3 y3

Q2 :
y1 y2

The quiver obtained by ‘gluing’ at the frozen variables x3 and y3 is shown below—we

denote the new variable by z.

x2

Q :
x1 z y1 y2

The cluster algebra A1□A2 is then given by the initial data

(x̃ = {x1, x2, y1, y2, z}, x = {x1, y1}, Q,G = 1).

We will show in Theorem 5.2.7 that this gives a cluster structure on the Segre product

A1⊗A2.

We record some straightforward observations about the cluster algebra A1□A2.

Lemma 5.2.3. Let A1 and A2 be graded cluster algebras. Fix x ∈ x̃1 \ x1 and

y ∈ x̃2 \ x2 such that (G1)x = (G2)y. Then the cluster algebras A1□A2 and A2□A1

are isomorphic as cluster algebras.

Proof. This is clear from comparing the initial data for A1□A2 and A2□A1

and in particular noting that the two initial clusters are equal up to permutation of

the entries. □
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Lemma 5.2.4. Let A1 and A2 be graded cluster algebras. Fix x ∈ x̃1 \ x1 and

y ∈ x̃2 \ x2 such that (G1)x = (G2)y.

(i) Every cluster variable of A1□A2 is naturally identified with a cluster vari-

able of A1, a cluster variable of A2 or is equal to z.

(ii) There is a bijection between pairs of clusters (x̃′
1, x̃

′
2) and clusters of A1□A2

given by gluing, i.e. sending (x̃′
1, x̃

′
2) to x̃′

1□x̃′
2 for a cluster x̃′

1 of A1 and x̃′
2

of A2.

Proof. This follows from observing that our gluing process does not introduce

any new arrows between mutable vertices. Since mutation is a local phenomenon

and concentrated on mutable vertices, it is straightforward to see that mutating at

vertices indexed by x1 is independent of mutating at vertices indexed by x2 and the

(mutable) variables obtained are exactly as if the gluing had not been carried out.

The frozen variables of A1□A2 are those of A1 and A2 excluding x and y, along

with the glued frozen z.

For the second part, note that the same argument shows that there is a similar

bijection for the clusters of A1 × A2, where the latter denotes the “disconnected”

product of cluster algebras, where one simply takes the union of clusters and direct

sum of exchange matrices. Now there is evidently a bijection between the clusters

of A1 ×A2 and those of A1□A2, given by x̃′
1 ∪ x̃′

2 7→ x̃′
1□x̃′

2, from which the claim

follows. □

Corollary 5.2.5. Let A1 and A2 be graded cluster algebras. Fix x ∈ x̃1 \ x1

and y ∈ x̃2 \ x2 such that (G1)x = (G2)y.

Then

(i) A1□A2 is of finite type if and only if A1 and A2 are;

(ii) writing κ(A ) for the number of cluster variables of a cluster algebra A , we

have κ(A1□A2) = κ(A1)+κ(A2)−1 when these numbers are all finite; and

(iii) writing K(A ) for the number of clusters of A , we have K(A1□A2) =

K(A1)K(A2) when these numbers are all finite.

Proof. These are now immediate from the previous lemma. Note that there is

an overall reduction of one in the number of cluster variables because we have glued

two previously distinct frozen variables; this highlights the difference between this

construction and the disconnected product. □
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Remark 5.2.6. One might hope that this construction extends straightforwardly

to graded quantum cluster algebras (cf. [GL13]). However, computation in small

examples shows that this is not the case.

For if one tries the näıve approach in which initial quantum cluster variables

from A1 commute with those from A2, one rapidly finds situations in which after

performing a mutation, the new variable does not quasi-commute with the rest of

its cluster. For it to do so requires the compatibility condition between the exchange

and quasi-commutation matrices for the glued data and this imposes a collection of

“cross-term” requirements between B1 and L2 (respectively, B2 and L1) in respect

of the glued frozen variables.

5.2.2. Relationship with the Segre product. Our main result is the follow-

ing theorem, showing that the cluster algebra construction A1□A2 induces a cluster

algebra structure on the Segre product. The isomorphism we will use is directly

analogous to the map δsrc defined in [Pre23].

Theorem 5.2.7. Let Ai = (x̃i, xi, Bi, Gi), i = 1, 2 be graded cluster algebras such

that there exist x ∈ x̃1 \ x1 and y ∈ x̃2 \ x2 both of degree 1.

