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Abstract

Lung nodules are areas of higher density in the lungs that can happen for a number of reasons,
such as smoking or being exposed to airborne pollutants for a long time. It is essential to find and
classify tumors on Computed Tomography (CT) scans as soon as possible so that lung diseases
can be diagnosed and evaluated, as well as for planning and making treatment plans. For the
diagnosis, it is essential to understand the difference between typical lung diseases like
Tuberculosis, Pneumonia, and lung cancer, as all the diseases have similar symptoms initially.
Initially, all the diseases have respiratory symptoms like cough, difficulty breathing, and chest
pain. Pulmonary infiltrates or nodules can be observed in lung cancer, pneumonia, COVID-19, and
tuberculosis, posing difficulty distinguishing between the diseases. Thus, this thesis has performed
the classification of different types of diseases using X-rays by proposing a novel deep-learning
framework for the multi-class classification of lung diseases, including lung cancer. The
experimental results show that the Visual Geometry Group Network (VGG) 19 + Convolutional
Neural Network (CNN) outperformed other existing work with 96.48% accuracy in the multi-

classification of lung diseases.

Moreover, once lung tumor is detected, precise localization enables healthcare practitioners to
ascertain the tumor's dimensions, which is crucial for staging and devising treatment strategies.
Hence, this research proposes an advanced deep learning model called the Universal Network (U-
net) to accurately segment lung tumors utilizing multiple types of imaging data, specifically CT
and Positron Emission Tomography (PET) scans. The intricate structures of the suggested models,
which incorporate several fusion approaches such as early fusion, late fusion, dense fusion, hyper-
dense fusion, and hyper-dense VGG16 U-Net, are discussed in detail. The experimental results,
particularly the performance of the hyper-dense VGG16 model, instill confidence in the proposed

models, as it outperformed all other analyses, receiving a Dice score of 73%.

Survival analysis for lung cancer patients is a crucial aspect of treatment planning and outcome
prediction. Therefore, in-depth stage classification using the TNM (Tumor, Node, metastases)
staging system of Lung Cancer is of utmost importance. This thesis suggests an innovative method
to classify the overall stage of non-small cell lung cancer (NSCLC) by employing multimodal data,
including multi-view CT images and textual clinical information. A comparative analysis of Vision
Transformer (ViT) and Convolutional Neural Network (CNN) architectures, evaluating both direct
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classification and TNM-based approaches are proposed. The experimental results prove that the
ViT-based direct model achieves superior accuracy 98.75%, improving accuracy by 8.75% over
the TNM-based ViT model, while also reducing computational complexity by 66.67%. Similarly,
the CNN-based direct model achieves 87% accuracy, outperforming the TNM-based CNN model
by 7%, with a corresponding reduction in computational demands. The use of the proposed
methods in real-time can help practitioners to detect lung cancer and predict the survival of the

patient effectively.
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Chapter 1

1. Introduction

Cancer is a highly fatal and the most challenging disease ever documented in human
history. The cure for cancer remains elusive as those afflicted with the condition often become
aware of it during advanced stages. Detecting it in its early stages is challenging, and the
majority of cancer-related deaths are attributed to lung cancer. Consequently, extensive
research has been undertaken to create a system capable of identifying lung cancer from CT
scan images [1]. Preventing cancer is difficult due to the manifestation of symptoms at
advanced stages, making recovery hard. Additionally, certain lung disorders have symptoms
that closely resemble those of lung cancer, leading to the potential misidentification of these

diseases as lung cancer in medical images [2].

The American Cancer Statistics 2023 study reveals that lung cancer ranks as the second
most prevalent cancer among both males (12%) and females (13%). However, it also has the
highest fatality rate of 21% across both genders. Each day, lung cancer claims the lives
of around 350 individuals, a statistic that is nearly 2.5 times higher than the number of deaths
caused by the second most common cause of cancer-related deaths, which is colon and rectal
cancer [3]. There are two primary subcategories of lung cancer: small-cell lung cancer (SCLC)
and non-small-cell lung cancer (NSCLC). Lung cancer typically arises from a combination of
variables, such as cigarette use, exposure to dangerous particles in the atmosphere, genetic
predisposition, old age, and other unidentified causes. Symptomatic signs of lung cancer
include yellowing of fingers, stress, persistent disease, fatigue, reactions to allergens,
wheezing, loud breathing, hemoptysis, respiratory difficulties, bone pain, headaches,

dysphagia, and chest discomfort [4].

Deep learning (DL) and machine learning (ML) algorithms yield cutting-edge outcomes
in various domains, such as object detection, classification, and semantic segmentation [5].
They significantly impact bioinformatics, particularly in cancer detection [6]. Recent
advancements in DL technology have facilitated the autonomous identification of graphic
components by CAD systems. Consequently, numerous medical image-processing approaches

have been effectively implemented [7].



The capacity of deep learning to process intricate, multi-dimensional data and identify
significant characteristics has seamlessly aligned with medical imaging. Conventional image
analysis techniques frequently depended on features and rule-based algorithms, which
restricted their capacity to fully utilize the intricate information in medical images. On the other
hand, deep learning acquires the ability to autonomously identify significant characteristics
from unprocessed data, enabling more precise and resilient picture analysis. DL has become an
exciting approach to diagnosing lung cancer. It can make cancer detection much more accurate
and quicker for many types of cancer [8]. The transformation is notably noticeable within
medical imaging, wherein pathology and radiology images function as an indispensable

diagnostic medium.

1.1. Research Problem

Early recognition is crucial in the treatment of cancer. Early detection of lung cancer
frequently enables the utilization of more efficient and less intrusive treatment alternatives,
thereby substantially enhancing patient outcomes. On the other hand, a diagnosis that is
postponed can result in lung cancers that have progressed to a more advanced stage, making
them harder to treat [9]. Incorporating deep learning methods into the analysis of medical
images has received significant interest in recent years. Moreover, deep learning can utilize
multimodal data to achieve a more thorough evaluation of lung cancer. By combining medical
imaging, genetics, and clinical data, a comprehensive understanding of a patient's health can

be achieved, enabling more accurate and tailored diagnostic and treatment strategies [10].

Various imaging modalities, including Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), and PET scans, offer distinct and supplementary insights into lung tissue
composition, operation, and metabolic behavior. Integrating various modalities can achieve a
more thorough comprehension of the disease. Moreover, including clinical data, encompassing
patient history, demographics, and biomarkers data, offers contextual details that can enhance
a comprehensive evaluation of a patient's well-being. A thorough understanding of the patient's

overall condition is crucial for precise diagnosis and formulation of treatment strategies [11].

Despite advancements in medical imaging and automated systems, several significant
challenges remain that hinder the effective identification, localization, and staging of lung
cancer. These gaps are evident in current diagnostic practices and automated systems that rely

on deep learning and other machine learning methods.



Symptom Overlap and Misdiagnosis: Many lung conditions, such as pneumonia,
COVID-19, and tuberculosis, share similar respiratory symptoms with lung cancer,
creating significant diagnostic challenges. Chest X-rays, often the first line of
investigation due to their widespread availability, are commonly used for
preliminary diagnosis. However, traditional automated systems for X-ray analysis
usually struggle to distinguish between these conditions. Existing automated
systems have proven effective in binary classification tasks (e.g., detecting the
presence or absence of pneumonia). However, when handling multi-class
classification involving a broader range of diseases with overlapping symptoms,
including lung cancer, these systems leave a gap in early lung cancer detection. For
instance, specific patterns in X-ray images, such as patchy lung opacities observed
in pneumonia or tuberculosis, might look very similar to early-stage lung cancer.
This overlap frequently results in misdiagnosis, which leads to delayed or
ineffective therapies and has a detrimental influence on patient outcomes.

Tumor Localization Challenges: Currently, automated algorithms for lung tumor
localization rely mainly on CT scans, which give rich anatomical data. However,
CT alone has significant limitations since it fails to capture critical functional
information on tumor metabolism. While MRI offers high-resolution imaging and
improved soft tissue contrast, its application in lung tumor imaging is limited due
to respiratory motion errors and poor sensitivity to air-filled structures. These
difficulties impede precise tumor localization and may result in inadequate
assessments. Other modalities, such as ultrasonography, confront similar issues,
with low penetration and uneven anatomical information for deep-seated lung
cancers, complicating segmentation attempts. PET imaging, when combined with
CT, provides critical metabolic insights that improve our understanding of tumor
behavior and activity. This combination can improve treatment planning and
staging by allowing for a more thorough examination of malignancies. Some
existing systems have begun to incorporate multimodal techniques by integrating
CT and PET imaging, utilizing their advantages to improve tumor segmentation.
However, there is still room for improvement in tumor localization accuracy
through more accurate fusion approaches that combine the characteristics of both

imaging modalities.



e Inadequate Staging Classification: Accurate staging of lung cancer utilizing the
Tumor, Node, Metastases (TNM) approach is critical for selecting effective
treatment options, estimating patient outcomes, and forming prognoses. Existing
automated systems frequently rely primarily on imaging data for TNM
categorization, overlooking the vital role that demographic and clinical data might
play in staging accuracy. While some techniques may be comparably sensitive in
determining tumor size (T), they often overlook other important factors such
as lymph node involvement (N) or distant metastases (M). Inaccurate general stage
forecasts resulting from the lack of thorough staging models could lead to uneven
patient treatment approaches and worse-than-ideal results. The preponderance of
the T stage in current models limits their capacity to totally reflect the course of

lung cancer, so influencing the prognosis dependability and treatment efficacy.

These inadequacies in current diagnostic procedures highlight the urgent need for novel
concepts that use deep learning to improve the accuracy and dependability of lung cancer
detection, tumor segmentation, and stage classification. By resolving these problems using
multimodal data fusion, the model's diagnosis precision can be improved, enabling more
precise tumor localization and establishing solid, data-driven frameworks for lung cancer

staging.

1.2. Research Motivation

The most prominent cause of cancer-related fatalities globally is still lung cancer, and proper
diagnosis and early discovery significantly affect the survival chances. This research is driven
by several motivations in both the critical clinical need for improvement and the technological

possibilities presented by contemporary deep learning methods.

e Enhancing Patient Outcomes by Early Detection: Early detection is essential for
lung cancer survival rates. However, because lung cancer symptoms overlap with those
of other respiratory disorders, current diagnostic instruments sometimes miss the early
stages of lung cancer. This study is driven primarily by the possibility of significantly
enhancing patient outcomes via early detection of lung cancer. We want to create
models that can increase the accuracy of early detection by using advanced artificial
intelligence technology, therefore enabling quicker interventions and higher survival

rates.



Use of Multimodality imaging: Accurate diagnosis and treatment planning in lung
cancer depend not only on spotting the disease but also on correctly pinpointing tumors,
hence bridging the gap between imaging modalities. Conventional imaging techniques,
including CT and PET scans, provide different but insufficient perspectives on lung
cancers. PET scans offer vital information regarding metabolic activity, but CT scans
concentrate on the anatomical aspects. The possibility of closing the difference between
these two imaging modalities primarily drives this research. This work attempts to
provide a complete knowledge of lung cancers by proposing improved deep-learning
models that combine data from both CT and PET scans, therefore enabling more exact
localization and focused treatment.

Advancing Precision Medicine in Cancer Staging: Predicting outcomes for lung
cancer patients and choosing therapy courses depend much on the TNM staging system.
Though crucial, current automated staging systems may ignore thorough data
integration, including demographic information and imaging. Incorporating more data-
rich models will help to develop precision medicine, thereby driving this study. Using
deep learning approaches, it is possible to offer more complex and personalized staging
assessments, therefore facilitating more informed treatment decisions and more
accurate prognosis predictions.

Harnessing the Power of Al for Clinical Use: Al and DL are becoming more valuable
in healthcare, potentially changing how doctors practice their profession. The
therapeutic use of Al has not yet realized its full potential despite its impressive
performance in other domains, such as picture recognition and natural language
processing. The primary goal of this research is to discover ways to use artificial
intelligence's ability to change things to assist doctors with their daily tasks, particularly
in the detection and treatment of lung cancer. This study aims to push the boundaries of
Al in healthcare by developing models that are robust, scalable, clinically relevant, and
simple to integrate into existing processes. The primary motivation for this research is
the urgent need to improve lung cancer tumor location, diagnostic accuracy, and
staging. With the ultimate goal of improving lung health care and patient outcomes, we
are looking for innovative solutions to these problems using advanced deep learning

methods.



1.3. Thesis Aims and Objectives

Developing sophisticated deep learning-based models to enhance the diagnosis, localization,
and staging of lung cancer is the goal of this work. This work aims to improve the accuracy of
early detection, enable more exact tumor localization, and provide solid predictions for TNM-
based cancer staging by using multimodal imaging data and integrating clinical demographic

information, thus contributing to more efficient patient management and improved outcomes.
The following particular goals help one to reach this aim:

e Using chest X-ray images, create and use a deep learning model to precisely classify
six different lung diseases—including pneumonia, TB, COVID-19, and lung cancer.
This goal seeks to lower the chance of misdiagnosis by better-automated analysis,
therefore addressing the difficulties presented by symptom overlap among these
diseases.

e To investigate how PET and CT imaging modalities might be combined to improve
tumor localization. This aim will be to create algorithms that combine metabolic
information from PET scans with anatomical data from CT scans, enabling a more
complete knowledge of tumor traits and behavior. Correct therapy planning and tumor
activity evaluation depends on this integration.

e A complete staging classification system based on the TNM (tumor, node, metastases)
staging system predicts the general stage of lung cancer by incorporating pertinent
demographic and clinical data to increase prognosis accuracy and guide treatment
decisions.

e To perform thorough validation of the created models utilizing many datasets and
evaluation criteria, including accuracy, sensitivity, specificity, and F1-score. This
purpose guarantees dependability and generalizability among various patient
populations. Furthermore, the clinical usability and scalability of the suggested models
will be evaluated by comparing them with current diagnosis and staging systems.

e By working with medical practitioners, one can evaluate the clinical applicability of the
suggested approaches by ensuring that the frameworks created fit clinical procedures

and handle practical diagnostic requirements.



1.4. Research Contributions

The significant contributions of the research are given below.

A deep learning classification model is proposed to identify and differentiate six
lung diseases: pneumonia, lung cancer, tuberculosis (TB), lung opacity, COVID-
19, and normal cases. Due to overlapping symptoms that result in similar patterns
on X-ray images —such as ground-glass opacity and nodular formations—this
study utilizes a transfer learning approach with a pre-trained VGG19 model
enhanced by three additional convolutional neural network (CNN) layers. Trained
on a large and diverse dataset of X-ray images, this model represents one of the
first attempts to classify multiple lung diseases effectively using X-ray imaging at
the time this investigation took place.

An innovative architecture is proposed for lung cancer segmentation using
multimodal imaging from PET and CT scans. This model leverages both PET and
CT scans, providing critical metabolic and anatomical information. It utilizes a
modified U-Net architecture with various fusion strategies: early fusion, late
fusion, dense fusion, hyper-dense fusion, and hyperdense VGG-16 U-Net. By
incorporating dense connections for each modality, the model improves
information flow and feature representation over a basic encoder. The hyperdense
connections enhance integration between modalities by capturing the
complementary details from each modality. Using VGG-16 for deep feature
extraction boosts overall segmentation performance. These modifications
collectively enhance segmentation performance compared to other strategies.

An advanced deep learning (DL) approach named Vision Transformer (ViT) is
developed for overall stage prediction of lung cancer based on the TNM staging
system, integrating both imaging data and demographic information. Unlike
existing approaches that classify TNM stages individually before making a final
prediction, our model proposes a direct overall stage prediction using ViT.
Additionally, we introduce a multi-view approach along with demographic data to
enhance prediction accuracy. To validate the effectiveness of our proposed model,
we also apply a CNN model for this task and compare the results. To the best of
our knowledge, this is the first work applying the ViT model for overall stage

prediction of lung cancer based on the TNM system.



Finally, to validate our models across all contributions, we employed various
evaluation metrics and loss functions. For the classification model, we assessed metrics
such as accuracy, precision, recall, and F1-score. The segmentation model utilized the
Dice Similarity Coefficient (DSC) and Intersection over Union (IoU) metrics,
optimized with multiple loss functions—including Dice loss, binary cross-entropy
loss, and focal loss—to compare their performance effectively. In the Vision
Transformer model for overall stage prediction, accuracy was used, with cross-entropy
loss applied during training. These methods ensured a comprehensive evaluation of

our contributions to enhancing lung disease diagnosis and prognosis assessment.

1.5. Thesis Structure

The research conducted in this thesis revolves around three main areas: Multimodal
medical data based on an advanced DL framework for multiclass lung disease classification,
lung tumor segmentation, and overall stage prediction of lung cancer. The thesis is structured

into six distinct chapters, as indicated below.

Chapter 2 comprehensively analyzes the existing literature on identifying and categorizing
lung diseases using medical imaging techniques, i.e., Chest X-ray images. The second section
of the literature examines the segmentation techniques employed with multi-modality pictures,
specifically CT and PET scans. The CT-feature extraction, PET-feature extraction, and feature
fusion procedures are thoroughly explained. The third section of the literature review examines
research that explicitly investigates lung cancer stage classification and overall stage prediction
based on the TNM stage system using both CT imaging and clinical data. The literature
discusses many methodologies that utilize machine learning (ML), deep learning (DL), transfer
learning, Vision Transformer (ViT) approaches, applied pre-processing processes, dataset

robustness, and limitations.

Chapter 3 proposes a novel DL framework for the multi-class classification of Normal,
Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and the latest addition, COVID-
19, from the chest X-ray images. A detailed description of the tremendous datasets from various
resources used and the pre-processing steps performed on the dataset are also discussed. The
pseudo-code for the proposed algorithm is given along with the architecture of the proposed
model. The mathematical notations for the performance metrics used are also explained.

Furthermore, the results obtained and the accuracy and loss graphs are presented and discussed



in detail. Finally, the chapter ends with the conclusion and future scope for classifying chest X-

ray images into different lung diseases, including lung cancer.

Chapter 4 proposes using an advanced deep learning model called U-net to accurately
separate lung tumors utilizing multiple types of imaging data, specifically CT and PET scans.
The intricate structures of the suggested models, which incorporate several fusion approaches
such as early fusion, late fusion, dense fusion, hyper-dense fusion, and hyper-dense VGG16 U-
Net, are discussed. The merits and disadvantages of each model are emphasized. The findings
from all the models are compared with the benchmark models. The several loss functions
employed for model training are examined, and their mathematical expressions are provided.

Each model's anticipated segmented image is compared to the corresponding ground truth.

Chapter 5 suggests an innovative method to predict the overall stage of non-small cell lung
cancer (NSCLC) by employing sophisticated deep learning methods, including Vision
Transformers, using the multi-input dataset, including radiological and clinical data. The
chapter discusses the conventional TNM staging approach, the clinical parameters affecting
stage prediction, and the rationale for using Transformers. The thorough comprehension of
lung cancer staging, novel strategies, and explanation of the benefits of Vision Transformers in
this crucial medical application are discussed. The ViT-based architecture for overall stage
prediction is presented and discussed in detail. The findings for the TNM staging classifier are
discussed and compared with the overall stage prediction-based approach and the benchmarked

models.

Chapter 6 presents the concluding section and summarizes this research by evaluating the
effectiveness of the offered techniques and analyzing their practical implications for Lung
Cancer Diagnosis and Prognosis assessment based on overall stage prediction using multi-
modality imaging and clinical data. It also highlights the limitations and potential future work
that enhances patient outcomes, facilitates and expedites the diagnosis process, and saves time

for decision-making.



Chapter 2

2. Literature Review

2.1. Introduction

Manually interpreting medical images can be characterized by its time-consuming nature,
susceptibility to human error, and susceptibility to intra-observer and inter-observer variability.
In recent years, using artificial intelligence (Al) techniques, namely deep learning models, has
proven crucial in image processing automation. This development has garnered significant
interest within the field of medical imaging. Medical imaging has been significantly
transformed by the widespread adoption of CNNs, which have proven to be highly effective at
capturing intricate patterns and facilitating the automated identification of diseases and
anomalies. Recent research has exhibited noteworthy advancements in lung cancer detection,

segmentation, and classification [12, 13].

The literature is divided into six sections. Section 2.2. discusses the background. Section
2.3. provides the literature review of multi-class lung disease classification using DL. Section
2.4. describes the literature for Lung Tumor Segmentation using Multimodality of Computed
Tomography (CT) -Positron Emission Tomography (PET) Scans. Section, 2.5. provides
detailed literature about Non-Small Cell Lung Cancer TNM Classification and Overall Stage
Prediction Using Vision Transformers. Section 2.6 summarizes the research gaps. Finally, the

chapter concludes with a summary presented in section 2.7.

2.2. Background

Numerous studies have discussed the efficacy of computer-aided diagnoses in the medical
context, based on collaboration between medical researchers and computer scientists. Certain
computer-aided diagnosis systems in medicine may be classified as expert systems since they
seek to replicate the decisions of medical professionals. In addition, computer-aided detection
systems in medicine can process complicated and large clinical data [14, 15]. Computer-aided
detection systems can also assist clinicians to gain new insights into data and apply the
knowledge to improve diagnostic accuracy. As a result, the systems are considered intelligent
systems since they employ a process of feedback to continuously enhance their performances.

10



Large clinical data is complicated to analyze. Intelligent Computer-aided diagnosis systems
using data mining, artificial intelligence (Al), and deep learning methodologies are beneficial

in diagnosing an array of illnesses and medical disorders.

In the last century, researchers have accumulated substantial knowledge regarding human
anatomy and physiology. In recent years, chest X-rays (CXR), ultrasounds, and MRI have
played vital roles in enhancing the accurate diagnosis of human diseases. Significant
improvements in healthcare and medical research have helped people to improve their quality
of life as new technologies have facilitated the accurate diagnoses of patients’ ailments and
diseases. In the last few decades, medical experts have faced challenges in conducting an
accurate diagnosis of diseases, which has compounded unnecessary healthcare and malpractice
claims for both doctors and patients. Machine learning, deep learning, and statistical analysis
are effective tools for computer-aided diagnosis. These tools are used in solving difficult
computer vision tasks in medical imaging, such as segmenting lungs, classifying lung diseases,
and so on. With recent developments in deep learning, machines can perform equally or better
than humans in a wide range of activities. For example, deep learning can be used to calculate
treatment outcomes, such as cancer therapy. With huge-labeled datasets and deep learning-
based approaches, promising findings are developed in the categorization of thoracic disorders
using a CXR modality. In addition, machine learning is the model that can learn and make
decisions based on a vast number of input data sets. Artificial intelligence performs activities
that require human intellect, such as voice recognition, translation, and the ability to analyze
colors and shapes by evaluating incoming data and making predictions. A combination of
machine learning algorithms, known as deep learning, has demonstrated remarkable success in
various sectors, particularly in the healthcare sector [14, 15]. Deep learning models can
accurately predict and categorize numerous diseases, such as tuberculosis (TB), lung cancer,
pneumonia, and currently COVID-19, using images without human intervention. As the
network becomes larger, data representation becomes deeper, making deep learning to be more
effective, contrary to classical machine learning. Consequently, the model automatically
collects characteristics and generates more accurate outcomes. Since the models use a
combination of non-linear functions rather than linear functions, deep learning algorithms are

more accurate than typical machine learning methods.

