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Abstract— Remote photoplethysmography (rPPG) enables
non-contact heart rate monitoring from facial videos but it is
highly susceptible to motion artefacts, illumination changes,
and sensor noise. A framework combining the Plane
Orthogonal-to-Skin (POS) method and Singular Spectrum
Analysis (SSA) was proposed in this work to address these
challenges by first projecting normalised RGB signals onto a
skin-tone—orthogonal subspace to suppress illumination and
motion distortions and then decomposing the resulting signal
into components that isolate physiologically meaningful
oscillations. Evaluation on the PFF and UBFC-Phys dataset
demonstrates that this approach consistently outperforms
conventional single-channel, statistical, and chrominance-
based methods by achieving a mean absolute error of 4.99 bpm
and correlation of 0.76 on PFF, and a mean absolute error of
4.11 bpm with correlation of 0.86 on UBFC-Phys.
Furthermore, the comparison with results reported in the
existing literature indicates that the proposed framework
achieves competitive accuracy relative to popular learning-
based rPPG approaches. These findings indicate that
integrating chrominance projection with adaptive temporal
decomposition significantly improves robustness and accuracy
for contact-free heart rate estimation.

Keywords—facial video-based rPPG, POS (Plane Orthogonal-
to-Skin), SSA (Singular Spectrum Analysis)

I. INTRODUCTION

Heart rate (HR) is a fundamental physiological
parameter that provides critical insight into the functional
state of the cardiovascular system, autonomic nervous
system (ANS) balance, and overall physical health. It
reflects the dynamic interaction between sympathetic and
parasympathetic regulation [1] and serves as a direct
indicator of cardiac activity. Deviations from normal heart
rate patterns, including tachycardia, bradycardia, and
abnormal variability, are closely associated with a wide
range of clinical conditions such as cardiovascular disease,
metabolic syndromes, sleep disorders, and neurological
dysfunctions [2—4]. Accurate and continuous monitoring of
HR enables early detection of clinical abnormalities,
supports risk stratification, and guides therapeutic decision-
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making. In clinical practice, heart rate variability (HRV)
analysis is widely employed as a non-invasive biomarker
for evaluating autonomic regulation [5] and predicting
outcomes in cardiac and stress-related disorders [6].
Beyond traditional clinical settings, HR analysis also plays
a central role in personalised health management, including
fitness assessment, emotion recognition, fatigue detection,
and stress monitoring, aligning with the emerging paradigm
of preventive and precision medicine [7].

HR measurement techniques are broadly divided into
contact-based  approaches and non-contact-based
approaches. Contact-based methods mainly consist of
electrocardiography (ECG), photoplethysmography (PPG),
and arterial pressure monitoring. They rely on direct
interaction with the skin to capture physiological signals.
ECG remains the gold standard for clinical cardiac
assessment, providing highly accurate detection of
electrical activity and heartbeat intervals [8]. Similarly,
PPG is implemented in devices such as smartwatches,
fitness trackers, and pulse oximeters, which measures
blood volume changes using optical sensors to estimate
heart rate and related parameters [9]. While these methods
deliver precise and reliable results, they have inherent
drawbacks such as motion artifacts, skin irritation, and
discomfort during prolonged use. Their dependence on
physical contact makes them less suitable for continuous
or long-term monitoring in sensitive individuals or in
environments where minimal intrusion is required [10].

In contrast, non-contact-based methods have emerged
as a promising alternative that enables unobtrusive heart
rate monitoring without physical sensors. Remote
photoplethysmography (rPPG) is the most widely used
method, which captures subtle colour fluctuations in the
skin caused by periodic blood volume changes using
conventional RGB or near-infrared (NIR) cameras [11].
By applying advanced computer vision, signal processing,
and deep learning algorithms, rPPG extracts cardiac-
related signals from facial or exposed skin regions with
rich vascularization. Recent advancements in spatial-
temporal modelling, transformer networks, and self-
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supervised learning have enhanced its robustness under
varying illumination, motion, and skin tone conditions.
Beyond heart rate estimation, rPPG has been extended to
stress and emotion analysis, fatigue detection,
telemedicine, and remote health monitoring. Its comfort,
scalability, and potential for real-time implementation on
mobile and edge devices make it a highly attractive
solution for continuous, contact-free physiological
monitoring in both healthcare and everyday applications
[12].

Over the last decade, deep learning—based rPPG
approaches have demonstrated notable improvements in
robustness under motion and illumination variations.
Methods such as PhysNet [13], EfficientPhys [14], and
transformer-based temporal models [15] leverage spatial—
temporal representations to directly learn physiological
patterns from facial video sequences. Recent development
of TranSpike [16] further improve robustness by
introducing pixel-wise frequency reconstruction to
preserve pulsatile extrema and by modelling spike
interactions across facial regions, thereby enhancing rPPG
signal fidelity under challenging illumination and motion
conditions. While these data-driven models often achieve
strong performance in unconstrained environments, they
typically require large-scale annotated datasets and incur
higher computational costs and limited interpretability.
These can restrict their practical deployment in resource-
constrained or clinically sensitive settings.