Then the map φ : A1□A2 → A1⊗A2 given on initial cluster variables by

φ(xj) = xj ⊗ ydeg xj for xj ∈ x̃1 \ {x},

φ(yj) = xdeg yj ⊗ yj for yj ∈ x̃2 \ {y} and

φ(z) = x⊗ y

is a graded algebra isomorphism, with the property that the above formulæ hold for

any cluster of A1□A2.

Proof. Recalling that we set

x̃1□x̃2 = (x̃1 \ {x}) ∪ (x̃2 \ {y}) ∪ {z},

let φ denote the algebra homomorphism φ : K(x̃1□x̃2) → K(x̃1) ⊗ K(x̃2) obtained

from the above specification on generators of the domain. This map is injective

since the elements φ(xj), φ(yj) and φ(z) are algebraically independent.

Now let φ denote the restriction of the above map to A1□A2. We first claim

that the restricted map φ takes values in the subalgebra A1⊗A2. To prove this, we

proceed by induction on the number of mutation steps from the initial cluster.
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We may take as base case that of zero mutations from the initial cluster: there

is nothing to do, since we see immediately that φ(xj), φ(yj) and φ(z) lie in A1⊗A2

by definition.

Now assume that the result holds r − 1 mutations from the initial cluster x̃ =

x̃1□x̃2 (for r ≥ 1) of A1□A2. That is, let y = µkr−1µkr−2 · · ·µk1(x̃). Set B =

µkr−1µkr−2 · · ·µk1(B1□B2).

By Lemma 5.2.4(ii), we have that y = y
1
□y

2
for some clusters y

1
, y

2
of A1 and

A2 respectively. Moreover, there is a decompostion

{k1, . . . , kr−1} = {l1, . . . , ls} ⊔ {m1, . . . ,mt}

such that y
1
= µls · · ·µl1(x̃1) and y

2
= µmt · · ·µm1(x̃2).

Let y
1
= {x1, . . . , xn1} and y

2
= {y1, . . . , yn2}, so that

y = y
1
□y

2
= ({x1, . . . , xn1} \ {x}) ⊔ ({y1, . . . , yn2} \ {y}) ⊔ {z}

Let C = µls · · ·µl1(B1), D = µmt · · ·µm1(B2), H = µls · · ·µl1(G1) and K =

µmt · · ·µm1(G2). Then in particular B = C□D and Hj = deg xj and Kj = deg yj.

We also set [n]+ = max{n, 0} and [n]− = max{−n, 0}.
We then compute φ for one further mutation in direction kr = k. We first

consider the case in which xk ∈ y
1
is mutable.
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We have

φ(µk(xk)) = φ

(
1

xk

[( ∏
xj∈y1\{x}

x
[Bxj,xk

]+

j

)( ∏
yj∈y2\{y}

y
[Byj,xk

]+

j

)
z[Bz,xk

]+

+

( ∏
xj∈y1\{x}

x
[Bxj,xk

]−
j

)( ∏
yj∈y2\{y}

y
[Byj,xk

]−
j

)
z[Bz,xk

]−

])

= φ

(
1

xk

[( ∏
xj∈y1\{x}

x
[Bxj,xk

]+

j

)
z[Bz,xk

]+ +

( ∏
xj∈y1\{x}

x
[Bxj,xk

]−
j

)
z[Bz,xk

]−

])

= φ

(
1

xk

[( ∏
xj∈y1\{x}

x
[Cxj,xk

]+

j

)
z[Cx,xk

]+ +

( ∏
xj∈y1\{x}

x
[Cxj,xk

]−
j

)
z[Cx,xk

]−

])

=
1

xk ⊗ ydeg xk

[ ∏
xj∈y1\{x}

(
x
[Cxj,xk

]+

j ⊗ y[Cxj,xk
]+ deg xj

)
x[Cx,xk

]+ ⊗ y[Cx,xk
]+

+
∏

xj∈y1\{x}

(
x
[Cxj,xk

]−
j ⊗ y[Cxj,xk

]− deg xj

)
x[Cx,xk

]− ⊗ y[Cx,xk
]−

]

=
1

xk ⊗ ydeg xk

[ ∏
xj∈y1

x
[Cxj,xk

]+

j ⊗ yd +
∏
xj∈y1

x
[Cxj,xk

]−
j ⊗ yd

]

=
1

xk

( ∏
xj∈y1

x
[Cxj,xk

]+

j +
∏
xj∈y1

x
[Cxj,xk

]−
j

)
⊗ yd−deg xk

= µk(xk)⊗ yd−deg xk

= µk(xk)⊗ ydegµk(xk)

where

d =
∑
xj

[Cxj ,xk
]+ deg xj =

∑
Cxj,xk

>0

Cxj ,xk
Hxj

=
∑

Cxj,xk
<0

−Cxj ,xk
Hxj

=
∑
xj

[Cxj ,xk
]− deg xj

noting that the third equality holds since CTH = 0. Also, we use that deg µk(xk) =

d− deg xk.

