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Abstract— Remote photoplethysmography (rPPG) enables 

non-contact heart rate monitoring from facial videos but it is 

highly susceptible to motion artefacts, illumination changes, 

and sensor noise. A framework combining the Plane 

Orthogonal-to-Skin (POS) method and Singular Spectrum 

Analysis (SSA) was proposed in this work to address these 

challenges by first projecting normalised RGB signals onto a 

skin-tone–orthogonal subspace to suppress illumination and 

motion distortions and then decomposing the resulting signal 

into components that isolate physiologically meaningful 

oscillations. Evaluation on the PFF and UBFC-Phys dataset 

demonstrates that this approach consistently outperforms 

conventional single-channel, statistical, and chrominance-

based methods by achieving a mean absolute error of 4.99 bpm 

and correlation of 0.76 on PFF, and a mean absolute error of 

4.11 bpm with correlation of 0.86 on UBFC-Phys. 

Furthermore, the comparison with results reported in the 

existing literature indicates that the proposed framework 

achieves competitive accuracy relative to popular learning-

based rPPG approaches. These findings indicate that 

integrating chrominance projection with adaptive temporal 

decomposition significantly improves robustness and accuracy 

for contact-free heart rate estimation.  

 

Keywords—facial video-based rPPG, POS (Plane Orthogonal-

to-Skin), SSA (Singular Spectrum Analysis) 

I. INTRODUCTION 

Heart rate (HR) is a fundamental physiological 
parameter that provides critical insight into the functional 
state of the cardiovascular system, autonomic nervous 
system (ANS) balance, and overall physical health. It 
reflects the dynamic interaction between sympathetic and 
parasympathetic regulation [1] and serves as a direct 
indicator of cardiac activity. Deviations from normal heart 
rate patterns, including tachycardia, bradycardia, and 
abnormal variability, are closely associated with a wide 
range of clinical conditions such as cardiovascular disease, 
metabolic syndromes, sleep disorders, and neurological 
dysfunctions [2–4]. Accurate and continuous monitoring of 
HR enables early detection of clinical abnormalities, 
supports risk stratification, and guides therapeutic decision-
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making. In clinical practice, heart rate variability (HRV) 
analysis is widely employed as a non-invasive biomarker 
for evaluating autonomic regulation [5] and predicting 
outcomes in cardiac and stress-related disorders [6]. 
Beyond traditional clinical settings, HR analysis also plays 
a central role in personalised health management, including 
fitness assessment, emotion recognition, fatigue detection, 
and stress monitoring, aligning with the emerging paradigm 
of preventive and precision medicine [7].  

HR measurement techniques are broadly divided into 
contact-based approaches and non-contact-based 
approaches. Contact-based methods mainly consist of 
electrocardiography (ECG), photoplethysmography (PPG), 
and arterial pressure monitoring. They rely on direct 
interaction with the skin to capture physiological signals. 
ECG remains the gold standard for clinical cardiac 
assessment, providing highly accurate detection of 
electrical activity and heartbeat intervals [8]. Similarly, 
PPG is implemented in devices such as smartwatches, 
fitness trackers, and pulse oximeters, which measures 
blood volume changes using optical sensors to estimate 
heart rate and related parameters [9]. While these methods 
deliver precise and reliable results, they have inherent 
drawbacks such as motion artifacts, skin irritation, and 
discomfort during prolonged use. Their dependence on 
physical contact makes them less suitable for continuous 
or long-term monitoring in sensitive individuals or in 
environments where minimal intrusion is required [10]. 

In contrast, non-contact-based methods have emerged 
as a promising alternative that enables unobtrusive heart 
rate monitoring without physical sensors. Remote 
photoplethysmography (rPPG) is the most widely used 
method, which captures subtle colour fluctuations in the 
skin caused by periodic blood volume changes using 
conventional RGB or near-infrared (NIR) cameras [11]. 
By applying advanced computer vision, signal processing, 
and deep learning algorithms, rPPG extracts cardiac-
related signals from facial or exposed skin regions with 
rich vascularization. Recent advancements in spatial-
temporal modelling, transformer networks, and self- 
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supervised learning have enhanced its robustness under 
varying illumination, motion, and skin tone conditions. 
Beyond heart rate estimation, rPPG has been extended to 
stress and emotion analysis, fatigue detection, 
telemedicine, and remote health monitoring. Its comfort, 
scalability, and potential for real-time implementation on 
mobile and edge devices make it a highly attractive 
solution for continuous, contact-free physiological 
monitoring in both healthcare and everyday applications 
[12]. 

Over the last decade, deep learning–based rPPG 
approaches have demonstrated notable improvements in 
robustness under motion and illumination variations. 
Methods such as PhysNet [13], EfficientPhys [14], and 
transformer-based temporal models [15] leverage spatial–
temporal representations to directly learn physiological 
patterns from facial video sequences. Recent development 
of TranSpike [16] further improve robustness by 
introducing pixel-wise frequency reconstruction to 
preserve pulsatile extrema and by modelling spike 
interactions across facial regions, thereby enhancing rPPG 
signal fidelity under challenging illumination and motion 
conditions. While these data-driven models often achieve 
strong performance in unconstrained environments, they 
typically require large-scale annotated datasets and incur 
higher computational costs and limited interpretability. 
These can restrict their practical deployment in resource-
constrained or clinically sensitive settings.  