In this context, signal-based frameworks remain
attractive  for applications where transparency,
computational efficiency, and ease of deployment are
critical. This highlights the need for approaches that
improve robustness without relying on extensive training
data or complex model architectures. The proposed POS—
SSA framework combines chrominance-based projection
with adaptive temporal decomposition to enhance
physiological signal extraction while maintaining
interpretability and low data dependency. It offers a
practical and robust alternative for contact-free heart rate
monitoring.

II. LITERATURE REVIEW

Early research on rPPG primarily focused on
demonstrating its feasibility under controlled laboratory
conditions. Researchers explored the relationships
between light reflection, skin tone, and blood perfusion to
identify suitable colour channels and spatial regions for
signal extraction. Despite encouraging initial results, rPPG
signals were found to be highly sensitive to external
influences such as lighting changes, head motion, and
camera sensor noise, which introduced instability and
reduced measurement accuracy [17]. Consequently,
improving signal quality and robustness became a central
focus of subsequent studies. Over time, the field evolved
from basic colour-channel analysis to more advanced
algorithms that combined statistical, physiological, and
computational principles to separate pulsatile information
from non-physiological sources of variation.

Over the years, researchers have proposed a variety of
methods to extract rPPG signals with increasing levels of

sophistication. Early approaches primarily focused on
analysing pixel intensity variations in visible-light
channels to recover pulsatile information from facial
videos. For instance, early studies demonstrated that the
green channel carries the strongest pulsatile component
due to its high sensitivity to blood volume changes, while
the combination of red and green signals could further
enhance the periodic component of the waveform [18]. As
the field progressed, statistical signal processing methods
such as principal component analysis (PCA) were
introduced to exploit inter-channel correlations and isolate
physiological components from background noise [19].
PCA-based methods effectively reduced illumination bias
and motion-related artefacts by projecting multi-channel
signals onto orthogonal bases, allowing more reliable
estimation of the underlying cardiac rhythm.

Building upon these foundations, more sophisticated
models were developed to address illumination and motion
interferences more explicitly. The chrominance-based
rPPG (CHROM) algorithm introduced a colour-space
transformation that computes a weighted combination of
chrominance signals, thereby suppressing intensity-related
fluctuations and improving the signal-to-noise ratio under
varying lighting conditions [20]. Similarly, the plane
orthogonal to skin (POS) algorithm projects normalised
RGB signals onto a plane orthogonal to the skin-tone
vector, reducing the influence of both global illumination
variations and minor motion disturbances [21]. These
advancements improved the robustness and reliability of
rPPG signal extraction compared to earlier methods,
forming the basis for many subsequent developments in
the field.

Despite these notable improvements, conventional
algorithms such as CHROM and POS still exhibit
performance degradation in real-world scenarios,
particularly under conditions of substantial motion,
varying ambient illumination, camera noise, or diverse
subject appearances [22]. Such interferences can distort
the extracted waveform and lead to inaccurate heart-rate
estimation, limiting their applicability in unconstrained
environments. To overcome these challenges, recent
studies have explored deep learning techniques that
leverage convolutional and recurrent architectures to
model complex spatial-temporal relationships within
video data. These models have demonstrated improved
robustness and generalization across conditions by
learning motion and illumination-invariant representations
directly from data. However, their reliance on large
annotated datasets and the inherent lack of interpretability
remain practical barriers to widespread adoption in
medical and consumer-grade systems.

To address these limitations, the present study proposes
a hybrid rPPG extraction framework that integrates
chrominance-based  projection with  data-adaptive
decomposition. In the first stage, the POS algorithm is
employed to project normalised RGB signals onto a
subspace orthogonal to the skin-tone vector, which
effectively mitigates common-mode distortions arising
from illumination variation, sensor bias, and motion-
induced leakage. This process yields a stable, illumination-
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Fig. 1. Pipeline of the proposed POS-SSA framework

invariant rPPG signal that preserves the essential pulsatile
dynamics. In the second stage, Singular Spectrum
Analysis (SSA) [23] is applied to decompose the POS-
derived signal into a set of orthogonal components using
Hankel embedding and singular value decomposition.
Components exhibiting quasi-periodic behaviour within
the physiological heart-rate frequency band are retained,
while noise-dominated components are suppressed. The
reconstructed  waveform is  therefore  denoised,
physiologically meaningful, and suitable for robust heart-
rate estimation in practical, unconstrained environments.