In late 2019, the coronavirus (COVID-19) pandemic invaded the planet, leading to an alarming
scenario. The virus was first formally discovered in Wuhan, China, in December 2019, and the

World Health Organization (WHO) designated it as an emergency health problem at the
11



beginning of 2020. By March 2020, WHO classified it as a pandemic [16]. The Coronavirus
causes pneumonia, persistent cough, high fever, and fatigue, among other symptoms. Reverse
transcription-polymerase chain reaction (RT-PCR) is employed to identify positive cases of the
virus. However, it can take several hours, even days, to generate results using this form of
diagnosis. RT-PCRs are both time-consuming and expensive. Subsequently, experts are facing
significant challenges in developing alternatives via detection technologies. Al is being used to
automate the diagnosis of many diseases today, and Al has been proven to achieve superior
performance during automatic image categorization using various machine learning
algorithms. The detection is based on the image processing and the classification of the features
extracted from the CXR or CT, as shown in Figure 2.1. Furthermore, machine learning specifies
models that have the capability of learning and making decisions based on a massive input of

data samples.
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Figure 2.1. Image processing-based classification model

In the context of deep learning, the extraction and classification of features from images is the
primary goal. Deep learning has been a huge success in a wide range of industries, including
healthcare [15]. In addition, deep learning can develop models that can accurately predict and
diagnose illnesses using images. It has been effective in diagnosing TB [17-22], pneumonia
[23-30], lung cancer [31-35], and COVID-19 diagnosis without the need for human expertise.
Unlike traditional machine learning, the fundamental reason behind using deep learning
techniques is its ability to build the model of input as the size of the network deeply grows.
Because of this, the model automatically gathers data and generates findings that are more
accurate. Deep learning models, in contrast to typical machine learning algorithms, describe
features using a sequence of non-linear functions that are incorporated to optimize the accuracy

of the utilized model.
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In 2020, lung cancer ranked as the second most prevalent cancer, accounting for around
11.4% of all newly identified instances of cancer, with approximately 2.2 million individuals
affected. Furthermore, it was the primary cause of cancer-related mortality, responsible for
approximately 18.0% of the deaths caused by cancer globally, resulting in approximately 1.8
million fatalities. Loss of appetite, exhaustion, chronic coughing, and chest pain are among the

symptoms of lung cancer, which can cause unimaginable anguish for the sufferer [36].

Segmentation of lung tumors, treatment evaluation, and tumor stage classification have
become significantly more accessible with the advent of PET/CT scans. Moreover, the
molecular characteristics and anatomic aberrations of the target lesion can be observed with
PET/CT. PET imaging technique does not involve cutting or surgery. By detecting illness
markers earlier, PET allows for earlier diagnosis than imaging modalities like MRI and CT
[37]. Their metabolic processes can be analyzed for their physiological function and
biochemical features by studying particular organs and tissues. PET can detect molecular and

cellular levels of tissue metabolism.

However, multimodality imaging technology, such as PET-CT scanners, has
simultaneously made it possible to record functional and anatomical information [38]. It is a
rigorous and time-consuming process for oncologists, radiologists, and pulmonologists’ to
manually segment the lesions and tumors, leading to delays in therapy and decreased survival
rates, particularly in clinics with insufficient resources. In addition, specialist knowledge and
clinical experience are necessary for high-quality manual localization and segmentation.
Because of this, computer-aided diagnostic (CAD) systems [39] were developed to replace
radiologists’ manual viewing of lung cancer. Combining lung segmentation approaches with
radiologists’ knowledge can reduce the burden on radiologists and boost their productivity and
accuracy. Many recent advancements in image segmentation have allowed for more precise
and effective treatment and diagnosis. Thresholding, Atlas, and Region Growing are some
examples of classic automatic segmentation methods. These approaches use shallow qualities
of an image, such as grayscale, texture, gradient, and many more, to segment the object [40].
However, conventional segmentation techniques have difficulty distinguishing between tumors
and surrounding healthy tissue because their intensity distributions are similar. In addition,
these tasks typically involve manual processes and are characterized by a significant

investment of time. Moreover, they are subject to substantial heterogeneity across operators.
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Furthermore, the complexity of the background in CT images consistently provides quite
different information when comparing PET and CT scans. As a result of these constraints, deep

learning-based algorithms have proven to be superior in au-to-segmenting medical images [41].

Deep learning (DL) models automatically extract features and apply the learned high-
dimensional abstractions for performing segmentation. The effectiveness of fully convolutional
networks (FCN) for semantic segmentation is promising [42]. In an FCN, the fully connected
layer is replaced by a convolutional layer. This comprehensive framework has served as the
foundation for subsequent studies of semantic segmentation of medical images. Medical image
segmentation commonly uses U-Net [43], built on the FCN architecture. Using skip-connection
architecture, each layer’s down-sampled features are joined with their up-sampled
counterparts. This mechanism is similar to an encoder-decoder, but it is more effective and
doesn’t require a lot of disk space. FCN-based networks, such as U-Net, have surpassed manual

or semi-automatic segmentation methods since the emergence of big data methods.

The U-Net architecture is a convolutional neural network (CNN) primarily used to
recognize image patterns. U-Net semantic segmentation relies extensively on the
categorization of image pixels. Segmenting lung tumors can be reduced to a
foreground/background pixel binary classification problem. The down-sampling and up-
sampling module is responsible for the U-Net architecture. The surface layer is where
localization information is learned, but the down-sampling procedure, also known as the

pooling procedure, may improve the volume of context data the network learns [43].

The VGG model investigates the effect of convolutional network depth on recognition
accuracy in a large-scale setting. The main contribution is a thorough evaluation of increasing-
depth networks using an architecture with 3x3 convolution filters, which shows a significant
improvement. The VGG model, a kind of CNN, was created to improve model performance
when more layers are added. The VGG model takes 224x224 color images as its primary input
and feeds them via a sequence of convolutional layers with filter sizes of 3x3 and 1x1 with the
stride of 1 and valid padding, as well as Max-pooling with 2x2 with the stride of 2. Finally, a
three-layer network is developed with a soft-max activation function and 4096 neurons in the
first two layers, followed by 1000 neurons in the last layer. VGG [44] presents the two primary
models, VGG16 and VGG19. In comparison to the VGG-19 network, which has 19 layers of
typical convolutional networks, the VGG-16 network [44] only has 16, each of which has 33
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filters and strides of 1. Each of the five blocks is separated from the next by a max-pooling

layer. There are three interconnected layers on top of the blocks.

Based on a report published by the American Cancer Society in 2022, it was projected that
there would be around 1.9 million newly diagnosed cases of lung cancer and a mortality rate
exceeding 600,000 in the United States. Out of the fatalities, lung cancer was responsible for
an average daily of 350 deaths [45]. The delayed identification of lung cancer nodules and
subsequent management of lung cancer patients is associated with elevated mortality rates.
Typically, those diagnosed with lung cancer face a survival rate ranging from 10% to 16%
during a five-year period. Nevertheless, the survival rate has the potential to increase to 70%
in the event of an early diagnosis of lung cancer [46]. Moreover, people whose lung cancer has
progressed to a later stage have a much lower chance of survival. Prioritizing lung cancer in its
first stages is imperative to enhance the likelihood of patient survival. In recent decades,
medical imaging methods have assumed a progressively significant role in the screening,
prognosis, survival estimation, and early identification of lung cancer, ultimately contributing
to treatment efficacy and preventative strategies [47]. X-rays are frequently used as a
preliminary screening for lung cancer as the X-ray modality can reveal lung abnormalities, but
a CT scan is now considered the gold standard. Nevertheless, due to the two-dimensional nature
of X-rays, these images cannot precisely determine the specific location of any abnormalities.
In contrast, CT images are three-dimensional representations that offer comprehensive insights
into cancer, encompassing critical aspects such as tumor position, morphology, and

characteristics [48].

Lung cancer is classified into two distinct categories, with differentiation depending on the
microscopic characteristics of cancerous cells. There are two primary forms of lung cancer:
small cell type lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Among these,
NSCLC is the predominant form, representing approximately 80%-85% of lung cancer
diagnoses [49]. Both categories are extensions of the TNM system [50]. Medical professionals
primarily categorize patients into limited and extensive stages in treatment planning for small
cell lung cancer (SCLC). During the initial phase, neoplasms are localized inside a specific
thoracic area, such as a solitary pulmonary lesion or a lymph node on the same side. On the
other hand, the advanced stage of cancer is characterized by the dissemination of malignant
cells to both thoracic areas and multiple other anatomical sites via metastasis. SCLC is
characterized by its quick growth and aggressive metastasis, often leading to a fatal outcome
within a few weeks. Hence, medical professionals must make critical therapy determinations
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expeditiously. Nevertheless, it is not always true that physicians exclusively adhere to a binary
classification of small cell lung cancer (SCLC) stages. Occasionally, medical professionals may
also opt for TNM staging as an alternative to assessing SCLC. The determination of treatment
varies among individual patients. The medical practitioners use to choose the TNM staging
instead of evaluating SCLC. However, the selection of treatment options varies with respect to

individual patients.

2.3. Multi-Class Lung Disease Classification from

Chest X-Ray Using DL

In most countries, chest computed tomography (CT) and X-ray pictures are widely utilized
as a feasible option for identification of COVID-19. However, COVID-19 identification is a
complex process that requires clinical imaging of patients [51-57]. Lung cancer represents a
major source of mortality in humans. The immediate diagnosis could improve human survival
[31-34]. Applying machine learning and image processing has presented considerable promise
for lung cancer diagnosis. This section discusses an exhaustive evaluation of deep learning
models for TB, COVID-19, lung cancer, and pneumonia. Transfer learning methods, such as
VGG-16, ResNet-50, and InceptionV3, to clinical pictures of lung illnesses and COVID-19 has
offered promising results [18]. It is discovered that pneumonia is among the significant
symptoms of COVID-19. Transfer learning helps discover that the same virus causes
pneumonia and COVID-19. The following subsections describe the literature for COVID-19,

lung cancer, pneumonia, and TB detection.

2.3.1. Covid19 Detection
A study demonstrates that the information obtained by a model trained to detect viral

pneumonia may be applied to identify COVID-19 [56]. As a result, Haralick features can be
used to facilitate feature extraction. This approach involves statistical analyses that focus on a
specific area of COVID-19 diagnosis. In comparison to the traditional classifications, transfer
learning has consistently proven to offer statistically significant outcomes [56]. Some studies
developed and analyzed a fully automated COVID-19 detection framework utilizing CTX. To
diagnose COVID-19, the visual features were extracted from volumetric chest CT images using
COVID-19 neural network approach. The outcomes show that the approach has outperformed
the existing work. Pre-trained models-based CNN architecture such as Inception-ResNetV2,
ResNet152, ResNet50, InceptionV3, and ResNet101 was used in related work to identify
COVID-19 pneumonia based on the CXR images. Among the existing models, the ResNet50
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exhibited the most accurate classification outcomes [53]. The comparison and modeling were
based on CT images of 101 pneumonia, 88 COVID-19 patients, and 86 healthy cases from two
areas in China. A detailed relation extraction neural network (DRENet) learning-based CT
diagnostic algorithm identified COVID-19 patients. The model correctly distinguished
between COVID-19 patients with a recall of 0.93, AUC of 0.99, and accuracy of 0.96. The
research showed that deep learning based on CT scans may help to detect COVID-19 patients
and automatically identify possible abnormal changes. Another study categorized COVID-19
CXR images by applying modified MobileNet and a ResNet architecture. With this approach,
characteristics from multiple CNN layers are dynamically combined to overcome the gradient
vanishing problem. The proposed approaches outperform the current methods by 99.3% on the

CT image dataset and by 99.6 % on the CXR [54].

Some studies developed a model to distinguish between critical and severe COVID-19
instances using deep learning characteristics and radionics based on D-Resnet [52, 58]. These
authors studied 217 individuals in three Chinese hospitals, 82 with extreme severity and 135
with serious disease. The patients were grouped into two (174 patients) for training and (43
patients) for testing. The authors created a 3-dimensional deep learning network using the
clipped segments and multivariable logistic regression to integrate relevant radiomics
characteristics and deep learning scores. To test the robustness of their methods, they used
stratified analysis, cross-validation, decision curve analysis, and survival analysis. An AUC of
0.909 distinguishes between critical patients in the test and training groups [58]. Another study
applied  InceptionV3, NASNet, Xception, DenseNet, MobileNet, = VGGNet,
InceptionResNetV2, and ResNet for classifying the COVID-19, which was tested on the mixed
dataset of CXR and CT images. DenseNet121 offered the best performance with an accuracy
of 99% [52]

Image segmentation is used to categorize chest CTX into pneumonia, COVID-19, and
normal illnesses using four CNN base learners, a modified stack ensemble model, and Naive
Bayes as the meta-learner in one research. For COVID-19, pneumonia, and normal classes, the
suggested technique beats current techniques by .9867 on standard datasets and 0.98 Kappa on
the same datasets [59] based on CT scans. By reducing manually labeled CT images, the
suggested technique may accurately detect COVID-19 infections and rule out the case of
COVID-19. Based on the positive qualitative and quantitative results, the recommended
approach is widely used in large-scale clinical trials [60]. The convolution neural networks are

effective in converting 360 X-ray and CT scan pictures into a categorization on a binary class
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pneumonia-based translation of decision tree, Inception V2, and VGG-19 models. Compared
to decision tree (60%) models and Inception V2 (78%), the fine-tuned version VGG-19 (91%)

exhibits the greatest increase in training and validation precision [60].

The GSA-DenseNet121-COVID-19 is a unique mixed CNN architecture that utilizes
DenseNet121 and the optimization technique of gravitational search (GSA). The DenseNet121-
COVID-19 could identify COVID-19 better than other DenseNetl21, which could only
diagnose 94% of the test set. The suggested method was contrasted with an Inception-v3 CNN
architecture and manual analysis when computing hyperparameter estimates. The GSA-
DenseNet121-COVID-19 outclassed the comparison technique, which could only categorize
95% of the test set samples [61].

EfficientNet-based pre-trained models were lowered using kernel principal component
analysis. Then, multiple retrieved features were merged using a feature fusion technique.
Finally, stacked ensemble meta-classifiers were used to classify the model into two stages.
Predictions were made in the first step using a support vector machine (SVM) and a random
forest, which were then pooled and fed into the second stage. Next, a logistic regression
classifier divides the X-ray and CT data into two classes (COVID and NON-COVID). The
model’s performance was compared to other CNN-based pre-trained models. The new model
outperforms previous approaches and may be used by clinicians for point-of-care diagnosis
[62]. In a comparable work, researchers used ResNet32 and the deep transfer learning
technique to categorize COVID-19-infected patients, and the results were published.
Comparing the COVID-19 classifier to earlier supervised learning models, experimental data
demonstrated that it delivered superior outcomes when compared to previous learning models

[63].

A cutting-edge attention-based deep learning model with VGG-16 and a fine-tuned
classification process was designed using a unique deep learning model that uses a convolution
layer of the VGG-16 models for COVID-19. The experimental analysis shows steady and
promising performance after comparing the suggested approach to the existing models [64].
The integrated stacking deep convolutional network using pre-trained models like ResNet101
and XceptionV3 was applied for InstaCovNet-19. The accuracy of .99 for three classes
(Normal, Pneumonia, COVID-19) and .9953 for two classes (COVID, non-COVID) is
achieved. In ternary classification, the suggested model obtained 98% accuracy, whereas binary

classification achieved 100% precision and 98% recall [64].
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The CNN is used to implement binary and multiclass classification. The model was trained
on 3877 CT and X-ray pictures, of which 1917 were of COVID-19-affected people. The binary
classifier achieved a 99.64% accuracy and exhibited a 99.58% recall, a 99.56% precision, a
99.59% F1 score, and a 100% ROC. The model was trained with 6077 photographs. A total of
1917 patients were of Covid-19 infected patients, 1960 healthy people, and 2200 pneumonia
patients. The suggested technique obtained 98.28% accuracy, 98.25% recall (or sensitivity),
98.22% precision, 98.23% F1-score, and 99.87% ROC for multiclass classification [65].

2.3.2. Lung Cancer Detection

The early detection of lung cancer increases survival chances from 14% to 49%. Although
CT approaches are found to deliver more accuracy than X-rays, a conclusive diagnosis relies
on many imaging modalities. An artificial DNN can spot lung cancer in CT images. Therefore,
studies have proposed an adaptive boosting technique and a DenseNet to classify the lung
image as normal or malignant. A total of 201 lung pictures have been included in the training
dataset, with 85 percent of them being utilized for training and 15 percent being used for testing
and classification. The proposed approach was shown to achieve a 90% accuracy in testing
[34]. The MLP classifier offered a higher accuracy of 88.55% than the alternative classifiers,
according to the outcome of the analysis of a study [33]. The CNN, DNN, and sparse auto-
encoder deep neural networks were employed to identify lung cancer calcification. CT scans
of benign and malignant lung nodules were classified using these networks. The Lung Image
Database Consortium image collection (LIDC) database examined the networks where
accuracy was 84.15%, sensitivity 83.96%, and specificity 84.32% [32]. CNN was the most
accurate of the three networks. Another work applied Optimal Deep Neural Network (ODNN)
and Linear Discriminate Analysis (LDA) to evaluate CT lung images that reduce the
dimensionality of deep features. The ODNN is used with CT scans and optimized using the
Gravitational Search Algorithm to classify lung cancer, thereby offering 96.2% sensitivity,

94.2% specificity, and 94.56% accuracy [31].

2.3.3. Pneumonia Detection

Since medical specialists face challenges in distinguishing between COVID-19 and
pneumonia, one study utilized an artificial neural network, ensemble classifier, SVM, and KNN
for categorization. However, a RNN with a LSTM has been proposed as a deep learning
architecture to identify lung conditions. The outcomes of the experiments demonstrated the
resilience and effectiveness of the suggested model [30]. Another work uses an ensemble of

InceptionResNet V2, ResNet50, and MobileNet V2 for classifications. The outcomes
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revealed that the ResNet50, MobileNet V2, and InceptionResNet V2 models provide an F1
score of 94.84%, which is higher than other models [29]. In addition, the CNN with pre-trained
weights is utilized to categorize COVID-19, pneumonia, and healthy individuals using transfer
learning techniques. Those who have active SARS-CoV-2 and pneumonia were accurately
categorized in the dataset, which is one of the most important discoveries of that work [25].
Another study examined the potential of using machine learning to delineate and pinpoint
pneumonia in CXR using RetinaNet and Mask R-CNN as an ensemble for the identification
and localization of pneumonia, thereby achieving a recall of 0.793 for a large dataset [28]. For
a variety of lung diseases, the transfer learning approach was used to capture images on CXR
and CT. As COVID-19 resembles pneumonic viral lung illness, COVID-19 detection is
challenging and relies on a thorough examination of a patient’s clinical pictures. The goal is
attained using a novel architecture trained to identify virus-related pneumonia for COVID-19
detection. When compared to traditional categories, the findings of transfer learning are

strikingly different [27].

One study develops the CNN model from scratch to extract characteristics from an image
of pneumonia infected person’s chest X-ray and categorize it. This concept might alleviate
some of the issues associated with dealing with medical images. It is difficult to obtain a
significant number of pneumonia datasets for this classification assignment due to the limited
availability of such data. Multiple data augmentation strategies were used to increase the
accuracy of the training and validation classification of the proposed model. This has achieved
a significant precision of 0.94814 in the validation phase [26]. The transfer learning system
automatically differentiates between 3883 CXR pictures classified as exhibiting pneumonia
and 1349 that are designated normal. As an initialization, the suggested technique makes use
of weights pre-trained on ImageNet using the Xception Network. When compared to current
approaches, the model is competitive in obtaining 0.84, 0.91, 0.99, and 0.97 for precision,
recall, F1, and ROC, respectively [24]. In a separate study, researchers studied 180 X-ray
images of persons who had been infected with COVID-19. The research attempted to employ
the most successful systems, such as ResNet50V2 and Xception networks, to detect the virus.
Overall, the suggested model achieved a 91.4% accuracy for all classes and a 99.50% accuracy

for instances of COVID-19 [23].

2.3.4. Tuberculosis Detection
Using a CXR dataset from the National Library of Medicine Shenzhen No.3 Hospital,

researchers developed a DCNN model to detect tuberculosis. This dataset was compared with
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a non-TB-specific chest X-ray dataset of a different population. The DCNN offered an AUC of
0.9845 and 0.8502. The AUC of the supervised DCNN model in the CXR dataset, on the other
hand, was much lower, at 0.7054, than in the other datasets. A total of 36.51% of aberrant
radiographs in the CXR dataset associated with tuberculosis were predicted by the final DCNN
model [17].

Another study combined ResNet and depth-ResNet to predict severity scores and analyze
TB’s likelihood. A depth-ResNet of 92.70% and ResNet-50 of 67.15% were produced for TB
detection. The study used the overall severity probability, different likelihoods for high severity
(1 to 3 scores), and low severity (4 and 5 scores), where scores of 1 to 5 were converted into
the probabilities of 0.9, 0.7, 0.50, 0.30, and 0.2. A 75.88% and 85.29%, respectively, are the
averaged accuracies for both approaches [18]. Other studies proposed three standard designs
in the ensemble technique, namely AlexNet, GoogleNet, and ResNet. As a result, a new
classifier for TB categorization has been developed from scratch. A combined dataset of
publicly accessible standard datasets is used to train and test the suggested approach. Accuracy
of 88% and the AUC of 0.93%, which is better than most existing approaches, are achieved
[19].

The hierarchical feature extraction for abnormality detection method uses two levels of
hierarchy to classify characteristics into healthy and unhealthy categories. Two levels of feature
extraction are identified: level one is handmade geometrical feature extraction, and level two
is typical statistical feature extraction and textural feature extraction from segmented lung
fields. They were tested on 800 CXR images derived from two public datasets to verify their
performance. AUC = 0.99 0.01 for Shenzhen and 0.95 0.06 for Montgomery, which illustrated
that the two TB detection approaches offered a promising performance as compared to the
existing techniques, as demonstrated by the obtained findings. Furthermore, Friedman's
posthoc multiple comparison methods are demonstrated to statistically validate the suggested
method [20]. Latif et al. [66] automate the diagnosis procedure of pneumonia using image
processing techniques. It presents a suggested and realized automated method for accurately
diagnosing pneumonia utilizing images from the DICOM chest X-ray collection. This research
presents a pneumonia diagnosis system with enhanced deep residual networks (ResNet)
architectures. The system is evaluated using a dataset of 30,227 DICOM Chest X-rays. Two
residual network models, Version 1 and Version 2, were employed. Additionally, the outcomes
were compared with three distinct CNN models and methodologies discovered in recent

scholarly works. The findings demonstrate that the proposed ResNet (Version 2) technique
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attains superior accuracy compared to CNN and other previously suggested approaches. The
ResNet model attained an average accuracy of 88.67% after 80 epochs. The reviewed studies
about chest disease detection and classification are summarized in Table 2.1.

