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Abstract

This thesis focuses on graded cluster algebras, looking specifically at degree growth.
We begin by considering the rank 3 skew-symmetric case, building on earlier work
by Booker-Price. We establish the existence of fastest growing paths, and compare
the behaviour for different initial conditions.

The central part of the thesis concerns the cluster algebra structure on the homo-
geneous coordinate ring of the Grassmannian. We construct a distinguished muta-
tion path with certain nice properties. In particular, we suggest a way of using this
mutation path to define a partial order on cluster variables, making use of perfect
matchings on the exchange quivers. We show that, at least in the finite type case,
the partial order we obtain coincides with the ‘standard’ partial order which appears
in work of Lenagan and Rigal on quantum graded algebras with a straightening law.
We hope that the connection with Lenagan and Rigal’s work could be used to trans-
fer the techniques they use in order to establish the homological properties of other
classes of (quantum) cluster algebra.

In the final part of the thesis we show that, under mild assumptions, the Segre

product of two graded cluster algebras has a natural cluster structure.
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CHAPTER 1

Introduction

The notion of a cluster algebra was introduced by Fomin and Zelevinsky in the early
2000s in the series of papers [FZ01), [FZ03], BFZ03], the latter of which was coau-
thored by Berenstein. Their original goal was to provide an algebraic and combina-
torial tool with which to study total positivity and dual canonical bases in algebraic
Lie theory. Since their introduction, cluster algebras have found applications in a
diverse range of areas of mathematics, with representation theory, algebraic and
symplectic geometry, and mathematical physics being a few notable examples. An
introductory survey, including many useful references for the interested reader, can
be found in [Kell2].

Cluster algebras are a class of commutative algebras defined from some initial
data via a recursive process known as mutation. We will see that this often results
in having many more generators than one would expect, but with relations of a
particularly nice form. It is the case, for example, that an algebra can be finite
dimensional whilst still having infinitely many generators as a cluster algebra. Clus-
ter algebras have a rich combinatorial structure, in particular since the process of
mutation is governed by directed graphs, usually called quivers in this context.

In its simplest guise, the initial data required in order to define a cluster algebra
comes in the form of a pair (z, )), where z is an n-tuple of algebraically independent
variables known as cluster variables, and () is a quiver on n vertices. We also ask
that @ has no loops or 2-cycles. The pair (z, Q) is known as a seed, and z is called
a cluster. The process of mutation involves replacing one cluster variable in z with
a new one, a certain rational function in the elements of x, via a mutation rule
determined by the quiver (). In addition to this, the quiver itself, and hence the
cluster variable mutation rule, is changed at each step via ‘quiver mutation’. The
resulting cluster algebra, denoted by &7 (z, @), is the algebra generated by all cluster
variables obtained from the initial cluster via mutation in all possible directions.

Often, we will also consider cluster algebras with additional ‘frozen’ variables

(sometimes referred to as coefficient variables in the literature). Frozen variables
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are simply extra cluster variables at which we do not allow mutation, and which
therefore appear in every cluster. It should be pointed out that the cluster algebras
described above are, specifically, skew-symmetric cluster algebras of geometric type.
In fact, the majority of the cluster algebras considered in this thesis will be of this
type. In the more general setting, we may no longer consider an exchange quiver,
but rather an exchange matriz. In the skew-symmetric case, we can recover this
matrix by simply taking the skew-symmetrisation of the adjacency matrix of the
exchange quiver ().

One of the main results in Fomin and Zelevinsky’s initial series of papers is the
Laurent Phenomenon. This states that every cluster variable can be expressed as
a Laurent polynomial with integer coefficients in the elements of any given cluster.
This is a surprising result—it is not at all obvious, a priori, that cluster variables
should have such a nice form. The expressions obtained after mutation often look
very complicated, but the Laurent Phenomenon tells us that there is always a way
to simplify them into the form described above. Moreover, it is conjectured that
every cluster variable can be expressed as a Laurent polynomial with positive integer
coefficients in the elements of a given cluster. This has been proven to be true in
several cases, including for all skew-symmetric cluster algebras in [LS15], but it
remains open in full generality.

It was shown in [FZ03] that ‘finite type’ cluster algebras, i.e. those with finitely
many seeds, admit a classification in terms of Dynkin diagrams or, equivalently,

finite type Cartan matrices:

THEOREM 1.0.1 ([FZ03| Theorem 1.8]). For a cluster algebra <, the following
are equivalent:
(i) o is of finite type;
(i) the set of all cluster variables is finite;
(iii) for every seed (z, B) in <, the entries of the matriz B satisfy the inequal-
ities |b;;bji| < 3, for all z;,x; € x;
(iv) the (principal part of the) exchange matriz B is mutation equivalent to a

matriz whose ‘Cartan counterpart’ is of finite type.

A very accessible, though quite long, proof of this result can be found in Chapter
5 of [FWZ21d]. The definition of the Cartan counterpart of a matrix can also be
found in [FWZ21d)].
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In this thesis the focus will be on graded cluster algebras, as defined in [Gralj].
An additional piece of initial data is required to define a grading on a cluster alge-
bra & (z, B)—a grading vector G' € Z" such that BTG = 0. In his thesis, [BP17],
Booker-Price studies gradings on rank 3 skew-symmetric cluster algebras. In par-
ticular, he determines which initial exchange matrices yield infinitely /finitely many
cluster variables of each degree. We wish to further understand the behaviour of
this class of cluster algebras by looking at the growth of cluster variable degrees
along certain mutation paths.

Many already well-known algebras have been shown to admit a cluster struc-
ture. One important example of such an algebra is C[Gr(k, n)]; the homogeneous
coordinate ring of the Grassmannian, i.e. the space of k-dimensional subspaces of
an n-dimensional vector space. This was shown to have a cluster structure by Scott
in [Sco06], though the k£ = 2 case appeared already in [FZ01]. The Grassmannian
will be our main focus in Chapter [4

In [GLO9] the quantisation, C,[Gr(k,n)], of the coordinate ring of the Grass-
mannian was shown to have the structure of a quantum cluster algebra. Quantum
cluster algebras were introduced in [BZ05] and, like graded cluster algebras, involve
an extra piece of initial data. This comes in the form of a matrix A which deter-
mines a rule for quasi-commutation of cluster variables. In [LRO4], the notion of
a quantum graded algebra with a straightening law (QGASL) was introduced as a
tool for establishing some nice homological properties of certain rings. In particular,
they show that C,|Gr(k,n)] is a QGASL. This structure is then utilised to show
that C,[Gr(k,n)] is both ‘AS-Cohen-Macaulay’ and ‘AS-Gorenstein’. An important
aspect of Lenagan and Rigal’s work is the use of the standard partial order on the
generators of C,[Gr(k,n)]. We wish to study the connection between this partial
order and the (quantum) cluster structure.

It is a very natural question to ask how, if given two cluster algebras, we can com-
bine them to make a new cluster algebra. In [Pre23|, the Segre product of two clus-
ter algebras is shown to have a cluster structure in one particular case—coordinate
rings of positroid varieties in the Grassmannian. In Chapter [5[ we generalise this

construction to the case of graded skew-symmetric cluster algebras.
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1.1. Thesis Outline

In Chapter 2| we provide an introduction to the basic theory of (quantum, graded)
cluster algebras used throughout this thesis. We begin by covering background on
cluster algebras and discussing the main results obtained in Fomin and Zelevin-
sky’s original papers—the Laurent Phenomenon, and the classification of finite type
cluster algebras. We give a brief introduction to both graded and quantum cluster
algebras, the former being the main focus of this thesis. Our attention then turns to
two main examples—the cluster structures on the homogeneous coordinate rings of
the Matrix algebra and the Grassmannian respectively. These examples will be of
particular importance in Chapter 4l Finally, we briefly outline the work carried out
in [LRO4] on quantum graded algebras with a straightening law. Whilst the majority
of this work will not be used directly in this thesis, we include it here as motivation
and to help illustrate a possible future direction for research.

In his thesis, [BP17|, Booker-Price studies gradings on rank 3 skew-symmetric
cluster algebras. He provides a classification of such cluster algebras, detailing which
initial gradings produce (in)finitely many cluster variables of each degree. In Chap-
ter [3] we begin by summarising Booker-Price’s work. Inspired by this, we then
study ‘growth’ of cluster variable degrees along certain mutation paths in the rank
3 skew-symmetric case. Our goal is to determine a suitable growth function, akin
to GK-dimension (see e.g. [KLO0O] for details), which captures the different be-
haviour occurring dependent upon initial grading conditions. We define the notion
of a ‘fastest growing path’, and compare the growth rates for different initial grad-
ing conditions. Unfortunately, with this approach, we were unable to determine a
suitable growth function to capture different behaviour coming from different initial
grading vectors. What we see instead is that, in general, cluster variable degrees
seem to grow extremely fast.

Chapter [4] contains the most significant portion of this thesis. Our focus turns
to the Grassmannian cluster algebra, and we construct a distinguished sequence of
mutations in C[Gr(k, n)| satisfying certain ‘nice’ properties. In the finite type cases,
we have been able to explicitly compute this sequence of mutations (mutation path),

and we see that it has the following properties:

(P1) The path includes all Pliicker coordinates.
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(P2) The sequence of Pliicker coordinates obtained is monotonically increasing
with respect to the partial order <.
(P3) The path begins (resp. ends) at some well-defined ‘minimal’ (resp. ‘maxi-

mal’) cluster.

We conjecture that a path with these properties can be found in the infinite type
case, and we suggest a potential connection with perfect matchings on the exchange
quivers. We see, by explicit computation, that in the finite type case the partial
order arising from this mutation path coincides with the standard partial order on
Pliicker coordinates used in [LRO4].

A potential future direction would be to further explore possible connections to
the work of Lenagan and Rigal. The hope would be to extend the techniques used in
their work to other (quantum) cluster algebras, utilising a mutation path to define
a partial order on a set of generators. In Section [4.3] we describe a ‘nice’ mutation
path for the coordinate ring of the (quantum) matrix algebra. Whilst this case is
very closely related to the Grassmannian, the fact that the techniques carry over
so nicely supports the idea that it may be possible to extend this further to other
classes of (quantum) graded cluster algebras.

Chapter [5| is joint work with Jan E. Grabowski and can be found at [GH24].
Drawing inspiration from [Pre23| we show that, with suitable assumptions, the
Segre product of two graded cluster algebras has a natural cluster algebra structure.
We show that the Segre product is formed via a gluing operation on suitable frozen
variables, this is illustrated in the example below. We obtain the following result,

and state some basic properties of the Segre product of two cluster algebras.

THEOREM [5.2.7. Let o = (Z;,x;, Bi, Gi), i = 1,2 be graded cluster algebras such

=0 =

that there exist x € T, \ z; and y € T, \ z, both of degree 1.
Then the map ¢ : @hOaty — R4l given on initial cluster variables by
p(x;) = z; @y'#" forx; € I, \ {z},
p(y;) = 2V @y, fory; € I, \ {y} and

pz)=z®yY

15 a graded algebra isomorphism, with the property that the above formule hold for
any cluster of o Uas.
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Thus the construction above endows @\ Q.24 with the structure of a cluster alge-

bra.

EXAMPLE |5.2.2, Let o) = (y = {z1, 22,23}, 2y = {21}, Q1,G1 = 1) and o =
(Zy = {v1,Y2, U3}, 25 = {y1}, @2, G1 = 1) be cluster algebras with exchange quivers
as follows:

Q1: O ° [ Q2 [ -0 H
X9 x1 T3 Y3 n Yo

The quiver obtained by ‘gluing’ at the frozen variables x3 and ys is shown below—we

denote the new variable by z.

QR: [ e ] -® ]
T M) z h Y2

The cluster algebra <,ats is then given by the initial data
(i = {$17 Z2,Y1,Y2, Z}7£ = {:Ula y1}7 Qv G = ]l)
Theoremm shows that this gives a cluster structure on the Segre product </ ®.97.

The Segre product construction above should be useful for gaining a greater
understanding of Segre products of those algebraic varieties known to have cluster

structures.



CHAPTER 2

Preliminaries

2.1. Background on Cluster Algebras

2.1.1. Basic Definitions. We begin by setting up notation and recalling the
basic definitions and concepts required in order to define a cluster algebra. We
broadly follow the notation used in Section 2 of [BZ05]. The reader unfamiliar with
cluster algebras may also wish to consult e.g. [FWZ21c|, [Mar13].

DEFINITION 2.1.1 (Ambient field). Let m > n be positive integers. The ambient
field F is the field of rational functions over QQ in m algebraically independent

variables.

Cluster algebras, as we will see in what follows, are subrings of the ambient field
F defined above. We start by defining (extended) seeds—these will form the initial

data required to define a cluster algebra.

DEFINITION 2.1.2 (Extended seed). An extended seed in .7 is a pair (Z, B) where
a7

(i) £ = {x1,...,2n} is a transcendence basis of .# which generates .%.
(ii) B is an m x n integer matrix with rows labelled by [1,m] and columns by
the subset ex = [1,n] of [1,m].
(iii) The upper n x n submatrix B of B is skew-symmetrisable.
The set Z (sometimes considered as a tuple) is called the extended cluster, and B is

the extended exchange matriz. The elements of T are referred to as cluster variables.

Let (&, B) be an extended seed, B the principal part of B, and z = {1, ..., z,} C
Z. The pair (z, B) is known as a seed—zx and B are called the cluster and ezchange
matrix respectively.

The definition of an extended seed allows us to consider cluster algebras in which
some of the cluster variables are ‘frozen’. A frozen variable is simply one at which
we will not be allowed to mutate. As a result, we will see that frozen variables
appear in every cluster. The set of frozen variables is precisely the set Z\z, where

T and z are as above. Cluster variables which are not frozen are called mutable or,

7
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sometimes, exchangeable. We note that in the literature it is common to refer to
frozen variables as coefficient variables.

The recursive procedure by which a cluster algebra is defined, known as mutation,
is governed by the (extended) exchange matrix B. In order to state the definition
of a cluster algebra, we must first describe how to mutate an (extended) seed. Let
us begin with cluster mutation.

Given an (extended) seed (Z = (21, ...,%n, ..., 2m), B), the cluster mutation at
xy for k € {1,...,n} is defined as follows:
= (bH x?ﬂk + 11 J:jbjk) if i =k,

k>0 bjk<0

px (i) =

T; otherwise.

The mutated cluster is then pug(z). As mentioned earlier, the exchange matrix is
also changed at each step along a sequence of mutations—the matriz mutation at k

is defined as follows:

, —by; ifi=korj=k,
pi(B)ij =
bij + [bik]+bk; + bie[—brjl+  otherwise
where [n|, = max{n,0} and [n|_ = max{—n,0}.

We are now able to define the mutated seed (&, B)) = (u(Z), pe(B)). Tt
is a fairly straightforward exercise to verify that both cluster and matrix mutation
are involutions, that is, two successive mutations at the same position will return
the seed you began with. Note that we often refer to k above as the ‘direction’ of
mutation.

Informally speaking, the cluster algebra with initial (extended) seed (Z, B), which
we will denote by «7(z, B ), is the algebra whose generating set is the set of all cluster
variables obtained by repeated mutation of (Z, B) in all possible directions. Before
we can proceed with a more formal definition, we must define mutation paths and

the notion of mutation equivalence.