III. POS-SSA METHODOLOGY

The processing pipeline of the proposed POS—SSA
framework is shown in Figure 1, which comprises four
steps. First, the full face is detected from each video frame
and used as the region of interest (ROI), providing a
localised skin area for subsequent signal acquisition. Next,
the averaged RGB signals are transformed by the POS
algorithm, which projects them onto a chrominance
subspace orthogonal to the skin tone vector and yields
composite cardio signal more robust to illumination
changes. This signal is then refined through the SSA
technique, where decomposition into elementary
components separates pulsatile information from noise and
motion artefacts. Finally, the components with quasi-
periodic behaviour and spectral energy in the physiological
heart-rate band are analysed in the frequency domain via
Fourier transform in order to estimate heart rate.
Collectively, these stages form a compact yet robust

framework for enhancing signal quality and improving
estimation accuracy under varied conditions.

A. Facial Region detection and normalisation

Facial detection and normalisation ensured that
subsequent rPPG analysis was based on a spatially
consistent and geometrically standardised region of
interest (ROI). Faces were localized in each video frame
using the Viola—Jones cascade classifier [24], which
employs Haar-like features and AdaBoost-trained
classifiers for robust detection under varying lighting and
pose conditions. Within the detected ROI, ten salient
feature points were extracted using the minimum
eigenvalue method [25] and tracked across frames with a
bidirectional error-minimizing algorithm to maintain
spatial and temporal consistency. The similarity
transformation was estimated from the tracked features,
and it was then applied to correct translation, in-plane
rotation, and scale variations. Finally, the ROI was
resampled to a fixed resolution and orientation, yielding a
normalised and temporally stable facial segment suitable
for reliable rPPG signal extraction.

The full-face region was selected as the region of
interest rather than smaller subregions (e.g., cheeks or
forehead) to maximise signal stability across subjects and
recording conditions. Prior studies have demonstrated that
using a larger facial ROI reduces sensitivity to local
motion, partial occlusion, and regional illumination non-
uniformity [26]. Averaging over the full face also
improves the signal-to-noise ratio by aggregating pulsatile
information from multiple vascularised areas [27], which
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Fig. 2. Examples of colour rPPG signals extracted from the facial regions and the corresponding POS-derived rPPG signal: (a) red-channel rPPG; (b)
green-channel rPPG; (c) blue-channel rPPG; (d) POS-derived rPPG

is particularly beneficial for subsequent SSA-based
decomposition.

B. POS Transform

The POS method was first proposed by Wang et al. [21],
which is a widely used method for extracting remote
photoplethysmography (rPPG) signals. It is designed to
enhance the physiological component of skin-tone
variations in video while suppressing noise from motion
and illumination changes, thereby enabling more reliable
heart rate estimation in real-world conditions. The method
first preprocesses the colour signals to remove slow
illumination drifts and then projects them onto an
orthogonal subspace in the RGB space to emphasise the
pulsatile component. Finally, it recovers clean
physiological signals via dynamic normalisation and
combination of the two orthogonal projection signals.

Given a video sequence, the facial region is first
detected and localised. For each frame, the mean pixel
intensities of the red, green, and blue channels are
extracted and denoted as R(t), G(t), B(t), respectively. To
reduce the effects of illumination fluctuations and global
intensity changes, these raw colour signals are detrended
by removing their slowly varying components. This is
achieved by applying a moving average filter for each
channel. The resulting detrended signals are therefore

defined as deviations from their global mean values, where
R(t),G(t) and B(t) represent the temporal mean of the
red, green, and blue channels, respectively.

Based on the distribution characteristics of skin colour
in the RGB colour space, the POS algorithm constructs
two signal components, defined as follows:

X(@) = R'(t) - G'(t) (1
Y(£) =R'(t) +G'(t) —2B'(t) (2)

X(t) and Y (t) emphasize pulsatile information while
reducing illumination and motion-induced noise. To avoid
domination of one component due to amplitude imbalance,
their standard deviations gy and oy over a temporal
window are computed and used for normalisation:
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X and Y are the mean values of X(t) and Y (t) over the
window 1 to N.

The second component is normalised by its standard
deviation and subtracted from the first component to form
a synthesised POS signal S(t), which can be expressed as:

S =X(6) - ZXv(®) )

Equations (1) and (2) define two orthogonal
chrominance signals derived from the normalised RGB
channels, designed to suppress common-mode intensity
variations. Equations (3) and (4) perform adaptive
normalisation using the standard deviation within a
temporal window to prevent dominance by any single
channel. Equation (5) combines the two normalised
components into a single POS signal that emphasises
pulsatile variations while attenuating motion and
illumination artefacts.

Figure 2 illustrates the raw RGB channel signals and the
synthesised POS signal obtained after applying the plane
orthogonal-to-skin projection. As shown in the figure, the
raw colour signals (red, green, and blue) contain both the
desired pulsatile component and substantial noise arising

from illumination fluctuations and minor head movements.