Table 2.1. Literature summary for multi-class lung diseases classification

Disease Study Method Medical Performance
Image Acc. | Prec. | Sens.
COVID-19 [56] VGG-16, ResNet- | CXR+CT 93 91 90
50, InceptionV3
[58] VGG-19+ CT 94 95 90
ResNet-50
[55] DRE-Net CT 86 96 93
[54] Modified ResNet | CXR+CT | 993 | 99.7 | 99.1
[53] ResNet50 CXR 96.1 | 76.5 | 91.8
[52] DenseNetl121 CXR+CT 98 96 96
[51] VGG-16 CXR 98.67 | 100 98
[58] D-Resnet-10 CT 81.4 | 79.8 | 875
network
[59] VGG+CNN CT 96.2 | 97.3 | 945
[60] VGG-16, CXR+CT 91 94 97
InceptionV2, DT
[61] GSA- CXR 98.38 | 98.5 | 985
DenseNet121
[62] Deep learning CXR+CT 99 99 99
Meta classifier
[63] ResNet32+DTL CT 93 95 91
[67] VGG-16 CXR 79.58 | 92 95
[64] InstaCovNet-19 CXR 99.08 | 99 99
[68] CNN CXR+CT | 98.28 | 98.22 | 98.25
Lung [34] FPSO-CNN CT 95.62 | 96.32 | 97.93
Cancer [33] Multi-layer CT 88.55 | 86.59 | 89.84
Perceptron (MLP)
[32] CNN CT 84.15 | 84.32 | 83.96
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[31] MGSA CT 94.56 | 942 | 96.2
Pneumonia [30] RNN-LSTM CXR 95.04 | 88.89 | 95.41
[29] ResNet50 CXR 95.09 | 95.53 | 94.43
+MobileNetV2+
InceptionResNetV
2
[25] CNN with pre- CXR 91 92 87
trained weights on
ImageNet
[28] RetinaNet and CXR 83.80 | 75.8 | 79.3
Mask R-CNN
[27] Transfer learning | CXR+CT | 94.9 93 93
[26] CNN CXR 93.73 - -
[24] Xception Network CXR 973 | 843 99
pre-trained
weights on
ImageNet
[23] Xception+ResNet CXR 99.50 | 92.69 | 80.53
50V2
Tuberculosis [17] DCNN CXR 98.45 82 72
[18] Depth-ResNet CT 85.29 - 84.16
[19] Ensemble CXR 88.24 | 88.0 | 88.42
(AlexNet,
GoogleNet and
ResNet)
[20] CXR 99.40 | 99.42 | 99.40
(SVM+FOSF+GL
CM)
Lung [66]
Opacity ResNet CXR 88.67 - -
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2.4. Lung Tumour Segmentation using Multimodality of

CT-PET Scans

CT and PET imaging are used in various research papers because of the unique insights they
provide into the structure and function of the human body, respectively. Combining the two
allows for the early detection of even the tiniest lung tumors. This section provides the detailed

literature for lung tumor segmentation using multimodality imaging CT and PET.

Wang et al. [69] advised a DL-based dual-modality approach using CT and PET scans to
develop an automated segmenting of lung tumors for radiation therapy planning. Two distinct
convolution routes were built into the 3D convolutional neural network for extracting features
at different resolutions from the PETs and simulated CTs, and a single deconvolution path was
also built into the network. Tumour segmentation via skip connections at each granularity was
achieved by aggregating the obtained characteristics from the convolution arms and feeding
them into the deconvolution pathway. A panel of oncologists judged the medical effectiveness
of the network-generated segmentation strategy. While this work has many promising
applications, it does have some caveats. The network may struggle to produce precise

segmentations when tumor edges are not precise on CT or PET.

Park et al. [70] presented a two-stage Unet model to boost the segmentation effectiveness
of lung tumors by utilizing [18F]FDG PET/CT, as precise segmentation is necessary for
determining the functional size of a tumor in this imaging modality. The LifeX program was
used to create the tumor volume of interest. In the first step, a 3D PET/CT volume is used to
train a global U-net, based on which a 3D binary volume is then retrieved to serve as an initial
representation of the tumor’s region. In the second stage, the PET/CT slice identified in Stage
1 is sent to the U-net, generating a 2D binary image centered on the eight adjacent slices. The
major drawback of the research is the lack of a 3D volume as the final result of the suggested
approach. It may cause the coronal and sagittal slices to have gaps between the binary

segments.

Xiang et al. [71] recommended a modality-specific segmentation network (MoS-Net) to
segment lung tumors. To better understand the differences between PET and CT scans, MoSNet
is taught to use modality-specific representations. In contrast, modality-fused representations
are employed to convert the typical characteristics of lung tumors in both scan types. The

authors suggest an adversarial approach that uses an adversarial purpose concerning a modality
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discriminator and a reserved modality common illustration to reduce the modality difference’s
approximation. As a result, the network’s ability to represent data for the segmentation in PET
and CT scans is enhanced. By generating a map for each modality, MoSNet can explicitly
quantify the weights for the attributes in each modality. However, the limitation of the research

is that the proposed approach is developed for 2D thorax PET-CT slices.

Fuetal. [72] proposed a DL system for lung cancer segmentation, i.e., a multi-modal spatial
attention module (MSAM). It is trained to highlight tumor-related regions selectively and
downplay those physiologically rising from the PET scans. Next, using the created spatial
attention maps, a CNN core is trained to focus on areas of a CT image with a higher propensity
for tumors. The drawback of the research is that the datasets used only had one observer define
the outlines. If numerous observers had been used to reach a consensus segmentation, things
would have gone much smoother. Because of the potential vagueness of the related
thresholding approach used to create the ground truth for the NSCLC dataset, the segmentation

outputs require human adjustment to correct for incorrectly categorized ROIs.

Zhong et al. [73] provided an innovative method for lung tumor segmentation by bringing
together a robust FCN-based 3D-Unet and a graph-cut-based co-segmentation model. Initially,
high-level discriminative features for PET and CT images are learned by independently training
two distinct deep Unets on the data sets. These features then create tumor/non-tumor masks
and probability maps. The final tumor segmentation findings are obtained using the PET and
CT probability mappings in a graph-cut-based co-segmentation model. Despite fusing their

extracted features, the research has given different results for CT and PET.

Hwang et al. [74] recommend a new network architecture called 3C-Net, which uses
numerous contexts in three distinct ways. Two decoders in the network are implemented to
exploit inter-slice contextual information: a segmentation decoder and a context decoder. The
context decoder receives the inter-slice difference features and uses them to predict the
segmentation mask’s inter-slice difference. Having this 3D background information for each
slice helps in attention direction. The prediction results from each decoder stage were used to
derive a loss function for network optimization. Since two modalities are used, i.e., PET/CT
data, a co-encoder block is implemented to extract mutually reinforcing features from both
modalities while simultaneously acquiring contextual knowledge about them. Weights for both
CT and PET were modified twice in co-encoder blocks. The co-encoder blocks take in relevant

data from both modalities, allowing for interaction while maintaining spatial and structural
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coherence. The encoder additionally includes an Asterisk Spatial Pyramid Pooling (ASPP)
block in its final step. The ASPP block aids the network in increasing the scope of its
observations and avoiding the loss of spatial context, which allows the recording of visual

context at various scales.

Kumar et al. [75] improve the multimodality of PET-CT fusion using CNN, which learns to
fuse complementary information. The proposed CNN stores modality-specific characteristics
before deriving a spatially variable fusion map. It allows quantifying the relevance of each
modality’s characteristic across various spots. Moreover, multi-plying the fusion maps with the
modality-specific feature maps yields representations of the complementary multimodality
data at various positions. The recommended CNN is tested on PET-CT scans of lung tumors,

where its ability to detect and separate many regions with variable fusion needs is evaluated.

Jemaa et al. [76] demonstrated a comprehensive strategy employing 2D and 3D CNN for
rapid tumor classification and metabolic data retrieval from whole-body FDG-PET/CT images.
This architecture is relatively economical in terms of tumor load, healthy tissue volume, and
the intrinsic heterogeneity of the input images. This is especially important for whole-body

scans due to their vast size and high asymmetry.

Zhao et al. [77] developed a novel multimodality segmentation approach that utilizes a 3D
FCN and simultaneously includes PET and CT data in tumor segmentation. Initially, the
network underwent a multitask training phase, during which two parallel sub-segmentation
architectures, each built with a deep CNN, were learned to generate map-like features from
both modalities. The PET/CT feature maps’ characteristics were re-extracted using a weighted
cross-entropy reduction technique, and a feature fusion component was then constructed using
cascaded convolutional modules. The softmax function was also used to generate the cancer
mask as the network’s final output. The research lacks an automatic setting of the weighting
parameters of the loss functions, which can affect performance. Also, more effective ways for

feature extraction can increase the segmentation's performance.

Using W-net, Zhong et al. [78] evaluate 3D Deep Fully Convolutional Networks (DFCN)
for tumor co-segmentation on dual-modality NSCLC and PET-CT images. CT and PET data
are combined to understand NSCLC tumors in PET-CT scans better and apply DFCN co-
segmentation. The recommended DFCN-based co-segmentation approach uses two connected

3D-UNets with an encoder-decoder to exchange complementing data between PET and CT.
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Bietal. [79] developed a hyper-connected fusion model that uses a CNN-TN fusion encoder
and a CNN-TN fusion decoder. With hyper-connections between them, the encoder splits into
three forks to independently handle PET, CT, and combined PET-CT scans. The transformer
encoders process the encoded image embeddings to learn complimentary characteristics in a
long-range dependency between the PET, CT, and concatenated PET-CT images. The
transformer decoder combines the learnt embeddings to find characteristics important for
segmentation, which are subsequently transformed into a 2D feature map. The segmentation
results are then up-sampled using a convolutional neural network. The data came from the soft-
tissue sarcoma databases. The data showed that the model’s dice had a probability of 66.36%.
The summary of the literature research on lung tumor segmentation models is listed in Table

2.2.

Table 2.2. Summary of literature on lung tumor segmentation models using

multimodality

PET-only Feature Dataset
Author Year CT-only Extractor
Extractor Fusion Description

Private clinic
dataset
Wang et al. [69] 3D CNN 3D CNN 3D CNN comprising 290
pairs of CT and
PET.

Private data of

Regional 887 individuals

Park et al. [70] Global Unet Global Unet ‘
Unet with lung
cancer.
126 PET-CT
‘ Dual-stream Dual-stream Decoder scans
Xiang et al. [71] o
encoder encoder branch containing
NSCLC
Multimodal CNN Two clinical
Encoder-decoder . ‘
Fuetal. [72] spatial architecture PET-CT
backbone CNN ‘ o
attention containing datasets of

27



PET-only Feature Dataset
Author Year | CT-only Extractor
Extractor Fusion Description
module skip NSCLC and
(MSAM). connections. STS
raph-cut-
SHap PET-CT scans
based co-
Zhong et al. [73] 3D-Unet 3D-Unet . from lung
segmentation )
cancer patients
model
F-18-FDG
Hwang et al. Shared co- Shared co- PET/CT scans
Shared co- encoder _
[74] encoder encoder from a private
hospital
Decoder
An encoder . _
_ _ using Biopsy-proven
Kumar et al. An encoder using using
. . multiscale NSCLC FDG
[75] multiscale output multiscale .
multimodal | PET-CT scans.
output )
Imput
Patients with
non-lymphoma
Hodgkin’s and
2D U-Net
Jemaa et al. NSCLC, which
- - and selected |
[76] includes 3664
VNet
FDG-PET/CT
images from
head to toe.
Voxel-wise | Private clinical
addition, dataset having
Zhao et al. [77] VNet VNet
along with 3D PET/CT
VNet images.
An encoder NSCLC
‘ ' Decoder _
An encoder using using ' patients who
Zhong et al. [78] ' ' using '
multiscale output multiscale ' received
multiscale )
output stereotactic
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PET-only Feature Dataset
Author Year | CT-only Extractor

Extractor Fusion Description
multimodal radiation
input treatment

Non-small cell

lung cancer

Bi et al. CNN-TN TN-CNN (NSCLC) and
CNN-TN Encoder .
[79] Encoder decoder one soft-tissue
sarcoma (STS)
dataset.

2.5. Non-Small Cell Lung Cancer TNM Classification and

Overall Stage Prediction Using Vision Transformers

This section is divided into three subsections: one section will be lung cancer detection using

vision transformers, and the second section will be based on TNM stage classification.

2.5.1. Lung Cancer Detection Using Vision Transformers
Nevertheless, the emergence of transformers has informed researchers about a significant
limitation of CNNSs: their inability to capture long-range dependencies effectively. This
limitation pertains to the challenges of extracting contextual information and identifying non-
local correlations among objects. Malaviya et al. [80] proposed a vision transformer model
utilizing CT data. The initial stage involved the classification of CT images from the dataset.
To effectively tackle the initial training model's limitations, a segmentation method was utilized
to partition the image into smaller patches. The image has been divided into smaller sections
to efficiently process it using the transformer encoder. This approach allows the training
process to proceed promptly while accounting for the variability in the images. The output of
the transformer model has been designated as the multi-layer perceptron head. By employing
the recommended model, the accuracy of 91.93% through rigorous training of 100 epochs is
attained. The limitation of the recommended technique is its relatively lower level of precision
when compared to other established methods. Another limitation is the computational expense

associated with the function, which exceeds that of systems constructed using CNNss.
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Similarly, Liu et al. [81] introduce a unique architectural framework, Res-trans networks, for
classifying CT images for lung cancer. The authors employ various methodologies to
investigate the research question. The utilization of local and global blocks was employed to
extract features that efficiently maintain the interconnections among pixels. The researchers
have devised residual blocks employing convolutional operations to extract local features.
Furthermore, the construction of transformer blocks includes the utilization of self-attention
processes to capture global properties efficiently. In addition, the Restrans network integrates
a sequence fusion block that efficiently merges and extracts the sequence data produced by the
transformer. The tenfold cross-validation results on the LIDC-IDRI dataset demonstrate that
the suggested method achieves superior performance, with an AUC of 0.9628 and an Accuracy
0f0.9292. However, a potential weakness of this study is the utilization of subjective malignant

labeling to train the model.

Wang et al. [82] also aim to classify lung nodules on CT images using a CT image-based
transformer model, TransPND. The model uses a 2D Panning Sliding Window technique to
enrich data, focusing on local features. The encoder component of TransPND can be subdivided
into two distinct sections: the Self Attention Encoder and the Directive Class Attention
Encoder. The self-attention process in the self-attention encoder resembles the conventional
approach, but it integrates Local Diagonal Masking (LDM) as a means to determine the
position of attention. The DCA method directs attention towards local features while reducing
computational burden. The Weight Learning Diagonal Matrix regulates residual connections in

both stages. Extensive tests on the LIDC-IDRI dataset show a precision rate of 93.33 %.

2.5.2. Lung Cancer TNM Stage Classification
A limited number of researchers have devised methodologies for classifying lung cancer stages.
Several techniques in this research are derived from emphasizing basic image processing
methods, explicitly emphasizing the T descriptor. These techniques involve calculating
parameters such as area, perimeter, and eccentricity. These approaches have been previously
discussed in references [83—85]. Additional strategies involve utilizing convolutional neural
network (CNN) based algorithms specifically emphasizing T or N descriptors. The studies
[86]propose a convolutional neural network (CNN) approach in a two-dimensional (2D)
framework for the classification of T categories, specifically distinguishing between T1/T2 and
T3/T4. The researchers employed FDG PET/CT data and obtained 82.6% average accuracy
with cross-validation. The final model yielded a test accuracy of 69%. The current approach is

limited to binary categorization and does not account for individual T-class distinctions.
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Furthermore, since all three labels are required for accurate TNM staging, the above method

omitted the N and M descriptors.

To classify the T-stage of lung cancer, researchers have devised a method based on a double
convolution neural network, as described in references [87]. Nevertheless, it may fail to
account for certain T-phases and N, M stages. In their study, Paing et al. [88] provide a
methodology for the identification and stage classification of lung cancer. This methodology
utilizes five distinct methods: the Support Vector Machines, K-nearest neighbor, Neural
Networks (NN), decision tree, and ensemble tree. The researchers employed four distinct
datasets, and NN attained the highest accuracy of 90.6% for classifying a total of seven T-

stages.

The study by Zhao et al. [89] proposes a novel approach that utilizes cross-modal 3D DL
techniques to predict lymph node metastasis in patients diagnosed with clinical stage T1
adenocarcinoma. The researchers integrate previous clinical characteristics acquired by
combining the clinical data with the image features. The researchers conducted an experiment
using a dataset obtained from a privately owned hospital, resulting in an accuracy rate of 87.6%.
There is a limited availability of studies that suggest a comprehensive classification system for
the TNM staging of lung cancer, with Moitra et al. [90] being the sole identified study that
considers all three descriptors (T, N, and M) for this purpose. The researchers utilize an openly
accessible dataset known as NSCLC-Radiogenomics [91]. The authors present a 1D CNN as a
potential approach to classifying the lung cancer TNM stages and histological grading. The
characteristics of the tumor have been derived from the delineation of PET/CT images of the

patients.

Tyagi & Talbar [92] aim to provide a new and effective method for categorizing the stages of
lung cancer using the TNM criteria. A multi-level 3D deep CNN called Lung Cancer, Stage
Classification Network, is recommended. The recommended network architecture has three
classifier networks, each designed to classify T, N, and M-labels. Firstly, the data pre-
processing stage involves augmenting the CT images and processing the label files to extract
the necessary TNM labels. The classification network employs a DCNN incorporating a
contemporaneous squeezing and excitation element and asymmetric convolutions to categorize
each label separately. The overall stage is determined by combining all three descriptors. The
simultaneous squeeze and excitation unit improves the algorithm's classification accuracy by

enabling it to concentrate on the crucial information in the image. Asymmetric convolutions
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are utilized to reduce the computationally complex nature of the network. The average accuracy
for the T-Stage classification was 96.23%, the N-Stage classification was 97.63%, and the M-
Stage classification was 96.92%. Furthermore, a classification accuracy of 97% is achieved for

the overall stage categorization.

The classification process necessitates some fundamental characteristics, followed by
considering a one-dimensional aspect. The implementation of CNN obtains the final
classification results. The researchers have attained a mean accuracy rate of 96%, indicating a
commendable level of performance. This technique offers several benefits, including a
streamlined model, reduced computational requirements, and exceptional precision.
Nevertheless, this approach has certain disadvantages, including the need for extensive human

pre-processing of the data before its application in a Convolutional Neural Network (CNN).

Initially, the tumor regions undergo segmentation; then, characteristics are extracted from these
regions. Subsequently, a manual selection process is employed to identify relevant features for
classification. In addition, they used segmentation to isolate the tumor, which prevents
examination of adjacent structures for staging purposes. In addition, it is imperative to consider
various metastasis forms when assessing M-staging. In the case of brain metastasis, medical
professionals choose to utilize a brain magnetic resonance imaging (MRI) scan. However, in
the case of other forms of metastasis, such as adrenal metastasis and liver metastasis, a
comprehensive CT scan is necessary to examine several organs for metastatic growth.
Segmenting lymph nodes or liver tumors that have metastasized from lung cancer poses a
significant challenge throughout lung tumor segmentation. Information about the T, N, and M
stages cannot be adequately determined based only on the excised tumor region. The primary
objective of this study was to rectify the insufficiencies identified in previous research about
the categorization of lung cancer staging and forecasting of the overall stage. The constraints
observed in previous studies are attempted to address by employing direct overall stage

prediction utilizing Vision Transformer architecture.

2.6. Summary Of Research Gaps

The literature review reveals several significant gaps in current research on lung disease

diagnosis, tumor segmentation, and staging of lung cancer.

From the literature review, most existing studies focus on binary classification architectures

for lung disease diagnosis using X-ray imaging (e.g., [19, 26, 28, 53]). While binary

32



classification provides effective results, it limits the model’s ability to learn complex patterns
due to the reduced number of classes. This simplified approach makes the model less capable
of capturing diverse patterns, and as the number of classes increases, the model's performance
tends to degrade. Additionally, in binary classification, the starting baseline accuracy during
testing is inherently 50% due to the limited number of outcomes. While this simplifies the
classification task and often leads to seemingly high-performance metrics, it fails to challenge
the model to learn the intricate and overlapping patterns that are critical in distinguishing
between multiple diseases. This lack of complexity in binary architectures ultimately limits
their applicability in scenarios requiring the accurate classification of multiple conditions,
where precise differentiation is essential for timely and effective treatment. Although several
attempts have been made to develop multi-class architectures for lung disease classification,
including lung cancer, using CT scans, no existing work integrates lung cancer diagnosis into
multi-class lung disease architectures based on X-ray imaging. This gap is critical, as X-rays
are widely used as a first-line diagnostic tool globally. The overlapping characteristic patterns
of lung cancer with other lung diseases such as similar shadowing, nodules, or opacity patterns
on X-ray images can delay its detection due to misinterpretation or failure to distinguish
between conditions. This delay can result in lung cancer being identified at more advanced
stages, reducing the effectiveness of treatment and impacting patient outcomes. Thus, there is
an urgent need for a comprehensive multi-class classification architecture that includes lung
cancer alongside other lung diseases. This approach will allow for diagnosis at an earlier stage

and the enhancement of treatment pathways, filling an important gap in the existing literature.

Although the majority of the existing literature on lung tumor segmentation is concerned with
primary lung tumors, metastatic tumors, especially soft tissue sarcoma that originate from
outside the lung sites and metastasize to the lung, are rarely addressed. The imaging
characteristics of primary and secondary lung tumors, are different. Primary tumors usually
have borders that are well defined and follow a predictable standard pattern, and secondary
metastatic STS, on the other hand, may be irregularly shaped with association of complex
boundaries and have features of surrounding lung tissue. These differences make it impossible
to use traditional segmentation methods in the accurate identification of metastatic STS. The
challenges arise as a result of their heterogeneous appearance and tendency to integrate with
adjacent lung tissue, which may result in potential misdiagnosis or segmentation failure.
Therefore, specialized segmentation techniques are required that will address the intricacies of

metastatic STS tumors to enhance their precise diagnosis and treatment
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Utilizing the TNM system (Tumor, Node, Metastasis) for accurate staging of lung cancer is
essential for determining appropriate treatment strategies and predicting patient outcomes.
However, other research, for instance, [86, 88] have concentrated on tumor size (T), whereas
they often ignore other important factors including the involvement of lymph nodes (N) and
the presence of metastases in distant sites (M). The studies conducted by [89] which only
concentrate on the N stage, do not address the disease in a comprehensive manner, which
affects the stage classification accuracy. This can result in different treatment protocols being
used that can have an adverse effect on the patients. Additionally, although some studies [90,
92] succeed in implementing TNM-based models for stage prediction, they focus on
demographic and clinical variables integration for which are important in order for staging to
be accurate. Furthermore, most of the existing models segregate the T, N, and M stages and use
individual branches for each stage prediction and then combine the output. This method
introduces additional complexities in the model and increased computational time, which
compromises the efficiency required for real time applications. In addition, multi-view CT
imaging, which provides complete anatomic views improving the accuracy of staging, has not
been adequately investigated with respect to TNM-based models. Hence, there is enough
justification for developing a unified model that incorporates multimodal imaging including
multi-view CT and clinical data to deliver an accurate overall stage prediction, behind only a

reasonable computational demand in order to make it practicable in real time.

To sum up, the existing research emphasize key gaps in multi-class classification, tumor
segmentation, and TNM-based staging for lung cancer. Addressing these gaps through
integrated, efficient, and specialized models will significantly improve diagnosis, treatment,

and patient outcomes.