In this context, signal-based frameworks remain 
attractive for applications where transparency, 
computational efficiency, and ease of deployment are 
critical. This highlights the need for approaches that 
improve robustness without relying on extensive training 
data or complex model architectures. The proposed POS–
SSA framework combines chrominance-based projection 
with adaptive temporal decomposition to enhance 
physiological signal extraction while maintaining 
interpretability and low data dependency. It offers a 
practical and robust alternative for contact-free heart rate 
monitoring. 

II. LITERATURE REVIEW 

Early research on rPPG primarily focused on 

demonstrating its feasibility under controlled laboratory 

conditions. Researchers explored the relationships 

between light reflection, skin tone, and blood perfusion to 

identify suitable colour channels and spatial regions for 

signal extraction. Despite encouraging initial results, rPPG 

signals were found to be highly sensitive to external 

influences such as lighting changes, head motion, and 

camera sensor noise, which introduced instability and 

reduced measurement accuracy [17]. Consequently, 

improving signal quality and robustness became a central 

focus of subsequent studies. Over time, the field evolved 

from basic colour-channel analysis to more advanced 

algorithms that combined statistical, physiological, and 

computational principles to separate pulsatile information 

from non-physiological sources of variation. 

Over the years, researchers have proposed a variety of 

methods to extract rPPG signals with increasing levels of 

sophistication. Early approaches primarily focused on 

analysing pixel intensity variations in visible-light 

channels to recover pulsatile information from facial 

videos. For instance, early studies demonstrated that the 

green channel carries the strongest pulsatile component 

due to its high sensitivity to blood volume changes, while 

the combination of red and green signals could further 

enhance the periodic component of the waveform [18]. As 

the field progressed, statistical signal processing methods 

such as principal component analysis (PCA) were 

introduced to exploit inter-channel correlations and isolate 

physiological components from background noise [19]. 

PCA-based methods effectively reduced illumination bias 

and motion-related artefacts by projecting multi-channel 

signals onto orthogonal bases, allowing more reliable 

estimation of the underlying cardiac rhythm. 

Building upon these foundations, more sophisticated 

models were developed to address illumination and motion 

interferences more explicitly. The chrominance-based 

rPPG (CHROM) algorithm introduced a colour-space 

transformation that computes a weighted combination of 

chrominance signals, thereby suppressing intensity-related 

fluctuations and improving the signal-to-noise ratio under 

varying lighting conditions [20]. Similarly, the plane 

orthogonal to skin (POS) algorithm projects normalised 

RGB signals onto a plane orthogonal to the skin-tone 

vector, reducing the influence of both global illumination 

variations and minor motion disturbances [21]. These 

advancements improved the robustness and reliability of 

rPPG signal extraction compared to earlier methods, 

forming the basis for many subsequent developments in 

the field. 

Despite these notable improvements, conventional 

algorithms such as CHROM and POS still exhibit 

performance degradation in real-world scenarios, 

particularly under conditions of substantial motion, 

varying ambient illumination, camera noise, or diverse 

subject appearances [22]. Such interferences can distort 

the extracted waveform and lead to inaccurate heart-rate 

estimation, limiting their applicability in unconstrained 

environments. To overcome these challenges, recent 

studies have explored deep learning techniques that 

leverage convolutional and recurrent architectures to 

model complex spatial–temporal relationships within 

video data. These models have demonstrated improved 

robustness and generalization across conditions by 

learning motion and illumination-invariant representations 

directly from data. However, their reliance on large 

annotated datasets and the inherent lack of interpretability 

remain practical barriers to widespread adoption in 

medical and consumer-grade systems. 

To address these limitations, the present study proposes 

a hybrid rPPG extraction framework that integrates 

chrominance-based projection with data-adaptive 

decomposition. In the first stage, the POS algorithm is 

employed to project normalised RGB signals onto a 

subspace orthogonal to the skin-tone vector, which 

effectively mitigates common-mode distortions arising 

from illumination variation, sensor bias, and motion-

induced leakage. This process yields a stable, illumination-



invariant rPPG signal that preserves the essential pulsatile 

dynamics. In the second stage, Singular Spectrum 

Analysis (SSA) [23] is applied to decompose the POS-

derived signal into a set of orthogonal components using 

Hankel embedding and singular value decomposition. 

Components exhibiting quasi-periodic behaviour within 

the physiological heart-rate frequency band are retained, 

while noise-dominated components are suppressed. The 

reconstructed waveform is therefore denoised, 

physiologically meaningful, and suitable for robust heart-

rate estimation in practical, unconstrained environments. 

 

III. POS-SSA METHODOLOGY 

The processing pipeline of the proposed POS–SSA 

framework is shown in Figure 1, which comprises four 

steps. First, the full face is detected from each video frame 

and used as the region of interest (ROI), providing a 

localised skin area for subsequent signal acquisition. Next, 

the averaged RGB signals are transformed by the POS 

algorithm, which projects them onto a chrominance 

subspace orthogonal to the skin tone vector and yields 

composite cardio signal more robust to illumination 

changes. This signal is then refined through the SSA 

technique, where decomposition into elementary 

components separates pulsatile information from noise and 

motion artefacts. Finally, the components with quasi-

periodic behaviour and spectral energy in the physiological 

heart-rate band are analysed in the frequency domain via 

Fourier transform in order to estimate heart rate. 