After the POS transformation, these non-physiological
variations are reduced, yielding a more stable and periodic
waveform that aligns closely with the underlying cardiac
rhythm. The improvement demonstrates the effectiveness
of the POS method in enhancing signal quality by
suppressing  motion-induced and  lighting-related
distortions while preserving the essential heart rate
information. Consequently, the synthesized POS signal
serves as a cleaner and more robust input for subsequent
SSA-based decomposition, which decomposes S(t) into
oscillatory components and selectively reconstructs the
cardiac-related component.

C. Singular Spectrum Analysis

After synthesising the POS signal, SSA is applied to
further isolate physiologically relevant oscillations and
suppress residual noise. SSA is a non-parametric
decomposition method commonly used for denoising,
trend removal, and periodic component extraction in time
series [23]. Since remote rPPG signals are often affected
by illumination changes and measurement artefacts, SSA
provides an effective temporal filtering strategy that
enhances heart rate components, even under non-ideal
acquisition conditions.

Let the original time series be defined as S(t). For

subsequent analysis, this signal is uniformly sampled at the
video frame rate f;, yielding a discrete sequence

S = {51,S2, .., Sy}, S = S(nAt), At = % (6)

For a chosen window length L such that 1 < L < N, the
series is embedded into a sequence of lagged vectors to
form a trajectory matrix X:

Sl 52 eee SK
S22 S3 vt Sk+1
X= T - . [eRrRVE (D)
St Si+1 0 Sy

where K = N — L + 1. This Hankel matrix captures the
temporal dynamics of the series. By decomposing the
trajectory matrix via singular value decomposition (SVD),
the original signal is separated into a set of elementary
components. These components can be grouped into
interpretable categories:
e Trend components: capturing slowly varying
illumination or baseline drift.

e Oscillatory components: representing periodic
physiological rhythms, including the heart rate—
related signal.

e Noise components: which mainly correspond to
high-frequency fluctuations caused by sensor
noise or subtle motion artefacts.

By reconstructing the signal using only the oscillatory
components within the cardiac frequency band, SSA
effectively attenuates noise and irrelevant variations while
enhancing the pulsatile component. Each video segment is
30 seconds in duration and captured at a frame rate of 50
fps, yielding a total of 1500 frames per segment (N =
1500). In principle, the choice of the window length L is a
temporal parameter that depends on the desired resolution
and stability of the decomposition. In practice, however,
the feasibility of selecting large L values is also
constrained by implementation factors, such as the spatial
resolution of the input video frames and the computational
capacity of the hardware [21]. High-resolution facial
recordings (e.g., 1080p or higher) increase the data volume
per frame, which in turn amplifies the computational
burden during trajectory matrix construction and
decomposition. Likewise, devices with limited CPU/GPU
resources or restricted memory bandwidth may encounter
significant slowdowns when large values of L are used,
particularly in scenarios involving multiple segments.

In this study, the SSA window length L was set to 20
after empirical evaluation and practical considerations.
Preliminary experiments were conducted using different
window lengths to assess their impact on signal
decomposition quality and computational efficiency. It
was observed that smaller values of L were insufficient to
capture the temporal structure of cardiac oscillations,
whereas larger values led to substantially increased
computational cost due to the growth of the trajectory
matrix without providing additional performance gains.
Given a sampling rate of 50 fps, L=20 provides a balance
between temporal resolution, numerical stability, and
computational feasibility. This choice ensures effective
separation of oscillatory cardiac components while



©
o

| 84.9%

~ @
o =]
|

@
o
!

i
o

Energy Percentage (%)
w o
(=] o
L

N
o

8.5%

o

3.9%
= 1.0%  0.6% 04% 03% 02% 01% 01%

1 2 3 4 5 6 7 8 9 10
Components
Fig. 3. Energy distribution of top 10 components

o

remaining suitable for near real-time implementation on
standard hardware.

D. Cardio Signal Extraction

Each SSA-processed component represents a distinct
temporal mode of variation within the original signal. To
isolate physiologically relevant structures from noise or
motion-induced artifacts, a two-step component selection
strategy was employed:

*  Energy Analysis: To quantify the contribution of
each SSA component, the squared singular value of each
component was divided by the sum of all squared singular
values, which is defined as the normalised energy ratio. It
reflects the proportion of total signal energy represented by
each component, and components with higher ratios were
retained as candidate signals.