2.7. Chapter Summary

This chapter describes the comprehensive literature review and analysis for lung disease
classification and segmentation, along with survival prediction. The chapter is divided into
various sections to present a comprehensive overview of the existing research on the
classification of lung diseases using deep learning techniques, specifically focusing on multi-
class classification. The literature on Lung Tumor Segmentation utilizing a combination of CT
and Positron Emission Tomography (PET) Scans is also presented. It also contains an extensive
review of the research on Non-Small Cell Lung Cancer TNM Classification and Overall Stage

Prediction using Vision Transformers.
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Chapter 3

3. Deep Learning Architecture for Multi-Class
Lung Diseases Classification Using Chest X-
ray (CXR) Images

3.1. Introduction

In 2019, the world experienced the rapid outbreak of the COVID-19 pandemic, which
created an alarming situation worldwide. The virus targets the respiratory system, causing
pneumonia with other symptoms such as fatigue, dry cough, and fever, which can be mistakenly
diagnosed as pneumonia, lung cancer, or TB. Thus, the early diagnosis of COVID-19 is critical
since the disease can provoke patients’ mortality. Chest X-ray (CXR) is commonly employed
in the healthcare sector, where both quick and precise diagnoses can be made. Deep learning
algorithms have proved extraordinary capabilities in terms of lung disease detection and
classification. They facilitate and expedite the diagnosis process and save time for the medical
practitioners. In this chapter, a deep learning (DL) architecture for multi-class classification of
Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and most recently COVID-19 is
proposed.

3.2. Proposed Methodology

The human respiratory system is attacked by a variety of lung illnesses. These diseases
include pneumonia, tuberculosis, lung cancer, and lung opacity, among others. These diseases
can cause similar effects on human lungs; therefore, X-ray images are commonly employed for
diagnosing these diseases. Al in the form of deep learning algorithms has increasingly played
a key role in disease identification and classification. Deep learning facilitates the diagnosis

process and saves time for healthcare providers.

The study presents a multiclass deep learning classification model to identify the most
common chest diseases. The aim of the research work is to design a deep learning framework
and classify multi-classes of Pneumonia, Lung Cancer, TB, Lung Opacity, and most recently,
COVID-19. A thorough search of the literature shows that this research is the first attempt to

use the single deep learning framework, incorporating and classifying all these six classes at a
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time. Figure 3.1. represents the proposed framework in a block diagram. The framework is
divided into three phases: pre-processing, feature extraction, and classification. X-ray scacns
were used as inputs, and the categorization of the input X-ray image on a disease level was the

final output of the model.

Pre-processing Stage

Input Datasets Images Images Resizing,
Normalizing, and Training and Classification
q » Splitting randomliy into
. ' (training and Lung Opacity
- validation) =
: COVID 19

o Pneunmonia

Lung cancer
Feature Extraction Stage
Normal

Proposed VGGI9 + CNIV

Fully Connected Layers
X-Ray Images

Figure 3.1. The proposed framework for Multi-Class Lung Diseases Classification

During the first phase, the input images undergo pre-processing functions such as
normalization, resizing, and data image splitting into 80% training and 20% validation at
random. Then, deep learning algorithms are used during the second and third stages. The
second phase involves feature extraction, which is performed using VGG19 and CNN
techniques. The fully connected network technique is employed during the image

categorization step.

3.2.1. DATASET
For the experimental purpose, in addition to healthy cases, tremendous X-ray images of
pneumonia, TB, lung cancer, lung opacity, and, most recently, COVID-19 were accessed and

collected from reliable sources.

To begin with, for COVID-19, 4189 CXR images [93] were included in this study. Secondly,
7397 CXR images of pneumonia were extracted [93], which are publicly available for research
purposes. Furthermore, [93] represents 6,012 CXR images of Lung opacity and 10,192 of
Normal samples whilst [94, 95] indicates the dataset resource for a total of 10,000 X-ray images
of lung cancer. Ultimately, a total of 4,897 X-ray images for tuberculosis [93] were collected

and employed in the research. Over 42,000 specifies the total number of CXR images used in
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the experiments. Samples of chest X-ray images for COVID-19, normal, pneumonia, TB, lung
opacity, and lung cancer are shown in Figure 3.2. The number of patients for each disease
dataset with respect to ages: ages were frequently between 38 and 65 for the COVID-19 dataset,

26 and 62 for the pneumonia dataset, 28 and 58 for the lung cancer dataset, and for normal

LR

b) Pneumonia

patients, the ages were between 33 and 58 years.

e) COVID-19 H Lung Cancer

Figure 3.2. Chest X-ray images: (a) Tuberculosis images, (b) Pneumonia images, (c)
Normal images, (d) Lung Opacity images, (¢) COVID-19 images, (f) Lung cancer

images

3.2.2. Dataset Pre-processing

Some pre-processing processes were employed to adjust the input data to meet the
requirements of the deep learning model: 1) The images were resized; 2) the images were
normalized; 3) the images were converted to an array to be employed as input in the model’s
next phase. To ensure robust model evaluation and to prevent overfitting, the dataset was
randomly divided into training, validation, and testing subsets, corresponding to 70%, 10%,
and 20% of the total data, respectively. The test set was kept completely independent and used
only for the final evaluation of the proposed model. This setup ensured that the high accuracy
reported in Table 3.1. reflects the model’s generalization capability on unseen data. To meet the
criteria of the framework, all images were scaled to 224*224*3. After normalizing each pixel

in the image to the interval [0,1], all images were transformed into an array data representation.
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3.2.3. Proposed Deep learning VGG19+CNN Model
This research presents supervised deep learning for multiclass classification of the most
common chest diseases. For classification, a pre-trained model, VGG19, is used, and CNN is

used as a feature extraction model, which is fully connected.

The choice of VGG19 [96] as the feature extraction backbone in this study was motivated
by its proven ability to capture multi-level hierarchical representations through deep
convolutional layers with small receptive fields. VGG19 is particularly effective for medical
images where subtle intensity changes are critical for identifying disease-specific features.
However, to further enhance discrimination among multiple lung diseases, a dedicated CNN
block was integrated after the VGGI19 feature maps to refine spatial dependencies and
strengthen classification sensitivity. This hybrid architecture leverages the transfer learning
capability of VGGI19 while retaining flexibility for domain-specific adaptation. The
combination provided a robust balance between feature generalization, computational

efficiency, and classification accuracy across six lung disease classes.

A convolution layer with a ReLU as an activation function is included in each CNN block.
Following these three CNN blocks, batch normalization and a max-pooling layer were applied,

which were then followed by a dropout layer, as indicated in Figure 3.3.

In the feature extraction step, the output was turned into a one-dimensional data vector,
which was then used as an input in the classification stage after being modified through the
flattening layer. The remaining components of the categorization step are comprised of three
thick layers, each having 512, 256, and 128 neurons. It is a thick layer with six neurons, and
the SoftMax activation function generates the final classification output. This layer is
responsible for classifying the output image into one of the six chest disease classes:
pneumonia, tuberculosis, lung cancer, and lung opacity. A total of 24,622,470 model parameters
are span into two categories. First were the trainable parameters (24,622,342), which were
revised throughout the training process. The best value for these parameters was required to
ensure the training accuracy. The second category was the untrainable parameters (128), which
were those that did not change at the time of training. Figure 3.4. illustrates the pseudo-code

for the proposed framework.
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Feature extraction Classifications

Convolution + RELU Max Pooling Batch Flatten Dense
Normalization

Figure 3.3. Model Architecture

Psendo-Code of the Proposed Model

1. Imput: Clinical images of chest diseases dataset

2. Pre-processing: Resize images to 224%224*3 and Normalize images pixel values
into interval [0,1]
Split train data to (80, 20): 80% training and 20% for validation

4. Extracting features using Vegl9+CNN deep learning approach

5. Classify images by fully connected networks

Figure 3.4. Pseudo-code for the proposed framework.

3.3. Results

A classification model for chest disease was created using Python 3 and the Keras
framework. The model was simulated on a Google Colab Pro edition with 2 TB storage, 25 GB
RAM, and CPU-P100. The ImageDataGenerator class in Keras was used during the pre-

processing stage, which included picture scaling, normalization, and conversion to an array of

data.

The suggested multi-chest illnesses classification deep learning model input was created
using the outcome of the pre-processing step. An optimizer and appropriate fit algorithms were

used with 5000 epochs to train and validate the model. Eight iterations and 32 batch sizes were
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employed in each epoch. With the greatest precision, the performance metrics formulae were
entered into the validation data outputs. The Adam [97] optimizer was employed, with a
learning rate of 0.000001. This value was determined empirically through parameter tuning
experiments to achieve stable convergence and minimize validation loss. The suggested deep

learning model’s code was published on the GitHub website [98].

Precision, loss, F1-score, accuracy, AUC, and recall were used to evaluate the model’s
performance. Accuracy was calculated as the proportion of correctly predicted instances to the
total number of instances. Precision (positive predictive value) measures the ratio of correctly
predicted positive samples to all predicted positives. The F1-score represents the harmonic mean
of precision and recall, providing a balanced measure of both metrics. Recall (sensitivity)
quantifies the proportion of actual positives correctly identified by the model. These metrics are

defined in Equations (3.1)—(3.4) [99]:

B Ty +Tn
Accuracy = Ty (3.1)
Fl—score = ——2 (3.2)
2Ty +Fp+ Fy
Precision = d: (3.3)
Tp+ Fyp
Recall (Sensitivity) = i (3.4)

Tp + Fp
Where the actual positive and negative parameters are denoted by T,, and Ty, respectively.

The False positive and false negative values are denoted by F, and F,, respectively.
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Figure 3.5. Performance metrics change with epochs in the training and validation
In addition, a confusion matrix is computed for the proposed model. Figure 3.5. shows

how the performance of the varying epochs during the training and validation phases.
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3.3.1.  Experimental Results
The proposed VGG19 + CNN model was evaluated using the metrics defined in Equations
(3.1)—(3.4). Table 3.1. presents the validation results obtained during the iteration that achieved
the highest validation accuracy. The model achieved a loss of 0.1792, an accuracy of 96.48%,
a precision of 97.56%, a recall of 93.75%, an F1-score of 95.62%, and an AUC of 99.82%.
These results demonstrate that the proposed hybrid model provides a highly reliable and

balanced classification performance across all evaluation metrics.

Table 3.1. The performance validation of the VGG19+CNN model

Methods Loss Acc Pre AUC F1 Recall
VGG19 + CNN 0.1792 96.48 97.56 99.82 95.62 93.75

3.3.2.  Comparative Analysis

To the best of our knowledge, there is no recent existing research has employed a single deep
learning model for evaluating and classifying the following chest diseases together: Tuberculosis,
Pneumonia, Lung Opacity, Lung cancer, and COVID-19 images. To show the effectiveness of
the proposed model, Table 3.2. introduces a comparative analysis of fifteen existing works. The
comparative analysis presented in this chapter has been expanded to clarify the fairness and
relevance of performance evaluation. The proposed VGG19 + CNN model was trained using a
unique dataset combination consisting of the Harvard Dataverse dataset [93] for five lung
diseases and the ChestX-ray8 and JSRT datasets [94, 95] for lung cancer samples. To the best of
our knowledge, no existing research has included lung cancer alongside five other pulmonary
diseases within a single multi-class classification framework. Consequently, previous studies
used for comparison were selected on a conceptual and methodological basis rather than as direct
dataset replications. Although their datasets differ, these works represent the most relevant state-
of-the-art approaches in deep learning-based lung disease classification. Thus, the presented
comparisons aim to highlight architectural effectiveness and generalization capability rather than

absolute numerical equivalence across datasets.
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Table 3.2. The comparison between the proposed model and existing related work

Number of Medical Performance
Ref Method
Classes Image " Acc. [ Prec. | Sens.
VGG-16, ResNet-50,
[56] 3 . CXR+CT | 93 91 90
InceptionV3
[57] 3 VGG-19+ ResNet-50 CT 94 95 90
[55] 3 DRE-Net CT 86 96 93
[53] 2 ResNet50 CXR 96.1 | 76.5 | 91.8
[63] 2 ResNet32+DTL CT 93 95 91
[58] 2 D-Resnet-10 network CT 81.4 | 79.8 | 87.5
Multi-layer Perceptron
[33] 2 CT 88.55 | 86.59 | 89.84
(MLP)
[32] 2 CNN CT 84.15 | 84.32 | 83.96
CNN with pre-trained
[25] 3 ‘ CXR 91 92 87
weights on ImageNet
[28] 2 RetinaNet and Mask R-CNN CXR 83.80 | 75.8 | 79.3
[27] 3 Transfer learning CXR+CT | 94.9 93 93
[26] 2 CNN CXR |93.73 - -
1 Class with
5 Levels of
[18] Severity Depth-ResNet CT 85.29 - 84.16
Ensemble (AlexNet,
[19] 2 CXR 88.24 | 88.0 | 88.42
GoogleNet and ResNet)
Proposed 6 VGG19+CNN CXR |96.48 | 97.56 | 93.75
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3.3.3. Architecture Performance

Accuracy, precision, and recall (sensitivity) are the major parameters used to measure the
performance of the model. The accuracy of the proposed framework produced the highest results,
with 96.48, overcoming the rest of the models in Figure 3.6.

As revealed in Figure 3.7., the best precision value was 97.56 with the proposed model.
However, Figure 3.8. confirms that the proposed model achieves the highest sensitivity of 93.75

compared to others.

As presented in Figure 3.9., various architectures of individual pre-trained models,
transfer learning, and ensemble techniques based on deep learning have been investigated and
compared with the multi-class proposed framework. The results show that the proposed VGG19-
CNN achieved the best performance. ResNet50 [53] was better than Transfer Learning [27].
However, the Ensemble model [19]records the lowest.
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Moreover, Table 3.2. illustrates the proposed multi-class framework used to classify six
classes of the most popular chest diseases: tuberculosis, pneumonia, lung opacity, lung cancer,
and COVID-19, in addition to normal cases. The model significantly outperformed binary classes
presented by [19, 28, 33, 53]. Likewise, the model got over multi-class as observed by [25, 27,
57, 100]. The confusion matrix for the VGG19+CNN proposed model is shown in Figure 3.10,
revealing that the VGG19+CNN model can successfully classify the six chest diseases with the
highest ratio to COVID-19, starting from lung opacity, normal chest, lung cancer, pneumonia,
and lastly the tuberculosis disease.
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Figure 3.10. The confusion matrix

A multiclass deep learning classification model has been used in this work to incorporate and
classify six classes of COVID-19, lung opacity, TB, lung cancer, and pneumonia using the
VGG19+CNN approach. The architecture of the model was based on VGG19+CNN for feature
extraction and a fully linked network for classification. The recall, accuracy, AUC, F1 score, and
precision of the suggested model were all tested. The findings showed that the VGG19+CNN

provided satisfactory classification performance with 96.48% accuracy, as shown in Table 3.2.

Based on X-ray images, the VGG19+CNN can identify various chest disorders with 96.48%
accuracy, 93.75% recall, 97.56% precision, 95.62% F1 score, and 99.82% AUC. It is expected
that the deep learning model will contribute to the development of a model for diagnosing chest

disorders from CXR chest pictures, improving patient outcomes, and saving lives.

3.4. Discussion

In this chapter, a multi-class chest disease classification based on a deep learning architecture
was developed and evaluated for classifying TB, lung opacity, lung cancer, pneumonia, normal,
and COVID-19 using CXR images. In terms of classification, a pre-trained model, VGG19,
followed by three blocks of convolutional neural network (CNN) as feature extraction and a fully
connected network at the classification stage, was introduced. The experimental results revealed
that the proposed VGG19 +CNN outperformed other existing work with 96.48% accuracy,
93.75% recall, 97.56% precision, 95.62% F1 score, and 99.82% area under the curve (AUC).

As Figure 3.5. shows, the training process demonstrated a robust convergence pattern with
the train accuracy and validation accuracy scores, indicating that the model's learning trajectory

is generally effective. Initially, both training and validation accuracy showed gradual
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improvement over the first 1000 epochs, reflecting the model's ability to begin identifying
patterns in the data. As training progressed, training accuracy maintained a steady upward trend,
consistently achieving slightly higher values than validation accuracy. This discrepancy is
expected due to the model's exposure to training data more frequently, which can result in a

marginally higher accuracy.

From epoch 2000 onward, training accuracy continued to rise, reaching a plateau near 98.5%
at the final epochs. Meanwhile, validation accuracy exhibited minor fluctuations but stabilized
around 96.48%, indicating that the model generalized well to unseen data and did not experience

significant overfitting.

The fluctuations observed in validation accuracy were minimal, suggesting the model’s
resilience to overfitting and confirming effective generalization across different classes. The
slight disparity between training accuracy and validation accuracy in the final epochs suggests
an optimal balance between bias and variance, resulting in accurate and consistent performance

across classes.

Additionally, the confusion matrix in Figure 3.10. offers a granular view of the model’s
performance across the six classes: TB, pneumonia, normal, lung opacity, COVID-19, and lung
cancer. Most predictions align closely with true labels, reflecting high specificity and sensitivity
across classes. For instance: TB and pneumonia classes had modest misclassification rates, with
TB showing some confusion with normal cases and COVID-19 (6.64% and 19.22%,
respectively). Normal cases were predicted with 87.93% accuracy, though misclassifications
occurred primarily with TB and pneumonia. Lung opacity achieved a high true positive rate at
92.84%, with minimal misclassification, emphasizing the model's capability to distinguish it
accurately. COVID-19 was particularly well-classified, with a true positive rate of 98.8%,
suggesting the model's vital feature extraction for this class. Due to their similar visual features
on chest X-rays, lung cancer had the highest misinterpretation rate, with significant overlap with

pneumonia and tuberculosis.

When these results are considered together with the performance measures (96.48 percent
accuracy, 93.7 percent recall, 97.5 percent precision, and 95.6 percent F1 score), it is clear that
the model is effective in the multi-class categorization of chest disorders. The model's ability to
confidently distinguish between classes is emphasized by the AUC score of 99.82%, which is
essential for real-world diagnostic applications. Its stability and high accuracy demonstrate the

model's practicality for clinical applications during both the training and validation phases.
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CT scans can accurately detect aberrant patterns even before symptoms appear. Therefore,
employing a combination of CXR and CT images is a potential enhancement parameter for future
work. Moreover, the identification of the region of interest (ROI) in conjunction with the
classification of severity levels based on a powerful segmentation model is another direction for

future work exploration.

3.5. Summary

In this chapter, a deep learning (DL) architecture for multi-class classification of
Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and most recently COVID-19 is
proposed. Tremendous CXR images of 4189 COVID-19, 6012 Lung opacity, 7397 Pneumonia,
10,000 lung cancer, 4897 tuberculosis, and 10,192 normal images were resized, normalized,
and randomly split to fit the DL requirements. The proposed model integrated a pre-trained
VGG19 backbone with three convolutional neural network (CNN) blocks for feature extraction
and a fully connected layer for final classification. Experimental results demonstrated that the
proposed VGG19 + CNN framework outperformed existing methods, achieving 96.48%
accuracy, 93.75% recall, 97.56% precision, 95.62% F1-score, and 99.82% area under the curve
(AUC).

These promising outcomes confirm the potential of deep learning—based diagnostic
systems for accurate and automated identification of multiple lung conditions from chest X-
ray images. However, while classification models provide effective detection at the image
level, they do not offer detailed information about the exact location, shape, or extent of
tumours, which are critical for clinical assessment and treatment planning. To address this
limitation, the next chapter focuses on lung tumour segmentation using multimodal CT-PET
imaging, enabling precise delineation of tumour regions and paving the way for advanced

diagnostic and prognostic analysis.
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Chapter 4

4. Hyper-Dense -Lung-Seg: Multi-modal fusion
based Modified U-Net for Lung Tumour
Segmentation using Multimodality of CT-PET

Scans

4.1. Introduction

The majority of cancer-related deaths globally are due to lung cancer, which also has the
second-highest mortality rate. Segmentation of lung tumors, treatment evaluation, and tumor
stage classification have become significantly more accessible with the advent of PET/CT
scans. With the advent of PET/CT scans, it is possible to get both functioning and anatomic
data during a single examination. However, integrating images from different modalities can
indeed be time-consuming for medical professionals and remains a challenging task. This
challenge arises from several factors, including differences in image acquisition techniques,
image resolutions, and the inherent variations in the spectral and temporal data captured by
different imaging modalities. Artificial Intelligence (Al) methodologies have shown potential
in the automation of image integration and segmentation. To address these challenges, multi-
modal fusion approaches-based U-Net architecture (early fusion, late fusion, dense fusion,

hyper-dense fusion, and hyper-dense vggl6 U-net) are proposed for lung tumor segmentation.

4.2. Contribution

The significant contributions of this research are given below.

e The inputs to the proposed architecture are PET and CT scans. Here, dense connections
happen along the same pathways that process each modality individually. Last, their
features are joined together at a high layer to finish separating them.

e Five deep models based on U-net architecture are suggested for lung cancer
segmentation in multimodal image scenarios: Early fusion, Late fusion, Dense fusion,

Hyper dense fusion, and Hyper dense VGG-16 U-net.
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e The performance of the suggested models was evaluated using three types of loss

functions: binary, dice, and focal loss functions.

4.3. Proposed Methodology

The selection of a U-Net-based architecture for tumour segmentation was driven by its
strong suitability for medical imaging tasks that require precise localization. U-Net’s encoder—
decoder structure effectively captures both global context and fine structural boundaries, which
are essential for accurate lesion delineation. The proposed Hyper-Dense VGG 16 U-Net extends
this capability by integrating dense cross-modal connections between PET and CT feature
maps, allowing the network to exploit complementary spatial and metabolic information. The
use of VGG16 as the encoder improves representational depth and feature reuse while
maintaining manageable computational complexity. This design ensures stable gradient flow,
improved boundary recovery, and enhanced tumour segmentation consistency across imaging

modalities.
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Figure 4.1. Block diagram for the lung cancer segmentation framework

The proposed architecture for lung cancer segmentation is shown in Figure 4.1. It depicts

the three main stages of the framework: (1) image pre-processing, (2) multimodality U-net
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segmentation, and (3) medical image post-processing. The pre-processing, augmentation, and

post-processing methods are discussed in the following subsections.

4.3.1. Images Processing

4.3.1.1. Image Pre-processing

The intensity levels of the image’s pixels were normalized to remove any potential for
ambiguity. In addition to resizing each image, the pixel scale value was changed from (0 - 255)
to (0 -1) to reduce the level of complexity of the images. To simplify model training, the
resolution of the CT and PET scans is reduced in the dataset to 256 x 256 pixels. The dataset
was divided as follows, at random: 46 examples were used for training, and another five were

used for testing.

4.3.1.2.  Data Augmentation

The CT-PET images are augmented throughout this phase to prevent overfitting, which
helps in enhancing the performance of the model. In addition, the implementation of
augmentation techniques, such as random rotations, flips, and cuts, can enhance the model's
ability to maintain invariance towards variations in feature position and orientation within the
image. This feature proves to be particularly advantageous when working with real-world

images that may exhibit variations in object orientation or spatial arrangement.

(a) (b) ©) (d)

Figure 4.2. Some examples of the augmentation process of CT and PET images for
STS: (a) the main CT-PET, (b) rotating the CT-PET by 90 degrees clockwise, (¢)
flipping the CT-PET upside down, and (d) left-mirroring the CT-PET. Red arrows

indicate the tumor region.

Images are augmented in three ways, as shown in Figure 2: rotating the CT-PET by 90
degrees clockwise (2b), flipping the CT-PET upside down (2c), and left-mirroring the CT-PET
(2d) as shown in Figure 4.2.
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4.3.1.3. Image post-processing

The suggested framework’s ultimate stage uses a morphological change and a basic
thresholding technique. A morphological gradient accounts for the structure of the input picture
to lessen the impact of noise. Its effect is analogous to the difference between expanding and

contracting an image.