DEFINITION 2.1.3 (Mutation path). A mutation path is a sequence of mutations;
[y, © -+ O [y, . For convenience, since our mutation paths will sometimes be fairly
long, we borrow the following notation from [BP17] and write [p] = [p,,...,pi]
to denote the mutation path g, o--- o pu, . Note that in what follows we use the

convention that mutations are carried out from right to left.
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DEFINITION 2.1.4 (Mutation equivalence). Two (extended) seeds (or clusters,
or exchange matrices) are called mutation equivalent if one can be obtained from

the other via a sequence of mutations, and essentially equivalent if they are equal

up to permutation of indices.

We are now ready to give a formal definition of a cluster algebra (of geometric

type).

DEFINITION 2.1.5 (Cluster algebra). The cluster algebra <7 (Z, B) is the subring

of .Z generated by the union of all (extended) clusters mutation equivalent to Z.
Associated to a cluster algebra .o/ are the following two combinatorial objects.

DEFINITION 2.1.6 (Exchange tree/exchange graph).

(i) The exchange tree of a cluster algebra is the n-regular tree whose vertices
correspond to seeds, and whose edges correspond to mutations.
(ii) The exchange graph of a cluster algebra is the exchange tree modulo essen-

tial equivalence of seeds.

DEFINITION 2.1.7 (Rank). A cluster algebra has rank m if it has m variables in

each extended cluster.

DEFINITION 2.1.8 (Finite type). A cluster algebra is of finite type if it has finitely

many seeds, otherwise it is of infinite type.

ExXAMPLE 2.1.9. The exchange graph for the cluster algebra with initial seed
(z,B) = ((x1,12),( % §)) is shown below. Note that this is an example of a finite

type cluster algebra with five cluster variables.

>~

(xQ’xl)a(? _01) D (xlva)’(—Ol (1))

M1 241

(L2,01) (2 0) (H22,22) (0 )

H2 H2

14z 14x1+xo (0—1) 14z 141420 (0 1)
22 0 x122 s\1 0 T z1 ) T1T9 y\—=10
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2.1.2. Cluster Algebras from Quivers. Throughout this thesis, we will usu-

ally work with skew-symmetric cluster algebras.

DEFINITION 2.1.10 (Skew-symmetric). A cluster algebra o7 (x, B) is skew-symm-

etric if its exchange matrix B is a skew-symmetric matrix, i.e. if BT = —B.

When working with skew-symmetric cluster algebras, in place of the exchange
matrix, we will often consider the exchange quiver. By quiver, we simply mean
directed graph. In order for a quiver () to be an exchange quiver, we require the

following:

e No loops, i.e. no arrows i — 7.

e No 2-cycles, i.e. no pairs of arrows i < j.

Definition remains unchanged; we simply replace the (extended) exchange
matrix with an exchange quiver.

Working with exchange quivers over exchange matrices where possible is often
convenient, in particular since it provides a nice way to visualise mutation. It also
allows us to have the data of both the cluster and the exchange matrix in one picture.
In Section [2.1.1] we saw how to mutate an exchange matrix—we now describe the
corresponding procedure for exchange quivers.

Let (z, Q) be an extended seed. Then the cluster mutation at x, € T is defined

as follows:

i—keQ k—i€Q o
ﬁ <Hz’—>keQ xi{ B Hk—n‘eQ xl{ - H) iti =k,

Z; otherwise.

The mutated cluster is then pg(Z) = (21, ..., pe(xk), ..., Tm). The mutation ug(Q)
of a quiver () in direction k is obtained in the following way:
(i) For any pair i — k — j in @, add an arrow i — j.
(ii) Reverse arrows incident to k.
(iii) Remove any resulting 2-cycles.
The mutated seed pg(z, Q) is (ur(z), ux(Q)). An example of quiver mutation is
illustrated in Figure 2.1}

REMARK 2.1.11. We can recover the corresponding exchange matrizc B = (b;;)
by taking the skew-symmetrisation of the adjacency matriz of Q, 1.e. by setting

bi; = |[{arrows i — j}| — [{arrows j — i}|.
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FIGURE 2.1. A step-by-step example of quiver mutation at the

vertex x. New or reversed arrows are shown in red at each stage.
REMARK 2.1.12. We typically omit any arrows between pairs of vertices corre-
sponding to frozen variables, since these play no role in mutation. However, we will
see in Chapter[] that these arrows are useful when we wish to consider an exchange

quiver as a ‘quiver with faces’.

ExXAMPLE 2.1.13. The exchange graph for the cluster algebra with initial seed

(z,Q) = ((z1,22),1 — 2) is shown below.

N
Ty < I1 1 — Ty
% \
1+$1 — 21 1+:1:2 — T2
1+a:1 1+x1+x2 1+:v2 1+z1+w0
T1T2 ,Ul xr1 xr1x2

We see that after 5 mutation steps, the seed we obtain is essentially equivalent to our
initial seed. We can therefore conclude that we have found all cluster variables—in

this case there are five:

y Uy = —————, XI5 =
T T1T2 T2

{ 1—|—3§'2 1+$1+x2 1+3§'1}
T1,T2,T3 = .
The resulting cluster algebra is generated by this set of 5 cluster variables, and is
hence a cluster algebra of finite type. In fact, this is precisely the cluster algebra

from Example framed in terms of quivers instead of matrices.

2.1.3. Main Results. In Example[2.1.13|above, we notice that all of the cluster
variables have a particularly nice form—they are Laurent polynomials in the initial

cluster variables. It is not at all obvious, a priori, that this should be the case, but
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it turns out that this is just one instance of a phenomenon that occurs in all cluster
algebras. In fact the following result, which appeared in [FZ01], is one of the most

important results in the study of cluster algebras.

THEOREM 2.1.14 (The Laurent Phenomenon). Every cluster variable can be
expressed as a Laurent polynomial with integer coefficients in the elements of any

single (extended) cluster.

It was conjectured by Fomin and Zelevinsky that an even stronger result should
hold—that every cluster variable can be expressed as a Laurent polynomial with
positive integer coefficients in the elements of any single (extended) cluster. This
result has now been proven in several cases, including for all skew-symmetric cluster
algebras in [LS15], though it remains open in full generality.

It was shown in [FZ03] that cluster algebras of finite type, i.e. those with only
finitely many cluster variables, admit a classification in terms of finite type Cartan
matrices. This classification uses the following relationship between Cartan matrices

and skew-symmetrisable matrices.

DEFINITION 2.1.15 (Cartan counterpart). Let B = (b;;) be a skew-symmetrisable
integer matrix, e.g. an exchange matrix. Then its Cartan counterpart is the sym-

metrisable generalised Cartan matrix
A = A(B) = (a;;)
of the same size, defined by

2 if i = j;

byl i # .

aij =

THEOREM 2.1.16 (Finite type classification). A cluster algebra is of finite type
if and only if the exchange matriz B is (mutation equivalent to) a matriz whose

Cartan counterpart is a Cartan matrix of finite type.

Rephrasing in terms of exchange quivers, Theorem [2.1.16| says that a cluster
algebra is of finite type if and only if the mutable part of the exchange quiver is

mutation equivalent to some orientation of a finite type Dynkin diagram. A very

accessible, though quite long, proof of Theorem [2.1.16| can be found in [FWZ21c].
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We do not repeat this here, but note that a key tool used throughout is the cor-
respondence between quivers and triangulations. This can be seen for the type A,

case in Section 2.2.1] below.

2.1.4. Graded Cluster Algebras. We now turn our attention to graded clus-
ter algebras as defined in [Gral5|, building on earlier work carried out in [BZO05]
and [GSV03]. In order to define a grading on a cluster algebra we require an ad-
ditional piece of initial data, which we call a grading vector, assigning a degree to

each initial cluster variable.

DEFINITION 2.1.17 (Graded seed). A graded seed is a triple (z, B, G) such that:
(i) (z, B) is a seed, with |z| = n,
(ii) G = (g1,.-.,9n) € Z" is such that BTG = 0.

We have deg(z;) :==g; fori=1,...,n.

REMARK 2.1.18. In [Gral5|, the more general concept of a multi-graded seed is
defined. In that case, G is an n X d integer matrix, and the resulting cluster algebra

is a Z%-graded algebra. In what follows, we will only consider the case in which

d=1.

DEFINITION 2.1.19 (Graded cluster algebra). The graded cluster algebra denoted
o (z, B,G) is the cluster algebra o7 (z, B) with the grading given on initial cluster

variables by G extended in the obvious way via mutation.

ProprosITION 2.1.20 ([Gral5l Prop. 3.2]). The cluster algebra < (z, B,G) as-
sociated to an initial graded seed (z,B,G), with G € Z", is a Z-graded algebra.

FEvery cluster variable of </ (x, B, G) is homogeneous with respect to this grading.

In Chapter 3 we will be interested solely in the degrees of cluster variables, rather

than their precise forms. It will therefore be useful to work with degree seeds.

DEFINITION 2.1.21 (Degree seed). A degree seed is a pair (G, B) of a grading

vector GG and a corresponding exchange matrix B.

We may then directly mutate the degree seed, conveniently forgetting the cluster
variables when we do not need to know them explicitly. This is illustrated in the

example below.
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EXAMPLE 2.1.22. The diagram below shows two mutation steps starting from the

initial degree seed G = (4,3,5), B = 5 8 é
3 a-
/?//\\\i\ v /////\\\\ - ////\\\\\
fe——— 5 —3=17-4-5

2.1.5. Quantum Cluster Algebras. Quantum analogues of cluster algebras
were introduced in [BZ05] by Berenstein and Zelevinsky. A quantum cluster algebra
is a Q(g)-algebra in which every cluster is a quasi-commuting family, and defining
these will again involve an additional piece of initial data, this time in the form of
a matrix A which determines the rule for quasi-commutation. Whilst we will not
directly refer to the quantum cluster algebra structure, the results in Chapter
will hold in the quantum setting, and so we provide a brief overview here. We do

not include proofs in this section—these, as well as more details, can be found in

IBZ05).

DEFINITION 2.1.23 (Compatible pair). Let B be an m x n integer matrix with
rows labelled by [1,m] and columns by [1,n]. Let A be a skew-symmetric m x m
integer matrix with both rows and columns labelled by [1,m]. We call the pair

(A, B) compatible if, for every j € [1,n] and every i € [1,m], we have

Z bk?j)\k?’b - zg

for some d; € Zy.

We now wish to understand how to mutate a compatible pair. Fix k € [1,n]
(the direction in which we will mutate) and & € {#1}. Then the matrix j;(B) can
be expressed as ju,(B) = E.BF., where

e F_ is the m x m matrix with entries
0ij it j #k;
€ij = § —1 ifi=7=k;

max(0, —eby,) if i #j=k.
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e [ is the n x n matrix with entries
fij =4 -1 ifi=j=k;

max(0,eby;) ifi =k #j.

For a compatible pair (A, B), we set pg(A) = ETAE., and we call this the

mutation of A in direction k.

PROPOSITION 2.1.24. Let (A, B) be a compatible pair. Then:

(i) The pair (up(A), ux(B)) is again compatible.
(ii) The mutated matriz pg(A) is independent of the choice of sign €.

(#ii) Mutation of compatible pairs is involutive.

A quantum cluster algebra will be defined as a Z[qi%]-subalgebra of .#, where
Z is the skew-field of fractions of the ‘based quantum torus’ 7', and ¢ is a formal

variable.

DEFINITION 2.1.25 (Based quantum torus). Let L be a lattice of rank m, with
skew-symmetric bilinear form A : L x L — Z, and let ¢ be a formal variable. Denote
by Z[qi%] the ring of Laurent polynomials with integer coefficients in the variable qz.
Then the based quantum torus associated with L is the Z[g*z]-algebra 7 = 7 (A)
with Z[q*z]-basis {X¢ : e € L} and multiplication

Xext = MeDRxerl for e, f € L.

DEFINITION 2.1.26 (Toric frame). A toric frame in .% is a mapping M : Z" —
F\{0} of the form
M (c) = p(X"9),

where ¢ is an automorphism of .% | and 7 : Z™ — L is a lattice isomorphism.

The elements M (c) form a Z[g*2]-basis of the image of .7 under ¢, with multi-

plication and commutation relations

M(c)M(d) = ¢* D2 N (¢ + d)

M(c)M(d) = ¢* DM (d) M (c).
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Here, Ay is the bilinear form on Z™ obtained from A via the isomorphism 7. We
have
M(0)=1and M(c)™' = M(—c) for c € Z™.
We denote also by Ay the m x m integer matrix whose entries are \;; = Ayr(e;, €;),
where {ej,...,e,} is the standard basis of Z™.
Given a toric frame M, we set X; = M(e;) for i € [1,m]. The elements X;

quasi-commute, i.e. we have
XZ'Xj = inijXi.
PROPOSITION 2.1.27. A toric frame M is uniquely determined by the elements
X; = M(e;) fori e [1,m)].

DEFINITION 2.1.28 (t-binomial coefficient). The ¢-binomial coefficient (3), is

defined as follows:

r B (tr — t—T’) e (tr—p-H _ tr-i-p—l)
o (tp —t=P) - (t — 1)

p t

DEFINITION 2.1.29 (Quantum seed, [BZ05|, Def 4.5]). A quantum seed is a pair
(M, B) where
e )M is a toric frame in .#.
e B is an m X n integer matrix with rows labelled by [1,m] and columns

labelled by an n-element subset ex C [1,m)].

e The pair (Ay, B) is compatible in the sense of Definition [2.1.23|

Let (M, B) be a quantum seed. Fix an index k € ex and a sign e € {#1}. Define
the mapping M’ : Z — #\{0} by

M'(c) = (%) M(Ecc+ epb®) and M'(—c) = M'(c)™!

p=0
for c = (e1,...,cm) € Z™ with ¢, > 0. Here, () ,4./2 is the t-binomial coefficient

as in Definition [2.1.28] and by, is the k™ column of B.

PROPOSITION 2.1.30. (i) The mapping M' is a toric frame.
(i) We have px(Apr) = Appr.
(iit) The pair (u,(M), un(B)) is a quantum seed as in Definition |2.1.29. We
call this the mutation of (M, B) in direction k, and we write (M, B).
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(iv) Mutation of quantum seeds is involutive, i.e. we have u(up(M,B)) =

(M, B).

As in the classical setting, two (quantum) seeds are called mutation equivalent if
one can be obtained from the other via a sequence of quantum seed mutations. Given
a quantum seed (M, B), we denote by X = {X;,..., X,,} the extended (quantum)
cluster given by taking X; = M (e;). The subset X = {X, : j € ex} C X is called
the (quantum) cluster.

We can now give the quantum analogue of Definition [2.1.5]

DEFINITION 2.1.31 (Quantum cluster algebra). Let (M, B) be a quantum seed.
The associated quantum cluster algebra <7 (M, B) is the Z[qi%]-subalgebra of F#,
generated by the union of clusters of all seeds mutation equivalent to (M, B), to-

gether with the set of frozen variables X \X and their inverses.

REMARK 2.1.32. In [GL13] the notion of a Z-grading for a quantum cluster
algebra was introduced—we do not use this directly, and so refer the reader to
IGL13| for details. Note, however, that the grading data is independent of the
quasi-commutation data. The theory of graded quantum cluster algebras therefore
mirrors that of graded cluster algebras. The main theorem of [BZ05)] states that
quantum cluster variables are in bijection with those in the ¢ = 1 case. Hence,
without loss of generality, it is possible to study graded quantum cluster algebras by

looking at their ¢ = 1 specialisations.

2.2. Examples of Cluster Algebras

We now present two explicit examples of algebras which admit cluster structures;
both of which will play a significant role in Chapter 4] The first of these examples
is the Grassmannian, Gr(k,n). Roughly following [Bau21], we will describe the
cluster algebra structure on its homogeneous coordinate ring C[Gr(k,n)]. We will
then discuss a second closely related example—the homogeneous coordinate ring of
matrices. For completeness, we briefly recall two definitions from algebraic geometry.