Note that the fifth equality is where the assumption that deg x = 1 is used:

without it, the claimed equality of d with the other stated quantities need not hold.

An analogous argument shows that φ(µk(yk)) = xdegµk(yk) ⊗ µk(yk) for yk ∈ y
2

mutable, noting that this time, it is deg y = 1 that is required.
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Since we have deg x = deg y = 1, the above tells us that for any cluster variable

x′ of A1□A2, we either have φ(x′) = x′ ⊗ ydeg x
′
or φ(x′) = xdeg x′ ⊗ x′ and hence

φ(x′) ∈ (A1)deg x′ ⊗ (A2)deg x′ . That is, the image of φ is contained in the Segre

product A1⊗A2 without any further constraints and the map φ is a graded map.

It remains to check surjectivity. Note that a generating set for A1⊗A2 is given

by taking the elementary tensors with components in generating sets for A1 and A2,

i.e.

{z1 ⊗ z2|z1 ∈ (A1)d, z2 ∈ (A2)d cluster variables, d ∈ Z}

Now

z1 ⊗ z2 = (z1 ⊗ yd)(xd ⊗ z2)(x
−d ⊗ y−d) = φ(z1)φ(z2)φ(z)

−d.

Hence, Imφ contains a generating set for A1⊗A2, and so φ is surjective onto A1⊗A2.

The claim follows. □

Remark 5.2.8. One might be tempted to try changing the specification of the

map ϕ to

φ(xj) = xdeg y
j ⊗ ydeg xj for xj ∈ x̃1 \ {x},

φ(yj) = xdeg yj ⊗ ydeg xj for yj ∈ x̃2 \ {y} and

φ(z) = xdeg y ⊗ ydeg x

in an attempt to avoid the deg x = deg y = 1 assumption. Note that one should

however ask for deg x and deg y strictly positive, to avoid issues with needing inverses

of arbitrary cluster variables.

While this does indeed fix the issue with d that occurs in the calculation in the

above proof for xk ∈ y
1
, the appearance of xdeg y in the first tensor factor means that

we do not obtain µk(xk) unless deg y = 1.

More explicitly, following the same approach as in the previous proof, one would

arrive at

1

xdeg y
k ⊗ ydeg xk

[ ∏
xj∈y1

x
[Cxj,xk

]+ deg y

j ⊗ yd +
∏
xj∈y1

x
[Cxj,xk

]− deg y

j ⊗ yd

]
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but this is not equal to

1

xdeg y
k

( ∏
xj∈y1

x
[Cxj,xk

]+

j +
∏
xj∈y1

x
[Cxj,xk

]−
j

)deg y

⊗ yd−deg xk

if deg y ̸= 1.

By symmetry, the other case tells us that we also need deg x = 1. That is, the

degree 1 assumption is unavoidable.

Remark 5.2.9. Notice that in proving surjectivity, we required φ(z) = x ⊗ y,

and hence x and y themselves, to be invertible, but no other frozen variables needed

to be invertible for the proof to hold.

Remark 5.2.10. Via Lemma 5.2.4, we see that the cluster structure on A1□A2

and hence that on A1⊗A2 is independent of the choices of initial seeds. Therefore the

only requirements to obtain a cluster structure on the Segre product are the existence

of a frozen variable of degree 1 for each factor.

Graded cluster algebras with at least one frozen variable of degree one are, perhaps

surprisingly, ubiquitous. Many examples arising geometrically have this property:

coordinate rings of Grassmannians and more generally partial flag varieties and

their cells ([GLS11b]), double Bruhat cells ([BFZ03]) and, as motivated this work,

positroid varieties ([GL19]).