While Equation (4.1) defines dilation [101] as the process of removing pixels (noises) from
object boundaries, Equation (4.2) describes erosion [102] as the process of adding pixels

(negative noises) to object boundaries.
A®B =Uyp Ap (4.1)
A!B={z€E|Bc A} (4.2)
Where A is a set of pixels, and B is a structuring element.
The thresholding technique is defined as:

1, ifx=>t

fG) = {O, otherwise. (43)

where x represents the predicted pixel value and ¢ is the threshold used to separate tumour
pixels from the background. A value of &t = 0.5 was employed, meaning pixels with predicted
values equal to or greater than 0.5 are considered tumour regions. This post-processing step
ensures crisp binary segmentation boundaries and effectively reduces false positives near

object edges.

Figure 4.3. depicts the last stage in processing predicted masks, in which tiny false positive

values and blobs at the borders are removed.

Figure 4.3. Two samples show post-processing effects: (a) predicted mask and (b)

image after mask post-processing.
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4.3.1.4. Multimodal Feature Fusion

A feature fusion strategy is deployed in medical imaging to generate a higher-quality final
image. Professionals in the medical field view fusion processes as a helpful resource. Feature
extraction, classification, and making decisions are the three main pillars of any supervised
learning-based method. To broaden the types of features recovered and better understand their
relationships, the early and late sequences of feature fusion are employed in the encoder portion
of the core U-net design. Features from different imaging modalities, like PET and CT, are

fused serially to characterize lung tumors better.

4.3.1.5. Early fusion

In early fusion, each medical image scan (CT and PET) has a single input path that contains
two CNN layers with 64 units and a Relu activation function. Then, these two paths are
concatenated into a single path, which is processed through a unique path in the down-sampling
U-net path. This path contains three groups of CNN architecture; each group has three CNN
layers with 128, 256, and 512 units, followed by a max-pooling layer. All CNN activation

functions are Relu functions. Figure 4.4. shows the Early fusion architecture.
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4.3.1.6. Late fusion

In contrast to most architectures like U-Net, the encoding path is divided into N streams
that serve as input for each imaging modality. Each modality learns a unique feature set using
images from the other. The two modalities’ feature maps are combined at each network’s high-
level feature layer. This process solves the problem of early fusion strategy. These feature sets
are combined into one feature set and then subjected to the last phase of a multimodal
classifier’s training. The U-net down-sampling path contains four groups of CNN layers. Each
group contains three sequential CNNs with several units, 64, 128, 256, and 512 units,
respectively, followed by a max-pooling layer. All CNNs have a Relu activation function. At
this point, the two paths are concatenated to generate the input of the U-net Up-sampling path.

Figure 4.5. shows the late fusion architecture.
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Figure 4.5. Late Fusion Architecture

4.3.1.7. Dense fusion
For lung cancer segmentation, the Dense fusion-based U-net provides two down-sampling
routes, one for CT and one for PET images. Eight CNN deep learning building blocks are used

along each possible route. All the layers preceding the current layer are inputs to the current
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CNN layer. A max-pooling layer follows each pair of consecutive CNN layers. The dimensions
of the CNN layer are (in order) 64, 128, 256, and 512. The Relu activation function is standard
in all CNNs. The input to the U-net Up-sampling path is generated by concatenating the outputs
of the paths following the design described in each path. The dense fusion architecture is shown

in Figure 4.6.
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Figure 4.6. Dense Fusion Architecture

4.3.1.8. Hyper dense fusion

Deep learning is essential when an application requires a deep layer to function effectively
and efficiently. Reducing the overfitting impact is one of several benefits of using dense
architecture for multimodality U-net medical image segmentation. The layers in the same input
path provide inputs to all net layers for dense design, which is necessary for U-nets with
multiple input paths. Each layer feeds its immediate successor and those in adjacent input
channels in hyper-dense fusion. As the network learns the intricate connections between the

modalities at each level of abstraction, the hyper-dense connectivity produces a more robust
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feature representation than early/late fusion in a multimodal situation. The hyper-dense fusion

layout is depicted in Figure 4.7.
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Figure 4.7. Hyper-Dense Fusion Architecture

4.3.2. Loss Functions

In the proposed method, a thorough investigation and comparison of the models using a
variety of loss functions is performed. Segmenting an image is essentially a pixel-level
classification problem. Each pixel in an image contributes to the overall image, and specific
clusters of pixels define particular aspects. Semantic image segmentation is a technique that
divides these pixels into their respective components. While designing intricate, deep learning
architectures for image segmentation, choosing the loss/objective function is crucial. Loss
functions can be broken down into several types based on distribution, region, boundary, and
compound. The proposed analysis uses three distinct loss functions, i.e., binary cross-entropy,
dice, and focal. The representation as the network discovers the many interconnections between

modalities at every level of abstraction, rather than the binary early/late fusion approach.
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4.3.2.1. Binary Cross-Entropy
The Binary Cross-Entropy (BCE) loss function [103] is widely employed for binary
segmentation tasks to measure the difference between predicted probabilities and ground truth

labels. It is defined as in Eq. (4.4).

N
1
Lpcr = - NZ[yilog (¥ + (1 = ylog (1 = ;)] (4.4)
i=1
where Ndenotes the total number of training samples, y; € {0, 1} represents the true
label for each sample, and y; € [0, 1] is the predicted probability obtained using a

sigmoid activation function:

_ 1
Cltewx

The BCE loss penalizes large deviations between predicted probabilities and the

i

corresponding true labels. It is averaged across all samples and backpropagated to
update the model weights during training, ensuring optimal discrimination between

tumour and non-tumour regions.

4.3.2.2.  Focal Loss
The Focal Loss (FL) [104] can be defined as a modification of the Binary Cross-Entropy
loss to address class imbalance by focusing more on hard-to-classify samples. The equation is

expressed as in Eq. (4.5).

FL(py) = —a;(1 — py)¥log (pr) (4.5)

where p,represents the predicted probability of the true class, a; is a weighting factor that
balances the contribution of different classes, and ¥ > 0 is the focusing parameter that reduces
the loss contribution from well-classified examples. When y = 1, the loss reduces to the
standard Binary Cross-Entropy loss. In this study, a; was set according to the inverse class

frequency, and y = 2 was used following common practice in imbalanced segmentation tasks.

4.3.2.3.  Dice Loss
The Dice Loss (DL) is derived from the Dice coefficient, which quantifies the overlap between

predicted and ground truth masks [105]. The loss is formulated as in Eq. (4.6).

2YN . yiPite (4.6)
N "
Y (VitI) +e

Lpice =1 —
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where y; represents the ground truth label for each pixel, ¥; denotes the predicted probability,
N is the total number of pixels, and € is a small constant added for numerical stability. This
formulation penalises low overlap and encourages better alignment between the predicted and

true segmentation regions.
Hyper Dense VGG16 U-Net Segmentation Proposed Model

In various computer vision problems, shortcut connections between layers have become
increasingly popular since the emergence of residual learning [106]. Unlike in conventional
networks, these links back-propagate gradients immediately, which helps prevent gradient-
vanishing issues and allows for more complex architectures. The idea of shortcut connections
was expanded upon by DenseNet [107], which specified that each layer’s inputs should
correspond to the outputs of all the layers that came before them. Densely connected
convolutional neural networks (CNNs) are built using the feed-forward principle, which entails
adding direct connections from any layer to all succeeding layers. Deep networks are more
accessible and more accurate to train because of this connectivity. This section proposes
independently expanding U-Net to support DenseNet connections within the same multiple N
streams of PET and CT modalities. Higher-level layers of the proposed extension will also use

the late fusion strategy.

The inspiration for this comes from three separate observations. First, all architectural
feature maps are connected by short paths, enabling implicit deep supervision. Second, the
network’s information and gradients are better able to flow because of the direct connections
between all layers. Finally, the regularizing effect of dense connections makes it less likely that

training data will be too small for a given task.

Using dense and hyper-dense connections has been demonstrated to have many benefits
when segmenting medical images. When the VGG architecture is used for feature extractions,
more information can be gleaned from medical images. A multimodality U-net medical image

segmentation model is proposed using hyper-dense connections and the VGG16 model.

The primary objective was to refine an existing deep-learning model for lung cancer
segmentation. To do this, the U-Net design is modified and used as the starting point. The
encoder and the decoder are both CNNs, making up the basic U-Net architecture. The encoder
extracts features by first performing convolutional operations and then down-sampling. The

usual convolutional processes follow the up-sampling and concatenation layer of the decoder
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branch. Connecting feature maps from the encoder network is made possible via a skip link
that connects the same-level layers of the decoder and encoder, with the up-sampled feature
map conveying coarse global context information. It helps with recovering local characteristics
after down-sampling. According to this model, U-net takes data via two distinct input paths,
one for each image type. The architecture of both paths is VGG16, with dense and hyper-dense
connections between them. This architecture was proposed so that image classification and
segmentation tasks may take advantage of VGG, dense, and ultra-dense networks—the

suggested VGG16 U-net model’s components are given in Figure 4.8.
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Figure 4.8. The proposed hyper-dense VGG16 U-Net model architecture

Figure 4.8. depicts his proposed Hyper dense VGG16 U-Net model, built upon the U-Net.
Both CT and PET images can be fed into the model. The segmented image of lung cancer is
the product of the model. In the suggested approach, input images for both CT and PET were
128x128. Each image input type has its dedicated input path, each with 16 CNNs (the number
of CNNs in VGG16). Each data set was processed through CNNs of varying sizes (64, 128,
256, and 512). Both input paths are incredibly well-connected, and there are also many
connections between the two. All convolutional neural networks used ReLU activation. The
decoder’s structure comprises four groups of convolutional neural networks (CNNs) of varying

sizes (1024, 512, 256, and 128).
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4.4. Experiments

The efficiency of the proposed U-Net models for segmenting lung tumors was measured
across various performance criteria. The STS dataset was used for both training and testing the
models. Experiments compared the newly developed models to benchmarked models widely

utilized on the same dataset and other datasets.

4.4.1. Experimental Setup

All experiments were run on servers in the Google Colaboratory environment, and the
recommended models for segmenting lung tumors were built using a TensorFlow and Keras
backend with an NVIDIA Tesla P100 -PCIE GPU and 32.0 GB RAM. For the training phase,
the Adam optimizer is employed with the following settings: learning rate=0.0001, 1=0.9,
2=0.999, and epsilon=1 x 10"®. One hundred epochs of training were used. The intensity levels
of the image’s pixels were normalized to remove any potential for ambiguity. The dataset was

arbitrarily divided into 70% for training, 20% for validation, and 10% for testing.

4.4.2. Dataset Description

The proposed models are trained on data from a study of soft tissue sarcomas (STSs) [108].
STS includes many types of scans: CT, PET, and MRI, but in this research, CT and PET were
used only. In this dataset, a cohort of 51 patients with histologically proven soft-tissue sarcomas
(STSs) of the extremities was retrospectively evaluated. With 38,328 images (each patient has
around 200-300 images). It included 27 females and 24 males, ranging in age from 16 to 83
years. Also, with various cancer degrees: low, intermediate, and high. The PET slice volumes
had a thickness of 3.27 mm and a median in-plane resolution of 5.47 mm x 5.47 mm (range:
3.91-5.47 mm). All images used in the tests were downsized to 128 pixels on the longest

dimension.

4.4.3. Performance Metrics
The efficiency of the suggested approach was assessed using the most commonly employed
metrics for evaluating segmentation tasks[109]: the Dice score (Dice), the most crucial

segmentation performance measure. It is defined by Equation (4.5).

Dice — (2 = Tp) @5)
lce_(Z*Tp+Fp+Fn) ’

In addition, measures of accuracy, sensitivity, and specificity. Equations (4.6) to (4.8) also

provide definitions for them.
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Tp + Tn

A = 4.6
ceuracy Tp + Tn + Fn + Fp (4.6)
Tp 4.7)
S itivity = —————
ensitivity Tp + Fn
Tn (4.8)
Specificity =
pecificity ™t o Fp

Where the four primary blocks for computing these metrics were defined as true positive

(Tp), true negative (Tn), false positive (Fp), and false negative (Fn) values.

4.5. Results

The effectiveness of the proposed models is discussed in this section. In this section, the
results of the model assessments are reported and divided into four categories: loss function
comparisons, same-dataset comparisons, cross-dataset comparisons, and cross-model
comparisons. Dice, loU, Accuracy, Spectral Sensitivity, and Area under the Curve (AUC) were

utilized as performance measures.

4.5.1. Loss Functions-Based Comparison

Adjustments to the loss functions form the basis for a new comparative evaluation of the
models. Focal loss functions, dice, and binary cross entropy are employed in this research.
These operations are among the most well-known and often used in deep learning for image
segmentation. The outcomes are displayed in Tables 4.1.- 4.3. for Binary, Dice, and Focal loss

functions.

Table 4.1. Binary Cross-Entropy
Dice 10U ACC Sen Spec

Late 0.67882 | 0.53651 | 0.98516 | 0.73885 | 0.99068
Early 0.68066 | 0.54075 | 0.98397 | 0.73816 | 0.99083
Dense 0.69569 | 0.54016 | 0.98095 | 0.68401 | 0.99225
Hyper 0.71851 | 0.57818 | 0.98381 | 0.72302 | 0.99284

Hyper+VGG16 | 0.72532 | 0.58687 | 0.98278 | 0.69209 | 0.99423
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Table 4.2. Dice Loss Function

Dice 10U ACC Sen Spec
Late 0.51479 | 0.69734 | 0.97806 | 0.64604 | 0.99048
Early 0.51465 | 0.69671 | 0.97993 | 0.65452 | 0.99135
Dense 0.51485 | 0.51191 | 0.98112 | 0.67253 | 0.99112
Hyper 0.64081 | 0.69725 | 0.98295 | 0.67958 | 0.99046
Hyper+VGG16 | 0.66828 | 0.52222 | 0.98048 | 0.69506 | 0.99102

Table 4.3. Focal Loss Function

Dice 10U ACC Sen Spec
Late 0.71217 | 0.5704 | 0.98347 | 0.71046 | 0.99327
Early 0.66112 | 0.51011 | 0.97943 | 0.6351 | 0.99232
Dense 0.71554 | 0.57403 | 0.98198 | 0.70131 | 0.99347
Hyper 0.72713 | 0.58717 | 0.98436 | 0.71786 | 0.99339
Hyper+VGG16 | 0.73011 | 0.55664 | 0.98103 | 0.67472 | 0.99362

Figures 4.9.-4.11. depict the findings using various loss functions, like cross-entropy, focal

loss, and dice loss. In contrast, the performance measures for the proposed models using the

metrics Dice, loU, Accuracy, Sensitivity, and Specificity are given in Figures 4.12.-4.16.,

respectively.
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The suggested hyper-dense VGG16 model outperforms the other models in Dice for all

types of loss functions, as seen in Tables 4.2.-4.4. The Focal loss function is the only option if

you want the best dice performance possible. Figures 4.9.—4.16. offer graphical representations

of the evaluation outcomes.
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The five presented models are compared in Figures 4.9.—4.12. regarding the binary cross
entropy, dice, and focused loss functions used as performance indicators. Figure 4.9. shows
that the suggested hyper VGG16 model outperforms the others in terms of dice accuracy
(improved by 7%), IOU accuracy (improved by 9%), and specificity accuracy (improved by
0.4%). However, the late fusion model’s accuracy and sensitivity are unparalleled. The results
of the dice loss function are shown in Figure 4.10., and it is evident that the suggested model
outperforms the previously introduced models in terms of dice, specificity, and sensitivity.
Finally, the proposed model outperforms the other established models regarding the focused
loss function performance, achieving 73% for Dice. Figures 4.10.-4.13. presented visual
representations of the performance above metrics about the loss function employed. Figure
4.13. demonstrates that the most outstanding value for the focused loss function is found with
the dice metric. The segmentation results of the proposed model for various loss functions are
displayed in Figure 4.17. The lung tumor segmentation results generated by hyper-dense
VGG16 are compared to the ground truth, employing various loss functions such as binary,
Dice, and focal. The observations from Figure 4.17. indicate that the focal loss function yields
the most accurate predictions, capturing even the segmentation of small tumor portions and
producing a predicted segmentation mask that closely aligns with the ground truth
segmentation. Conversely, when utilizing the binary cross-entropy loss function, the
segmentation results tend to be slightly larger. The Dice loss function, however, provides the
least accurate predictions, as it fails to segment small tumor portions and produces a larger

overall segmentation compared to the ground truth.

To comprehensively evaluate the performance of the proposed Hyper-Dense VGG16
architecture, five fusion strategies—Early, Late, Dense, Hyper-Dense, and the proposed Hyper-
Dense VGG16—were tested and compared using both the STS dataset and other benchmark
datasets. As presented in Table 4.4., all five fusion models achieved superior Dice coefficients
compared with the two reference studies (Fu et al. [72] and Bi et al. [79]), which are the only
published works that applied their segmentation models to the same STS dataset. The Dice
coefficient is recognized as the most significant and widely used metric for medical image
segmentation, particularly in tumour delineation, as it measures the spatial overlap between
predicted and ground-truth regions. The superior Dice performance of all five fusion
methods—including the proposed Hyper-Dense VGG16—demonstrates the effectiveness of

multimodal PET—CT feature fusion in improving lesion boundary accuracy.
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Table 4.4. Comparison of The Proposed and Benchmarked Models on The STS

Dataset
Dice 10U ACC Sen Spec
Fu et al. [72] 0.6226 - - 0.6474 | 0.997
Bi et al. [79] 0.6636 - - 0.6993 | 0.9969
Late 0.712171 | 0.5704 | 0.98347 | 0.71046 | 0.99327
Early 0.661116 | 0.51011 | 0.97943 | 0.6351 | 0.99232
Dense 0.715539 | 0.57403 | 0.98198 | 0.70131 | 0.99347
Hyper 0.72713 | 0.58717 | 0.98436 | 0.71786 | 0.99339
Hyper+VGG16 0.730109 | 0.55664 | 0.98103 | 0.67472 | 0.99362
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Although the proposed Hyper-Dense VGG16 model achieved the highest Dice (0.7301)
and excellent specificity (0.9936), it did not always outperform the other tested strategies across
all secondary metrics. For example, the Hyper-Dense model achieved slightly higher sensitivity
(0.7178) and IoU (0.5871), while the Late Fusion model achieved marginally better accuracy
(0.9834). These differences arise from the trade-off between feature abstraction and pixel-level
recall. The integration of the VGGI16 encoder in the proposed model deepens spatial
representation and strengthens global context learning, resulting in smoother, more consistent
segmentation boundaries and fewer false positives. However, this same regularization effect
may slightly reduce recall for subtle or irregular tumour edges, lowering sensitivity and IoU.
Conversely, shallower configurations such as Hyper-Dense or Late Fusion respond more
directly to local intensity variations, improving sensitivity but at the cost of over-segmentation
or reduced generalization. Figures 4.18.- 4.22. show visual representations of the performance

metrics that were used in the performance evaluation and comparison of the proposed models.

4.5.2. Different Datasets in the State-Of-The-Art

To further validate generalizability, a cross-dataset comparison was conducted using Table
4.5., which evaluates the same five fusion models against Fu et al. [72] and Kumar et al. [75],
where Fu et al. [72] used both the STS and an additional dataset, and Kumar et al. [75] applied
its method to a completely different PET—CT dataset. These studies were included because they
represent the most relevant state-of-the-art multimodal segmentation frameworks, enabling a
fair methodological benchmark despite dataset differences. Once again, all five tested models
substantially outperformed both reference studies in terms of Dice coefficient, reaffirming that
the proposed fusion approaches—especially Hyper-Dense VGG16—are capable of achieving
accurate tumour segmentation across varied imaging conditions. Similar to the STS dataset
results, the proposed model did not lead in every secondary metric: Hyper-Dense showed
slightly higher sensitivity (0.7178), and Late Fusion marginally exceeded it in accuracy
(0.9834). These small variations reflect dataset-specific image characteristics such as tumour
size, intensity distribution, and PET—CT registration consistency. The proposed model’s deeper
cross-modal connections provide strong generalization and denoising ability, ensuring stable
Dice and specificity scores across datasets, while occasional minor reductions in sensitivity
result from its smoother boundary regularization. Figures 4.23.-4.27. show visual
representations of the performance metrics used in performance evaluation and comparison of

the proposed models.
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Overall, the proposed Hyper-Dense VGG16 model consistently achieved the highest Dice
coefficient and maintained strong performance across all other metrics on both the STS and
different datasets. These results confirm that while the model prioritizes balanced precision—
recall trade-offs rather than overfitting to a single metric, it remains the most robust and
generalizable architecture for multimodal lung tumour segmentation, outperforming existing

state-of-the-art approaches in clinical relevance and stability.

Table 4.5. Comparison of The Proposed and Benchmarked Models on Different

Datasets

Dice 10U ACC Sen Spec
Fu et al. [72] 0.6783 - - 0.999 0.7616
Kumar et al. 0.6385 - - - -
[75]
Late 0.712171 | 0.570397 | 0.983471 | 0.710462 | 0.993269
Early 0.661116 | 0.510114 | 0.979428 | 0.635095 | 0.992316
Dense 0.715539 | 0.57403 0.981976 | 0.701314 | 0.993468
Hyper 0.72713 0.587171 | 0.984362 | 0.717861 | 0.993387

0.730109 | 0.556635 | 0.981034 | 0.674717 | 0.99362
Hyper+VGG16
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4.6. Discussion

A CT-PET dataset of 51 STS samples was used to assess the five fusion models based on
U-Net: Early Fusion, Late Fusion, Dense Fusion, Hyper Dense Fusion, and Hyper Dense VGG-
16. A broad category of malignant tumors that start in the body's connective tissues, including
muscles, fat, and fibrous tissue, are known as soft tissue sarcomas (STS). When these tumors
spread to the lungs, they make imaging-based segmentation more difficult because they have
different shapes, fuzzy tissue edges, and a tendency to look like lung tissue around them.
Metastatic STS tumors, in contrast to primary lung tumors, necessitate specific methods for
accurate delineation since they frequently exhibit distinct radiographic features that make

conventional segmentation methods more challenging.

Several augmentation strategies were used to incorporate heterogeneity and improve
model resilience, considering the relatively small size of the CT-PET dataset. The images were
left-mirrored, rotated 90 degrees, and inverted as part of the augmentations. These additions
made the models more accurate at predicting a wider range of tumor types because they
mimicked the natural variety that can be found in clinical settings. In order to improve the
model's performance and prevent overfitting, these strategies artificially increased the variety
of the training set. This was especially helpful while working with a small number of STS

samples.
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The Hyper Dense VGG-16 model demonstrated the best results with a Dice of 0.73 in
handling the complexities associated with STS segmentation. Its deep, layered structure, in
combination with the VGG-16 backbone, enabled it to more accurately capture the fine details
of STS tumor boundaries, which are often difficult to distinguish from surrounding healthy
tissue. This model's success underscores the importance of balancing depth with feature
retention, a critical aspect hence dealing with the heterogeneous and irregular shapes of

metastatic tumors in CT-PET imaging.