For further background on projective varieties see, for example, [Vak]| or [Har77].

DEFINITION 2.2.1 (Projective variety). Let n € N, and let S C Clxo,...,z,]| be

a set of homogeneous polynomials. The zero locus of S is the set

V(S):={xeP": f(x)=0forall feS}
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Subsets of the projective n-space P" of this form are called projective varieties.

DEFINITION 2.2.2 (Homogeneous coordinate ring). Let Y C P™ be a projective

variety. The homogeneous coordinate ring of Y is
S(Y) :=K[zxg,...,z,]/I(Y).
Here, I(Y') denotes the ideal of Y, defined as follows:
I(Y) = (f € K[zo,...,x,] homogeneous : f(x) =0 forallz €Y).

2.2.1. The Grassmannian. The cluster algebra structure on the homogeneous
coordinate ring of the Grassmannian was first established by Scott in [Sco06],
though the Gr(2,n) case appeared already in [FZ03]. In this section we recall
the definition of the Grassmannian—for more details see [MS04]. We will focus on

describing the cluster structure on its homogeneous coordinate ring.

DEFINITION 2.2.3 (The Grassmannian). Let 1 < k£ < n. The Grassmannian

Gr(k,n) is the set of k-dimensional subspaces of C".

There is a map from Gr(k,n) into projective N-space, for N = (%) — 1, defined

as follows.

DEFINITION 2.2.4 (The Pliicker embedding). Let U € Gr(k,n) with basis
{v1,..., v}, and consider w := v; A...Avy € AF(C"). Define a map ¢ : Gr(k,n) —
PV by

where A denotes the minor of a k£ x n matrix with column set {i1, ..., i} which

we call a Plicker coordinate. The map ¢ is known as the Plicker embedding.

In the above definition, A*(C") is the subspace of the exterior algebra A(C)
spanned by the elements v; A vy A --- A v, where v; € C for all i. Here, A denotes
the product in A(C).

To define the Pliicker coordinate A% corresponding to an arbitrary multi-set

{i1,...,4,} such that i; € {1,...,n}, we set

0 if 7, = ig for some r # s,

sgn(m)AJvdk i iy, i) = {51 <o < i}
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In the above, 7 is the permutation such that 7 (i,) = j, for all r. We are now able

to write down the relations satisfied by the image ¢(Gr(k,n)).

DEFINITION 2.2.5 (Pliicker relations). The Plicker relations for Gr(k,n) are:

k
Z<_l)rAz'l,...,z’k,l,jTAjO,...,ﬁ,...jk —0.

r=0
The sum is taken over all tuples (iy,...,%_1), (jo,.-.,Jx) such that 1 <i; < -+ <

iro1 <nand 1 < jy<--- < jr <n. We denote by @ an omitted index a.
As suggested by Definition we have the following proposition.
PROPOSITION 2.2.6. The map ¢ is injective.

PROOF. See [MS04]. O

The homogeneous coordinate ring C[Gr(k,n)] is the quotient of the polynomial
ring in the Pliicker coordinates A’, where |I| = k, subject to the Pliicker relations
as in Definition 2.2.5

2.2.1.1. The Cluster Structure on the Grassmannian for k = 2. When k = 2 the

Pliicker relations are simply
APA — AN L AMAP = for 1 <a<b<c<d<n. (1)

The homogeneous coordinate ring C[Gr(2,n)] is therefore the quotient of the poly-
nomial ring in A% for 1 < a < b < n subject to the relations .
Let T be a triangulation of the regular polygon P". Then we can define a quiver

Q7 such that:

(i) The vertices of Q7 correspond to the diagonals/edges in T'.
(ii)) We have an arrow ¢ — j whenever ¢ and j are edges of the same triangle in
T, and j is clockwise from 7. Note that we do not include arrows between

vertices corresponding to boundary edges.

As mentioned earlier, a key tool used to prove Theorem [2.1.16| was the relation-
ship between quivers and triangulations. The Gr(2,n) case corresponds to Dynkin
diagrams of type A. We illustrate this correspondence here.

First, notice that Pliicker coordinates can be parameterised by the diagonals

(and edges) of a regular polygon with n vertices, labelled clockwise. The Pliicker
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a Aab b a Aab b

Aad '/A(EV' Abc — Aad »—&(;—u Abc

d Acd c d Acd c

FiGURE 2.2. Cluster mutation corresponds to the quadrilateral flip
as shown above. The diagram represents a quadrilateral within a
triangulation—we replace the diagonal bd with the diagonal ac. The
corresponding quiver is shown in blue.

coordinate A% with ¢ < j corresponds to the diagonal connecting vertices i and

j—this is illustrated in Figure [2.2]

THEOREM 2.2.7 ([FZ03]). Let P, be a conver n-gon, with n > 5. The homoge-

neous coordinate ring C|Gr(2,n)] is a cluster algebra of type A,_3 where:

(1) The (mutable) cluster variables are the Pliicker coordinates AY where (i, j)
are the diagonals in P™, and the frozen variables are the Pliicker coordinates
corresponding to the boundary edges of P™.

(ii) The seeds are in bijection with the triangulations T of P™, with exchange
quiver Qr.

(i1i) Cluster mutation corresponds to the quadrilateral flip (see Figure n
the triangulation T

2.2.1.2. The Cluster Structure on the Grassmannian for k > 2. In the general
case, for Gr(k, n), things get somewhat more complicated. In this setting the Pliicker
coordinates are only a subset of the set of all cluster variables, and in place of tri-
angulations we must consider ‘Postnikov diagrams’—see Figure for an example.
Since we do not explicitly use this in what follows, we refer the reader to [Sco06]
for the details.

The cluster algebra structure on C[Gr(k,n)] has a well-known natural grading
given by setting the degree of all Pliicker coordinates to be one—see [BP17] for
details. This grading endows C[Gr(k,n)] with the structure of a graded cluster

algebra as in Definition 2.1.19]

REMARK 2.2.8. The quantum cluster structure on the quantum analogue of the
homogeneous coordinate ring of the Grassmannian was giwven in [GL13], by lifting

the quantum cluster algebra on quantum matrices given by |GLS11a]. Since we do
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FIGURE 2.3. An example of the Postnikov diagram for a cluster in
C[Gr(3,7)] and its corresponding quiver. The boundary segments
correspond to frozen variables, indicated in blue on the quiver.

not directly utilise the quantum cluster structure we will not repeat this here but note
that, as detailed in Remark the underlying combinatorics is identical to the
commutative case—as such, all of our results in Chapter [f] will continue to hold in

the quantum setting.

REMARK 2.2.9. It was established in [Sco06] that the cluster algebra structures

on the following Grassmannians are finite-type:
C[Gr(2,n)], C[Gx(3,6)], C[Gr(3,7)], C[Gr(3,8)].
The cluster algebra structure for any other Grassmannian is of infinite type.

2.2.2. The Matrix Algebra. Another example of a (quantum) graded cluster
algebra closely related to the Grassmannian is the (quantum) matrix algebra. This
was shown to have a cluster algebra structure in [GLS11b], and quantum cluster

structure in [GLS11a]. We briefly describe the cluster structure here.

DEFINITION 2.2.10 (Coordinate ring of M(k,j)). Denote by M (k, j) the set of
k x j matrices. The coordinate ring is defined to be C[M(k,j)] = C[z,s], where
1<r<k,1<s<yj,and z,s: M(k,j) = Cis given by x, ;(A) = a,s.

Let [{] denote the minor of the matrix ( J ? )corresponding to the row set

Tkl --- Tky
I and column set J.
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— (k—1,1) —{ (k,1)

F1GURE 2.4. The initial quiver for the cluster structure on
CIM (k, j)].

Now, for 1 <r <k and 1 < s < j, we define the following sets:

R(r,s)={k—r+1Lk—r+2,...k—r+s}n{l,... .k},

C(rys)={j—s+1,7—s+2,...5—s+r}n{l,...,j}.

The quiver corresponding to the initial cluster is shown in Figure the cluster

C(r,s) i|

variable in position (r, s) is the minor [ R(rs)

REMARK 2.2.11. The cluster structure on C[M(k,j)| has a well-known natural
grading given by declaring all matriz entries x,.s to have degree one, and extending
this in the obvious way using mutation. See [BP1T| for details. We may also endow
the quantisation C,[M(k,7)] with the structure of a quantum cluster algebra. We
do not directly use the quantum structure but, as with the Grassmannian case, our
results in Chapter [ will continue to hold in the quantum setting since the underlying

combinatorics is unchanged.

2.3. Quantum Graded Algebras with a Straightening Law

In [LRO4], Lenagan and Rigal introduce the idea of a quantum graded algebra with a
straightening law (QGASL). They show that C,[Gr(k, n)] is a QGASL, utilising this
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structure to prove that it has some nice homological properties—it is AS-Cohen-
Macaulay and AS-Gorenstein. The definition of a QGASL involves a partial order
on a generating set—we will make use of this partial order on the Grassmannian in

Chapter []

DEFINITION 2.3.1 ([LRO4, Def 1.1.1]). Let A be an N-graded C-algebra, and
IT a finite subset of A equipped with a partial order <y. We say that A is a
quantum graded algebra with a straightening law (QGASL) on the poset (I, <) if

the following conditions are satisfied.

(i) The elements of IT are homogeneous with positive degree.
(ii) The elements of IT generate A as a k-algebra.
(iii) The set of standard monomials on IT is a linearly independent set.
(iv) If o, p € II are not comparable for <y, then af is a linear combination of
terms X\ or Ap, where \, pu € II, A <y p and A <y a, .
(v) For all o, 8 € 1I, there exists c,p € C* such that aff — c,pfa is a linear

combination of terms A or Au, where A\, u € I, A <y p and A <y «, 5.

As mentioned above, it has been shown that the quantised coordinate ring of the
Grassmannian Gr(k,n) is a QGASL. In this case, the poset II consists of all Pliicker
coordinates, with partial order defined as follows.

Denote by J = {j; < -+ < jg} the index set J = {j1,..., 7k} C {1,...,n} with
1 <ji1 <---<jr <n. The set of all index sets of cardinality k is denoted by IIj ,,
or simply II when k£ and n are clear (note that, as the two can be identified, we will
also denote by II the set of all Pliicker coordinates). The standard partial order,

<&, on IT = II} ,, is defined as follows:
{ip< - <ip}<q {1 <--<jptifandonly if iy, < jsforall 1 <s < k. (2)

We may then consider the induced partial order on the set of all Pliicker coordinates,
which we again denote by <g.

Lenagan and Rigal use the QGASL structure on C,[Gr(k,n)] in order to prove
that it is both AS-Cohen-Macaulay and AS-Gorenstein. They also show that the
coordinate ring C[M (k, 7)] has both of these properties. An interested reader may
find more details about these homological properties in [JZ00]—we will not make

use of them, and so will not define them here.
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The goal in Chapter {4] of this thesis will be to identify a connection between the
QGASL structure and the cluster algebra structure. The hope is that doing this
will make it possible in future to extend the techniques used by Lenagan and Rigal
to prove results regarding the homological properties of other classes of (quantum)

cluster algebras.



CHAPTER 3

Growth in Graded Cluster Algebras of Rank 3

In this chapter, we study gradings on rank 3 cluster algebras. Building on work done
in [BP17], we wish to further understand the growth of cluster variable degrees along
mutation paths, with a focus on the differences in behaviour in the ‘mutation-cyclic’

and ‘mutation-acyclic’ cases.

DEFINITION 3.0.1 (Mutation-(a)cyclic). A quiver @ is called mutation-cyclic if
every quiver mutation equivalent to @) is cyclic, otherwise it is called mutation-
acyclic. We will also use this terminology to refer to the corresponding exchange

matrices.

In [BP17], the classification shown in Figure is given for rank 3 graded

cluster algebras with initial degree seed

(e (257) g

where a,b,c € Ny and @ > b > ¢. For the mutation-infinite, mutation-acyclic case,
it was shown in [BP17] that we have the following cases:
a,b,c > 2
a,b>2,c=1
a>2b=c=1
a,b>2c=0
a>2b=1.c=0.
The intention was to define a suitable ‘growth function’, similar to GK-dimension,
which should capture the differences shown in Figure[3.I|between the mutation-cyclic
and mutation-acyclic cases, since having infinitely (resp. finitely) many variables in

each degree corresponds to slow (resp. fast) growth. See, for example, [KLO0O] for

details regarding GK-dimension. Unfortunately, we have not been able to define

25
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For mutation-finite matrices (which give rise to finitely many degrees)

Finite type Mixed Infinitely many variables per degree

0 10 0 2 -1 0 2 -2
A3: -1 0 1 -2 0 1 -2 0 2
: 0 =10 1 -10 2 -2 0

For mutation-infinite matrices (which give rise to infinitely many degrees)

Finitely many variables per degree Mixed Infinitely many variables per degree
0 a —c . . . 0 a —c . .
(ﬂ Ob b ), mutation-cyclic with ¢ > 2 | (fa Db b ), mutation-acyclic
c —b 0 c —=b 0

F1GURE 3.1. The classification of rank 3 graded cluster algebras
given in [BP17].
such a function—it appears that degree growth is simply very fast, and we do not
obtain significantly different results for different initial conditions.
Throughout this section, we will be working with degree seeds, as illustrated in
Example 2.1.22] This will simplify computations as we do not need to keep track of
the cluster variables themselves. We first provide an overview of the work carried

out by Booker-Price.

3.1. Gradings in the Rank 3 Case

Here, we summarise the results obtained by Booker-Price in Chapter 4 of his thesis—
full details, including proofs, can be found in [BP17].

Rank 3 graded cluster algebras can be classified in terms of:

(i) the cardinality of the set of degrees occurring,

(ii) how the cluster variables are distributed with respect to the degrees.

The first important realisation is as follows.

ProrosiTiON 3.1.1 ([BP17, Prop. 4.1.3]). Every 3 x 3 skew-symmetric matrix

0 a —c
is either essentially equivalent to the matriz A = <,a Ob 8 >, for some a,b,c € Ny

and a > b > ¢, or mutation equivalent to a matriz which is essentially equivalent to

A. Here, essentially equivalent is as in Definition [2.1.4).

This result simplifies the classification problem, since now we only have to con-

sider matrices of the form described above. We have the following.
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THEOREM 3.1.2 ([BP17][Thm. 4.1.10]). A partial classification of graded cluster
algebras of the form of ((a:l, T, T3), <—0a gb _80> , (b, c, a)), with a,b,c € Ny and a >
b > ¢, is given in Figure[3.]

Only one case is not covered in Figure [3.1}—the so-called singular cyclic case,
i.e. matrices of the form <—Za _8; %2> where a > 3. Booker-Price conjectures that
this case should have infinitely many variables in each occurring degree, but this
remains unproven.

An important tool for the proof of Theorem [3.1.2] is an algorithm which deter-
mines whether or not a given 3 x 3 matrix is mutation-cyclic. In the acyclic case,

an important result is as follows.

THEOREM 3.1.3 ([BP17][Thm. 4.4.1]). Let o/ be a cluster algebra arising from
a mutation-acyclic matriz. For any cluster variable x in <f , the seeds whose clusters

contain x form a connected subgraph of the exchange graph.

This result was first conjectured in [GSVO03], before being proven in the acyclic
case in [CKO06].

3.2. Fastest Growing Mutation Paths

We begin by considering the notion of a fastest growing path, i.e. the path producing

the largest possible degree at each mutation step.