. Frequency-Domain Analysis: The retained
components were examined using Fast Fourier Transform
(FFT). Only those with dominant peaks within the typical
heart rate band (0.5-4 Hz) were considered valid
physiological components

Figure 3 illustrates the energy distribution across the first
ten SSA components while Figure 4 presents the
corresponding time-domain waveforms of the six
components with the highest energy contributions. In
Figure 3, it can be observed that the first few components
capture the majority of the total signal energy, which
indicates that they contain dominant physiological
information associated with cardiac activity. The rapid
decline in energy after the fourth component reflects the
diminishing influence of meaningful oscillatory structures
and the growing dominance of noise or residual
illumination effects in the lower-ranked components.
Complementing this, Figure 4 provides a visual comparison
of the temporal behaviour of these components. The higher-
energy components (particularly components 2 to 4) exhibit
clear quasi-periodic oscillations consistent with heart rate—
related dynamics, whereas the lower-energy components
appear more irregular with erratic fluctuations and less
defined rhythmic patterns. This contrast highlights the
effectiveness of SSA in decomposing the POS signal into
interpretable components, where only a limited subset
contributes physiologically relevant information. Based on

both the quantitative energy distribution and qualitative
waveform inspection, the first four components (each
contributing at least 1% of the total energy) were retained
for subsequent spectral analysis and ensure that the
reconstructed signal maintains strong physiological fidelity
while minimizing the inclusion of noise or motion artefacts.

FFT was then applied to each of the retained
components. The spectral content of first 4 SSA calculated
components RC1 to RC4 was inspected to identify
dominant peaks corresponding to cardiac activity as shown
in Fig 5. While the first component RC/ exhibited the
highest energy, its peak frequency was near 0 Hz, which
suggests it represented a baseline trend rather than
physiological variation. Therefore, it was excluded.
Among the remaining components, only the second
component RC2 displayed a clear peak within the 0.5-4
Hz band, aligning with expected heart rate frequencies,
and was thus identified and kept as the most
physiologically relevant for reconstructing the rPPG signal.
Through this integrated approach of POS-filtered signals
followed by energy-based ranking and frequency-domain
validation, physiologically meaningful information was
extracted with enhanced robustness against noise and
improving the fidelity of heart rate estimation from facial
video data.

In summary, starting from the POS-processed facial
signal, the application of SSA enabled a structured
decomposition into interpretable components. The
subsequent combination of energy-based ranking and
frequency-domain analysis provided a principled approach
to isolate physiologically meaningful information. This
integrated strategy enhances robustness against noise and
improves the fidelity of heart rate estimation from facial
video data.

IV. EXPERIMENTS

A. Experimental Datasets

To rigorously evaluate the effectiveness of the proposed
POS-SSA framework for remote heart rate estimation, the
experiments were conducted on the PFF dataset [29] and
the UBFC-Phys dataset [30]. Both datasets provide
complementary recording conditions and subject
variability, which enable a comprehensive assessment.

The PFF dataset contains facial video recordings from
13 participants under varying illumination conditions with
synchronised ground-truth heart rate data. The dataset was
collected with informed consent under institutional ethical
approval, as described in [31]. The access was granted by
the authors for research purposes. Each recording lasts
approximately three minutes, during which both
physiological fluctuations in heart rate and natural
variations in illumination and head motion occur. Whereas
the UBFC-Phys consists of facial videos from 56
participants recorded under controlled indoor conditions.
It is widely used as a benchmark for rPPG evaluation and
provides higher inter-subject diversity in skin tone and
facial appearance, allowing validation of cross-dataset
robustness.
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For consistency across both datasets, all recordings
were partitioned into non-overlapping 30-second clips
recorded at 50 fps. Each segment was processed
independently using the proposed POS—SSA framework,
and the estimated heart rates were compared against the
reference values to enable a comprehensive quantitative
assessment of performance.

B. Performance Analysis

In this study, all experiments were conducted on a
desktop PC equipped with an Intel Core Ultra 5 245KF
CPU operating at 4.20 GHz, 48 GB of RAM, and without
GPU acceleration. The average processing time for a
single 30-second segment was approximately 40 seconds.
This indicates that the current MATLAB-based
implementation is suitable for offline analysis but does not

yet achieve real-time performance. Runtime profiling
shows that the primary computational bottleneck arises
from the SSA stage, particularly during the construction of
the trajectory (Hankel) matrix and the subsequent singular
value decomposition.

Figure 6 presents a detailed comparison of the predicted
and ground-truth heart rate signals for eight
representatives, including four from PFF dataset and four
from UBFC-Phys dataset. The figure illustrates the
temporal tracking capability and overall accuracy of the
proposed POS-SSA framework. The results clearly
demonstrate that the predicted heart rate trajectories
closely follow the reference measurements throughout the
recording duration. Across all examples, the estimated
heart rates exhibit smooth transitions and synchronized
temporal dynamics, which confirms the framework’s
ability to capture both the baseline cardiac rhythm and
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transient fluctuations induced by physiological or  monitoring. This temporal consistency is critical for

environmental factors. Importantly, deviations between
the estimated and ground-truth signals remain consistently
low, typically within =6 bpm, which reflects the method’s
robustness in mitigating common challenges such as
illumination variation, minor head motion, and camera
noise.