Collectively, these stages form a compact yet robust 

framework for enhancing signal quality and improving 

estimation accuracy under varied conditions. 

 

A. Facial Region detection and normalisation 

Facial detection and normalisation ensured that 

subsequent rPPG analysis was based on a spatially 

consistent and geometrically standardised region of 

interest (ROI). Faces were localized in each video frame 

using the Viola–Jones cascade classifier [24], which 

employs Haar-like features and AdaBoost-trained 

classifiers for robust detection under varying lighting and 

pose conditions. Within the detected ROI, ten salient 

feature points were extracted using the minimum 

eigenvalue method [25] and tracked across frames with a 

bidirectional error–minimizing algorithm to maintain 

spatial and temporal consistency. The similarity 

transformation was estimated from the tracked features, 

and it was then applied to correct translation, in-plane 

rotation, and scale variations. Finally, the ROI was 

resampled to a fixed resolution and orientation, yielding a 

normalised and temporally stable facial segment suitable 

for reliable rPPG signal extraction.  

The full-face region was selected as the region of 

interest rather than smaller subregions (e.g., cheeks or 

forehead) to maximise signal stability across subjects and 

recording conditions. Prior studies have demonstrated that 

using a larger facial ROI reduces sensitivity to local 

motion, partial occlusion, and regional illumination non-

uniformity [26]. Averaging over the full face also 

improves the signal-to-noise ratio by aggregating pulsatile 

information from multiple vascularised areas [27], which 

 
 

Fig. 1. Pipeline of the proposed POS-SSA framework 

 

 



is particularly beneficial for subsequent SSA-based 

decomposition.  

 

B. POS Transform 

The POS method was first proposed by Wang et al. [21], 

which is a widely used method for extracting remote 

photoplethysmography (rPPG) signals. It is designed to 

enhance the physiological component of skin-tone 

variations in video while suppressing noise from motion 

and illumination changes, thereby enabling more reliable 

heart rate estimation in real-world conditions. The method 

first preprocesses the colour signals to remove slow 

illumination drifts and then projects them onto an 

orthogonal subspace in the RGB space to emphasise the 

pulsatile component. Finally, it recovers clean 

physiological signals via dynamic normalisation and 

combination of the two orthogonal projection signals. 

Given a video sequence, the facial region is first 

detected and localised. For each frame, the mean pixel 

intensities of the red, green, and blue channels are 

extracted and denoted as 𝑅(𝑡), 𝐺(𝑡), 𝐵(𝑡), respectively. To 

reduce the effects of illumination fluctuations and global 

intensity changes, these raw colour signals are detrended 

by removing their slowly varying components. This is 

achieved by applying a moving average filter for each 

channel. The resulting detrended signals are therefore 

defined as deviations from their global mean values, where 

𝑅̅(𝑡), 𝐺̅(𝑡) and 𝐵̅(𝑡) represent the temporal mean of the 

red, green, and blue channels, respectively. 

 

Based on the distribution characteristics of skin colour 

in the RGB colour space, the POS algorithm constructs 

two signal components, defined as follows: 

 
𝑋(𝑡)  and 𝑌(𝑡)  emphasize pulsatile information while 

reducing illumination and motion-induced noise. To avoid 

domination of one component due to amplitude imbalance, 

their standard deviations 𝜎𝑋  and 𝜎𝑌  over a temporal 

window are computed and used for normalisation: 

 

            𝑋(𝑡) =  𝑅′(𝑡) − 𝐺′(𝑡)             (1) 

 

   𝑌(𝑡) = 𝑅′(𝑡) + 𝐺′(𝑡) − 2𝐵′(𝑡)     (2) 

 

                      𝜎𝑋 =  √
1

𝑁
∑ (𝑋(𝑡) − 𝑋̅)2𝑁

𝑡=1                (3) 

 

                  𝜎𝑌 =  √
1

𝑁
∑ (𝑌(𝑡) − 𝑌̅)2𝑁

𝑡=1                (4) 

 

 

       
(a)                                                                                                                    (b) 

 

       
                                                              (c)                                                                                                                         (d) 

 

Fig. 2. Examples of colour rPPG signals extracted from the facial regions and the corresponding POS-derived rPPG signal: (a) red-channel rPPG; (b) 
green-channel rPPG; (c) blue-channel rPPG; (d) POS-derived rPPG 



𝑋̅ and 𝑌̅ are the mean values of 𝑋(𝑡) and 𝑌(𝑡) over the 

window 1 to N. 

 The second component is normalised by its standard 

deviation and subtracted from the first component to form 

a synthesised POS signal 𝑆(𝑡), which can be expressed as: 

 

 
Equations (1) and (2) define two orthogonal 

chrominance signals derived from the normalised RGB 

channels, designed to suppress common-mode intensity 

variations. Equations (3) and (4) perform adaptive 

normalisation using the standard deviation within a 

temporal window to prevent dominance by any single 

channel. Equation (5) combines the two normalised 

components into a single POS signal that emphasises 

pulsatile variations while attenuating motion and 

illumination artefacts.  