DEFINITION 3.2.1 (Fastest growing path). Given an initial degree seed (d, B),
a fastest growing path is a mutation path in which, at each step, we mutate in a
direction yielding the largest possible degree (without two consecutive mutations at

the same vertex).

LEMMA 3.2.2. Mutation of a degree seed of the form (@ along a fastest growing
path produces another degree seed of the form (@ In the mutation-infinite case, we

moreover have ab — ¢ > b. In other words, b is the new smallest degree.

PRrOOF. Consider the initial degree seed ((b, ¢, a), A), where the exchange matrix
A is as in Proposition [3.1.1] We have

0 —aab—c
pe(c) =ab—c and p.(A)= (c_aab 0 b ) .

Up to relabelling, this is again a seed of the form .
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In the mutation-infinite case, we have

ab—c>ab—-1»
>(a—1)b

> b

The first inequality is a consequence of the fact that b > ¢, and the final inequality

is due to A being mutation-infinite, since this rules out a < 2. U

PROPOSITION 3.2.3. Suppose we begin with a degree seed of the form . The
fastest growing path is precisely the path in which we mutate at the cluster variable
of smallest possible degree at each step, without mutating at the same variable twice

m a row.

PRrooF. First, note that mutation at x, y, and z yields new cluster variables of

the following degrees, respectively:
ac—b, ab—c, bc—a.

It is then straightforward to see that the largest possible degree is obtained via
mutation at y. Noting that, by Lemma [3.2.2] the degree seed we obtain after

mutation is of the same form, the claim follows iteratively. 0J

EXAMPLE 3.2.4. Consider the cluster algebra with initial degree seed

(d: (1,1,3), B = (_03 ; ‘11>).

1 -1 0
This is an example of a mutation-acyclic cluster algebra. Figure|3.4 shows a portion
of the exchange tree, with the degree of the mutated variable at each vertex. The
fastest growing path is highlighted in blue, and it produces the following sequence of
degrees:

2,5,13,62,801, 49649, 39768787, . ..

ExAaMPLE 3.2.5. Figure shows a portion of the exchange tree for the ini-

tial degree seed (c_i =(5,3,6),Q = (—26 ?5 _83>>' This is a mutation-cyclic cluster

algebra. The fastest growing path is again highlighted in blue, and we obtain the

following sequence of degrees:

27,157,4233,664554, . ..



3.2. FASTEST GROWING MUTATION PATHS 29

In both of the examples above, we see that the degrees produced along the fastest
growing path get very large very fast. We have the following results.

Let (b, c,a) be a grading vector of the form where b, ¢, a are strictly greater

than two. In what follows, denote by (d;) the sequence defined by

i€Np
do = C, dy = ab— c, dy = dja — b, and di+1 =d;d;_1 — d;_» for i > 2. (4)

REMARK 3.2.6. Note that one of the cases we have excluded above, (2,2,2), is
precisely the Markov quiver. In this case the cluster variable degrees do not grow at

all, and every path is essentially ‘fastest growing’ with zero growth.

LEMMA 3.2.7. The sequence (d;)ien,, where d; is as in above, s strictly

InCcreasing.

PROOF. First recall that ¢ < b < a since our grading vector is of the form
. We additionally require that ¢ > 2. Then dy < d; since a,b > ¢ implies that
di =ab—c>c=d,.

For d; < dy we will show that the difference A = dy — d; is strictly positive. We

have
A=dy—dy=(ab—cla—b— (ab—c)
=a’b—ac—b—ab+c
=ba®*—a—1)—cla—1)
> b(a®> —a—1) —bla — 1) = b(a® — 2a) = abla — 2).
Since ¢ > 2 we have a > 3 and b > 3, hence ab(a — 2) > a > 0 and the claim holds.
We proceed by induction. Assume that the claim holds for i < N. We wish to

show that

AN:dNJrl —dN >0
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We have

Ay =dydy_1 —dn_o — dn
=dy(dn-1 — 1) —dn—2
> (dy_1+1)(dyq — 1)
= d?\lfl —1
>dy-1—1
>dy—o > 0.

Hence Ay > 0 whenever dy_o > 0. O

CONJECTURE 3.2.8. The sequence <%> converges.
=4/ ieNg

PROPOSITION 3.2.9. Suppose that Conjecture holds. Let (d;)ien, be the

sequence of degrees along a fastest growing path, starting with the initial degree seed
0 a —c
(c_i: (b,c,a), B = <,a 0 b )), where a,b,c € Ny are such that a > b > c> 2, and

c —b 0
B is mutation-infinite. Then lim hié”gij)l) =@ or 1 — ¢, where ¢ is the golden ratio
1—»00 4

1+v5
PR

ProOOF. First, recall that by Lemma we know that mutation of a degree
seed of the form along a fastest growing path produces another degree seed of
the same form. Proposition [3.2.2| also tells us that in the mutation-infinite case, we
have ab — ¢ > b. Now, notice that we have dy = ¢, d; = ab — ¢, and dy = dia — b.
For ¢ > 2 we have d;;; = d;d;—1 — d;_». Hence, we have a sequence of the form (4)).

We will show that, assuming Conjecture [3.2.8| this sequence tends to .
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. In(dit1) . In(did;i_y — d;i—s)
lim —————= =1
o In(d) e In(dy)
— lim In (didi—l — di_Q) —In (dzdz_l) + In (dzdz—l)
oo In (d;)

In (1 — d(-itilfgl) + In (dzdzfl)
= lim —
. In(didi—1)
fr 1 _—
S In(dy)
. ln (difl)
=1 1 R S A
TR T (d)
1
n(diy1)

1
lim
ivoo I (di)

The fourth equality is a result of Lemma since the fact that d;_» < d;_1 < d;,

=1+

for all 4, implies that Cflzl—ffl — 0. Hence we have

(1- M)_ I (di)

im —1=0and lim I (di1) = 1i\/5.

S In (dy) S In(d) 2

O

REMARK 3.2.10. It would seem that Conjecture is closely related to the fact
that the ratio of terms in a generalised Fibonacci sequence (i.e. a sequence starting
with any two real numbers and continuing with the usual Fibonacci rule) tends to .
See [KosO01] for details. It can be seen in the fifth equality of the proof above that
what we have closely resembles the ratio of terms in such a generalised Fibonacci
sequence. Moreover, computation of a large number of examples has failed to find a

situation in which the sequence does not tend to .

Further examples, together with additional details, can be found in Appendix

(Al

REMARK 3.2.11. Another reasonable suggestion would be to consider the average
degree of all cluster variables at a given radius of mutation from the initial cluster,
but examining examples reveals that the fastest growing path dominates, and the
resulting sequence of degrees does not produce significantly different results to those

detailed above. See Appendix[A| for examples of this.



3.2. FASTEST GROWING MUTATION PATHS 32

Unfortunately, looking at areas of fast growth in the exchange tree does not
appear to provide any way of distinguishing between different initial seeds, but
rather illustrates the fact that cluster variable degrees can grow extremely fast. We
note that it is not so surprising that this approach fails to distinguish between the
mutation-cyclic and mutation-acyclic cases since, by the proof of Proposition |3.2.9]

the fastest growing path does not encounter any acyclic exchange quivers.
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3.3. Slow Growth in Rank 3 Cluster Algebras

An alternative approach could be to instead look at areas of the exchange tree
exhibiting slower growth. One way to do this is by ‘pruning’ the exchange tree as

follows:

(i) Begin with an exchange tree T),, with initial degree cluster d.
(ii) At each radius of mutation (starting from d), remove the branch starting

with the vertex of highest degree.

The ‘pruned’ version of the exchange tree with initial degree seed

(650.(457)

is shown in Figure [3.4 In theory, this process should remove all ‘fastest growing’
paths, starting from each possible initial seed. It seems, however, that the remaining
portion of the exchange tree still exhibits very fast growth, and we remain unable
to differentiate between the mutation-cyclic and mutation-acyclic cases with this

method. See Appendix [A] for more examples and further details.

225
2%35 %6
23
13
(5%¢)
9
$2 1z
4281
233 115
2315 | 1732
201 5#
acs | _ 1%9
$+23 125]

FIGURE 3.4. The ‘pruned’ exchange tree with initial degree vector
(5,3,6)
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The final possible approach attempted was to define a slowest growing path,
essentially dualising the notion of Definition [3.2.1] Here, we mutate at the vertex of
largest possible degree (without two consecutive mutations in the same direction).
This does not appear to provide any useful information. In fact, it appears to depend

only upon the value of ¢ in the initial seed—this is illustrated in the examples in

Section [A 4]



CHAPTER 4

A Partial Order on a Generating Set for C[Gr(k,n)]

All results from this chapter will remain true in the quantum cluster algebra setting
but, to simplify notation, we only explicitly work in the classical setting. We start
by setting up some notation for higher degree cluster variables in C[Gr(k,n)].

Let {a,b,c,d, e, f} be a subset of {1,...,n}, written in increasing order. Define
Xabcdef - Aceanbd o Adeanbc

and

Yabcdef — Abcande o Adeanbc

In what follows, we write [a,b], where a < b, to denote the integer interval
between a and b and [a] to denote the integer interval [1,a]. To simplify notation,
we also write [a, b][c, d] to mean [a,b] U [c,d], for a < b < ¢ <d.

We wish to obtain a mutation path in C|[Gr(k,n)] which behaves ‘nicely’ with
respect to the poset structure defined in Section [2.3] More specifically, we wish to
find a path with the following properties:

(P1) The path includes all Pliicker coordinates.

(P2) The sequence of Pliicker coordinates obtained is monotonically increasing

with respect to the partial order <y as in ([2)).

(P3) The path begins (resp. ends) at some well-defined ‘minimal’ (resp. ‘maxi-

mal’) cluster.

In order to define the minimal and maximal clusters, we use the notion of weak

separability.

DEFINITION 4.0.1 (Weak separation, [Sco00]). Given two index sets I and J,
we write [ < Jifi < j forall i € [ and all j € J. We say [ and J are weakly
separated if at least one of the following conditions holds:

(i) |I| > |J] and J — I can be partitioned into a disjoint union J —I = J' U J”
sothat J < I —J<J".

37
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(ii) |J] > |I| and I — J can be partitioned into a disjoint union [ — J = I" L [”
sothat I' < J —1 < 1".

In what follows, by maximal weakly separated collection, we refer to a set W of
pairwise weakly separated Pliicker coordinates such that |W] is as large as possible.
In other words, there exist no Pliicker coordinate Al ¢ W such that I is weakly
separated from all J such that A7 € W.

THEOREM 4.0.2 ([OPS11, Thm 1.6]). Let € be a subset of ( [Z] ). The following

are equivalent:

(i) The set of Pliicker coordinates {A!}1ce is a cluster in the cluster algebra
structure on C[Gr(k,n)].

(ii) € is a mazimal weakly separated collection.
Here, ([Z]) denotes the set of k-element subsets of [n].

REMARK 4.0.3. A result by Leclerc and Zelevinsky, [LZ98], Theorem 1.1], states
that weak separation in the Grassmannian corresponds precisely to quasi-commutation
in the quantum setting. Theorem [[.0.9 is therefore analogous to the fact that quan-

tum clusters are maximal quasi-commuting sets.

DEFINITION 4.0.4 (Minimal /maximal cluster). A minimal cluster for C[Gr(k,n)]

corresponds to a maximal weakly separated set # such that for any I € #', and
for any J ¢ # such that J <y I, the set (#\{I}) U {J} is no longer weakly

separated. Maximal clusters are defined analogously. We denote these by @ and
max respectively. Note that, by [OPS11, Thm 1.6], these are indeed clusters in
C[Gr(k,n)].

4.1. Minimal and Maximal Clusters for C[Gr(k,n)]

We now show that there exist well-defined minimal and maximal clusters for C[Gr(k, n)].

We begin by defining the following subsets of Il ,:

Grrozen = {[1,k —1][n], [1,k = 2][n — 1,n],...,[n —k+1,n],

n—kon—1,... [2.k+1],[1,k]}

cg"-’ = {[ == [1, 7:1][2.27 23] S Hk,n} U Cgfrozen

min
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(2,k+1]
— [n—k+1n—1 — — [1[3,k+1]
1,k — 1][n] 1,k —1[n—1] —m— 1,k —1][k+1] (1, k]

FIGURE 4.1. The exchange quiver ()—-. The frozen variables are

min

shown in boxes.

(g@ = {J == [jlan][j?nn] € Hk,n} U Cgfrozen

Where 11,19,13 € Z are such that 1 < i < iy <13 < n, and j, j2,J3 € Z are such
that 1 < 77 < 72 < j3 < n,. We show in Proposition that the following are

minimal and maximal clusters respectively:

min = {AT: I € ¥~} and max={A":] € Cax} (5)

min

where {A] : I € Ghrogen ) are the frozen variables.
The exchange quiver for the minimal seed (@, (=) is shown in Figure

below, with arrows between mutable vertices as follows.

[1, 1] [i2, i3] ————— [1,i1][is — 1,45 — 1]

]

[1,i1 + 1][22 + ]_,7;3] A — [1,7:1 + 1][i2,i3 - 1]
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K [n —k,n—1]
(2, k][n]

1,k — 1][n] ——— n—k,n—2|[n]

[ — k + 2, 7] [2lln —k+2,n] ——

bl 2.0 ([ 1]

FIGURE 4.2. The exchange quiver Q)qax. The frozen variables are
shown in boxes.
The exchange quiver for the maximal seed (max, Q) is shown in Figure

below. The arrows between mutable vertices are as follows.
[il, ig][’ig, TL] _— [11 —I— 1, ig —|— 1][23, ’I’L]

|~

[il,ig — 1][23 — 1,n] — [Zl -+ 1,2'2][7;3 — 1,']7/]

PROPOSITION 4.1.1. The sets min and max defined in above occur as clusters

in C[Gr(k,n)].

PROOF. Recall that the set %fozen corresponds to the set of frozen variables.
Since these will appear in all clusters, we begin by showing that each I € %fogen is
weakly separated from each J € Il ,,.

Let I = [1,i1][i2, n] € Ghogen and J € Iy ,,. Then I and J are weakly separated

since

I/ = [1,21]\J < J\] < ]” = [ZQ,H]\J
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Now, let I = [i1,%2] € Ghomen and J € II;,. Then I and J are weakly separated
since
J={jed:j<iut<I\J=<J' ={j€J:j>i}.

We now deal with the remaining elements of ¢ . Let I = [1,i1][i2,45], J =
(1, j1][ja, 73] € ‘5@, and let J; = [1,71], Jo = [j2,j3]. Assume, without loss of
generality, that i; < j;. Then we have the following cases:
Case 1: 1< i) <iy < ji <is < jo < js<n.
Case 2: 1 <i1<is<j1<ja<izg<j3<n.
Case 3: 1 <i; < j;1 <ip<jp<izg<yj3<n,

or1<ip <ji<ipg<jp<izg<j3<mn.
Case4: 1<i;<j1 <is<ig<j)p<73<m,

or 1<y < jy < iy <iz < ja < jz <n.
Case 5: 1 <iy < jy < iy < jo < j3 < i3 < m,

or 1 <i; <ji<ia<jpp<g3<iz<n.
Case 6: 1 <13 <j; <ja<ipa<j3<izg<n
Case 7: 1<i3 <j1 <ja<yj3<iz<izg<n
Case 8: 1 <41 <1< j1 <Jja<j3<iz<n.

In cases 1-4, I and J are weakly separated since
J =\ <I\J<J" =]\l
In cases 5-8 I and J are weakly separated since
J=JI\I <I\J=<J"=0.