As shown in Figure 4.28., the training and validation accuracy and loss curves for the
Hyper Dense VGG16 model reveal a steady improvement in performance over time. The Dice
coefficient, which is a critical metric for segmentation tasks, demonstrated consistent growth
during training. Training accuracy showed a significant learning curve, rising from an initial
value of roughly 0.05 to over 0.83. Although progress was initially slow, the model's capacity
to stabilize and generalize effectively was demonstrated by the fact that accuracy had reached
a plateau at approximately 0.82 by the 50th epoch. On the other hand, there was a more
noticeable variation in the validation accuracy, which started at 0.21 and steadily increased to
0.73 by the end of training. Even though there were some changes in the middle epochs, the
overall trend showed that the model fit the data excellently, even though there were some
problems with generalization. These variations are common among deep learning models,
especially when fine-tuning is necessary for hard segmentation tasks. However, the model's

ultimate convergence to a greater accuracy highlights how reliable it is at identifying significant
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traits. The consistent growth in the Dice coefficient, as well as the stability of both training and
validation accuracy, strongly suggest that the Hyper Dense VGG16 model, which combines
the Hyper Dense design with the VGG16 backbone, is effective at segmenting lung cancer.
With a Dice score of 73%, it clearly performs exceptionally well and could improve
segmentation accuracy and lead to new ways for early identification of lung cancer in medical

image analysis.

This study examines four distinct fusion strategies—Ilate, early, dense, and hyper-fusion—
to enhance lung cancer segmentation. With a Dice score of 0.73, the Hyper Dense VGG-16
fusion model performed better than all of the others, according to the tests and results. This
proves that it is capable of effectively managing the complexity of STS segmentation. Because
of its deep, layered design and VGG-16 backbone, the model detected small tumor borders that
are difficult to distinguish from healthy tissue. The level of detection and preservation of
features must be balanced in order to segment heterogeneous and irregular metastatic tumors

using CT-PET imaging.

In the studies, we employed three loss functions—Binary Cross-Entropy, Focal Loss, and
Dice Loss—to assess their influence on model performance. Focal Loss yielded the most
favorable outcomes, particularly in the context of class imbalance and the model's capacity to
concentrate on regions that are challenging to classify, which is crucial when managing small

or irregularly shaped tumors.

When compared to the other fusion strategies—Early Fusion (Dice = 0.661), Late Fusion
(Dice = 0.712), Dense Fusion (Dice = 0.715), and Hyper Fusion (Dice = 0.72)—the Hyper
Dense VGG-16 fusion model emerged as the most effective despite its complexity. The Early
Fusion model's efficacy was diminished as a result of the increased computational complexity,
which was exacerbated by its difficulty with feature alignment. Late Fusion fared well in terms
of merging final predictions, but it did not completely benefit from model synergies. Although
Dense Fusion outperformed Late Fusion to a small degree, it necessitated more computing
power and meticulous regularization to prevent overfitting. However, Hyper Fusion, with
sophisticated methods including attention mechanisms, demonstrated excellent results but

increased architectural complexity, which could lead to overfitting if not regulated.

Based on these findings, Hyper Dense VGG-16 fusion was selected as the most suitable
model due to its superior balance of accuracy, computational efficiency, and model complexity.

Critical strategies such as data augmentation, dropout, and regularization mitigated the
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overfitting risks associated with more intricate models like Hyper Fusion despite their more
intricate architecture. As a result of its performance and generalizability to new data, this

method is ideal for STS tumor segmentation in CT-PET scans.

4.7. Summary

This chapter proposes multi-modal fusion approaches based on U-Net architecture (early
fusion, late fusion, dense fusion, hyper-dense vggl6 U-net) for lung tumor segmentation. The
findings prove that the Dice score of 73% is obtained for the hyper-dense vggl6 U-net, which
is superior to the other four proposed models. These results confirm that hyper-dense fusion
effectively captures complementary information from both PET and CT modalities, leading to

improved tumour boundary delineation.

The proposed segmentation framework provides a crucial step toward automated tumour
quantification, supporting radiologists in early detection and treatment planning for lung
cancer. However, while segmentation identifies the precise tumour location and shape, it does
not by itself provide information about tumour stage or progression, which are critical for
clinical decision-making and prognosis. Therefore, the next chapter focuses on TNM
classification and overall stage prediction using Vision Transformer (ViT) models, extending
the proposed framework from spatial segmentation to disease staging for comprehensive lung

cancer assessment.
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Chapter 5

S5.Non-Small Cell Lung Cancer TNM
Classification and Overall Stage Prediction

Using Vision Transformers
S.1. Introduction

This chapter seeks to apply accurate classification of non-small cell lung cancer (NSCLC)
stage using deep learning, and in particular, Vision Transformers. Attention is also paid to the
historical TNM classification, variables of clinical importance associated with the staging of
the disease, and motivation for the use of Transformers for such a task. The aims of this study
include a detailed knowledge of lung cancer staging, the development of new approaches, and
an emphasis on the benefits of Vision Transformers in this important area of medicine. This
chapter describes the main objectives of the study, paying utmost attention to the TNM staging
and the prediction of the overall cancer stage. Advanced techniques in deep learning, such as
Convolutional Neural Networks (CNNs) and Vision Transformers, have been implemented for
precise classification. Particular attention should also be given to addressing class imbalance
and improving the performance of the model. The second core objective identifies the
importance of the direct pathway in predicting the overall stage of lung cancer patients,

incorporating the details of the patients.

5.2. TNM Staging System

The TNM Staging System is used in the field of oncology and refers to the characterization of
size related to the tumor, the presence of cancer in the lymph nodes, and whether the disease
has metastasized to other organs. The UICC was the first organization to develop it. At the
moment it operates through UICC and the American Joint Committee on Cancer [110]. The
method of staging for each kind of cancer is universally recognized on a global scale. The

foundation of this argument rests upon three fundamental factors
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e The size and extent of the primary tumor, as indicated by the T category, refers to the
dimensions of the cancer and the degree to which it has infiltrated adjacent tissues.

e The spreading of lymph nodes (N) is a category that details the extent of spread to the
lymph nodes in close proximity.

e Metastasis, denoted by the M category, refers to the occurrence of cancer spreading to

distant organs or other regions of the body.

The samples of T and N descriptors are given in Figures 5.1. and 5.2. respectively.

Figure 5.2. N descriptor examples from NSCLC-Radiomics dataset.

The TNM classification 8th edition outlines the four stages of lung cancer [111] as given in
Table 5.1. Stage 0 represents an additional stage distinguished by the TNM descriptors Tis, NO,
and MO. The term "tis" is used to denote a tumor in situ, characterized by its non-malignant
nature but with the potential to progress into a malignant state at a later stage. The terms NO
and MO indicate the absence of metastasis to lymph nodes or distant organs. A diagnostic
method frequently utilized for assessing lung cancer stage is CT scanning, sometimes

accompanied by a fluorodeoxyglucose (FDG) positron emission tomography (PET) scan.
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Table 5.1. Lung cancer staging based on TNM classification 8th edition.

NO N1 N2 N3

Tia 1A1 1B A B
T1b 1A2 1IB A nB
Tic IA3 1IB A nB
T2a IB 1IB A B
T2b A 1IB A B
T3 1IB A B Hc
T4 A A B Hnc
M1a, M1b IVA IVA IVA IVA
Mic VB IVB VB IVB

The CT scan images accurately determine the dimensions and spatial coordinates of the
tumor within the pulmonary region. Nevertheless, detecting cancer in lymph nodes is a
significant challenge for proficient radiologists due to difficulty locating tumors using CT scan
pictures. A distinct magnetic resonance imaging (MRI) scan is necessary for brain metastasis,
explicitly targeting the brain [48]. The treatment strategy for individuals diagnosed with lung
cancer is contingent upon various aspects, including the specific classification of the cancer,

namely SCLC or non-small cell lung cancer NSCLC.

5.3. Research Objectives

The primary aim of this study is to delineate the fundamental research objectives, which
encompass two pivotal components: TNM stage classification and overall stage prediction.
These objectives are driven by the overarching goal of improving the accuracy and
effectiveness of lung cancer staging, ultimately contributing to enhanced patient care and

treatment outcomes.
Objective 1: TNM Stage Classification

The first core research objective centers on refining and advancing the TNM stage

classification process for lung cancer. This objective encompasses several sub-goals:

e Develop and Implement Deep Learning Models: The research aims to develop and

implement deep learning models, including Convolutional Neural Networks (CNNs)
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[112] and Vision Transformers [113], to accurately classify the TNM stages of lung
cancer based on medical imaging data.

e Address Class Imbalance: The methods address class imbalance class imbalance within
those in input dataset is reduced to facilitate training so that the models are effective in
learning from all TNM stage categories, hence mitigating bias associated to models
attaining a potentially 100% accuracy on dominant classes.

e Optimize Model Performance: The goal is to enhance the performance of these models,
increasing their accuracy in categorizing lung cancer patients into specific TNM stages.
This optimization entails refining model topologies, investigating innovative loss

functions, and maximizing classification accuracy.
Objective 2: Direct Overall Stage Prediction

Establishing a straightforward approach for estimating the general stage of lung cancer patients

is the second focus of core research. The following main sub-goals comprise this aim:

e [everage Vision Transformer Architecture: The features of Vision Transformer (ViT)
architectures are used to improve the general accuracy of stage prediction even further.
ViTs provide a more complete knowledge of the development of the disease since they
are quite good in capturing long-range dependencies inside medical images.

e Incorporate Patient-Specific Information: Understanding the importance of patient-
specific elements, such age and gender, in lung cancer staging, the aim is to smoothly
include this demographic information into the prediction process. This addition

guarantees a more exact and customized evaluation of the general performance.

All discussed, the research goals of this work address class imbalance issues, refine TNM
stage classification utilizing state-of- the modern deep learning models, and provide a direct
overall stage prediction method. By means of these goals, it is aspired to expand the accuracy
and clinical utility of lung cancer staging, thereby helping patients by means of therapy

recommendations and enhancement of prognostic assessments.

5.4. Research Questions

Keeping with the research goals, this section presents carefully thought-out research
questions that will be used as guidelines for the whole study. The goal of these questions is to
find important new information and progress in the field of lung cancer staging and aiming to

get more critical details.
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RQ 1. How can the TNM classification method is applied to accurately predict the overall
stages of lung cancer? The question also answers about the most important clinical and

pathological factors.

This question investigates the clinical and pathological factors which have significant impact

on how well the TNM classification can predict the overall stage.

RQ 2. How can additional imaging and biomarker methods can help the TNM classification
system to increase the prediction of the general stages of lung cancer? This questions also

identifies the factors which has important role in the staging process.

This study investigates the impact of adding extra imaging and biomarkers methods to the
TNM classification system which may improve the general process of predicting the stage of

a cancer. The goal is to show the benefits of combining different sources of knowledge.

RQ 3. How does the predictive accuracy of TNM overall stage classification method varies

across the different subtypes of lung cancer (e.g., Age/Gender/histology)?

This question focuses on assessing the variability in predictive accuracy when applying the
TNM classification system to different subtypes of lung cancer. It aims to uncover how factors

such as age, gender, and histological characteristics influence staging outcomes.

RQ4. What is the correlation between lung cancer TNM overall stages and key clinical and

demographic factors, including survival rate, patient age, gender, and tumour histology?

This inquiry seeks to establish the correlations between TNM overall stages and critical
clinical parameters, including survival rates and subtypes of lung cancer. It aims to provide

insights into the prognostic value of TNM staging.

RQ 5. Which specific TNM stage parameters (T, N, and M) have the most impact on overall

stage prediction and survival outcomes?

This research question investigates the relative importance of individual TNM stage
parameters, namely T (the primary tumor), N (lymph nodes), and M (metastasis), in both
overall stage prediction and the prediction of survival outcomes. It aims to identify the most

influential factors.

RQ 6. How do different subtypes of lung cancer (e.g., Age/Gender/histology) affect the

correlation between overall stages and survival prediction?
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Building upon Question 3, this question further explores how different subtypes of lung
cancer, categorized by factors like age, gender, and histology, influence the relationship
between overall stages and survival prediction. It aims to discern nuanced patterns within

specific subpopulations.

RQ 7. What are the potential limitations and challenges associated with predicting overall

stages of lung cancer using the TNM classification system, and how can these be addressed?

This final question critically examines the limitations and challenges inherent in predicting
lung cancer's overall stages through the TNM classification system. It endeavors to identify
potential obstacles and strategies for mitigating them, paving the way for more accurate and

reliable staging.

RQ 8. Can the overall stage prediction model effectively address the limitations and challenges

associated with the TNM classification system?

Building on the previous question, it is assessed whether the direct overall stage prediction
model can effectively circumvent the identified limitations and challenges of the TNM
classification system. This indicates that the proposed model has the potential to address these

concerns.

RQ 9. What are the possible constraints of direct overall stage prediction models?
When examining the direct forecast of the entire stage, this research questions investigates the
disadvantages and limitations that may arise in this alternate technique. It is essential to

acknowledge these limits in order to conduct a thorough evaluation.

RQ 10. Does a transformer-based design surpass convolutional neural networks in the domain

of lung cancer staging?

Transformer-based designs are evaluated against convolutional neural networks (CNNs) in
the context of computational techniques for lung cancer staging. This question directs the

assessment of the optimal model structure for this crucial medical application.

Ultimately, the research question focuses on exploring the clinical, radiological, and
computational components of lung cancer staging, motivated by these specific research themes.
The aim is to improve the understanding and precision of lung cancer staging methods by

addressing these problems, thereby benefiting both patients and healthcare providers.
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5.5. Motivation for Transformers

The application of Transformers, particularly Vision Transformers (ViTs), in the domain of

medical image analysis, such as the prediction of various stages of Non-Small Cell Lung

Cancer (NSCLC), is driven by their distinctive attributes. This section explores the rationale

for choosing Transformers instead of standard Convolutional Neural Networks (CNNs) for this

important application.

Key attributes of modeling:

1.

Long-Range Dependency: Transformers have an exceptional ability to grasp large
interconnections within data. The Multi-Head Self-Attention (MSA) module facilitates
the systematic connecting of data patches. This property has similarity to a graph neural
network (GNN) [114]enabling Transformers to generate extensive theoretical and
efficient receptive fields. In medical imaging, this ability can be very useful because it
leads to the comprehension of contextual information and extensive connections that go
beyond those exhibited by Convolutional neural networks (CNN).

Elaborate Modeling: CNNs generally use pooling and strided convolutions to modify
the scales while reducing the feature, whereas Transformer employs MLPs to gradually
enhance and adapt embeddings without altering the scale. Because of the well-modeled
and learned feature fusion within the Transformer architecture, subtle and semantic
details of the images are captured even as deeper levels of the model are accessed.
Maintaining intricate information is essential in the field of medical image processing
to ensure that correct classifications are made.

Inductive Bias: It should be noted that convolutional neural networks (CNN) take into
account some strong inductive biases that are closely related to the concept of pixel
locality. This means it consistently applies the same set of weights across the entire
image. Although this bias can enhance the rate of convergence and the performance
attended on small data sets, it also limits adaptability during more challenging scenarios.
In contrast, Transformers exhibit a reduced inclination to construct assumptions relying
on previous information because of their utilization of global self-attention mechanisms.
The primary inductive bias in Vision Transformers (ViTs) is generated from the
positional embedding. Transformers experience heightened computational demands and
training challenges as a result of their amplified data prerequisites. Nevertheless, they
possess the capacity to exhibit more resilience while handling extensive datasets, a

crucial aspect to take into account when forecasting the overall stage of NSCLC.
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4. Loss Landscape: Transformers generally generate a flatter loss landscape, even when
employed with CNN models. This characteristic enhances the efficiency and capacity to
apply the model to new data in contrast to Convolutional Neural Networks (CNNs)
trained under comparable circumstances. This characteristic can be highly advantageous
when working with medical image data that is characterized by noise or variation.

5. Noise Robustness: The application of the Transformer models has exhibited resilience
against a more common set of data imperfections and disturbances such as blurring,
motion, contrast variations, and noise. Their long-lasting reliability makes them a good

fit for medical image processing, a field that often struggles with noisy input data.
Computational factors to consider:

6. Transformers have demonstrated consistent scaling behavior in both Natural Language
Processing (NLP) and Computer Vision (CV). Better outcomes are obtained if the scale
of processing resources, model size, and dataset volume are raised simultaneously.
Because of this scalability, these approaches are well adapted to handling complex
problems such as predicting the overall stage of NSCLC, which involves handling large

volumes of medical images and meeting considerable accuracy requirements.

In conclusion, the unique architecture and computational aspects of Transformers, particularly
the Vision Transformers (ViTs), make these networks suitable for the assessment of medical
images. With regard to predicting various stages of NSCLC, describing long-range
dependencies, performing holistic modeling, resisting interference, and easy scalability present
an opportunity to enhance the performance of lung cancer staging and its application. The
properties of these materials are very compatible with the needs of this important medical

application and, therefore, very reasonable to include in the study.

5.6. Main Contributions of This Study

This research study makes a contribution to the Non-Small Cell Lung Cancer (NSCLC)
staging prediction, including the use of deep learning techniques and novel approaches. The

main contributions of the study are as follows:

e Novel Deep Learning Architecture for TNM Stage Classification: This work presents a
new deep learning architecture that is constructed with a special focus on increasing the
effectiveness and accuracy in the TNM stage classification of non-small cell lung

cancer (NSCLC). By utilizing 2D medical images as an input, this architecture shows
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tremendous variance in TNM classification with respect to conventional methods. This
method offers a more detailed and data-centric approach to determining the stage of a
tumor by exploiting the complex patterns and spatial relationships embedded in the
images.

e Vision Transformers for TNM Stage Classification: This study employs transformer
technology to harness the advantages offered by Vision Transformers (ViTs) for
assessing the TNM stage. ViTs, which are effective in obtaining long-range
relationships of distant objects and contextual understanding of particulars in images,
are applied to improve the accuracy of precise TNM classification. This novel
application of ViTs advances the boundaries of deep learning in the area of medical
image analysis by providing a more robust and accurate prediction of the TNM stage.

e Direct Model for Overall Stage Prediction with Multi-Input Structure: This study
proposes a direct modeling approach to improve the performance of the overall stage
classification task. The system leverages a Vision Transformer architecture, which can
accommodate different input structures and features additional information such as the
patient’s age and gender. This model highlights the importance of demographic
attributes in the categorization and, at the same time, integrates them into the prediction
task without any effort. By pursuing this aim, the current research contributes to the
existing body of knowledge regarding the predictions of the overall stage of NSCLC
reviewed so far from a broader perspective of disease advancement.

e To address the class imbalance problem of the dataset, efficient augmentation strategies
are employed.

e A comparison examination of the suggested methodology utilizing various state-of-the-

art classification networks is conducted for overall stage classification.
5.7. Methodology

5.7.1. Data Collection and Preprocessing

5.7.1.1. Dataset

The NSCLC-Radiomics dataset [115], which can be obtained from both the National
Biomedical Imaging Archive (NBIA) and the Cancer Imaging Archive (TCIA), is an excellent
tool for performing research regarding Non-Small Cell Lung Cancer (NSCLC) of such type.
The aim of this dataset is to offer a comprehensive collection of clinical and imaging-related
data for researchers and healthcare providers who are interested in NSCLC. The NSCLC-

Radiomics data set discerns 422 records, each of which is comprised of 10 attributes. The
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dataset includes a brief explanation of every column. Below is an outline of the size and

structure of the NSCLC-Radiomics dataset.
PatientID: Each patient in the dataset is given a unique identification.

Age: This attribute indicates the patient’s exact age in terms of the calendar year when the data
or information was collected. Age is a significant demographic variable that can impact

multiple aspects of cancer diagnosis and treatment.

Clinical.T.Stage: This refers to the clinical stage of the tumor in patients. The T stage offers

details regarding the dimensions and scope of the primary lung tumor.

Clinical.N.Stage: Indicates the clinical lymph node (N) stage of the patients. This stage reflects

the extent of lymph node involvement by the cancer.

Clinical.M.Stage: Represents the clinical metastasis (M) stage. This stage identifies whether

the cancer has spread to distant sites in the body.

Overall.Stage: Reflects the overall cancer stage, which is often determined by combining
information from the T, N, and M stages. It provides a comprehensive assessment of the

disease's severity.

Histology: Specifies the histological type of the lung cancer. Lung cancers can have different

histological subtypes, each with distinct characteristics.

gender: Indicates the gender of the patients, typically categorized as male or female. Gender is

another demographic factor that may have relevance in cancer research.

Survival.time: Represents the time (in some specified units, e.g., months) from the initial
diagnosis or treatment to a specific event, such as death or the end of the study period. This

column is essential for survival analysis.

deadstatus.event: A binary column indicating whether a patient has experienced the event of
interest (e.g., death) during the study period. It is commonly used in survival analysis as an

outcome variable.

Figure 5.3. shows the clinical data sample. Out of 422 patients, 302 were selected for training,

50 for validation, and 70 for testing purposes.
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Figure 5.3. Sample of a clinical data CSV file for the NSCLC-Radiomics dataset

5.7.1.2.

sizes 512 x 512. To better computation performance and develop a memory-efficient approach,
the data is resized to size 224 x 224. Furthermore, the images are rescaled with the help of the

normalization technique. Normalization is required to maintain the general distribution in the

Pre-processing
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dataset and make the convergence of gradient descent faster and smoother.

differs slightly (Figure 5.4.). Data augmentation techniques can be used to tackle this issue.
Data augmentation is defined as a technique that is used to create more data samples from
existing data. As discussed, many augmentation techniques are available. For the data, scaling

and flipping are used to balance the data belonging to each class. In the flipping technique,
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amn
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1590

The NSCLC-Radiomics dataset used in this study consists of CT and PET-CT scans with

The data shows a class imbalance problem because the number of patients in each class

horizontal flipping and up-scaling are used, and downscaling operations are used.
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Figure 5.4. Data distribution among different classes.

5.7.1.3. Data analysis

An extensive analysis of the NSCLC-Radiomics dataset is conducted from the Cancer
Imaging Archive (TCIA) to gain insights into overall stage prediction for Non-Small Cell Lung
Cancer (NSCLC) patients.

In this analysis, key predictors of mortality rates are identified. Age has emerged as a
significant risk factor, highlighting its critical role in prognosis. Additionally, it was found that
incorporating demographic factors, such as age and gender, along with imaging data has
improved the accuracy of the overall stage prediction models. This also stresses the need for
incorporating demographic information alongside clinical information to improve the accuracy

of the models.

In addition, the study found an interesting pattern in subgroup analysis, as can be seen in
Figures 5.5. and 5.6. More specifically, higher model accuracy is noted for individuals aged 65
or older as compared to others. This infers that age is related to predicting the preponderance
of the disease in the context of older patients and hence suggests the requirement for improving

intervention strategies for this population. The gender analysis indicates that the model was
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slightly more accurate in the male group than in the female group. Despite the fact that there
have been no apparent gender-related variations in prognosis for NSCLC, as depicted in Figure
5.7., it is, however, essential to delve deeper into understanding the causes that lead to these

differences, with the aim of achieving better treatment outcomes.

Additionally, the analysis refers to the effect the clinical N stage has on predicting the overall
stage. With this characteristic, the clinical N stage proved to be the most significant factor
impacting the predictions. This underlines the importance of clinical N-stage information in

understanding the progression, stage, treatment, and outcome of the disease.
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Figure 5.5. Mortality rate distribution within different age groups and overall stages.
Deadstatus = (1) denotes deceased patients, while Deadstatus = (0) represents patients

who remained alive.
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Figure 5.7. Average survival time within male and female groups, including TNM

stages.