Figure 2 illustrates the raw RGB channel signals and the 

synthesised POS signal obtained after applying the plane 

orthogonal-to-skin projection. As shown in the figure, the 

raw colour signals (red, green, and blue) contain both the 

desired pulsatile component and substantial noise arising 

from illumination fluctuations and minor head movements. 

After the POS transformation, these non-physiological 

variations are reduced, yielding a more stable and periodic 

waveform that aligns closely with the underlying cardiac 

rhythm. The improvement demonstrates the effectiveness 

of the POS method in enhancing signal quality by 

suppressing motion-induced and lighting-related 

distortions while preserving the essential heart rate 

information. Consequently, the synthesized POS signal 

serves as a cleaner and more robust input for subsequent 

SSA-based decomposition, which decomposes 𝑆(𝑡)  into 

oscillatory components and selectively reconstructs the 

cardiac-related component. 

 

C. Singular Spectrum Analysis  

After synthesising the POS signal, SSA is applied to 

further isolate physiologically relevant oscillations and 

suppress residual noise. SSA is a non-parametric 

decomposition method commonly used for denoising, 

trend removal, and periodic component extraction in time 

series [23]. Since remote rPPG signals are often affected 

by illumination changes and measurement artefacts, SSA 

provides an effective temporal filtering strategy that 

enhances heart rate components, even under non-ideal 

acquisition conditions.  

 

Let the original time series be defined as 𝑆(𝑡) . For 

subsequent analysis, this signal is uniformly sampled at the 

video frame rate 𝑓𝑠, yielding a discrete sequence 

 

 
 

For a chosen window length 𝐿 such that 1 < 𝐿 < 𝑁, the 

series is embedded into a sequence of lagged vectors to 

form a trajectory matrix 𝑋: 

 

 
where 𝐾 = 𝑁 − 𝐿 + 1. This Hankel matrix captures the 

temporal dynamics of the series. By decomposing the 

trajectory matrix via singular value decomposition (SVD), 

the original signal is separated into a set of elementary 

components. These components can be grouped into 

interpretable categories: 

• Trend components: capturing slowly varying 
illumination or baseline drift. 

• Oscillatory components: representing periodic 
physiological rhythms, including the heart rate–
related signal. 

• Noise components: which mainly correspond to 
high-frequency fluctuations caused by sensor 
noise or subtle motion artefacts. 

By reconstructing the signal using only the oscillatory 

components within the cardiac frequency band, SSA 

effectively attenuates noise and irrelevant variations while 

enhancing the pulsatile component. Each video segment is 

30 seconds in duration and captured at a frame rate of 50 

fps, yielding a total of 1500 frames per segment (𝑁 =
1500). In principle, the choice of the window length 𝐿 is a 

temporal parameter that depends on the desired resolution 

and stability of the decomposition. In practice, however, 

the feasibility of selecting large 𝐿 values is also 

constrained by implementation factors, such as the spatial 

resolution of the input video frames and the computational 

capacity of the hardware [21]. High-resolution facial 

recordings (e.g., 1080p or higher) increase the data volume 

per frame, which in turn amplifies the computational 

burden during trajectory matrix construction and 

decomposition. Likewise, devices with limited CPU/GPU 

resources or restricted memory bandwidth may encounter 

significant slowdowns when large values of 𝐿 are used, 

particularly in scenarios involving multiple segments.  

In this study, the SSA window length 𝐿 was set to 20 

after empirical evaluation and practical considerations. 

Preliminary experiments were conducted using different 

window lengths to assess their impact on signal 

decomposition quality and computational efficiency. It 

was observed that smaller values of 𝐿 were insufficient to 

capture the temporal structure of cardiac oscillations, 

whereas larger values led to substantially increased 

computational cost due to the growth of the trajectory 

matrix without providing additional performance gains. 

Given a sampling rate of 50 fps, 𝐿=20 provides a balance 

between temporal resolution, numerical stability, and 

computational feasibility. This choice ensures effective 

separation of oscillatory cardiac components while 

                 𝑆(𝑡) = 𝑋(𝑡) −  
𝜎𝑋

𝜎𝑌
𝑌(𝑡)                     (5) 

 

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁}, 𝑠𝑛 = 𝑆(𝑛∆𝑡), ∆𝑡 =
1

𝑓𝑠
        (6) 

 

       𝑋 =  [

𝑠1

𝑠2

𝑠2

𝑠3

⋯
⋯

𝑠𝐾

𝑠𝐾+1

⋮ ⋮ ⋱ ⋮
𝑠𝐿 𝑠𝐿+1 ⋯ 𝑠𝑁

] ∈ 𝑅𝐿×𝐾      (7) 

 



remaining suitable for near real-time implementation on 

standard hardware. 

D. Cardio Signal Extraction 

 Each SSA-processed component represents a distinct 

temporal mode of variation within the original signal. To 

isolate physiologically relevant structures from noise or 

motion-induced artifacts, a two-step component selection 

strategy was employed: 

 
• Energy Analysis: To quantify the contribution of 

each SSA component, the squared singular value of each 
component was divided by the sum of all squared singular 
values, which is defined as the normalised energy ratio. It 
reflects the proportion of total signal energy represented by 
each component, and components with higher ratios were 
retained as candidate signals.  