A closer inspection of the individual subplots in the
figure reveals subtle distinctions in tracking behaviour
among participants, which is attributable to differences in
facial features, skin tone, and motion intensity. For
example, participants P2 and P3 demonstrate nearly
perfect alignment between predicted and ground-truth
curves that indicates highly stable performance under
uniform lighting conditions. In contrast, participants P1,
P4 and P7 show slightly larger fluctuations during sections
of rapid heart rate change, which suggests the presence of
transient noise or reduced signal-to-noise ratio due to
subtle motion or lighting transitions. Nevertheless, even in
these cases, the POS-SSA output quickly realigns with the
true signal, illustrating its capacity for self-correction
through adaptive decomposition and frequency-domain
validation. The narrow error margins and consistent
waveform overlap across all examples further confirm the
system’s temporal coherence and noise resilience.

Moreover, the absolute (ABS) error bars displayed
alongside the trajectories provide quantitative evidence of
the algorithm’s precision. The limited amplitude of these
error bars that were concentrated within a narrow range
across the full duration of each recording emphasises the
framework’s stability and reliability for long-term

practical applications such as fatigue assessment, stress
detection, or telemedicine, where accurate trend tracking
is more valuable than instantaneous measurements. Unlike
conventional rPPG methods that often suffer from
cumulative drift or delayed response under varying
conditions, the integration of SSA into the POS pipeline
ensures continuous refinement of the extracted signal by
isolating physiologically meaningful oscillatory modes
and suppressing residual noise.

C. Benchmarking

To contextualise the performance of the proposed POS-
SSA framework, its results were compared against several
well-established algorithms spanning the spectrum from
simple single-channel extraction to statistically informed
separation and chrominance-based enhancement. All
comparative methods were implemented in this work and
include the green (G) channel only method [10], the green
plus red (G+R) channels chrominance-based method [18],
the blind source separation based on PCA [19], the POS
based on RGB signals [21] and the CHROME [22].

Performance was quantitatively assessed on both the
PFF and UBFC-Phys datasets using five standard metrics:
mean absolute error (MAE), root mean square error
(RMSE), mean error (ME) to quantify bias, standard
deviation of error (STD) to reflect variability, and the
Pearson correlation coefficient (r) to measure agreement
with ground-truth heart rate signals. The results are
summarised in Table I.
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Fig. 6 Representative examples of heart rate estimation using the proposed framework on the PFF and UBFC-Phys datasets: (a)P1-PFF (b)P2-
PEF (c)P3-PFF (d)P4-PFF; (e)P5-UBFC-Phys (f)P6-UFBC-Phys (g)P7-UFBC-Phys (h)P8-UFBC-Phys

Across both datasets, the proposed POS-SSA
framework consistently outperforms all comparative
methods in terms of accuracy, bias reduction, and
correlation. On the PFF dataset, the POS—SSA achieves the
lowest MAE of 4.99 bpm and RMSE of 13.05 bpm. It
substantially improves upon the POS (MAE 9.48 bpm,

RMSE 22.28 bpm) and CHROM (MAE 8.51 bpm, RMSE
20.53 bpm) methods. The mean error is reduced to 1.16
bpm, which indicates minimal systematic bias, while the
Pearson correlation coefficient reaches 0.76, which is the
highest among all evaluated approaches. These results
demonstrate that the integration of SSA significantly



TABLE L

COMPARISON OF RPPG METHODS

Methods PFF Dataset UBFC-Phys Dataset
G G+R | PCA | POS | CHROM | POS+SSA | G G+R | PCA | POS | CHROM | POS+SSA

?l/)[grfl:) 22.47 | 24.19 | 23.03 | 9.48 8.51 4.99 17.28 | 9.93 | 21.30 | 6.00 6.79 4.11
RMSE

(bpm) 30.99 | 32.88 | 31.07 | 22.28 20.53 13.05 28.21 | 19.86 | 30.55 | 11.99 14.45 6.47
ME 856 | 634 | 1547 | 1.35 1.84 1.16 1.30 2.56 | 3.51 1.29 2.31 1.29
(bpm)

(Sl;l;)]r)n) 29.74 | 32.26 | 26.94 | 22.23 20.46 13.01 28.25 | 19.74 | 3043 | 11.95 14.40 6.18
Pearson r 0.12 | 0.15 | 0.18 | 043 0.51 0.76 0.10 028 | 0.15 | 0.59 0.55 0.86

enhances the robustness of POS by suppressing residual
noise and non-physiological variations.

Similar trends are observed on the UBFC-Phys dataset,
where the POS—-SSA achieves an MAE of 4.11 bpm and an
RMSE of 6.30 bpm. These outperform POS and CHROM
by a clear margin. Notably, the Pearson correlation
coefficient increases to 0.86, which shows strong
agreement with the ground-truth measurements and
confirming the robustness of the proposed method across
datasets with different subject populations and acquisition
conditions.