In summary, age, gender, and histology are essential factors contributing to the overall
prediction of the stage and survival of patients with NSCLC. These characteristics are amenable
to improvement when machine learning models are applied so that more targeted patient
management is achieved. However, these factors, along with clinical, demographic, and other
variables, must be taken into account to attain robust predictive models. Furthermore,
continuous study is necessary to enhance the comprehension of these connections and enhance

the quality of patient care.
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5.7.2. TNM Stage Classification

5.7.2.1. Deep Learning Architecture for TNM Stage Classification
The proposed neural network design for TNM (Tumor, Node, Metastasis) stage
classification incorporates a novel model that is based on the principles of dense connection
[107].The input layer is initialized with a shape of size (224, 224), which corresponds to the
typical dimensions of medical photographs. The proposed architecture has a convolutional
layer with 164 filters, each possessing a kernel size of 5x5. The Rectified Linear Unit (ReLU)
activation function is utilized to introduce non-linearity. Batch normalization is added after

each convolutional layer for faster convergence.

Max-pooling with a pool size of 2x2 is used to reduce the feature maps following the initial
convolutional layers. To minimize overfitting, dropout with a rate of 25% is implemented. The
following convolutional blocks follow this pattern, progressively augmenting the number of
filters while preserving the dense connectivity between layers, as depicted in Figure 5.8. and

Figure 5.9.

Following the initial convolutional layers, max-pooling with a pool size of 2x2 is applied to
downsample the spatial dimensions, and dropout with a rate of 25% is introduced to prevent
overfitting. The subsequent convolutional blocks continue this pattern, gradually increasing the
number of filters while maintaining the dense connectivity between layers as shown in Figure

5.8 and Figure 5.9.

The architecture incorporates three branches, each dedicated to predicting T, N, and M
stages. Each branch follows a similar convolutional block structure but operates independently,
allowing the model to capture stage-specific features. The convolutional blocks are
interspersed with max-pooling and dropout layers to enhance the network's ability to discern

hierarchical features at different scales.

Upon the convolutional blocks, a flattening layer is introduced to transform the
multidimensional tensor into a flat feature vector. This vector is then passed through fully
connected layers, incorporating ReLLU activation, batch normalization, and dropout, fostering

non-linearity, stability, and regularization, respectively.

The final layer of each branch employs a SoftMax activation function to generate the
probability distribution over the respective TNM classes (Eq. 5.1). The probability that a

sample i belongs to class k is computed as:

88



Zik
P(ik) = <o (5.1)

j=1 e’

where z; , represents the model’s logit output for class k, and K is the total number of classes.

These softmax probabilities are then used to calculate the Categorical Cross-Entropy Loss (Eq.

5.2):

(5.2)

N K
Lecg = 2 Z Yiklog (Dix)
=1

k=1

2|~

where p;, = P(i, k), N is the number of training samples, and y;; denotes the true one-hot
encoded class label. This loss function penalises incorrect predictions proportionally to their

confidence and serves as the optimization objective for training the TNM classification model.

Input Image

@Convolulion block m Max Pooling Layer ' Fully connected layer
@ Batch Normalization Dense block ' Global Average Pooling

Figure 5.8. Architecture of proposed model for T, N, M stage classification.

Figure 5.9. Dense Block
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Importantly, the architecture adopts a unified decision-making approach, where the predictions
from the T, N, and M stages are collectively fed into a decision tree algorithm. This algorithm
synthesizes the individual predictions to yield the overall stage classification. The decision tree
enhances interpretability and provides a comprehensive strategy for aggregating stage-specific
information. The model is trained end-to-end using the Adam optimizer with a learning rate of

0.0001.

5.7.2.2.  Enhancements and Extensions of the TNM Stage Classification Architecture:

In the pursuit of refining and extending the TNM stage classification architecture, two key
enhancements are introduced: a multi-image approach and the inclusion of demographic
features, specifically age and gender. These adaptations are geared towards fortifying the
model's robustness, leveraging additional information to improve accuracy and generalize

across diverse patient populations.
1. Multi-input Architecture:

The architecture is expanded to accept several image modalities, notably axial and coronal
views, to acknowledge the multi-input nature of medical imaging data. This expansion gathers
additional information from several imaging planes, which will enhance our understanding of

the tumor's geographic distribution and features.

For this augmentation, distinct branches are combined for each image modality. The
convolutional blocks within each branch independently process the separate image inputs,
enabling the model to distinguish stage-specific features that are present in axial and coronal
views. These branches possess the identical convolutional block structure as the original
design, but they function on their individual picture inputs. The ensemble approach integrates
the final predictions from these branches, leveraging the strengths of both axial and coronal

viewpoints to achieve a more comprehensive TNM stage categorization.
2. Inclusion of Demographic Features:

The inclusion of a layer to the design that incorporates gender and age data highlights the
importance of demographic characteristics in cancer prognosis (Figure 5.10.). The fully
connected layers receive the flattened output from the convolutional blocks, and these
demographic features are then added to it. With this update, we hope to give the model a better

chance of picking up on gender and age-related subtleties in TNM stage prediction.
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Because of its well-documented importance in cancer prediction, including age is very
relevant. The ability to learn age-related patterns gives the model a leg up when it comes to

identifying how various age groups show unique traits in imaging data.

Gender is ignored in traditional medical imaging models, which introduces a new
dimension for analysis. This new dimension allows for the identification of possible gender-

based variations in the TNM stage.

Such demographic features are also treated as additional input channels during the model's
training, enabling the model to learn from additional demographic data and images. The
implemented approach not only improves the model’s interpretability but also helps make

better TNM stage predictions.

Age

Gender

Demographic

Classifier for T Stage
Features

Overall
Classifier for N Stage — Stage — Final Stage

prediction

Classifier for M Stage

Input CT Images

Figure 5.10. Multi-input architecture.

Training and Evaluation:

The extended architectures that incorporate multi-image modalities and demographic
features are trained end-to-end using the same categorical cross-entropy, which maintains
uniformity in the learning goals. The models are evaluated on comprehensive datasets,

assessing their performance across diverse patient cohorts.

These innovations represent progress in the effort towards more precise and refined TNM
stage classification. The multi-image approach has the unique structure of using different
imaging views at one time, and adding demographic features is a step towards personalizing
cancer treatment. These improvements enhance the model's prediction ability and facilitate a
comprehensive knowledge of the complex aspects affecting TNM staging in Non-Small Cell

Lung Cancer.
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1. Advantages of Vision Transformer Integration:

Applying ViT architecture is advantageous in many ways. In the realm of images, ViT
excels at identifying intricate structures and contextual cues, hence generating a more
comprehensive feature set for TNM stage classification. Large-fine datasets and high-
resolution images can be handled with consummate ease. Therefore, it is appropriate for
detailed and extensive medical imaging research. Its versatility also allows integration with

almost all types of modality and data.

Integrating the Vision Transformer Architecture to TNM stage classification is excellent
progress. It provides the model with the expected accuracy and robustness as it combines
demographic data with the powerful extraction features of ViT. By improving TNM stage
classification, this development visualizes a more focused cancer prognosis, flagging the

potential of transformer systems in medical imaging and cancer treatment.

5.7.3. Overall Stage Prediction

5.7.3.1. Deep learning architecture for overall stage prediction.
An effective predictive model is important for predicting the overall stage in the field of
Non-Small Cell Lung Cancer prognosis. This section addresses the deep learning architecture

that has been custom-developed for this purpose.
Overview of Architecture:

In this stage of architectural development, it is stated that the first step is an input layer.
An input layer is one that is intended to receive three-dimensional data, specifically axial and
coronal views of medical images. The dimension of the input shape is (224,224). The primary
convolutional layer with 64 filters having a kernel of 7x7 serves well as a feature extraction
unit with great efficiency in obtaining complex structures from the input data. To facilitate the
stability of the model and place the model in a non-linear regime, batch normalization is
performed, followed by a rectified linear unit (ReLU) activation. The purpose of the pooling
techniques is to decrease the size of spatial dimensions, which enhances the efficiency of the
computations and makes it possible to retrieve critical features. The particular feature of the
architecture is composed of compact blocks, each made up of several convolution layers with
a known expansion rate. Such blocks provide significant opportunities for capturing
hierarchical elements that are essential for the recognition of complex patterns from medical

images.

92



Transition blocks are implemented rather seamlessly to attain a desirable balance between
the model's accuracy and overfitting to many features. These blocks combine batch
normalization, ReLU activation, and convolutional layers to reduce the number of filters
effectively. In the transition blocks, the reduction parameter is critical in controlling the flow

of information between the layers, thus determining the effectiveness of the model.

As the network expands in size, the global average pool layer aids in dimension reduction
and high-level feature extraction. The fully connected layers, augmented by ReLLU activation,
serve as effective classifiers. The second-to-last dense layer with 1000 units functions as a
feature extractor and captures sophisticated features. The softmax-activated last dense layer

classifies the data into several discrete classes and thoroughly predicts the general stage of

NSCLC.
Exploration of Multiple Inputs:

The research centered on the architecture's capacity to accommodate diverse data sources
to enhance predictive performance. The architecture in the model was altered in a manner that
allowed extensive use of axial and coronal views of images. This adjustment was due to the
fact of the introduction of these various sources of information as illustrated in figure 5.11. The
aim of this research is to investigate if the accuracy of prediction could be improved by the use

of several images with different views.
Integration of Demographic Features:

Apart from image data, age, and gender description were given as additional input
parameters. In their case, the same design principles as the architecture were adopted, and these
features were tested to find out whether such information may significantly enhance the model's
prediction accuracy. This investigation was premised on the fact that knowledge of the specifics

of individual patients can be very important to provide a precise forecast.

In conclusion, the proposed architecture is feasible for the deep learning model that aims
to predict the general stage of non-small cell lung cancer (NCLC). It is based on the DenseNet
principles and can alter demographic factors to other inputs, indicating that it offers accurate
and precise estimations. This comprehensive analysis provides a framework for
comprehending the complexities of the architecture, facilitating future enhancement and

optimization in the pursuit of a better NSCLC prognosis.
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Figure 5.11. Multi-view architecture for overall stage prediction

Coronal view

5.7.3.2.  The Vision Transformer-based architecture.

Integration of advanced deep learning architectures becomes essential in the persistent
search for better prognostic models for non-small cell lung cancer (NSCLC). This part explores
the subtleties of a new method: the multi-input structure based on Vision Transformer (ViT).
This innovative design presents a comprehensive framework for general stage prediction, so

transforming the area.

Intended initially for general-purpose picture classification, the Vision Transformer [113],
has shown amazing adaptability among several computer vision applications. ViT depends on
self-attention mechanisms [116] obtained by the Transformer architecture, unlike traditional
Convolutional Neural Networks (CNNs). The basic concept considers the input image as a
sequence of linearly embedded, fixed-size patches, which are transformed into vectors.
Transformer blocks process the input sequence formed by these vectors as well as spatial

embeddings.

Self-attention layers enable each Transformer block to capture long-range dependencies
inside the sequence. Discerning complex patterns in medical images depends on the model's
capacity to simultaneously pay to several areas of the input sequence, hence improving its
awareness of spatial linkages. This self-attention mechanism greatly helps the ViT be efficient

in feature extraction and representation learning.

ViT Pipeline Overview
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The architecture of a Vision Transformer (ViT) typically comprises of a Transformer
encoder, and task-specific decoder as shown in Figure 5.12. Taking image processing as an
example, the initial step involves dividing the image X € RCxHXW into a sequence of non-
overlapping patches {X1, X2, ..., XN }, where Xi € RCxP xP, with C denoting the number of
channels, [H, W] representing the image size, and [P, P] indicating the resolution of a patch.

Subsequently, each patch undergoes vectorization and linear projection into tokens:
X = {X1E,X2E,.. . XNE}, E € RCP2xD (5.3)

where D denotes the embedding dimension, which was set to 768 in this study following the
standard ViT-Base configuration. This dimension determines the size of the feature vector
representing each patch after linear projection, providing a balanced trade-off between

representational richness and computational efficiency.

Multi-Head
Attention

Norm |

Embedded
Patches

Figure 5.12. Transformer Encoder

Following this, a positional embedding, Epos, is added to preserve the positional information

pos of the patches:

x=X+Epos, Epos ERNxD (5.4
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The resultant tokens are then input into a Transformer encoder, comprising L stacked base
blocks. Each base block consists of multi-head self-attention and a multi-layer perceptron

(MLP), incorporating Layer-Norm (LN). The feature is expressed as follows:
ZI'=MSA(LN(ZI-1)+ZI-1,l €1, ..., L] (5.5)
ZIl=MLP(LN(Zl')+ZlI',l €1, ..., L] (5.6)
Generation of Non-Overlapping Patches

In the context of Vision Transformer (ViT) implementation in visual tasks, the generation of
patches {X1 , ..., Xn } follows a non-overlapping approach as shown in Figure 5.13. The
adoption of this non-overlapping style is aimed at minimizing modifications to the standard
Transformer architecture. This choice, however, introduces a partial disruption of the internal
structure of an image, as noted by Han et al. (2021a) [117]. To address this challenge, Multi-
Head Self-Attention (MSA) blocks are employed to consolidate information from diverse
patches, mitigating the impact of the disruption. Simultaneously, the use of non-overlapping
patches ensures the absence of computational redundancy when inputting data into the

Transformer model.
Positional Embedding Explanation

In the case of Transformers, the processing involves tokenizing and analyzing each patch
independently, leading to the unintended consequence of losing positional information
concerning the overall image. This is undesirable because understanding the context in the
image requires knowledge of the position of each patch. Positional embeddings are proposed
to encode such information into every patch so that the positional context is preserved all along
the network and helps to solve this problem. Additionally, positional embeddings serve as a
manually introduced inductive bias in Transformers. Generally, there are three types of
positional embeddings: sinusoidal, learnable, and relative. The first two encode absolute
positions ranging from 1 to the number of patches, while the last type encodes relative positions
or distances between patches. The subsequent subsections provide a brief overview of each

type of positional embedding.
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Sinusoidal Positional Embedding

In the context of encoding the position of each patch, a straightforward approach might involve
assigning an index value between 1 and the total number of patches to each patch. However, a
notable challenge emerges when dealing with a large number of patches, as this may lead to a
substantial disparity in index values, adversely affecting network training. The pivotal concept
here is to represent distinct positions using sinusoids with varying wavelengths. For a given
patch position n, the sinusoidal positional embedding is defined as per the formulation

introduced by Vaswani et al. (2017) [116]:

Egin(n, 2d) = Sin(——rrp) (5.7)

Esn(n,2d + 1) = COS(W)

where d = 1,...,D,, and D, = D/2 = 384 in this study. The constant 10,000 acts as a
wavelength scaling factor to ensure smooth variation of sinusoidal functions across embedding
dimensions. Although this constant was initially introduced for sequence modelling in natural
language processing (Vaswani et al., 2017) [116], it has been widely adopted in Vision
Transformer (ViT) architectures for image-based tasks (Dosovitskiy et al., 2020) [113]. The
formulation remains effective for encoding spatial positions of image patches, as it provides a
stable numerical range and preserves relative positional relationships across tokens in the

image sequence.
Learnable Positional Embedding

Rather than encoding precise positional information directly onto the patches, a more direct
approach involves the use of a learnable matrix denoted as Elrn. In this method, the network
is tasked with learning the positional information autonomously. This is commonly referred to

as learnable positional embedding.

Relative Positional Embedding
In contrast to utilizing a fixed embedding for each location, as seen in sinusoidal and
learnable positional embeddings, relative positional embedding captures the relative

information based on the offset between elements in Q and K being compared within the self-
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attention mechanism [118]. Various approaches to relative positional embedding have been
developed, and it remains an active area of research. Nonetheless, the fundamental principle
remains consistent, wherein they encode information about the relative position of Q, K, and V

through a learnable or hard-coded additive bias during the self-attention computation.

Multi-Layer Perceptrons

In the conventional Transformer architecture, such as in the original Vision Transformer (ViT)
by Dosovitskiy et al. (2020) [113] and the Transformer model proposed by Vaswani et al.
(2017) [116], the Multi-Layer Perceptron (MLP) follows each self-attention module.

Overall
Stage
MLP
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Transformer Encoder
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Figure 5.13. ViT-based Architecture for Overall Stage Prediction

The MLP plays a crucial role by introducing inductive bias into the Transformer, addressing
the absence of inductive bias in the self-attention operation. This distinction arises from the
fact that the MLP is both local and translation-equivariant, while self-attention computation is
a global operation. The structure of the MLP consists of two feed-forward networks with an

activation function (typically a Gaussian Error Linear Unit, GeLU) in between:
MLP(.X) = ¢(.XW1 + bl)WZ + bz (58)

Here, x represents the input, and W and b denote the weight matrix and bias of the
corresponding linear layer, respectively. The dimensions of the weight matrices, W1 and W2,

are typically set as D x 4D and 4D x D. As the input is a matrix of flattened and tokenized
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patches, applying W to x is akin to employing a convolutional layer with a kernel size of 1x1.

Consequently, the MLPs in the Transformer exhibit high localization and equivariance to

translation.

Integration of Multi-Input Structure:

The multimodal architecture represents a dynamic synergy between ViTs and textual data,

blending medical imaging and patient-specific information as shown in Figure 5.14. This novel

method takes advantage of ViTs' ability to record complex visual patterns and long-range

dependencies inside images.

The architecture of the proposed model consists of below elements:

1.

Axial and Coronal View Imaging Data: Two-dimensional axial and coronal view
medical imaging data is accepted as input by the model. These pictures provide a
complete picture of the internal components of the lung, which helps the ViT to identify
minute visual signals related with cancer development.

Backbone Vision Transformer (ViT): The ViT model is the foundation of the design; it
has shown remarkable ability in managing medical imaging duties. ViTs use multi-head
self-attention systems to help to represent complex interactions among picture patches.
These ViT models are made to recognise and encode the spatial aspects of the axial and
coronal view images.

Gated Fusion: A gated fusion system is included to harmonise the insights obtained
from axial and coronal views. By combining the information from the two views, this
fusion approach improves the general interpretative power of the model. Gated fusion
guarantees appropriate integration of the subtleties from every view, therefore
producing a more accurate prediction.

Textual Data Inclusion: Acknowledging the value of patient-specific data, age, and
gender, we now present textual elements. These features are included into the model to
improve personalisation and identify differences in lung cancer development depending
on demographic elements. In the framework of lung cancer, age and gender are crucial
factors; their inclusion enhances the prediction ability of the model.

Concatenation of Visual and Textual Data: The gated fusion output—which shows a
harmonic blending of axial and coronal view data—is concatenated with the textual
data (age and gender). Combining visual and demographic qualities, this composite

feature vector captures the whole patient's condition.
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The multimodal architecture enables highly informed forecasts regarding the general stage
of lung cancer by means of the complicated interaction between the Vision Transformer's
comprehension of complex spatial patterns in medical images and the incorporation of patient-
specific knowledge. Combining various modalities gives the model a sophisticated knowledge

of the illness and its development, which eventually helps to produce more exact and

individualised stage prediction.

This adaptive technique is expected to advance the field of lung cancer overall stage
prediction and usher in a new era of precision and personalising in the field of oncology. The
multimodal architecture is a significant advancement toward improving patient treatment

planning and care, influenced by the Vision Transformers.
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Figure 5.14. Multi-input ViT architecture for overall stage prediction

5.8. Experimental Results

5.8.1. Experimental Setup

This section offers a full description of the experimental setup including information
regarding the data splitting procedure, evaluation measures and the training process. During
the experiments, Google Colab was utilized for the purpose of accelerating the training times,

particularly through the use of its strong T4 GPU.
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5.8.1.1. Model Training
The training processes for the CNN and ViT models demonstrate notable differences in
methodology and performance, particularly in the context of both TNM stage and overall stage

classification models.

In the CNN-based architecture, independent models are trained for the TNM classification
and the overall stage classification. Each model is optimized using the Adam optimizer [97]
with a learning rate of 0.0001, chosen for its ability to balance effective optimization and
convergence stability. The categorical cross-entropy loss function is used in all models during
the training and provides uniformity in the optimization for classification tasks. While CNNs
can be trained relatively easily, their architecture does not reach high accuracies when trained
on complex multi-modal datasets. This shortcoming is observed acutely wherein the trained

architectures fail to outperform their ViT counterparts even when the training process is stable.

The ViT models go a step further and utilize an advanced training strategy due to their
transformer-based architecture, which helps them in working with multi-modality data. They
apply a learning rate of 2e-5 to fine-tune the pre-trained weights in order to enjoy stable
convergence during training. In order to accelerate the training on a T4 GPU, mixed-precision
training with fp16 is applied while both high accuracy and low computational overhead are
hoped to be achieved. Given its design, it is clear that the ViT model inherently is better in
regard with learning complex dependencies in data and therefore performs well in TNM as
well as overall stage classification. Training and validation accuracy improves for both models
steadily across epochs with less divergence and overfitting. These features emphasize the

strength of ViT in solving complex classification challenges such as stage of lung cancer.

5.8.1.2. Loss Function

The categorical cross-entropy loss function is used for model optimization for multi-class
classification problems. The categorical cross-entropy loss quantifies the dissimilarity between
the predicted probability distribution and the true distribution of class labels. Its formula is
given by:

¢ (5.9)
L) == ) yilog ()

Here (y) is the true class distribution; (y*) is the plrzeldicted probability distribution, and (C) is

the number of classes.
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5.8.1.3. Evaluation Metrics
The main benchmark used to evaluate the models' performance is accuracy. The accuracy of
classification is termed as the ratio of events predictively matching the actual observation over

a total number of instances and is expressed mathematically as:

Number of Correct Predictions

Accuracy = (5.10)

Total Number of Predictions

In addition, the confusion matrix and classification reports are employed to gain an
understanding of the model’s performance. Such classification reports include performance
metrics of precision, recall, and F1 score for all classes, thereby aiding an understanding of the
model’s discrimination of the various levels of cancer. A confusion matrix, which is illustrated

in Figure 5.15., is used to assess the efficiency of a developed classification technique.
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Figure 5.15. Confusion Matrix (a) for testing data using multi-input ViT model for

Overall stage and (b) multi-input ViT TNM model.

5.8.1.4. Data Splitting and Cross-Field Validation

We use stratified data-splitting technique to guarantee the dependability and fairness of the
model evaluations. This approach kept the distribution of several general phases across the test,
validation, and training sets, therefore avoiding a distorted representation that would have

biased the model.

Moreover, cross-tfield validation is used to firmly evaluate the generalization capacity of the
suggested models. This included splitting the dataset into several folds and iteratively training

and assessing the model on many combinations of training and validation sets. More thorough
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evaluation of the performance of the model over several data subsets is offered by cross-field

validation. Figure 5.16. shows the five-fold cross-validation; Table 5.2. shows its accuracy at

every split.
Fold 1 Fold =2 Fold 3 Fold 4 Fold 5
Split 1 Training Training Training Training Validation
Split 2 | Training Training Training Validation Training
sSplit 3 Training Training Validation Training Training
Split 4 | Training Vvalidation Training Training Training
Split 5 | Validation Training Training Training Training

Figure 5.16. Dataset split for cross-validation analysis.