Note too that the claims on the cluster structure of A1□A2 in Corollary 5.2.5

therefore also apply to the induced cluster structure on the Segre product.
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scientifiques de l’École Normale Supérieure, Ser. 4, 39(6):983–1009, 2006.
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APPENDIX A

Growth in Graded Cluster Algebras of Rank 3: Examples

In this Appendix we collect, and comment on, some of the raw data behind Chapter

3.

A.1. Fastest Growing Paths

We begin by illustrating the behaviour of the fastest growing paths as in Definition

3.2.1. By Proposition 3.2.9, we expect that taking logs yields a Fibonacci type

sequence, with the ratio of terms tending to the golden ratio. This behaviour can

be seen in Tables 1-4 below.

Mutation Radius ln (Highest Degree) Ratio

1 0.477 -
2 0.477 1
3 0.699 1.465
4 1.114 1.594
5 1.792 1.609
6 2.907 1.622
7 4.696 1.615
8 7.600 1.618
9 12.295 1.618
10 19.895 1.618

Table 1. The fastest growing path for the initial degree seed
(1, 3, 1)

Mutation Radius ln (Highest Degree) Ratio

1 0.845 -
2 1.256 1.485
3 2.090 1.665
4 3.344 1.600
5 5.434 1.625
6 8.777 1.615
7 14.211 1.619
8 22.989 1.618
9 37.200 1.618
10 60.188 1.618

Table 2. The fastest growing path for the initial degree seed
(3, 3, 7)

86
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Mutation Radius ln (Highest Degree) Ratio

1 0.602 -
2 1.114 1.850
3 1.681 1.509
4 2.792 1.661
5 4.473 1.602
6 7.266 1.624
7 11.739 1.616
8 19.005 1.619
9 30.744 1.618
10 49.750 1.618

Table 3. The fastest growing path for the initial degree seed
(4, 3, 4)

Mutation Radius ln (Highest Degree) Ratio

1 0.602 -
2 0.845 1.404
3 1.415 1.674
4 2.250 1.590
5 3.665 1.628
6 5.915 1.614
7 9.580 1.620
8 15.495 1.617
9 25.075 1.618
10 40.570 1.618

Table 4. The fastest growing path for the initial degree seed
(2, 1, 4)

The cluster algebras corresponding to Tables 1 and 2 above are examples of

mutation-acyclic cluster algebras, Tables 3 and 4 show mutation-cyclic cluster alge-

bras. We see that these do not exhibit noticeably different behaviour.

A.2. Averaging Degrees

In Remark 3.2.11, we stated that it is reasonable to ask what happens if we look

at the average (absolute value of) degree at each radius of mutation, rather than

looking at one individual mutation path. The examples below show that this does

not give significantly different results when compared to the fastest growing paths

above. It seems likely that the fastest growing path eventually dominates sufficiently

so that they still tend to φ, just somewhat slower.
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Mutation Radius Average Degree ln (Average Degree) Ratio

1 2.000 0.693 -
2 2.333 0.847 1.222
3 4.667 1.540 1.818
4 13.000 2.565 1.665
5 88.917 4.488 1.750

Table 5. Average degree for initial degree seed (1, 1, 3)

Mutation Radius Average Degree ln (Average Degree) Ratio

1 3.667 1.299 -
2 8.000 2.079 1.600
3 34.000 3.526 1.696
4 435.000 6.075 1.723
5 38620.229 10.562 1.738

Table 6. Average degree for initial degree seed (2, 1, 4)

Mutation Radius Average Degree ln (Average Degree) Ratio

1 10.333 2.335 -
2 34.667 3.546 1.518
3 533.167 6.279 1.771
4 13438.583 9.506 1.514
5 9290199.042 16.044 1.688

Table 7. Average degree for initial degree seed (4, 3, 4)

Mutation Radius Average Degree ln (Average Degree) Ratio

1 16.333 2.793 -
2 76.333 4.335 1.552
3 985.917 6.894 1.590
4 71235.333 11.174 1.621
5 113512388.792 18.547 1.660

Table 8. Average degree for initial degree seed (5, 3, 6)

We note also that this is much more difficult computationally, since we are

required to calculate all degrees at a given mutation radius, rather than just one.

A.3. The ‘Pruned’ Exchange Tree

In Section 3.3, we defined a ‘pruned’ version of the exchange tree, with the hope

of eliminating the fastest growing path starting at each point. Tables 10-12 below

show the results we obtain in this case. Again, this does not seem to achieve what



A.3. THE ‘PRUNED’ EXCHANGE TREE 89

we require—cluster variable growth is still very fast, and there appears to be no way

of distinguishing between different initial conditions.