The table further reveals broader performance patterns
among the compared methods. The G and G+R baselines,
which rely on direct FFT analysis of raw colour signals,
perform poorly on both datasets, exhibiting large errors
and weak correlations (r < 0.3). PCA provides moderate
improvements by exploiting inter-channel correlations but
remains sensitive to motion and illumination changes.
Chrominance-based approaches such as POS and CHROM
yield substantial gains, which highlights the importance of
colour-space projection for noise suppression. However,
the proposed POS—SSA framework consistently achieves
the lowest error variability across both datasets with a
standard deviation (STD) of 13.01 bpm on the PFF dataset

and 6.18 bpm on the UBFC-Phys dataset. This
demonstrates  superior stability and cross-subject
consistency.

Figure 7 presents a scatter plot comparing predicted and
actual heart rates across all methods for the PFF and
UBFC-Phys datasets. Each point corresponds to one test
clip, with the solid line indicating the ideal one-to-one
relationship. For the PFF datasets shown in Figure 7(a), the
distribution illustrates that the G, G+R, and PCA methods
produce wide scatter with many points deviating
substantially from the line. It reflects large estimation
errors and weak correlations. The POS and CHROME
approaches have reduced the spread but with noticeable
deviations, particularly at higher heart rates. In contrast,
the POS-SSA results (red points) cluster tightly around the
ideal line and demonstrate both higher accuracy and
greater consistency across the full physiological range.
This visual evidence complements the numerical
improvements reported in Table I in which the reduced
scatter confirms the lower error variability, while the
alignment with the one-to-one line illustrates the stronger
correlation (r = 0.76).

A similar trend is observed for the UBFC-Phys dataset
in Figure 7(b). The baseline methods again display broad
scatter and poor alignment with the ideal line, whereas
POS and CHROM provide moderate improvements. The
POS-SSA framework achieves the tightest clustering and
strongest alignment with the diagonal, reflecting its
superior accuracy and robustness under controlled indoor
conditions with higher inter-subject variability. The close
agreement observed across both datasets visually confirms
the numerical improvements reported in Table I and
demonstrates that the proposed POS—-SSA framework
delivers accurate, stable, and generalisable heart rate
estimates across diverse recording conditions and subject
populations.

V. DISCUSSION

A. Robustness of Proposed POS-SSA Framework

rPPG remains inherently challenging due to its
sensitivity to motion artefacts, illumination variability,
partial occlusions, and camera noise. The proposed POS—
SSA framework mitigates these issues by combining
colour-space  projection with adaptive temporal
decomposition. The POS stage attenuates illumination and
minor motion effects by projecting normalised RGB
signals onto a plane orthogonal to the skin-tone vector,
yielding a more stable composite signal than raw colour
channels. SSA then exploits the temporal structure of this
signal by decomposing it into orthogonal components with
distinct dynamical characteristics. By retaining only quasi-
periodic components whose spectral energy lies within the
physiological heart-rate band, SSA suppresses baseline
drift, residual motion artefacts, and stochastic noise that
persist after chrominance projection. This two-stage
strategy improves robustness over using POS alone, as
confirmed by the consistent reductions in error metrics and
increases in correlation observed across both the PFF and
UBFC-Phys datasets. By combining the POS colour-space
projection with SSA for adaptive signal decomposition,
the method could effectively mitigate common distortions
caused by motion artifacts, illumination fluctuations, and
camera noise. Experimental results on both datasets
demonstrated that the proposed framework outperforms
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conventional single-channel, statistical, and chrominance-
based approaches.

B. Learning-based rPPG Methods

Recent deep learning—based rPPG methods have
demonstrated strong performance by learning complex
spatial-temporal representations directly from facial
videos. These methods include PhysNet [13],
EfficientPhys [14], PhysFormer [32], DeepPhys [33] and
TS-CAN [34] that can adaptively weight facial regions,
capture non-linear dependencies, and suppress local
artefacts through data-driven optimisation. In particular,
learning-based approaches are well suited to handling
heterogeneous motion patterns and spatially localised
disturbances.

In contrast, the proposed POS—SSA framework follows
a signal-driven, region-wise strategy that prioritises
robustness, transparency, and low data dependency. While
it does not learn spatial attention, it avoids reliance on large
annotated datasets and reduces the risk of domain
overfitting. The POS—SSA offers lower computational
complexity and predictable behaviour, which make it
attractive for applications where training data are limited
or explainability is required. Liu et al. [35] developed a
comprehensive toolbox, rPPG-Toolbox, which integrates
a wide range of widely used rPPG models and provides
unified support for public benchmark datasets, data
augmentation strategies, and standardised performance
evaluation. Table II summarises the reported performance
of these methods testing on the UBFC-Phys dataset in
terms of MAE and Pearson correlation coefficient as
documented in their study. It provides valuable contextual
insight by showing that the proposed POS-SSA framework
achieves error levels, which are broadly comparable to
those state-of-the-art learning-based approaches despite its
signal-driven nature and lack of data-dependent training.