To see this, consider the following diagram, where blue corresponds to I'\J, pink

corresponds to J\I, and grey corresponds to I U J.

1 4 d2 J1 i3 j2 Js 1 1 j1 d2 J2 J3 i3
1 4 42 J1 J2 i3 Js 1 41 j1 Jg2 %2 J3 i3
L iy j1oi2 j2 i3 Js 1 41 g1 J2 Js iz i3
1 41 g1 i2 i3 J2 Js 1 41 42 j1 J2 Js i3

Cases 1-4 Cases 5-8
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We now turn our attention to the maximal cluster. Let I = [iy,io][i3, n], J =

(71, 72]l73, 1| € Camax, and let J; = [j1, Jo], Jo = [Js,n]. Assume that j; > i3. Then

we have the following cases:
Case 1: 1 <41 <j1<ja<y3<ig<ig<n.
Case 2: 1 <1 <in <51 <Jp<y3<ig<n.
Case 3: 1 <1 <1 <ips<jo<jz<iz<n.
Case 4: 1 <11 <J1 <jo<19<j3<1i3<m,
or 1l <i; <j1<jpp<ipx<jg<iz<n.
Case 5: 1 <j; <jy<i; <1y <j3<i3<n,
or 1 <j1 <jpp<iy<ip<j3<iz<mn.
Case 6: 1 <j; <i3 <jy<iy<j3<iz<n,
or 1 <j1 <3< ja<ip<j3<iz<n.
Case 7: 1 <j; <y <jp <jg<ip<iz<n.
Case 8: 1 <j; <jo<i1 <7J3<ig<iz<n.

In cases 1-4, I and J are weakly separated since
I'=L\J=<J\I<I"=0.
In cases 5-8, I and J are weakly separated since
J =\ <I\J < J" =]\l

This is illustrated in the following diagram, where blue corresponds to I'\J, pink

corresponds to J\/, and grey corresponds to I U J.

==0—0—0—0==0—0

i J1 J2 Js t2 i3 n J1 J2 %1 i2 J3 iz n
i 92 J1 J2 J3 i3 m J1 %1 j2 12 J3 iz n
i1 J1 iz J2 J3 i3 n J1 i1 J2 Js3 iz i3 n
i1 j1 J2 @2 Js i3 n ,771—1'1 J2 Js i2 i3 n
Cases 1-4 Cases 5-8

Note that, in both sets of diagrams above, it is not a problem to have 7, = j, for
some r, s € {1,2,3}. In this case, the result will be that a ‘grey’ region becomes
a single point, or that a ‘blue’/‘pink’ region becomes empty. Neither of these will
change that the two index sets in question are weakly separated. Thus, the sets

¢ —- and Gmax are weakly separated.
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In [OPS11, Thm 3.3], it is established that any maximal weakly separated
collection must have cardinality k(n — k) + 1. It is clear, from counting rows and
columns of the quivers, that we have !‘5@| = |Gaax| = k(n — k) + 1, and hence
these are indeed mazimal weakly separated sets.

Finally, [OPS11, Thm 1.6] states that any maximal weakly separated set corre-

sponds to a cluster in C[Gr(k,n)]. O

PROPOSITION 4.1.2. The cluster min (resp. max ) defined above is minimal (resp.

mazimal) in the sense of Definition |4.0.4)

PRrROOF. Let us begin with the minimal cluster. We claim that for any I € ‘5@ ,
and for any J ¢ ¢ such that J <y I, the set (¢;;\I) U {J} is not weakly
separated.

First, note that if I is one of the following:

then it cannot be replaced by anything smaller, since all J <y [ are already in CK@.

Now, recall that each square in the mutable part of the exchange quiver is of the

following form:

I = [1,i1][i2,i3] Is = [l,il][ig —1,i3 — 1]
Is = [1,i1+1][i2+1,i3] Iy = [1,i1+1“’i2,’i371]

We proceed by induction. Suppose the above claim holds for all I <4 [; in the
maximal cluster. We wish to show that the claim holds for [;. By assumption, we
need only to consider J ¢ %@ such that I, I3 < J <4 I. Any such J is of
the form J = [1,4][jo] U J' U [i3], where iy + 1 < jo < iy and J' C [jo + 1,43 — 1].
However, elements of this form are not weakly separated from I. In order to see
this, recall that J and I, both have cardinality k; we may therefore deduce that
|J'| < |[é2,i3 — 1]|. Hence, [i2,73 — 1]\J’ is non-empty, and so there is no choice
of J' such that J and I, are weakly separated. This is illustrated in the following
diagram. Note that i = i3 — 1 and 1 = 4; are the only instances in which points
on the diagram coincide, and neither of these have any effect on the argument - the

grey or pink regions will simply consist of single points.
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It remains to deal with the elements of the form I, = [i,7 + k — 1], i.e. we wish
to show that if the claim holds for Iy = [i —1,i+k—2|, I3 = [1][i+ 1,i+k—1], I, =
[1[i,i + k — 2] € €, then the claim holds for I;.

By assumption, we only need to consider I, I3 < J < I;. Any such J is of
the form J = [j]UJ'U[i + k — 1], where j < i and J' C [j + 1,7+ k — 2]. However,
elements of this form cannot be weakly separated from I,. In order to see this we
first note that J and I are both of cardinality k. Hence, |J'| < |[i,i + k — 2]| and
so [i,1 + k — 2]\J’ cannot be empty. This means that there is no choice of J' such
that J and I, are weakly separated.

Hence, the claim holds for all I € ¢ by induction.

We now turn our attention to the maximal cluster. The proof will be almost
identical to that of the minimal case. The claim here is that for any I € €, and
for any J ¢ €max such that I <y J, the set (€ma\I) U{J} is not weakly separated.

First, notice that if I is one of the following

1][n—k+2,n],[2)][n—k+2,n],....,[n—k+1,n],[n—kn—1],

n—kn—2|n],....,In—k,n—Fk+1]n—k+3,n]

then all J such that I <y J are in €« already, and so we cannot replace I by
anything larger.
Next, recall that the mutable part of the exchange quiver consists of squares of

the following form:

h = [imz][is,nf]\lz[il + 1,i2 + 1][i3, n]
Is = [’il,’iz—l][i:;—l,n] 14:[i1+1,’i2][i3—1,n]

Once again, we proceed by induction. Suppose the claim above holds for all 1
with I} < I. We show that the claim then holds for I;. By assumption, we need
to consider only J ¢ Gmax such that [} <y J <y I, I3. Any such J is of the form

J = [i1) U J U [jo][iz, n] where jo > iy and J' C [i; + 1, jo — 1]. However, any such
J will not be weakly separated from I,. To see this, notice that J and I both have
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cardinality k. We can therefore deduce that |J'| < |[i; +1,s]|. Hence, [i1 + 1,i5]\J’
must be non-empty, so J and I, cannot be weakly separated.

It remains to deal with the elements of € of the form Iy = [i,i + k — 1], i.e
we wish to show that if the claim holds for Iy = [i + 1,1 + k|, I3 = [i,1 + k — 2|[n]
and Iy = [ + 1,7 + k — 1][n], then the claim holds for ;.

By assumption, it suffices to consider J € €max such that I1 <y J <4 I2, I5. Any
such J must have the form J = [{|UJ'U[j], where j > i+k—1and J' C [i+1,7—1].
However, elements of this form cannot be weakly separated from Ij. To see this,
recall that J and I, both have cardinality k. Therefore, |J'| < |[i+ 1,7+ k — 1]|, and
so [i +1,i+ k — 1]\J" is non-empty. Thus, J and I; cannot be weakly separated.
The claim holds for all I € € by induction . O

4.2. The Finite Type Case for C[Gr(k,n)]

We demonstrate below that we may obtain a path satisfying the required properties
in the finite type case—it remains to determine whether this will still be the case

for infinite type.

4.2.1. The C|Gr(2,n)] Case. We first consider the Gr(2,n) case. For the

initial seed we take the cluster
H/EI/I _ (Aln’ Al(n71)7 e A13’ A12, A23, A34, e A(an)(nfl)’ A(nfl)n>

together with initial exchange matrix corresponding to the following quiver:

13 14 \nl 4>1n

[-2x-n] [-nn

For clarity when dealing with mutation paths, we number the mutable vertices for

the initial quiver as follows:

This enumeration is preserved when we mutate; when drawing the mutated quiver,

we keep the same vertex positions and change only the arrows.
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The maximal cluster is as follows
Max — (Aln, A2n7 s A(n—2)n, A12’ A23, A34, o ,A(n—Q)(n—1)7 e A(n—l)n)

and we consider the following mutation path, where the mutable vertices are num-

bered as above:

pl=11,(2,1),....,(n—4,n—5,...,1),(n—3,n—4,...,1)]

- [Qn—g’ "'781]’ (7)

where p, = (n—2—1,..,1). We claim that the sequence of new cluster variables

obtained after each mutation is as follows:
A24 A25 AQn A35 A36 ASn A(n—Q)n

Below we prove that this mutation path has the properties (P1)-(P3) as required.
In the previous Section, we have shown that min and max are indeed clusters in

C[Gr(2,n)], and that these are minimal/maximal in the sense of Definition [4.0.4]

THEOREM 4.2.1. The mutation path [p] defined above satisfies properties (P1)-
(P3).

Proor. Note that if n < 4 there is nothing to prove. Hence, assume that we
have n > 4. By definition of the mutation path [p], we begin at the minimal cluster
min as in (B), verifying the first part of (P3).

To address (P2) we first claim that, when mutating at A% along the path [p],

the quiver appears locally as

[i(i +1)]
(i +1)j] [i] (G + D] ——— [i(7 +2)]
G +1)] [+ 1) +2)]

where [i7] is the mutating vertex, corresponding to A% for 1 <7 < j < n—1. Hence
we have

[iG+ DG+ DI+ [+ DG+ 1)
[i5]

pyig) ([15]) = = [+ + 1)
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When j = n—1 we simply remove the vertices labelled [i(j+2)] and [(j+1)(7+2)].
This claim holds for the first mutation by inspection of the minimal cluster, and
we see that

pis ([13]) = [12] [34][14;][14] 23]

Now, assume that the claim holds up to mutation at the variable [ij] along the

= [24].

mutation path [p]. We will show that it holds for mutation at [(7)(j + 1)].

After mutation at [7j] the quiver appears locally as follows, with indices taken

modulo n.

[i(i +1)]

T

(i +1)j] —— [+ DG+ D] e—— [ + )] ——— [i(7 + 2)]

T =

(7 +1)] G+ D0 +2)]

The diagram above shows that the next vertex at which we mutate, [i(j + 1)],
has the required form and

i+ DG+ DU+ 2]+ [+ DG+ DG +2)]
[i(j +1)]

G+ ([ +1)]) =
=[(i+1)(j +2)].

We note also that after mutation at [i(j+ 1)] the vertex [(i+1)(j+ 1)] will again
have the required form.

After applying p , the mutable cluster variables are A*!, ..., A*". Note that this
is the only time we mutate at vertex n — 3 along the path [p], and hence A will

remain in our final cluster.

In general, after applying P the mutable vertices are

ATHDE+3) | AG+Dn A2

The vertices n—3,...,n—1—1 do not appear again in the mutation path, and hence
AR A" will remain in the final cluster.
We may now observe that the path produces the variables claimed above, and

hence satisfies properties (P1) and (P2). For the second part of (P3) we note that
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the Pliicker coordinates which remain in the final cluster are precisely those in the
maximal cluster defined above.

O

EXAMPLE 4.2.2 (n = 6). In the n = 6 case, the initial seed consists of the cluster
I/Il\i-;l — (A16 A15 A14 A13 A12 A23 A34 A45 A56)
together with the following quiver:
[12] 13 14 15 {16]
fic]

[12] 13 14 15
l
|

{i6]

WM 15

{16]

a2

|3

26 —[T6]
FIGURE 4.3. The mutation path in the Gr(2,6) case. Mutable

vertices are labelled 1-3 from left to right, and the labelled arrows
state the vertex at which mutation takes place.

As shown in Figure [{.5, we obtain the following mutation path, with mutable

vertices labelled 1-3 from left to right, and sequence of cluster variables:

[p] — [1’27 17372’ 1]7 A24,A25,A267A35,A36,A46.
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4.2.2. The C[Gr(3,n)] Case for n = 6,7,8. We now deal with the remaining
finite-type cases, namely C[Gr(3,n)], for n = 6,7, 8.
4.2.2.1. The n =6 Case. In the case of C[Gr(3,6)], the initial seed is as follows:

min = (A145, A134, A125,A124, A123,A234, A3457A456, A1567A126)

NN
ahh o

I\ \

[Eoh— 15— 121 (1] [ N

For ease when working with mutation paths, we label the mutable vertices as

[456]  [345] [234]

w—
= — N

shown on the above—this labelling will be preserved after mutation, by retaining
the vertex position and changing only the arrows.

The maximal cluster is the following
max = (A236 A256 A346 A356 A123 A28 A\315 A6 AL56 A126)

The first few mutations are shown in Figure [4.4] and we obtain the following muta-
tion path
Pl =14,2,3,4,1,2,3,4,2,3,4].

This produces the following sequence of cluster variables
A5 AI30 A235 128456 A245 A146 A236 A246 ABI6 A256 A356

This mutation path satisfies properties (P1)-(P3) as required. Note that precisely
half of the quadratic cluster variables appear in this mutation path (see [GL09] for

a full list of cluster variables)—this will also be the case when n =7, 8.
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4.2.2.2. The n =7 Case. For the C[Gr(3,7)] case, we take the following initial
seed:

min = (A156,A145,A134,A1267A125,A124,
A123 A234 A345 A456 A567 A167 A127

SN D\?\?\?

167 156 145 134

INI N ININ

[127 k— 126 +— 125 «— 124 «—{ 123 [k 4 5 6 ]

For mutation paths, we will use the labelling of mutable vertices shown above—
this labelling will be preserved after mutation, by retaining the vertex position and
changing only the arrows.

The maximal cluster is as follows:
m — (A237,A347, A457, A267,A367, A467,

A28 A2 A5 A6 ASET AL6T AL27)
Here, we obtain the following mutation path, in which the numbers correspond to
mutable vertices labelled from left to right,

lp] =16,3,5,6,2,3,4,5,6,2,3,4,5,6,1,2,3,4,5,6,2,3,4,5,6,3,4,5, 6].

This yields the following sequence of cluster variables

135 136 137 235 123456 123457 245 146 236 123467 246 346

A 7A aA 7A >Y 7Y 7A 7A 7A 7Y 7A 7A )
123567 147 237 124567 134567 157 247 256 234567 257 267 356
Y 7A 7A 7Y 7Y 7A )A 7A )Y 7A 7A 7A )

A347 A357 A367 A457 A467.
This mutation path satisfies the properties (P1)-(P3) as required.
4.2.2.3. The n = 8 Case. Finally, for the n = 8 case, the initial seed is as follows

min = (A167,A156,A145,A134,A127,A126,A125,A124,

123 234 345 456 567 678 178 128
AT AT AT AT A AP AT AT
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(678] [567] [456] [345] [234]

NININTN

167 156 145 134

RN

127 ¢— 126 +— 125 «— 124 «—| 123

For mutation paths we will utilise the following labelling of mutable vertices:
[L\ 1 2 3 4

[k 5 6 7 8 ]

This labelling will be preserved after mutation, by retaining the vertex position

and changing only the arrows.