Mutation Radius Average Degree ln (Average Degree) Ratio

1 24.000 3.178 -
2 19.333 2.926 0.932
3 34.000 3.526 1.191
4 147.778 4.996 1.417
5 2284.000 7.734 1.548
6 249760.424 12.428 1.607

Table 9. Average degree of pruned exchange tree for initial degree
seed (4, 2, 20)

Mutation Radius Average Degree ln (Average Degree) Ratio

1 2.000 0.693 -
2 1.667 0.511 0.737
3 2.200 0.788 1.543
4 3.000 1.099 1.393
5 3.571 1.273 1.159
6 4.720 1.552 1.219

Table 10. Average degree of pruned exchange tree for initial
degree seed (2, 1, 4)

Mutation Radius Average Degree ln (Average Degree) Ratio

1 8.000 2.076 -
2 20.000 2.996 1.441
3 52.000 3.951 1.319
4 136.000 4.913 1.243
5 356.000 5.875 1.196
6 932.000 6.837 1.164

Table 11. Average degree of pruned exchange tree for initial
degree seed (4, 3, 4)

Mutation Radius Average Degree ln (Average Degree) Ratio

1 11.000 2.398 -
2 32.333 3.476 1.450
3 182.400 5.206 1.498
4 2576.556 7.854 1.509
5 209716.059 12.254 1.560
6 294765443.485 19.502 1.592

Table 12. Average degree of pruned exchange tree for initial
degree seed (5, 3, 6)
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A.4. Slowest Growing Paths

The final approach attempted was to determine a slowest growing path. Tables 13-19

below show that this again fails in general to distinguish between the mutation-cyclic

and mutation-acyclic cases, although the degree growth is notably smaller along this

path when compared to the fastest growing paths. In fact, this seems only to depend

on the value of c in the initial degree seed.

Mutation Radius Degree Ratio

1 9 -
2 23 2.556
3 60 2.609
4 157 2.617
5 411 2.618
6 1076 2.618
7 2817 2.618
8 7375 2.618
9 19308 2.618
10 50549 2.618

Table 13. Slowest growing path for initial degree seed (4, 3, 4)

Mutation Radius Degree Ratio

1 4 -
2 4 1.000
3 8 2.000
4 20 2.500
5 52 2.600
6 136 2.615
7 356 2.618
8 932 2.618
9 2440 2.618
10 6388 2.618

Table 14. Slowest growing path for initial degree seed (4, 3, 8)
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Mutation Radius Degree Ratio

1 3 -
2 8 2.667
3 29 3.652
4 108 3.724
5 403 3.731
6 1504 3.732
7 5613 3.732
8 20948 3.732
9 78179 3.732
10 291768 3.732

Table 15. Slowest growing path for initial degree seed (4, 4, 13)

Mutation Radius Degree Ratio

1 9 -
2 22 2.444
3 57 2.591
4 149 2.614
5 390 2.617
6 1021 2.618
7 2673 2.618
8 6998 2.618
9 18321 2.618
10 47965 2.618

Table 16. Slowest growing path for initial degree seed (5, 3, 6)

Mutation Radius Degree Ratio

1 -2 -
2 -1 0.500
3 2 2.000
4 3 1.500
5 1 0.333
6 -2 2.000
7 -1 0.500
8 2 2.000
9 3 1.500
10 1 0.333

Table 17. Slowest growing path for initial degree seed (1, 1, 3).
Note that this path follows a cycle in the exchange graph, and hence
repeats with period 5 - this cyclic behaviour will always occur when

c = 1.
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Mutation Radius Degree Ratio

1 4 -
2 5 1.250
3 6 1.200
4 7 1.167
5 8 1.143
6 9 1.125
7 10 1.111
8 11 1.100
9 12 1.091
10 13 1.083

Table 18. Slowest growing path for initial degree seed (3, 2, 2)

Mutation Radius Degree Ratio

1 2 -
2 3 1.500
3 7 2.333
4 18 2.571
5 47 2.611
6 123 2.617
7 322 2.618
8 843 2.618
9 2207 2.618
10 5778 2.618

Table 19. Slowest growing path for initial degree seed (3, 3, 7)
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