• Frequency-Domain Analysis: The retained 
components were examined using Fast Fourier Transform 
(FFT). Only those with dominant peaks within the typical 
heart rate band (0.5–4 Hz) were considered valid 
physiological components 

Figure 3 illustrates the energy distribution across the first 

ten SSA components while Figure 4 presents the 

corresponding time-domain waveforms of the six 

components with the highest energy contributions. In 

Figure 3, it can be observed that the first few components 

capture the majority of the total signal energy, which 

indicates that they contain dominant physiological 

information associated with cardiac activity. The rapid 

decline in energy after the fourth component reflects the 

diminishing influence of meaningful oscillatory structures 

and the growing dominance of noise or residual 

illumination effects in the lower-ranked components. 

Complementing this, Figure 4 provides a visual comparison 

of the temporal behaviour of these components. The higher-

energy components (particularly components 2 to 4) exhibit 

clear quasi-periodic oscillations consistent with heart rate–

related dynamics, whereas the lower-energy components 

appear more irregular with erratic fluctuations and less 

defined rhythmic patterns. This contrast highlights the 

effectiveness of SSA in decomposing the POS signal into 

interpretable components, where only a limited subset 

contributes physiologically relevant information. Based on 

both the quantitative energy distribution and qualitative 

waveform inspection, the first four components (each 

contributing at least 1% of the total energy) were retained 

for subsequent spectral analysis and ensure that the 

reconstructed signal maintains strong physiological fidelity 

while minimizing the inclusion of noise or motion artefacts. 

FFT was then applied to each of the retained 

components. The spectral content of first 4 SSA calculated 

components 𝑅𝐶1  to 𝑅𝐶4   was inspected to identify 

dominant peaks corresponding to cardiac activity as shown 

in Fig 5. While the first component RC1 exhibited the 

highest energy, its peak frequency was near 0 Hz, which 

suggests it represented a baseline trend rather than 

physiological variation. Therefore, it was excluded. 

Among the remaining components, only the second 

component RC2 displayed a clear peak within the 0.5–4 

Hz band, aligning with expected heart rate frequencies, 

and was thus identified and kept as the most 

physiologically relevant for reconstructing the rPPG signal. 

Through this integrated approach of POS-filtered signals 

followed by energy-based ranking and frequency-domain 

validation, physiologically meaningful information was 

extracted with enhanced robustness against noise and 

improving the fidelity of heart rate estimation from facial 

video data.  
   In summary, starting from the POS-processed facial 
signal, the application of SSA enabled a structured 
decomposition into interpretable components. The 
subsequent combination of energy-based ranking and 
frequency-domain analysis provided a principled approach 
to isolate physiologically meaningful information. This 
integrated strategy enhances robustness against noise and 
improves the fidelity of heart rate estimation from facial 
video data.  

IV. EXPERIMENTS 

A. Experimental Datasets  

To rigorously evaluate the effectiveness of the proposed 

POS-SSA framework for remote heart rate estimation, the 

experiments were conducted on the PFF dataset [29] and 

the UBFC-Phys dataset [30]. Both datasets provide 

complementary recording conditions and subject 

variability, which enable a comprehensive assessment.  

The PFF dataset contains facial video recordings from 

13 participants under varying illumination conditions with 

synchronised ground-truth heart rate data. The dataset was 

collected with informed consent under institutional ethical 

approval, as described in [31]. The access was granted by 

the authors for research purposes. Each recording lasts 

approximately three minutes, during which both 

physiological fluctuations in heart rate and natural 

variations in illumination and head motion occur. Whereas 

the UBFC-Phys consists of facial videos from 56 

participants recorded under controlled indoor conditions. 

It is widely used as a benchmark for rPPG evaluation and 

provides higher inter-subject diversity in skin tone and 

facial appearance, allowing validation of cross-dataset 

robustness.  

 
Fig. 3. Energy distribution of top 10 components 



For consistency across both datasets, all recordings 

were partitioned into non-overlapping 30-second clips 

recorded at 50 fps. Each segment was processed 

independently using the proposed POS–SSA framework, 

and the estimated heart rates were compared against the 

reference values to enable a comprehensive quantitative 

assessment of performance.  

 

B. Performance Analysis 

In this study, all experiments were conducted on a 

desktop PC equipped with an Intel Core Ultra 5 245KF 

CPU operating at 4.20 GHz, 48 GB of RAM, and without 

GPU acceleration. The average processing time for a 

single 30-second segment was approximately 40 seconds. 

This indicates that the current MATLAB-based 

implementation is suitable for offline analysis but does not 

yet achieve real-time performance. Runtime profiling 

shows that the primary computational bottleneck arises 

from the SSA stage, particularly during the construction of 

the trajectory (Hankel) matrix and the subsequent singular 

value decomposition. 

Figure 6 presents a detailed comparison of the predicted 

and ground-truth heart rate signals for eight 

representatives, including four from PFF dataset and four 

from UBFC-Phys dataset. The figure illustrates the 

temporal tracking capability and overall accuracy of the 

proposed POS-SSA framework. The results clearly 

demonstrate that the predicted heart rate trajectories 

closely follow the reference measurements throughout the 

recording duration. Across all examples, the estimated 

heart rates exhibit smooth transitions and synchronized 

temporal dynamics, which confirms the framework’s 

ability to capture both the baseline cardiac rhythm and 

                                                                
(a)                                                                                                     (b) 

 

           
(c)                                                                                                         (d)                     

 

                                      
                                                (e)                                                                                                           (f) 

 

Fig. 4. Time-domain representation of the first six reconstructed components (RCs) obtained by applying SSA to the POS-derived rPPG 
signal: (a)RC1; (b)RC2; (c)RC3; (d)RC4; (e)RC5; (f)RC6  



transient fluctuations induced by physiological or 

environmental factors. Importantly, deviations between 

the estimated and ground-truth signals remain consistently 

low, typically within ±6 bpm, which reflects the method’s 

robustness in mitigating common challenges such as 

illumination variation, minor head motion, and camera 

noise. 