We have
Iﬁ;( — (A238,A348,A458,A568,A278,A378,A478,A578,

123 234 345 456 567 678 178 128
A28 AZEABS A6 ABGT ABTE ALTS \128)

We obtain the following mutation path, again with numbers corresponding to mu-
table vertices, labelled as above:
lp] =8,4,7,8,3,4,6,7,8,3,4,5,6,7,8,2,3,4,5,6,7,8,2,3,4,5,6,7,8,2,3,
4,5,6,7,8,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,2,3,4,5,6,7,8,2,3,4,
5,6,7,8,3,4,5,6,7,8,4,5,6,7,8].
This gives the following sequence of cluster variables
A3 A136 AIBT AISS A235 123456 123457 123458 A245 A\ 146 A\236 7123467
Y'123468 \246 \B6 1123567 AT AT (8 ()), Y 124567 Y 184567 A 157 123478
Y'128568 AL B(3.1), A(3), V123978 Y128678 124568 AT A256 A28 B(3 (),
124578 124678 \248 284567 134568 ABAT B(G 1), A(6), Y234568 A3,
V134578 A25T NS B(G, (), Y2457 ABST AT y1256T8 Y 1B46TS A6 B(] 1),
135678 7145678 A168 7234678 A58 N34S 235678 25678 A268 A278 A3 36T
Y5678 A3 ABTS AA6T A58 A6S AATS ABGS ABTS
where A(i) and B(,j) are the cubic regular functions shown in Table 2 of [GL09].
Again, this mutation path satisfies the required properties. Note also that we

now obtain precisely one third of the cubic cluster variables.
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REMARK 4.2.3. It is natural at this point to ask whether the mutation paths de-
scribed above are mazimal green sequences. Introduced in [Kellll, a mazimal green
sequence is a certain path in the exchange graph of a cluster algebra, beginning at
the unique smallest element and ending at the unique largest element. The existence
of these sequences proves useful since, among other things, they provide explicit for-
mulas for a generic basis in the upper cluster algebra. See [DK20| for more details.
A straightforward check shows that the sequences we describe are not maximal green

sequences, even in the Gr(2,n) case.

4.3. The Finite Type Case for C[M (k, j)]

We now wish to apply the theory developed in Section 4 to another related class of
(quantum) cluster algebras, namely the coordinate ring of the matrix algebra as in
Definition [2.2.10, We will construct a partial order on the generators.

Rather than computing the relevant mutation paths from scratch in these cases,
we note that they may be obtained from the corresponding Grassmannian case via
the algebra isomorphism « given in [LROS8|. For convenience, we give the definition

of this isomorphism below.

PROPOSITION 4.3.1 ([GL13l Prop 6.1]). Let o be the automorphism of
K,[M(k,n — k)] defined by o(X;;) = ¢Xi;. The map

a: Ky [M(k,n— k)Y 0] = K [Gr(k,n)] [12... k] ']
defined by
X)) =[1.. k=it 1. kG+R)1.. k™7, aY)=[12. .
is an algebra isomorphism. Note that a denotes an omitted index.

4.3.1. The C[M(2,7)] Case. We first consider the M (2, j) case. For the initial

seed we take the cluster

min = ((21), (1), (1,5), [],-... [H9])

together with initial exchange matrix corresponding to the following quiver:
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NN,

The frozen variables are those in boxes.

=) (1999

Using the mutation path for the corresponding Grassmannian, together with the
isomorphism « defined above, we obtain the following mutation path (note that the

mutable vertices are labelled from left to right)

pl =1[(1),(2,1),...,(n—=1,n—2,...,1),(n,n—1,...,1)].

The sequence of new cluster variables obtained after each mutation is as follows:

(22), s @[] [ (3] [
Note that this mutation path has the properties (P1)-(P3) as required.

EXAMPLE 4.3.2 (j = 4). In the j = 4 case, the initial seed consists of the cluster

min = ((21), (11), (12), (13), (14), [ 3], [%]. [}])

together with the following quz’ver'
L 131 | %;

As shown in Figure [£.5, we obtain the following mutation path and sequence of

14

[[3]]

cluster variables:
Pl =11,2,1,3,2,1], (22),(23),(24),[13],[13],[33]"

The maximal cluster in this case is the following:

max = ((21),[3], [13], (24), [33]. [88], [$4])-

4.3.2. The C[M(3,j)] Case.
4.3.2.1. The j = 3 Case. In the case of C[M (3, 3)], the initial seed is as follows:

min = ([§3],(21), (12), (11), (31), [53] . [133] . [%], (13))
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11 12 13 [14]

|\ :

3] H H 23 24 [14]

21 [;g]

]
L 12 T [14] lz
EOTE TR e[ ——n—

21 H

23 13 [14]

|1
i G 1 (B [ =[] 24 —{14]

21 3]

gl

22
21
22
21
22 23 24 [14]
HiERE I

FIGURE 4.5. The mutation path for the M(2,4) case. The labelled
arrows correspond to mutable vertices, labelled from left to right and
top to bottom.

[133] 3] [31]

The maximal cluster is the following
max = ((33), [#], [33], [13], (31), [33], [133]. [13], (13)).
We obtain the following mutation path

pl = [4,2,3,4,1,2,3,4,2,3,4].
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126

126 (12) — (22) 126 (23) — Y33
l3 14
1] 3] [ey]

126 (23) «— (22)

FIGURE 4.6. The mutation path for the M (3,3) case. The labelled
arrows correspond to mutable vertices, labelled from left to right.

This produces the following sequence of cluster variables

(22),(23),(32), 32) [13] — BV [1], 1131, [131, 33), [33] . [33],

The first few steps in this mutation path are shown in Figure [4.6]
4.3.2.2. The j =4 Case.

DEFINITION 4.3.3. Let {a,b,c,d,e, f} be a subset of {1,...,n} written in in-

creasing order, and define the following:

Yirp = (fb) [&] = (fa) [ 5]
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In the case of C[M(3,4)], the initial seed is as follows:

min = ([$3],[13],(21), (13), (12), (11), (31), [ 53], 438, %341 %3], (14))

We obtain the following mutation path

p] =16,3,5,6,2,3,4,5,6,2,3,4,5,6,1,2,3,4,5,6,2,3,4,5,6,3,4,5,6].

This produces the following sequence of cluster variables

(22),(23), (24), (32), Yiz', Yigg, [13], [13], (33), Yz, [13], [ 53],

iy (18], (34), (1) Yiag', (24)Yis3', 18], (13 (58], (3)Yiss, [34],

4.3.2.3. The j =5 Case. The last finite type case to consider is M (3,5), i.e. the
equivalent of Gr(3,8) for the Grassmannian.

In this case, our initial seed is as follows:

min = ([%] ) [%g]7[%%]7(21)’(14)7(13)7

(12), (11), (31), [33], (1381, [¥33]. [¥33]. [3], (15))

[13] — [35] «— [33] «— [13] < (21)
NN N
(15) k— (14) +— (13) «— (12) +— (11)

Using the mutation path found earlier for Gr(3,8), together with the isomor-
phism « defined above, we may obtain the sequence of cluster variables obtained

along the relevant mutation path.
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4.4. Perfect Matchings

In what follows, we describe a potential connection with perfect matchings. We
observe that enhancing the quivers appearing above with certain perfect matchings
suggests that one could construct an algorithm to produce the mutation paths from

Section [4.2]in a more general setting.

REMARK 4.4.1. The interested reader may wish to consult [CKP24], [BKM16]
for other uses of perfect matchings in cluster theory. In [CKP24]|, the authors in-
troduce a class of modules for dimer algebras which correspond to perfect matchings
on the dimer model. This is then used to show that the associated cluster category

embeds into that of the appropriate Grassmannian.
We begin by stating some relevant definitions.

DEFINITION 4.4.2 (Quiver with faces). A quiver with faces is a quiver Q) =

(Q° Q'), together with a set, Q?, of faces (i.e. oriented cycles). We write Q =
Q% Q" Q).

DEFINITION 4.4.3 ( [BKM16, Def 2.4]). The quiver Q(D) of a Postnikov dia-
gram D has vertices Q°(D) = C(D) given by the labels of the alternating regions of
D. The arrows Q'(D) correspond to intersection points of two alternating regions,
with orientations as in [BKM16, Figure 4]. The diagram on the right of [BKM16],
Figure 4] indicates the boundary case. We refer to the arrows between boundary

vertices as boundary arrows.

Consider the quiver corresponding to the minimal cluster in the Grassmannian
case. We observe that, following the construction in [BKM16|, the boundary ver-
tices are precisely the frozen vertices, and the boundary arrows are those between
frozen vertices, as shown in Figure [£.7] The remaining arrows are the internal ar-
rows. It can be observed that the incidence graphs at each vertex are indeed cycles
and hence connected, thus verifying that we have a dimer model with boundary as
in [BKM16| Def 3.2].

We note that Q@, is a quiver with faces since it is a finite dimer model with
boundary in a disc. See [BKM16, Remark 3.4] for further details. Note also that,

although there is an orientation arising from the Postnikov diagram, we do not make

use of this in what follows. We choose the set of faces, Q?, to correspond precisely
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’[n7k+1,n}}(—{ nfk,nfl]‘<7

[
[1][n —k+2,n] [1]nk+1nl]<\— — |

LE—1n—1 —  [LE—1)k+1]

FIGURE 4.7. The red arrows indicate the initial perfect matching on

Qmin’

to the oriented regions in the Postnikov diagram as in [CKP24] Def 2.8]. These

faces consist of all 3-cycles of the forms shown below:
[1,i1 + 1][i2,i3 — 1] [1,i1 + 1][2'2 + 1,i3} — [1,i1 + 1][i2,i3 — 1}

T

[1,41][i2, i3] ¢— [1,41][i2 — 1,43 — 1] [1,41][¢2, i3]

together with the following larger cycles arising from the addition of boundary ar-

Trows:
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Lk—-1n—-1]¢+—— —— [LE—-1][k+1]

[1][3, k + 1]

I
I

[1,k—1]k+1]

The mutation rule for boundary arrows is as follows:

(i) Mutate as usual, treating the boundary arrows as ordinary arrows.
(ii) If this results in a 2-cycle of boundary arrows, keep only the new arrow
added after mutation. Effectively, this will reverse the direction of the

original boundary arrow.
See Figure for an example. Note that this is consistent with mutation of

Postnikov diagrams, and the same modified form of cluster mutation is detailed in

[BKM16, Remark 12.3].

FIGURE 4.8. An example of mutation with boundary arrows. The
dashed arrows are the boundary arrows, and we mutate at the vertex
x.

DEFINITION 4.4.4 (Perfect matching, [CKP24] Def 4.1]). Let Q = (Q°, Q*, Q%)
be a quiver with faces. A perfect matching on Q is a set v C Q' such that the

boundary of each face in Q? contains exactly one arrow in v.

PROPOSITION 4.4.5. The red arrows in Figure[{.7] form a perfect matching, which

we call Viin, on the quiver Q—

min *
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Proor. We observe that each of the faces described above contains exactly one
perfect matching (red) arrow in Figure . Hence, the set of red arrows does indeed

form a perfect matching on Q)— O

min”

DEFINITION 4.4.6. Given a quiver with faces () and a perfect matching v, we
denote by Q\v = (Q",Q'\v) the quiver with the same vertex set as @ and with

arrow set Q\v.
LEMMA 4.4.7. The quiver Quin\Vmin 1S connected and acyclic.

PROOF. Observe from Figure 1.7 that removing the perfect matching arrows will
leave only the horizontal and vertical arrows remaining. In fact, what remains is
precisely a lattice together with an additional ‘initial” vertex. Travelling along these
arrows we may only move ‘left” or ‘up’, and hence the quiver is acyclic. We see that

the quiver is path connected. ([l

DEFINITION 4.4.8. We define a partial order, <,,;,, on the minimal cluster min

as follows: y < ¢ if and only if there is an oriented path from y to ¥ in Qumin \Vmin-

COROLLARY 4.4.9. Definition[{.4.8 above defines a partial order on the minimal

cluster.

PROOF. This follows from Lemma [£.4.7] Reflexivity is a consequence of the fact
that each vertex is connected to itself via a path of length zero. Antisymmetry
follows from acyclicity, since if we had a path from a vertex u to a vertex v and a
path from v to u then we must have a cycle u — v — wu. Finally transitivity follows
from connectedness; if we have a path from u to v and a path from v to w, we may

concatenate these paths to obtain a path from u to w. 0

We expect that the additional data of a perfect matching can be utilised together
with the mutation paths described in Section to construct a partial order on the
set of cluster variables. Figure below shows the observed behaviour along the
mutation path from Section when we attempt to find a notion of ‘mutation’ of
the initial perfect matching, obtaining a set of ‘red’” arrows on the mutated quiver. In
the third case, we can choose either of the dashed arrows to be ‘red’. This process
appears to continue along the paths described above, producing each quiver now
enriched with a subset of red arrows.

We have the following conjectures:
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Y Y

Y Y
e - & -

Y Y

FIGURE 4.9. The observed behaviour of ‘mutation’ of a perfect
matching. The perfect matching arrows are shown in red.

CONJECTURE 4.4.10. There exists a mutation path for the Grassmannian cluster
algebras along which mutation of a perfect matching, following the rules suggested
by Figure[4.9, results in a perfect matching on the mutated quiver with respect to an

appropriate choice of faces.

The conjecture above holds in the finite type cases, and we will demonstrate this

in Sections [4.4.0.114.4.0.4] below. Note that, in order to ensure that what we obtain

after mutation might be a perfect matching, we do not mutate at vertices which are
both the source and target of red arrows—an example illustrating why this condition
is necessary can be found in Figure [£.10, We will call the vertices at which we can
mutate perfect matching source/sinks. The main difficulty with proving this result
in general is that it is not immediately obvious how the faces of a quiver with faces
should change under mutation, particularly when the quiver we obtain is no longer

planar.

[ ammm—— ] N
/u \
. .
/.1' .T,'\\
\ ¢

FIGURE 4.10. An example in which mutating at a vertex with both
incoming and outgoing perfect matching arrows does not produce a
perfect matching. By the rules suggested in Figure [4.9], one of the
two dashed arrows must be red, but we can see that neither choice
results in a perfect matching on the mutated quiver.

CONJECTURE 4.4.11. In the setting of Conjecture for each cluster along
the path with quiver Q) and perfect matching v, Q\v is connected and acyclic.

CONJECTURE 4.4.12. In the setting of Conjecture[4.4.11], there is a partial order

on each cluster along the path, with Hasse diagram given by Q\v. Furthermore,
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there is a consistent extension of these partial orders to a partial order on the union

of all clusters along the path: <,.

The extent of the challenge of proving the latter part of Conjecture is
clarified by the following observations. Firstly, we note that even if z; <, x5 is
witnessed by a path which does not pass through the vertex at which mutation
takes place, and which is hence unaltered by quiver mutation, one must either show
that perfect matching mutation is sufficiently local that the path is not interrupted
by a perfect matching arrow, or one must see that there is a different such path
witnessing ;1 <,/ x5 in the mutated quiver. Now, consider the case in which x; <, x5
is witnessed by a path xy — y — x5, where y is the vertex at which we mutate.
While it should be helpful that such a mutation yields an arrow x; — x5, one must
check carefully that the choice of faces and perfect matching arrows is not such that
r1 — T is in the perfect matching.

Obtaining partial orders for each cluster is not trivial, though there are features
for Grassmannian cluster structures which mean that this is plausible. Showing,
however, that these partial orders patch together consistently is much more difficult,
particularly in the presence of higher degree cluster variables.