However, in highly unconstrained scenarios involving
severe motion, large occlusions, or complex spatial
interference, state-of-the-art learning-based methods are
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Fig. 7. Scatter plot of predicted against actual heart rates: (a) PFF dataset; (b) UBFC-Phys dataset

expected to achieve superior performance due to their
richer spatial modelling capacity. Recent work on rPPG
under real-world and extreme lighting conditions employs
end-to-end transformer-based architectures with explicit
interference disentanglement, background reference
modelling, and long-term spatiotemporal context learning
[36]. These methods are particularly effective in outdoor
environments with drastic illumination changes, periodic
external interference, and complex motion patterns, such
as driving scenarios. By jointly modelling foreground
facial regions and background interference at a fine spatial
resolution, these approaches can actively disentangle
lighting-induced artefacts that overwhelm subtle
biosignals, which provides a capability beyond the scope
of the proposed POS—SSA framework.

C. Region-wise and Pixel-wise rPPG

Region-wise rPPG approaches, including the proposed
POS—SSA framework, aggregate colour information over
facial regions to improve signal stability and signal-to-
noise ratio. This strategy is robust to sensor noise, minor
motion, and local illumination non-uniformity, and offers
low computational complexity and high interpretability.
However, spatial averaging can attenuate locally
informative pulsatile cues when physiological signals are
unevenly distributed across the face due to local motion,
occlusion, or heterogeneous illumination. Pixel-wise rPPG
approaches, by contrast, preserve temporal dynamics at the
individual pixel level and are therefore more sensitive to
spatially localised pulsatile variations. Methods such as
TranSpike  [16]  exploit  pixel-wise  frequency
reconstruction to retain pulse extrema and spike-like
structures, offering improved robustness under extreme or
spatially heterogeneous conditions. The trade-off is



TABLE II.

EVALUATION OF LEARNING-BASED RPPG METHODS ON THE UBFC-PHYS DATASET REPORTED BY LIU ET AL. [35]

TS-CAN PhysNet PhysFormer DeepPhys EfficientPhys
MAE (bpm) 5.13 5.79 6.63 6.62 4.93
Pearson r 0.76 0.70 0.69 0.66 0.79

increased sensitivity to noise, higher computational cost,
and reliance on complex learning-based models, which
may limit interpretability and deployment in resource-
constrained settings. Overall, region-wise and pixel-wise
methods represent complementary strategies: the former
prioritise stability and efficiency, while the latter
emphasise spatial sensitivity under highly challenging
conditions.

VI. CONCLUSION

This study proposed a hybrid POS-SSA framework for
improving the accuracy and robustness of rPPG-based
heart rate estimation from facial videos. By combining the
POS colour-space projection with SSA for adaptive signal
decomposition, the method effectively mitigates common
distortions caused by motion artifacts, illumination
fluctuations, and camera noise. Experimental results on the
PFF and UBFC-Phys datasets demonstrated that the
proposed framework outperforms traditional single-
channel, statistical, and chrominance-based approaches.
Moreover, when compared with recent learning-based
rPPG approaches, the POS—SSA achieves compitive
performance while offering several practical advantages.
Unlike learning-based approaches that rely on large and
annotated datasets and complex spatial-temporal
representations, the proposed framework remains data-
efficient, computationally predictable, and inherently
interpretable. However, the approach still exhibits certain
limitations. The computational cost associated with SSA
decomposition may constrain real-time deployment on
low-power devices, and performance may degrade under
extreme motion or occlusion conditions. Furthermore, as
the current validation was performed primarily under
controlled illumination with limited motion variation,
broader evaluation in more dynamic, real-world settings is
warranted to confirm its generalisability.

Future work will focus on extending the POS-SSA
framework to address these limitations and broaden its
applicability. One promising direction is the incorporation
of adaptive windowing or real-time incremental SSA to
reduce computational latency while preserving signal
quality. Additionally, integrating learning—based feature
extraction with traditional signal processing could enhance
robustness against large head movements, occlusions, and
varying illumination. Future studies may also explore
multimodal sensing fusion, combining rPPG with thermal
or depth imaging to further strengthen resilience under
complex environmental conditions. Beyond heart rate
estimation, the framework can be extended for heart rate
variability (HRV) analysis, stress detection, and emotion
recognition, expanding its utility in healthcare, human—
computer interaction, and remote monitoring scenarios.
The long-term vision is to develop a fully real-time,

camera-based vital sign monitoring system capable of
delivering clinically meaningful measurements in both
controlled and unconstrained environments, thereby
contributing to the advancement of contact-free
physiological sensing and intelligent health monitoring
technologies.
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