A closer inspection of the individual subplots in the 

figure reveals subtle distinctions in tracking behaviour 

among participants, which is attributable to differences in 

facial features, skin tone, and motion intensity. For 

example, participants P2 and P3 demonstrate nearly 

perfect alignment between predicted and ground-truth 

curves that indicates highly stable performance under 

uniform lighting conditions. In contrast, participants P1, 

P4 and P7 show slightly larger fluctuations during sections 

of rapid heart rate change, which suggests the presence of 

transient noise or reduced signal-to-noise ratio due to 

subtle motion or lighting transitions. Nevertheless, even in 

these cases, the POS-SSA output quickly realigns with the 

true signal, illustrating its capacity for self-correction 

through adaptive decomposition and frequency-domain 

validation. The narrow error margins and consistent 

waveform overlap across all examples further confirm the 

system’s temporal coherence and noise resilience. 

Moreover, the absolute (ABS) error bars displayed 

alongside the trajectories provide quantitative evidence of 

the algorithm’s precision. The limited amplitude of these 

error bars that were concentrated within a narrow range 

across the full duration of each recording emphasises the 

framework’s stability and reliability for long-term 

monitoring. This temporal consistency is critical for 

practical applications such as fatigue assessment, stress 

detection, or telemedicine, where accurate trend tracking 

is more valuable than instantaneous measurements. Unlike 

conventional rPPG methods that often suffer from 

cumulative drift or delayed response under varying 

conditions, the integration of SSA into the POS pipeline 

ensures continuous refinement of the extracted signal by 

isolating physiologically meaningful oscillatory modes 

and suppressing residual noise. 

 

C. Benchmarking 

To contextualise the performance of the proposed POS-

SSA framework, its results were compared against several 

well-established algorithms spanning the spectrum from 

simple single-channel extraction to statistically informed 

separation and chrominance-based enhancement. All 

comparative methods were implemented in this work and 

include the green (G) channel only method [10], the green 

plus red (G+R) channels chrominance-based method [18], 

the blind source separation based on PCA [19], the POS 

based on RGB signals [21] and the CHROME [22]. 

 Performance was quantitatively assessed on both the 

PFF and UBFC-Phys datasets using five standard metrics: 

mean absolute error (MAE), root mean square error 

(RMSE), mean error (ME) to quantify bias, standard 

deviation of error (STD) to reflect variability, and the 

Pearson correlation coefficient (r) to measure agreement 

with ground-truth heart rate signals. The results are 

summarised in Table I.  

                                                               
(a)                                                                                                             (b) 

             
(c)                                                                                                             (d)                     

Fig. 5. Spectrum analysis for first 4 SSA components: (a)RC1; (b)RC2; (c)RC3; (d)RC4 

 



Across both datasets, the proposed POS–SSA 

framework consistently outperforms all comparative 

methods in terms of accuracy, bias reduction, and 

correlation. On the PFF dataset, the POS–SSA achieves the 

lowest MAE of 4.99 bpm and RMSE of 13.05 bpm. It 

substantially improves upon the POS (MAE 9.48 bpm, 

RMSE 22.28 bpm) and CHROM (MAE 8.51 bpm, RMSE 

20.53 bpm) methods. The mean error is reduced to 1.16 

bpm, which indicates minimal systematic bias, while the 

Pearson correlation coefficient reaches 0.76, which is the 

highest among all evaluated approaches. These results 

demonstrate that the integration of SSA significantly 

                                                                
(a)                                                                                                              (b) 

          
(c)                                                                                                          (d)                     

                                           
                                                (e)                                                                                                            (f) 

                          
      (g)                                                                                                            (h) 

Fig. 6 Representative examples of heart rate estimation using the proposed framework on the PFF and UBFC-Phys datasets: (a)P1-PFF (b)P2-

PFF (c)P3-PFF (d)P4-PFF; (e)P5-UBFC-Phys (f)P6-UFBC-Phys (g)P7-UFBC-Phys (h)P8-UFBC-Phys 

 
          

 



enhances the robustness of POS by suppressing residual 

noise and non-physiological variations. 

Similar trends are observed on the UBFC-Phys dataset, 

where the POS–SSA achieves an MAE of 4.11 bpm and an 

RMSE of 6.30 bpm. These outperform POS and CHROM 

by a clear margin. Notably, the Pearson correlation 

coefficient increases to 0.86, which shows strong 

agreement with the ground-truth measurements and 

confirming the robustness of the proposed method across 

datasets with different subject populations and acquisition 

conditions. 