We will observe that such a partial order can be obtained in the finite type cases,

and that it coincides with the standard partial order used in [LRO04].

DEFINITION 4.4.13 (Minimal mutable element). Let (z,Q) be a seed. Given
a perfect matching v on the exchange quiver @) such that Q\v is connected and

acyclic, we say that an element z € x is minimal mutable if it is:

(i) Mutable (i.e. not frozen)
(ii) A minimal element with respect to <, restricted to mutable cluster vari-
ables.
(iii) A perfect matching sink (i.e. not the source of any perfect matching arrow)

with at least one incoming perfect matching arrow.

We will call a vertex corresponding to a minimal mutable element a minimal mutable

vertez.

4.4.0.1. Perfect Matchings in the C[Gr(2,n)] Case. Recall that when we mutate
at the vertex [ij] along path [p] in the C[Gr(2,n)] case, the quiver appears locally

as follows, now with ‘red’” arrows and boundary arrows included.
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[i(i +1)]

(i +1)j] [i] (G + D] —— [i(7 + 2)]

] 7

G+ D] —— U+ 1) +2)]

Notice that the vertex [ij] is a minimal mutable element as in Definition [4.4.13]
Note also that the red arrows appear to form part of perfect matching on the mutated

quiver below, with a suitable choice of faces.
[i(i +1)]

R

i+ 1)j] ——= [+ D)+ D] —— [ + D] ——— [iF +2)]

T T

G+ D] —— U+ 1) +2)]

CONJECTURE 4.4.14. For C[Gr(2,n)], applying the mutation path [p| to the min-

imal quiver enriched with the perfect matching described above results in the partial

order shown in Figure [{.11]

We may observe that Conjecture holds when n = 6. The minimal quiver

is as follows:

The mutation path [p] is shown in Figure , with red arrows determined by
the rules from Figure [4.9]

We observe that, with the correct choice of faces, the red arrows do indeed form
a perfect matching on each quiver along the path [p|—we expect that this will be
the case for any value of n.

Moreover, we observe that the partial order obtained as described in Conjecture
is precisely the standard partial order used by Lenagan and Rigal. The Hasse
diagram is shown in Figure below.

4.4.0.2. Perfect Matchings in the C[Gr(3,6)] Case. For the C[Gr(3,6)] case, we

may write down the mutation path [p] in its entirety with red arrows as determined
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(n—2)n

AN

(n—2)(n—1)

/

=
[
&
B
[
=

&)

/N
NSNS
NN N

N

in

/N
SN N
NSNS

FIGURE 4.11. The poset for the partial order <, in the Gr(2,n)
case. The minimal and maximal clusters are shown in green and red
respectively.
by the rules in Figure [4.9 This is shown in Figure below. We may observe
that, with the correct choice of faces, the red arrows do form a perfect matching on
each of the quivers occurring along this path.

We observe also that the resulting partial order, defined as outlined in Conjecture
coincides with the standard partial order in the sense that if x < y then we
cannot have x >, y. Note that we obtain one cluster variable which is not a Pliicker
coordinate—any cluster variables which are comparable in the v partial order but
not the standard one are connected through this higher degree variable in the Hasse

diagram. The Hasse diagram is shown in Figure below.
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FIGURE 4.12. The Gr(2,6) case. Mutable vertices are labelled 1-3
from left to right, and the labelled arrows state the vertex at which
mutation takes place.
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FIGURE 4.13. The poset for the partial order <, in the Gr(2,6)

case.
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123

FIGURE 4.15. The poset for the partial order <, in the Gr(3,6)
case. The minimal and maximal clusters are shown in green and red
respectively.

4.4.0.3. Perfect Matchings in the C[Gr(3,7)] Case. The quivers produced along
the path [p] in the C[Gr(3, 7)] case have also been explicitly computed, although we
do not include these here as the path is long. What we see, however, is that the set
of red arrows produced still forms a perfect matching on the mutated quivers with
an appropriate choice of faces. The resulting Hasse diagram is shown in Figure
below, and we again see that the partial order coincides with the standard partial
order, the only difference being that some cluster variables are newly comparable in
the v partial order via a higher degree cluster variable.

4.4.0.4. Perfect Matchings in the C[Gr(3,8)] Case. The last finite type case to
consider for the Grassmannian is the C[Gr(3,8)] case. One can check that the red
arrows produced along the path [p] again form a perfect matching on the quivers,
given an appropriate choice of faces. One may also see that the resulting poset
again coincides with the standard one, apart from some cluster variables being newly

comparable via a higher degree cluster variable. We do not include the full list of

quivers or the Hasse diagram here explicitly, since the path is long and the resulting
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FIGURE 4.16. The poset for the partial order <, in the Gr(3,7)
case. The minimal and maximal clusters are shown in green and red
respectively.

quivers are fairly complex. The interested reader may reconstruct these by using
the path [p] stated in Section along with the mutation rules for red arrows given
in Figure [4.9

4.4.0.5. Perfect Matchings in the Matrix Case. Let us now briefly turn our at-
tention back to the Matrix case. Rather than computing the Hasse diagrams from
scratch in these cases, we may again make use of the algebra isomorphism « given in

[LROS8] to obtain these from the corresponding Grassmannian cases. The resulting
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FIGURE 4.17. The poset for the partial order <, in the M (3,3)
case. The minimal and maximal clusters are shown in green and red
respectively.

Hasse diagrams for the M (3,3) and M (3,4) cases are shown in Figures and
.18 below.
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FIGURE 4.18. The poset for the partial order <, in the M(3,4)
case. The minimal and maximal clusters are shown in green and red
respectively.



CHAPTER 5

Segre Products of Graded Cluster Algebras

The following Chapter is joint work with Jan E. Grabowski - see [GH24].

5.1. The Segre Product

The map o : P x P — PP+ of projective spaces defined by

o((zo: - i), (Yor -2 Um)) = (ToYo: ToYr: - 1 TYjt oot TpYm)

is known as the Segre embedding—it is injective and its image is a subvariety of
Prtmtnm We may then define the Segre product of two projective varieties X C P"
and Y C P™ as the image of X xY with respect to the Segre embedding. We denote
the Segre product by X®Y = o(X x Y).

In what follows, rather than the geometric setting described above, we will be
interested in the dual notion of the Segre product of graded algebras. Let A =
D,cn Ai and B = @,y Bi be N-graded K-algebras. Then their Segre product
A®B is the N-graded algebra

ARB & @ A; ®k B; (8)

ieN
with the usual tensor product algebra multiplication. Letting X and Y be projective
varieties with homogeneous coordinate rings A and B respectively, the Segre product
A®B is the homogeneous coordinate ring of X®Y.

In all known examples when a cluster algebra is the coordinate algebra of a
projective variety, we have a compatible grading on the cluster algebra, with all
cluster variables being homogeneous. Such cluster algebras are naturally called
graded cluster algebras and the general theory of these is set out in work of the first
author ([Grals]).

In this chapter, inspired by [Pre23, Remark 4.14], we define a cluster algebra
structure on the Segre product of graded cluster algebras. This generalises the par-

ticular case arising in [Pre23] in the study of cluster algebra structures on positroid
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varieties and in doing so, we are able to clarify the required input data to be able
to form a Segre product.

We show that from the point of view of cluster algebras, forming the Segre prod-
uct is given by a gluing operation on suitable frozen variables. We also record some
simple observations on the preservation or otherwise of cluster-algebraic properties

under taking Segre products.

5.2. Segre Products of Graded Cluster Algebras

It was shown by Galashin and Lam in [GL19] that coordinate rings of positroid
varieties in the Grassmannian have cluster algebra structures. This class is closed
under Segre product and in [Pre23], Pressland shows how the Galashin—-Lam cluster
structure on the product is related to that on the factors.

In what follows, we aim to generalise this construction to the case of graded skew-
symmetric cluster algebras: we start with two graded cluster algebras and show that
their Segre product has a natural cluster structure. For coordinate rings of positroid
varieties, Pressland’s result shows that the Galashin—Lam cluster structure on the
product is equal to that obtained by the Segre product construction we give here.

We start by establishing some notation; readers unfamiliar with graded cluster
algebras may wish to refer to [Gral5| for further details and examples.

First, let % = (Z;,x;, Bi, G;) be (skew-symmetric) graded cluster algebras, for
i € {1,2}, such that

o 7, ={z1,...,x,,} and T, = {y1, ..., Yn, } are the respective initial clusters;

o 1, C T, is the set of mutable cluster variables;

e every frozen variable (i.e. those elements in Z, \ z;) is invertible;

e B, is an exchange matrix (with rows indexed by Z; and columns by z;) with
skew-symmetric principal part;

e GG; € Z™ is a grading vector, i.e. a vector such that BfG; = 0.

Throughout, we will work over a field K, so that our cluster algebras are K-
algebras and we take all tensor products to be over K. As we will see, the underlying
field plays essentially no role in our construction.

Let & be a cluster with x a cluster variable and B the exchange matrix associated
to . We denote by B* the row of B indexed by z and by B” the matrix obtained

from B by removing the row B*. If x is frozen, B® is again an exchange matrix.
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REMARK 5.2.1. In the above we require at least one frozen cluster variable in
each cluster algebra—this will be important when defining a cluster structure on their
Segre product since this will involve ‘gluing’ at frozen variables.

We have also asked that every frozen wvariable is invertible, which is a common
but not uniwversal assumption in cluster theory. In fact, an erxamination of our
construction shows that this assumption can be weakened to only asking that the
glued frozen wvariables are invertible, which may be a more appropriate assumption

for geometric applications.

We wish to define a cluster algebra structure on the Segre product @ ®.a%.
Following the approach of [Pre23], we aim to construct a new cluster algebra from
<1 and % by gluing at frozen variables of the same degree, which we will show

coincides with the Segre product under suitable further conditions.

5.2.1. A Gluing Construction. Fix x € &, \ z; and y € Z, \ z, such that
(G1)z = (G2)y. That is, z and y are frozen variables in their respective clusters and
their degrees are equal. We will identify the frozen variables x and y, denoting a
new proxy variable replacing both of these by z.

The initial data for our new cluster algebra is as follows. For the initial cluster,

we take
508, = (2, \ {=}) U (@ \ {y}) U {=}.
The mutable variables are x; U z,, and for the initial exchange matrix, we form the

block matrix

B 0
BOB, = |0 BY
Bf Bj

Finally, for the initial grading vector we take
Gy
GiOG, = | GY
Gi
where @”f is the grading vector G; with the entry indexed by x removed (and similarly

for CA;%) and G% = (G4), = (Gy),. We can now define a cluster algebra

ety = M(iﬂ:@z,&l U x,, B,0B,, GIDG2)
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from this initial data.

Let us extend the above notation to write

2,0z = (2 \ {z}) U (25 \ {y}) U {z},

where Z, ,, are now allowed to be any clusters of &7 and %, respectively, and say
that z,00Z; is obtained by gluing x and y. This is well-defined since x and y are
frozen. Similarly, we extend the notation B;[1B, and G1[0G, to any appropriate
input matrices/vectors.

The process of gluing at frozen variables with matching degree is illustrated in

the example below. Here and elsewhere, 1 denotes the vector (1,...,1)%.

EXAMPLE 5.2.2. Let o) = (& = {z1, 22,23}, 2y = {21}, Q1,G1 = 1) and ot =
(Zy = {y1,92,y3}, 5 = {y1}, Q2, G1 = 1) be cluster algebras with exchange quivers

as follows:

Qi O @ -] Q2: O @ -]

U I T3 Y3 n Yo

The quiver obtained by ‘gluing’ at the frozen variables x3 and ys is shown below—we

denote the new variable by z.

Q: 7 @ ] @ o]
To T z Y1 Y2

The cluster algebra <,[.ety is then given by the initial data

(i = {xhx%yhy% Z})i = {xlay1}7Q7 G = ]]-)

We will show in Theorem[5.2.7 that this gives a cluster structure on the Segre product
Ry

We record some straightforward observations about the cluster algebra o7 [.es;.

LEMMA 5.2.3. Let oy and <ty be graded cluster algebras. Fix x € Z, \ =, and
Y € Ty \ y such that (G1), = (G2)y. Then the cluster algebras /Doty and oot

are isomorphic as cluster algebras.

ProoF. This is clear from comparing the initial data for «/[Jez and o5l
and in particular noting that the two initial clusters are equal up to permutation of

the entries. O
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LEMMA 5.2.4. Let o and <3 be graded cluster algebras. Fiz x € Z, \ z; and
Y € Ty \ 2y such that (G1), = (Ga)y.
(i) Ewvery cluster variable of @ 0gty is naturally identified with a cluster vari-
able of <71, a cluster variable of <#y or is equal to z.
(ii) There is a bijection between pairs of clusters (Zy,x5) and clusters of oi0.cty
given by gluing, i.e. sending (Z7,Z5) to T00Z% for a cluster T of < and I},

of ot.

Proor. This follows from observing that our gluing process does not introduce
any new arrows between mutable vertices. Since mutation is a local phenomenon
and concentrated on mutable vertices, it is straightforward to see that mutating at
vertices indexed by x, is independent of mutating at vertices indexed by x, and the
(mutable) variables obtained are exactly as if the gluing had not been carried out.
The frozen variables of @7 [Ja% are those of @7 and % excluding = and y, along
with the glued frozen z.

For the second part, note that the same argument shows that there is a similar
bijection for the clusters of @ x %, where the latter denotes the “disconnected”
product of cluster algebras, where one simply takes the union of clusters and direct
sum of exchange matrices. Now there is evidently a bijection between the clusters
of &/ x 4ty and those of @i, given by &} U &, — 2705, from which the claim
follows. 0

COROLLARY 5.2.5. Let oy and <f> be graded cluster algebras. Fiz x € T, \ x,
and y € Ty \ Ty such that (G1), = (Ga),.
Then
(i) @Oty is of finite type if and only if <y and <y are;
(i) writing k() for the number of cluster variables of a cluster algebra <f , we
have k(e Oaty) = k(9 )+ k() — 1 when these numbers are all finite; and
(iii) writing K(&7) for the number of clusters of </, we have K(@/Ogty) =
K (/) K () when these numbers are all finite.

PROOF. These are now immediate from the previous lemma. Note that there is
an overall reduction of one in the number of cluster variables because we have glued
two previously distinct frozen variables; this highlights the difference between this

construction and the disconnected product. 0
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REMARK 5.2.6. One might hope that this construction extends straightforwardly
to graded quantum cluster algebras (cf. [GL13|). However, computation in small
examples shows that this is not the case.

For if one tries the naive approach in which initial quantum cluster variables
from @i commute with those from <5, one rapidly finds situations in which after
performing a mutation, the new variable does not quasi-commute with the rest of
its cluster. For it to do so requires the compatibility condition between the exchange
and quasi-commutation matrices for the glued data and this imposes a collection of
“cross-term” requirements between By and Lo (respectively, By and L) in respect

of the glued frozen variables.

5.2.2. Relationship with the Segre product. Our main result is the follow-
ing theorem, showing that the cluster algebra construction .7 [l.e5 induces a cluster
algebra structure on the Segre product. The isomorphism we will use is directly

analogous to the map 0%¢ defined in [Pre23].

THEOREM 5.2.7. Let of; = (Z;,z;, B;, G;), i = 1,2 be graded cluster algebras such

that there exist x € T, \ z; and y € T, \ z, both of degree 1.
Then the map ¢ : hOaty — R4y given on initial cluster variables by

o(z;) =2, @yI8"  forz; € I, \ {z},
oy;) = 29% @y;  fory; € I, \ {y} and
pz) =r®yY

15 a graded algebra isomorphism, with the property that the above formule hold for
any cluster of o Uats.