The table further reveals broader performance patterns 

among the compared methods. The G and G+R baselines, 

which rely on direct FFT analysis of raw colour signals, 

perform poorly on both datasets, exhibiting large errors 

and weak correlations (r < 0.3). PCA provides moderate 

improvements by exploiting inter-channel correlations but 

remains sensitive to motion and illumination changes. 

Chrominance-based approaches such as POS and CHROM 

yield substantial gains, which highlights the importance of 

colour-space projection for noise suppression. However, 

the proposed POS–SSA framework consistently achieves 

the lowest error variability across both datasets with a 

standard deviation (STD) of 13.01 bpm on the PFF dataset 

and 6.18 bpm on the UBFC-Phys dataset. This 

demonstrates superior stability and cross-subject 

consistency. 

Figure 7 presents a scatter plot comparing predicted and 

actual heart rates across all methods for the PFF and 

UBFC-Phys datasets. Each point corresponds to one test 

clip, with the solid line indicating the ideal one-to-one 

relationship. For the PFF datasets shown in Figure 7(a), the 

distribution illustrates that the G, G+R, and PCA methods 

produce wide scatter with many points deviating 

substantially from the line. It reflects large estimation 

errors and weak correlations. The POS and CHROME 

approaches have reduced the spread but with noticeable 

deviations, particularly at higher heart rates. In contrast, 

the POS-SSA results (red points) cluster tightly around the 

ideal line and demonstrate both higher accuracy and 

greater consistency across the full physiological range. 

This visual evidence complements the numerical 

improvements reported in Table I in which the reduced 

scatter confirms the lower error variability, while the 

alignment with the one-to-one line illustrates the stronger 

correlation (r = 0.76).  

A similar trend is observed for the UBFC-Phys dataset 

in Figure 7(b). The baseline methods again display broad 

scatter and poor alignment with the ideal line, whereas 

POS and CHROM provide moderate improvements. The 

POS–SSA framework achieves the tightest clustering and 

strongest alignment with the diagonal, reflecting its 

superior accuracy and robustness under controlled indoor 

conditions with higher inter-subject variability. The close 

agreement observed across both datasets visually confirms 

the numerical improvements reported in Table I and 

demonstrates that the proposed POS–SSA framework 

delivers accurate, stable, and generalisable heart rate 

estimates across diverse recording conditions and subject 

populations. 

V. DISCUSSION 

A. Robustness of Proposed POS-SSA Framework  

rPPG remains inherently challenging due to its 

sensitivity to motion artefacts, illumination variability, 

partial occlusions, and camera noise. The proposed POS– 

SSA framework mitigates these issues by combining 

colour-space projection with adaptive temporal 

decomposition. The POS stage attenuates illumination and 

minor motion effects by projecting normalised RGB 

signals onto a plane orthogonal to the skin-tone vector, 

yielding a more stable composite signal than raw colour 

channels. SSA then exploits the temporal structure of this 

signal by decomposing it into orthogonal components with 

distinct dynamical characteristics. By retaining only quasi-

periodic components whose spectral energy lies within the 

physiological heart-rate band, SSA suppresses baseline 

drift, residual motion artefacts, and stochastic noise that 

persist after chrominance projection. This two-stage 

strategy improves robustness over using POS alone, as 

confirmed by the consistent reductions in error metrics and 

increases in correlation observed across both the PFF and 

UBFC-Phys datasets. By combining the POS colour-space 

projection with SSA for adaptive signal decomposition, 

the method could effectively mitigate common distortions 

caused by motion artifacts, illumination fluctuations, and 

camera noise. Experimental results on both datasets 

demonstrated that the proposed framework outperforms 

TABLE I.  COMPARISON OF RPPG METHODS 

Methods PFF Dataset UBFC-Phys Dataset 

G G+R PCA POS CHROM POS+SSA G G+R PCA POS CHROM POS+SSA 

MAE 

(bpm) 
22.47 24.19 23.03 9.48 8.51 4.99 17.28 9.93 21.30 6.00 6.79 4.11 

RMSE 

(bpm) 
30.99 32.88 31.07 22.28 20.53 13.05 28.21 19.86 30.55 11.99 14.45 6.47 

ME  

(bpm) 
8.56 6.34 15.47 1.35 1.84 1.16 1.30 2.56 3.51 1.29 2.31 1.29 

STD  

(bpm) 
29.74 32.26 26.94 22.23 20.46 13.01 28.25 19.74 30.43 11.95 14.40 6.18 

Pearson r 0.12 0.15 0.18 0.43 0.51 0.76 0.10 0.28 0.15 0.59 0.55 0.86 

 

 

 



conventional single-channel, statistical, and chrominance-

based approaches.  

B. Learning-based rPPG Methods 

Recent deep learning–based rPPG methods have 

demonstrated strong performance by learning complex 

spatial–temporal representations directly from facial 

videos. These methods include PhysNet [13], 

EfficientPhys [14], PhysFormer [32], DeepPhys [33] and 

TS-CAN [34] that can adaptively weight facial regions, 

capture non-linear dependencies, and suppress local 

artefacts through data-driven optimisation. In particular, 

learning-based approaches are well suited to handling 

heterogeneous motion patterns and spatially localised 

disturbances. 