PRroOF. Recalling that we set

5,07, = (2, \ {z}) U (2, \ {y}) U {z},
let ¢ denote the algebra homomorphism ¢: K(z,0z,) — K(Z;) ® K(Z,) obtained
from the above specification on generators of the domain. This map is injective
since the elements ¢(x;), ¢(y;) and ¢(z) are algebraically independent.
Now let ¢ denote the restriction of the above map to @7 [.efs. We first claim
that the restricted map ¢ takes values in the subalgebra @7 ® <#,. To prove this, we

proceed by induction on the number of mutation steps from the initial cluster.
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by definition.

We may take as base case that of zero mutations from the initial cluster: there
is nothing to do, since we see immediately that ¢(z;), ¢(y;) and ¢(2) lie in o7} ® <

Now assume that the result holds » — 1 mutations from the initial cluster * =
7,02, (for r > 1) of A0k, That is, let y = pig,_, fig,_y - - fix, (2)
/“'Lkrfll’l’k'r72 e /’Lkl (BIDBQ)

. Set B =
By Lemma , we have that y = y Oy, for some clusters y , y, of <7 and

oy respectively. Moreover, there is a decompostion

{kl, .. -akr—l} = {ll, C ,ZS} LI {ml,

Ce ,mt}
such that y, = yu, -, (Z1) and y, = pum, -+ fim, (Z5).
Let y, = {1,

..y Ty, } and Yy, = {1, Yny }, so that

T PN Uy, vee P\ {yh L {2}
Let C = /’Lls"'l’[’ll(Bl)7 D = p“?m'":uml(32>’ H

= ey (Gh) and K =
Py - -+ fomy (G2). Then in particular B = COD and H; = degz; and K; = degy;.
We also set [n]+ = max{n,0} and [n]- = max{—n,0}.

y=y,0y, = (o,

We then compute ¢ for one further mutation in direction k., = k. We first
consider the case in which z; € Y, is mutable.
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We have

1 [sz’z J [By]',z ]
@(Nk(xk)):¢<$—k[< IT = “)( II v “)Z[Bz,xku

zjcy, \{«} Yi €y, \y}

H ngIjvmk]> ( H yﬁByj,mk]> Z[Bz,;pk}] )
zjegl\{:v} ijQQ\{y}

il B o Ba . ap)— ]
— ()O(x_ < H xg j k]+)Z[Bz,zk]+ + ( H xi j k] )Z[Bz,zk}— >
P L\ 2jep, \fo) z;€y, \{a} 1

1 [ (Ca o]+ [Cza.] (C ey ]- [Ca:a:]*_
o]0 K U IR R

=@
zjey, \{z} z;€,\{z}
1 [Ca; o] ‘ .
= l‘k®—ydegxk [ H (x] joTk1T ® y[CIJvZk]+d g J) x[cac,xk]+ ® y[C%xkh
zj€y, \{=}

+ 11 (éc”’”“ ® y[%”%]deg%) glCoail- g y[C““’IU‘]

zjey, \{r}

1 Co Caap]—
_ [Hx‘[jjk}‘L@yd_'_Hl,.[jjk] ®yd

deg x
T & gLk
k Y z]‘Egl ijgl
1 [Cz x ]+ [Cz x ]7 —
- HI Tk + HJ; 3Tk ®yd deg zg
T J J
z;€Y, zi€yY,

= pux () ® y* B

= pp(zp) ® ydeguk(mk)

where

d= Z[ij,zk]+ deg Tj = Z ij,kaxj

= E : _Cﬂij,kaxj = E :[C-Tj,zk]*deng
Czjvzk<0 Tj

noting that the third equality holds since CT H = 0. Also, we use that deg jux(73) =
d — deg xy.
Note that the fifth equality is where the assumption that degx = 1 is used:
without it, the claimed equality of d with the other stated quantities need not hold.
An analogous argument shows that ¢(pu(y)) = 29840 & 1y () for yp. € Y,
mutable, noting that this time, it is degy = 1 that is required.
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Since we have degx = degy = 1, the above tells us that for any cluster variable
v’ of e/ Oaty, we either have ¢(2') = 2/ ® y¥&* or p(2') = 2%8* ® 2’ and hence
o(x') € (A )dega @ (H2)degor- That is, the image of ¢ is contained in the Segre
product &7 ®.a% without any further constraints and the map ¢ is a graded map.

It remains to check surjectivity. Note that a generating set for . ®.9% is given
by taking the elementary tensors with components in generating sets for o7 and o7,
ie.

{z1 ® 29|21 € (H)a, 20 € (H)q cluster variables, d € Z}

Now

2 ®z = (1 0y") (@' @ 2)(@™ @y = p(a)p(z)e(z) ™

Hence, Im ¢ contains a generating set for .| ®.4%, and so ¢ is surjective onto &% @.%7%.

The claim follows. 0

REMARK 5.2.8. One might be tempted to try changing the specification of the
map ¢ to

plr;) = 28 @y for z; € iy \ {o},
p(y;) = 245 @y fory; € I, \ {y} and

QO(Z) — xdegy ® ydegx

in an attempt to avoid the degx = degy = 1 assumption. Note that one should
however ask for deg x and deg y strictly positive, to avoid issues with needing inverses
of arbitrary cluster variables.

While this does indeed fix the issue with d that occurs in the calculation in the
above proof for x), € y,, the appearance of 29°8Y in the first tensor factor means that
we do not obtain py(xy) unless degy = 1.

More explicitly, following the same approach as in the previous proof, one would
arrie at

1 [Cx,ac ] degy [CTJC ]*degy
ij]k+ ®yd+ijJk ®yd

degy deg x
€T gLk
k ® y ijQI xjegl
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but this is not equal to

degy
1 [Cz-,zk]+ [Cﬂcwwk]* d—degx
W(H%J | K yTEn

k zi€Y, zj€y,
if degy # 1.
By symmetry, the other case tells us that we also need degx = 1. That s, the

degree 1 assumption is unavoidable.

REMARK 5.2.9. Notice that in proving surjectivity, we required p(z) = r ® y,
and hence x and y themselves, to be invertible, but no other frozen variables needed

to be invertible for the proof to hold.

REMARK 5.2.10. Via Lemmal5.2.4), we see that the cluster structure on oi0).at
and hence that on o/, @, is independent of the choices of initial seeds. Therefore the
only requirements to obtain a cluster structure on the Segre product are the existence
of a frozen variable of degree 1 for each factor.

Graded cluster algebras with at least one frozen variable of degree one are, perhaps
surprisingly, ubiquitous. Many examples arising geometrically have this property:
coordinate rings of Grassmannians and more generally partial flag varieties and
their cells (JGLS11Db]), double Bruhat cells (IBEZ03|) and, as motivated this work,
positroid varieties (JGL19]).

Note too that the claims on the cluster structure of .o/ in Corollary

therefore also apply to the induced cluster structure on the Segre product.
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Growth in Graded Cluster Algebras of Rank 3: Examples

In this Appendix we collect, and comment on, some of the raw data behind Chapter

Bl

A.1. Fastest Growing Paths

We begin by illustrating the behaviour of the fastest growing paths as in Definition
3.2.1l By Proposition [3.2.9] we expect that taking logs yields a Fibonacci type

sequence, with the ratio of terms tending to the golden ratio. This behaviour can

be seen in Tables [1H4] below.

APPENDIX A

| Mutation Radius | In (Highest Degree) | Ratio |

1

© 00 3O U = W N

—_
S

0.477

0.477

0.699

1.114

1.792

2.907

4.696

7.600
12.295
19.895

1
1.465
1.594
1.609
1.622
1.615
1.618
1.618
1.618

TABLE 1. The fastest growing path for the initial degree seed

(1,3,1)

| Mutation Radius | In (Highest Degree) | Ratio |

1

© 00 3O U = W N

—_
S

0.845
1.256
2.090
3.344
5.434
8.777
14.211
22.989
37.200
60.188

1.485
1.665
1.600
1.625
1.615
1.619
1.618
1.618
1.618

TABLE 2. The fastest growing path for the initial degree seed

(3,3,7)
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| Mutation Radius | In (Highest Degree) | Ratio |

1 0.602 -

2 1.114 1.850
3 1.681 1.509
4 2.792 1.661
5 4.473 1.602
6 7.266 1.624
7 11.739 1.616
8 19.005 1.619
9 30.744 1.618
10 49.750 1.618

TABLE 3. The fastest growing path for the initial degree seed
(4,3,4)

| Mutation Radius | In (Highest Degree) | Ratio |

1 0.602 -

2 0.845 1.404
3 1.415 1.674
4 2.250 1.590
) 3.665 1.628
6 5.915 1.614
7 9.580 1.620
8 15.495 1.617
9 25.075 1.618
10 40.570 1.618

TABLE 4. The fastest growing path for the initial degree seed
(2,1,4)

The cluster algebras corresponding to Tables [1] and [2| above are examples of
mutation-acyclic cluster algebras, Tables [3] and [4] show mutation-cyclic cluster alge-

bras. We see that these do not exhibit noticeably different behaviour.

A.2. Averaging Degrees

In Remark [3.2.T1] we stated that it is reasonable to ask what happens if we look
at the average (absolute value of) degree at each radius of mutation, rather than
looking at one individual mutation path. The examples below show that this does
not give significantly different results when compared to the fastest growing paths
above. It seems likely that the fastest growing path eventually dominates sufficiently

so that they still tend to ¢, just somewhat slower.



A.3. THE ‘PRUNED’ EXCHANGE TREE

| Mutation Radius | Average Degree | In (Average Degree) | Ratio |

1 2.000 0.693 -

2 2.333 0.847 1.222
3 4.667 1.540 1.818
4 13.000 2.565 1.665
5 88.917 4.488 1.750

TABLE 5. Average degree for initial degree seed (1,1, 3)

’ Mutation Radius \ Average Degree \ In (Average Degree) \ Ratio ‘

1 3.667 1.299 -

2 8.000 2.079 1.600
3 34.000 3.526 1.696
4 435.000 6.075 1.723
5 38620.229 10.562 1.738

TABLE 6. Average degree for initial degree seed (2, 1,4)

] Mutation Radius \ Average Degree \ In (Average Degree) \ Ratio \

1 10.333 2.335 -

2 34.667 3.546 1.518
3 533.167 6.279 1.771
4 13438.583 9.506 1.514
5 9290199.042 16.044 1.688

TABLE 7. Average degree for initial degree seed (4, 3,4)

| Mutation Radius | Average Degree | In (Average Degree) | Ratio |

1 16.333 2.793 -

2 76.333 4.335 1.552
3 985.917 6.894 1.590
4 71235.333 11.174 1.621
5 113512388.792 18.547 1.660

TABLE 8. Average degree for initial degree seed (5, 3, 6)

88

We note also that this is much more difficult computationally, since we are

required to calculate all degrees at a given mutation radius, rather than just one.

A.3. The ‘Pruned’ Exchange Tree

In Section [3.3] we defined a ‘pruned’ version of the exchange tree, with the hope
of eliminating the fastest growing path starting at each point. Tables below

show the results we obtain in this case. Again, this does not seem to achieve what
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we require—cluster variable growth is still very fast, and there appears to be no way

of distinguishing between different initial conditions.

’ Mutation Radius \ Average Degree \ In (Average Degree) \ Ratio ‘

1 24.000 3.178 -

2 19.333 2.926 0.932
3 34.000 3.526 1.191
4 147.778 4.996 1.417
D 2284.000 7.734 1.548
6 249760.424 12.428 1.607

TABLE 9. Average degree of pruned exchange tree for initial degree
seed (4,2,20)

| Mutation Radius | Average Degree | In (Average Degree) | Ratio |

1 2.000 0.693 -

2 1.667 0.511 0.737
3 2.200 0.788 1.543
4 3.000 1.099 1.393
5 3.571 1.273 1.159
6 4.720 1.552 1.219

TABLE 10. Average degree of pruned exchange tree for initial

degree seed (2,1,4)

] Mutation Radius \ Average Degree \ In (Average Degree) \ Ratio \

1

O O i W N

8.000
20.000
52.000

136.000
356.000
932.000

2.076
2.996
3.951
4.913
5.875
6.837

1.441
1.319
1.243
1.196
1.164

TABLE 11. Average degree of pruned exchange tree for initial

degree seed (4, 3,4)

| Mutation Radius | Average Degree | In (Average Degree) | Ratio |

1

O T W N

11.000
32.333
182.400
2576.556
209716.059
294765443.485

2.398
3.476
5.206
7.854
12.254
19.502

1.450
1.498
1.509
1.560
1.592

TABLE 12. Average degree of pruned exchange tree for initial

degree seed (5, 3, 6)
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A.4. Slowest Growing Paths

The final approach attempted was to determine a slowest growing path. Tables
below show that this again fails in general to distinguish between the mutation-cyclic
and mutation-acyclic cases, although the degree growth is notably smaller along this
path when compared to the fastest growing paths. In fact, this seems only to depend

on the value of ¢ in the initial degree seed.

| Mutation Radius | Degree | Ratio |

1 9 -

2 23 2.556
3 60 2.609
4 157 | 2.617
5 411 | 2.618
6 1076 | 2.618
7 2817 | 2.618
8 7375 | 2.618
9 19308 | 2.618
10 50549 | 2.618

TABLE 13. Slowest growing path for initial degree seed (4, 3,4)

| Mutation Radius | Degree | Ratio |

1 4 -

2 4 1.000
3 8 2.000
4 20 2.500
5 92 2.600
6 136 | 2.615
7 356 | 2.618
8 932 | 2.618
9 2440 | 2.618
10 6388 | 2.618

TABLE 14. Slowest growing path for initial degree seed (4, 3, 8)
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| Mutation Radius | Degree | Ratio

1 3 -

2 8 2.667
3 29 3.652
4 108 | 3.724
5 403 | 3.731
6 1504 | 3.732
7 9613 | 3.732
8 20948 | 3.732
9 78179 | 3.732
10 291768 | 3.732

TABLE 15. Slowest growing path for initial degree seed (4,4, 13)

| Mutation Radius | Degree | Ratio |

1 9 -

2 22 2.444
3 57 2.591
4 149 | 2.614
5 390 | 2.617
6 1021 | 2.618
7 2673 | 2.618
8 6998 | 2.618
9 18321 | 2.618
10 47965 | 2.618

TABLE 16. Slowest growing path for initial degree seed (5, 3, 6)

] Mutation Radius \ Degree \ Ratio \

1 -2 -

2 -1 0.500
3 2 2.000
4 3 1.500
5 1 0.333
6 -2 2.000
7 -1 0.500
8 2 2.000
9 3 1.500
10 1 0.333

TABLE 17. Slowest growing path for initial degree seed (1,1, 3).
Note that this path follows a cycle in the exchange graph, and hence
repeats with period 5 - this cyclic behaviour will always occur when

c=1.
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| Mutation Radius | Degree | Ratio |

1 4 -

2 5 1.250
3 6 1.200
4 7 1.167
5 8 1.143
6 9 1.125
7 10 1.111
8 11 1.100
9 12 1.091
10 13 1.083

TABLE 18. Slowest growing path for initial degree seed (3,2,2)

| Mutation Radius | Degree | Ratio |

1 2 -

2 3 1.500
3 7 2.333
4 18 2.571
5 47 2.611
6 123 | 2.617
7 322 | 2.618
8 843 | 2.618
9 2207 | 2.618
10 D778 | 2.618

TABLE 19. Slowest growing path for initial degree seed (3,3,7)
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