In contrast, the proposed POS–SSA framework follows 

a signal-driven, region-wise strategy that prioritises 

robustness, transparency, and low data dependency. While 

it does not learn spatial attention, it avoids reliance on large 

annotated datasets and reduces the risk of domain 

overfitting. The POS–SSA offers lower computational 

complexity and predictable behaviour, which make it 

attractive for applications where training data are limited 

or explainability is required. Liu et al. [35] developed a 

comprehensive toolbox, rPPG-Toolbox, which integrates 

a wide range of widely used rPPG models and provides 

unified support for public benchmark datasets, data 

augmentation strategies, and standardised performance 

evaluation. Table II summarises the reported performance 

of these methods testing on the UBFC-Phys dataset in 

terms of MAE and Pearson correlation coefficient as 

documented in their study. It provides valuable contextual 

insight by showing that the proposed POS-SSA framework 

achieves error levels, which are broadly comparable to 

those state-of-the-art learning-based approaches despite its 

signal-driven nature and lack of data-dependent training.  

However, in highly unconstrained scenarios involving 

severe motion, large occlusions, or complex spatial 

interference, state-of-the-art learning-based methods are 

expected to achieve superior performance due to their 

richer spatial modelling capacity. Recent work on rPPG 

under real-world and extreme lighting conditions employs 

end-to-end transformer-based architectures with explicit 

interference disentanglement, background reference 

modelling, and long-term spatiotemporal context learning 

[36]. These methods are particularly effective in outdoor 

environments with drastic illumination changes, periodic 

external interference, and complex motion patterns, such 

as driving scenarios. By jointly modelling foreground 

facial regions and background interference at a fine spatial 

resolution, these approaches can actively disentangle 

lighting-induced artefacts that overwhelm subtle 

biosignals, which provides a capability beyond the scope 

of the proposed POS–SSA framework. 

C. Region-wise and Pixel-wise rPPG  

Region-wise rPPG approaches, including the proposed 

POS–SSA framework, aggregate colour information over 

facial regions to improve signal stability and signal-to-

noise ratio. This strategy is robust to sensor noise, minor 

motion, and local illumination non-uniformity, and offers 

low computational complexity and high interpretability. 

However, spatial averaging can attenuate locally 

informative pulsatile cues when physiological signals are 

unevenly distributed across the face due to local motion, 

occlusion, or heterogeneous illumination. Pixel-wise rPPG 

approaches, by contrast, preserve temporal dynamics at the 

individual pixel level and are therefore more sensitive to 

spatially localised pulsatile variations. Methods such as 

TranSpike [16] exploit pixel-wise frequency 

reconstruction to retain pulse extrema and spike-like 

structures, offering improved robustness under extreme or 

spatially heterogeneous conditions. The trade-off is 

      
(a)                                                                                                   (b) 

Fig. 7. Scatter plot of predicted against actual heart rates: (a) PFF dataset; (b) UBFC-Phys dataset 
 



increased sensitivity to noise, higher computational cost, 

and reliance on complex learning-based models, which 

may limit interpretability and deployment in resource-

constrained settings. Overall, region-wise and pixel-wise 

methods represent complementary strategies: the former 

prioritise stability and efficiency, while the latter 

emphasise spatial sensitivity under highly challenging 

conditions. 

VI. CONCLUSION 

This study proposed a hybrid POS-SSA framework for 

improving the accuracy and robustness of rPPG-based 

heart rate estimation from facial videos. By combining the 

POS colour-space projection with SSA for adaptive signal 

decomposition, the method effectively mitigates common 

distortions caused by motion artifacts, illumination 

fluctuations, and camera noise. Experimental results on the 

PFF and UBFC-Phys datasets demonstrated that the 

proposed framework outperforms traditional single-

channel, statistical, and chrominance-based approaches. 

Moreover, when compared with recent learning-based 

rPPG approaches, the POS–SSA achieves compitive 

performance while offering several practical advantages. 

Unlike learning-based approaches that rely on large and 

annotated datasets and complex spatial–temporal 

representations, the proposed framework remains data-

efficient, computationally predictable, and inherently 

interpretable. However, the approach still exhibits certain 

limitations. The computational cost associated with SSA 

decomposition may constrain real-time deployment on 

low-power devices, and performance may degrade under 

extreme motion or occlusion conditions. Furthermore, as 

the current validation was performed primarily under 

controlled illumination with limited motion variation, 

broader evaluation in more dynamic, real-world settings is 

warranted to confirm its generalisability.  

Future work will focus on extending the POS-SSA 

framework to address these limitations and broaden its 

applicability. One promising direction is the incorporation 

of adaptive windowing or real-time incremental SSA to 

reduce computational latency while preserving signal 

quality. Additionally, integrating learning–based feature 

extraction with traditional signal processing could enhance 

robustness against large head movements, occlusions, and 

varying illumination. Future studies may also explore 

multimodal sensing fusion, combining rPPG with thermal 

or depth imaging to further strengthen resilience under 

complex environmental conditions. Beyond heart rate 

estimation, the framework can be extended for heart rate 

variability (HRV) analysis, stress detection, and emotion 

recognition, expanding its utility in healthcare, human–

computer interaction, and remote monitoring scenarios. 

The long-term vision is to develop a fully real-time, 

camera-based vital sign monitoring system capable of 

delivering clinically meaningful measurements in both 

controlled and unconstrained environments, thereby 

contributing to the advancement of contact-free 

physiological sensing and intelligent health monitoring 

technologies. 
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