Table 5.2. Validation accuracy using multi-input ViT model for overall stage

prediction.
CV Split Validation accuracy using
overall stage ViT model
Split 1 97.88
Split 2 98.26
Split 3 98.65
Split 4 98.75
Split 5 97.76
Average 98.28

To summarize, the experimental design was meticulously designed to ensure the models'
integrity and effectiveness for NSCLC staging. Together with Google Colab's T4 GPU's
processing capability, innovative designs, suitable loss functions, and comprehensive

evaluation metrics establish a strong basis for the subsequent study of the data.

5.8.2. Results for TNM Stage Classification

Results of the TNM stage classification demonstrate the performance of two different
architectures: a vision transformer and a deep learning model. Various input setups ranging
from single-view images to including multiple views (axial, coronal and sagittal) and extra

demographic data were used to assess these structures.

For the deep learning model, the accuracy scores varied across different input scenarios.
Notably, the model achieved a 78% accuracy when trained on single-view images. Introducing

multi-view data (axial and coronal) led to an improvement, resulting in an accuracy score of
103



81%. Further enhancements were observed with the inclusion of demographic features, where
the model achieved an accuracy score of 83% for the combination of axial view with age and
gender. The highest accuracy of 85% was attained when incorporating both axial and coronal

views alongside age and gender information.

For the deep learning model, the accuracy scores varied across different input scenarios.
Notably, the model achieved 78% accuracy when trained on single-axial-view images.
Introducing multi-view data (axial and coronal) led to an improvement, resulting in an accuracy
score of 81%. Further enhancements were observed with the inclusion of demographic features,
where the model achieved an accuracy score of 83% for the combination of axial view with
age and gender. The highest accuracy, which is 85% was attained when incorporating both axial

and coronal views alongside age and gender information.

Table 5.3. Accuracy scores for TNM stage models

Axial +
Model Axial | Coronal | Sagittal | Multiview | Axial + Demo | Coronal +
Demo
CNN 78 72 69 81 83 85
Vision Transformer | 83 75 71 85 86 90

As seen in Table 5.3., the vision transformer regularly outperforms the deep learning
model across all conditions. The vision transformer obtained an accuracy score of 83% upon
given single-axial-view images. With multi-view data and an accuracy score of 85%, the vision
transformer's advantages become clearer. Including demographic characteristics kept
improving performance; axial view combined with age and gender had an accuracy score of
86%. Including axial and coronal views with age and gender information produced the most

notable improvement, yielding an amazing accuracy score of 90%.

Especially in using multi-modal input data, these results highlight the relative strengths
of the vision transformer design. The findings show how much it might improve TNM stage
classification accuracy. Furthermore, underlined in the study is the need of incorporating
several input configurations, including demographic data, to improve cancer staging predictive

models.

5.8.3. Overall Stage Prediction Results
Two different architectures, Deep learning, a CNN model, and a vision transformer, are

evaluated to demonstrate the performance of the stage prediction model. The accuracy scores
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are presented for several input configurations, ranging from single-view images to multiple

views, i.e., axial and coronal, along with other demographic data.

Depending on the input data provided, the deep learning model had varying levels of
accuracy. While the model was trained solely with images taken from an axial view, accuracy
was achieved at the level of 79%. The use of multi-view images (axial and coronal images)
greatly improved the accuracy and achieved a score of 83%. The addition of demographic data
achieved further improvement in the model with an accuracy score of 86% for combined axial
view with age and gender. When both axial and coronal views, along with age and gender, are

all combined, an accuracy of 87% is achieved, as shown in Table 5.4.

Table 5.4. Accuracy scores for Overall stage prediction

Axial +
Model Axial | Coronal | Sagittal | Multiview | Axial +Demo | Coronal +
Demo
CNN 79 73 70.5 83 86 87
Vision Transformer | 98.65 | 81.5 78 97.92 97.55 98.75

Among all scenarios, the outcome of predicting the overall stages was the best for the
vision transformer as compared to the deep learning, i.e., the CNN model. For single-axial-
view images, an accuracy score of 98.65% was achieved for the vision transformer. As the
number of views increases in using multi-view images, the accuracy score drops to 97.92% for
the vision transformer implementation. Gender and age features were included along with both

the axial and coronal views, which resulted in an astonishing accuracy of 98.75%.

These results demonstrate the effectiveness of the vision transformer architecture in
overall stage prediction which shows the superior accuracy compared to the deep learning
model. It emphasizes the promise of the vision transformer when it comes to using multi-modal
inputs and demographic information for more accurate predictions of the overall stage of cancer

in patients.

5.8.4. Comparison with Existing Methods
5.8.4.1. TNM Classifier vs. Overall Stage Classifier

Several notable remarks signify how efficient and comprehensive the workings of the
TNM stage classifier and the general stage classifier are when their findings are compared. The
TNM stage classifier, integrated into a unified decision-making process through a decision tree

algorithm, comprises distinct deep learning models for the categorization of T, N, and M stages.
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This method seeks to improve interpretability by combining predictions tailored for different
stages. The models obtained variable accuracy ratings; their performance varied significantly

depending on the input arrangement.

Using both visual transformer architectures and deep learning, the general stage classifier
concentrated on holistically predicting the cancer state. When multi-view data and
demographic information were included, the deep learning model showed small but consistent
accuracy gains. Emphasizing its robustness in using multi-modal data and demographic
information, as shown in Figure 5.17., the vision transformer routinely exceeded the deep

learning model across all scenarios.

Multi-input @ Multi-view Single view
100
75
50
25
0
Overall stage DL Overall stage VIiT TNM Classifier DL TNM Classifier ViT

Figure 5.17. Comparative analysis of TNM classifier with Overall stage classifier

Although the TNM stage classifier explores the minutiae of tumor, node, and metastatic
classifications, generally the stage classifier offers a more complete picture considering the
whole cancer staging. Especially in general stage prediction, the vision transformer constantly
outperforms the deep learning model in terms of flexibility to multi-modal input and

demographic information.

5.8.4.2. Competitive analysis of Overall stage and TNM stage classifier based on CNN
architecture
The deep learning-based models for both the Overall stage and the TNM stage
performed differently depending on how the inputs were set up. To figure out the overall stage,

the accuracy scores were: 79% for a single axial view, 73% for a single coronal view, 70.5%
106



for a single sagittal view, 83% for multi-view, 86% for an axial view plus demographic data,
and 87% for axial and coronal views plus demographic data (87%). These results show that
estimates are much more accurate when different points of view and demographic data are
used. The better accuracy shows that looking at the imaging data from more than one angle
seems to help us understand the tumor's traits better. This proves that using more than one view
makes the model work better. In the same way, adding demographic information helps the
model learn trends that are unique to each age group and gender. This makes it even better for

prediction.

The TNM stage model did much better than the Overall stage model after multi-view
and demographic data were added, but still it needs improvement
There were seven different types of accuracy scores: 78% for a single axial view, 72% for a
single coronal view, 69% for a single sagittal view, 81% for a multi-view, 83% for an axial
view with demographic data, and 85% for axial and coronal views with demographic data. The
experimental findings show the importance of multi-modal inputs and demographic data
together for improving the deep learning model's accuracy in identifying different stages of
tumors, lymph nodes, and metastases. Even it is hard to capture the details of each stage

automatically, the TNM stage model gains from the extra data provided by inputs.

Table 5.5. Comparative Performance and Computational Requirements of CNN

Architectures for Overall Stage and TNM Stage Classification

CNN Overall stage TNM
Number of layers 39 117
Number of parameters 102 814 661 308 443 983
Training time 6 hr 18hr
Testing time 30 ms 90 ms
Accuracy 87 80
Hardware requirements CPU CPU

As shown in Table 5.5., the Overall stage model clearly does better than the TNM stage

model across all measures when comparing the two CNN classifiers. With multi-view and
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demographic data added, the Overall stage predictor is much more accurate having accuracy
of 87% than 80%, and its performance is greatly improved. The Overall stage model is also
simpler, with 39 layers instead of 117 and 102,814,661 parameters instead of 308,443,983. This
means that it takes less time to train, i.e., 6 hours as compared to 18 hours and compute (30 ms
vs. 90 ms). The Overall stage model is more accurate and efficient, even though it has fewer
parameters. This makes it a better choice for real-world uses. For both models, training and

testing were done using CPU hardware, which made them easy to use.

5.8.4.3. Competitive analysis of Overall stage and TNM stage classifier based on ViT

architecture

The Vision Transformer (ViT) architecture exhibited greater performance in comparison
to CNN-based models, highlighting its increased capacity to handle intricate medical imaging
data. The performance validity of the ViT model was quite impressive when it came to
forecasting the overall stage. These scores were as follows: the Accuracy was 98.65 for the
single axial view, 81.5 for the single coronal view, 78% for the single sagittal view, 97.92% for
the multi-view approach, 97.55% for the combination of axial view with demographic data and
98.75% for the combination of axial and coronal view with demographic data. The enhanced
accuracy attained through ViT architecture can be attributed to its capability to gather
comprehensive context and detailed patterns within the entire image. The use of a multi-view
approach enhances the performance of the model by combining different views, which is
beneficial. Enhancement of the ViT model is made possible by the addition of demographic
data, as it allows the ViT to learn age and gender-oriented features during the classification

stages.

By adding the ViT structure into the TNM stage model, the classification accuracy scores
have significantly risen: 83% for single axial, 75% for single coronal, 71% for single sagittal
views, 85% for multiple views, 86% for axial and demographic data and 90% for axial, coronal
and demographic data. The outcomes depict the efficiency of ViT architecture in handling the
multi-modal input and demographic data with resilience and flexibility. The ViT consistently
outperforms deep learning models in all scenarios due to the large datasets and high-resolution
images, as well as its adaptability to include various data sources. It also performs exceptionally
well, demonstrating its potential to provide more accurate and customized cancer staging,

which will ultimately improve patient outcomes in the oncology domain.
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In every criterion, the overall stage model outperforms the TNM stage model when
compared to the ViT classifiers. The stage classifier shows a considerably higher accuracy of
98.75% as compared to 90%, indicating the exceptional performance of the ViT in this field.
Table 5.6. shows that the Overall stage model requires a shorter training time of 10 hours as
compared to 30 hours of computing time of 60 ms as compared to 180 ms, although having
fewer layers of 32 as compared to 96) and parameters of 171,605,002 as compared to
514,815,006. The complex design and high processing demand of the ViT make GPU hardware
necessary. However, its outstanding accuracy and efficacy in handling multi-modal inputs and

demographic information make it the preferred choice for cancer staging applications.

Table 5.6. Comparison of ViT Classifiers for Overall Stage and TNM Stage Prediction

ViT Overall stage TNM
Number of layers 32 96
Number of parameters 171 605 002 514 815 006
Training time 10hr 30hr
Testing time 60 ms 180 ms
Accuracy 98.75 90
Hardware requirements GPU GPU
5.8.5. Compare the Proposed Approach with Existing Methods in the Literature.

The comparative results presented in this chapter have been refined to ensure
transparency and fairness in evaluation. The proposed TNM and overall stage prediction
models were developed using the NSCLC-Radiomics dataset [115], which was selected
because it provides a comprehensive set of CT images and detailed clinical information,
including patient age, gender, and tumour characteristics. Incorporating these clinical features
significantly improved the predictive accuracy of the proposed model, achieving 98.75%

accuracy and outperforming existing approaches, as shown in Table 5.7.

It is important to note that only a limited number of prior studies have attempted TNM
stage prediction using similar data sources. Paing et al. [88] utilized the same NSCLC-
Radiomics dataset [115], but their work focused solely on T-stage classification, without
addressing the complete TNM staging system. In contrast, Moitra et al. [90] and Tyagi et al.
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[92] applied their models using the NSCLC-Radiogenomics dataset [91], which differs from
the dataset used in this study and contains limited demographic and clinical variables. These
two studies were therefore included as comparative references to maintain a fair evaluation of
the complete TNM classification framework, since they are among the few works addressing

all TNM components.

Table 5.7. Comparison with other TNM classification approaches.

Method Dataset Classification task Accuracy (%)

Krienko et al.|Private T-stage as T1/T2 and T3/T4 82.6
[86]

Paing et al. [88] [LIDC-IDRI [119] T-stage as 7-stage classification 90.6

NSCLC-Radiomics
[115] NSCLC-
Radiomics-Genomics

[120]

NSCLC
Radiogenomics [91]

Zhao et al. [89] |Private N-stage 87.6

Moitra et al. [90] [NSCLC TNM stage 96
Radiogenomics [91]

Tyagi, et al. [92] |[NSCLC TNM stage 96.6
Radiogenomics [91]

The proposed NSCLC-Radiomics |TNM stage 98.75
work [115]

Consequently, the comparisons presented in Table 5.7. are based on methodological
relevance rather than direct dataset equivalence. The superior results achieved by the proposed
model demonstrate that integrating both imaging and clinical features from the NSCLC-
Radiomics dataset provides more comprehensive and clinically aligned predictions for TNM

and overall stage assessment.
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Notably, Tyagi et al. [92] achieved 96.6% accuracy in overall stage classification;
however, their method required unique TNM stage classifications and extensive preprocessing
due to highly imbalanced T, N, and M data distributions. Additionally, their approach relied on
computationally expensive 3D CT scans. In contrast, the proposed model leverages Vision
Transformers to efficiently learn discriminative features from 2D CT images captured in
multiple views. This design enhances feature representation while significantly reducing

computational cost and processing time, leading to improved classification accuracy.

5.9. Discussion

The adoption of the Vision Transformer (ViT) and CNN-based architectures for TNM
stage prediction was guided by the need to effectively capture both local imaging cues and
global contextual relationships. Traditional CNNs are powerful for extracting spatially
localised tumour characteristics from axial, coronal, and sagittal views, whereas ViTs enable
long-range dependency modelling through self-attention mechanisms. This combination
facilitates holistic feature representation, allowing the network to integrate morphological and
clinical information (e.g., tumour size, lymph node spread, and metastasis indicators). The ViT-
based design thus provides superior interpretability and scalability for multimodal, multi-view
TNM classification and overall stage prediction. This chapter uses CNN and ViT architectures
to compare and implement TNM stage classification with direct overall stage classification to
improve lung cancer staging. The outcomes, as shown in Tables 5.3. and 5.4., offer a thorough

analysis of the model's performance in various input configurations.

In terms of TNM stage and total stage predictions, ViT architecture continuously
outperforms the CNN models. The results indicate that for TNM stage classification as given
in Table 5.3., the ViT performed better than the CNN in all input configurations, with the
greatest accuracy of 90% reached when using combined axial and coronal views with
demographic data. Similarly, using the identical input configuration, the ViT achieved an
astounding 98.75% accuracy for total stage prediction, as given in Table 5.4, substantially

surpassing the CNN, which only achieved 87%.

Tables 5.5. and 5.6. provide a detailed analysis of the CNN and ViT model comparisons
for the two staging approaches. The ViT models were more sophisticated and required GPU
hardware, even though they had fewer layers and parameters than their CNN equivalents. This

was demonstrated by the longer training times and higher computational resources needed.
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Nonetheless, the significant improvements in accuracy and the capacity to efficiently handle

intricate, multi-modal input data justify this computational expenditure.

There were some important differences in how the CNN and ViT models were trained for

overall and TNM stage classifications. Figures 5.18a and 5.18b show the train and validation

accuracy

and loss curves for each model, which show these changes.
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Figure 5.18. Training and Validation Accuracy and Loss Curves for Overall Stage (a)

and TNM Stage Models (b) Using ViT Architecture

The training accuracy of the Overall Stage Model begins at about 25% and steadily improves,

reaching

begins at

more than 99% by the end of training. The validation accuracy, on the other hand,

20% and rises gradually, with notable spikes around the mid-epochs, reaching a peak

of about 98.7%. This pattern suggests that the model is gradually acquiring features that are

pertinent

to the overall classification of lung cancer stages, with periods of accelerated

performance improvement. The train and validation loss curves show the same trend. The

initial high training loss of about 2.07 drops slowly to under 0.05, showing that the model is

learning well and convergent. At the completion of training, validation loss lowers and levels

off'at 0.02. This model is well-suited for clinical deployment where it must remain stable over
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unseen data because the train and validation metrics are quite similar, indicating effective
regularization and robustness with minimal overfitting.

The ViT model demonstrates strong performance in the TNM Stage Model. Consistent with
the general stage model, both training and validation accuracy steadily rise across epochs;
however, validation accuracy does experience small swings before settling near 90-92% at the
conclusion. The training process generalizes well to the validation set because the validation
loss is very close to the training loss across all epochs. This demonstrates that the ViT model
is capable of rapidly processing complex multi-modal data, such as fluctuations in TNM stages,
without experiencing significant overfitting.

In general, the effectiveness of ViT for both TNM and general lung cancer staging tasks is
underscored by the models' consistent and seamless convergence during training. When it
comes to lung cancer, the ViT model is an invaluable resource for precise and personalized
treatment planning due to its high reliability and accuracy in staging the disease. Despite the
fact that it requires a lot of processing power, this is demonstrated by the high accuracy of the
validation and low loss at the end of the training process.

Figure 5.15. depicts the confusion matrices for the Overall and TNM stage models adjacent
to each other. This study enables us to evaluate each model's classification accuracy and stage-
specific discrimination capabilities.

The confusion matrix shows that all of the stage labels in panel (a), which shows the Overall
stage model, are very accurate. In particular, 100% accuracy was achieved in the classification
of stages I, II, and IIla. Stage IIIb had a 97% classification accuracy, with only one example
misclassified from stage [Ila, demonstrating the model's superior performance in detecting later
stages.

Panel (b) shows the TNM stage model, which is also accurate across all levels. Stage I was
correctly identified 94% of the time; only once was it wrongly identified as stage II. Stage 11
attained a classification accuracy of 86%, with misclassifications occurring in stages I, Illa,
and IIIb. On the other hand, stages Illa and I1Ib had high recognition rates of 88% and 100%,
respectively.

Overall, the comparison of the confusion matrices shows that the Overall stage model does
a good job of classifying things with few mistakes. The results show that the multi-input ViT
model can categorize stages well, which suggests it could be helpful in clinical settings where
it is important to identify stages precisely.

The choice of suitable treatment strategies for patients depends much on the correct

classification of lung cancer stages. Using the strength of learning at several stages, the
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suggestion of a multi-input Vision Transformer network has demonstrated excellent promise in
enhancing performance. The creation of an autonomous lung cancer overall stage classification
system has great potential to help medical professionals in developing more exact and

customized treatment strategies for lung cancer patients.

This work represents significant progress in the application of the most advanced
machine learning approaches, including Vision Transformers, particularly in lung cancer stage
diagnosis. Besides stressing the importance of proper stage identification, the proposed work
also accentuates the importance of automating the process. This would greatly enhance the

ability of the medical doctor to make decisions and, hence, improve patient care.

This is because, as evidenced by this study, lung cancer staging is a developing field, and
more advancements and improvements can still be made. With regard to the model expansion,
clinical validation and the inclusion of additional sources and modalities seem to be the priority
directions for development. The cause for the further improvement of the more effective, more
accurate staging of lung cancer is a never-ending pursuit, and the expectation work presents

progress toward that aim.

5.9.1. Key Findings

The exploration of deep learning, i.e., CNN and visual transformer architectures, has
revealed interesting results concerning the classification of TNM stages and the prognosis of

patient stages. These findings are quite basis for understanding and treating this type of cancer.
Granularity vs. Holistic Perspective:

The TNM stage classifier provides a deeper understanding or analysis of the progress made in
the progression of cancer by categorizing the T, N, and M stages into their corresponding
subdivisions, thus creating new means of viewing various aspects of the disease. An
understanding of the whole is crucial, especially for the customization of treatment and for
assessing the peculiarities of the disease effects in the region. Conversely, the comprehensive
stage prediction model, especially utilizing the vision transformer, evaluates the entire cancer
staging from a holistic perspective. This comprehensive approach enhances the global

understanding of the pattern of evolution of diseases over a time frame.
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Model Performance Disparities:

Within the domain of deep learning, the performance of the vision transformer was
comparatively better than the conventional deep learning model with varied input
configurations. As such, the vision transformer's strong points include its ability to incorporate

multi-modal data and demographic factors, which proves useful in predicting the cancer stage.
Multi-Modal Advantage:

Axial, coronal, and demographic information has improved the accuracy of both TNM and
overall stage classifiers. This means that using additional information enhances the accuracy
of the estimation of the cancer stage. However, the vision transformer performed better than

the traditional deep learning model because it was designed to comprehend multimodal data.
Clinical Implications:

The current study findings highlight the need for personalized treatment approaches that
consider specific nuances derived from TNM staging, particularly for localized therapies. At
the same time, overall stage prediction bolstered with a vision transformer architectural
approach remains an effective approach to comprehensively evaluating the burden of NSCLC

and planning appropriate management.
Path Forward:

The implementation of vision transformer architectures within cancer staging models indicates
the possibility of revolutionary progress in medical imaging. Further research could focus on
enhancing the predictive models by incorporating additional clinical and molecular information

to improve our understanding of the disease and allow treatment tailoring.

In conclusion, the principal findings reveal the interplay of details and holistic perspectives in
cancer staging. The vision transformer, with its astounding performance, provides avenues for
future studies in the use of transformer-based deep learning models for improved medical

image analysis and cancer prediction.

5.9.2. Research Questions Revisited

During the evaluation, several critical factors were identified that have an impact on the
mortality rates of patients with NSCLC. Age appears to be one of the factors that is important,
which seems to be critical in the diagnosis of lung cancer. Furthermore, the inclusion of

demographic factors such as age and gender combined with imaging data significantly

115



improved the accuracy of the overall stage diagnosis. This underlines the need to integrate

clinical data with demographic observations to improve the accuracy of predictive models.

The subgroup studies we conducted revealed interesting patterns, particularly indicating a
higher level of model accuracy in individuals who are 65 years or older, with an accuracy score
0f 99.3%. This underscores the significance of age as a prognostic indicator, especially among
the senior cohort, necessitating tailored treatment and support strategies for this specific group.
Among individuals under the age of 64, a significant accuracy score of 98.2% has been
reported. With respect to gender, there was a slight-fine variation in model accuracy between

the males and females, with values of 98.2% and 98.85%, respectively.

The study revealed no notable differences in the prediction accuracies among the
histological diagnoses. It would appear that in spite of the diversity that exists in histological
types such as large cell, adenocarcinoma, and squamous cell carcinoma, the accuracy measures
were similar, around about 98.5%. Such an observation will imply that the presented predictive
model is effective in predicting regardless of the histological subtypes employed and thus is

likely to be useful to improve overall stage prediction outcomes.

Moreover, the investigation included an evaluation of how the clinical N stage impacts
overall stage prediction. In predictive model building, the clinical N stage turned out to be the
most dominant feature, with a significant impact on accuracy. It is important to note that the
clinical N stage is critical in assessing how the disease progresses, what therapeutic options

should be taken, and the prognosis of patients with non-small cell lung cancer (NSCLC).

In conclusion, it should be stressed that the forthcoming research concerning the stage of
non-small cell lung cancer will be of significant importance in age and gender definition factors
affecting patients’ stage perceptions and survival rates. Machine learning models are able to
utilize these variables to increase the accuracy of prediction and personalized patient treatment.
Diagnostic imaging studies and treatment with these factors necessitate the need to combine
their use with other clinical and demographic factors to build holistic and robust predictive
models. Relative to this last factor, more work needs to be done with regard to understanding

these relationships accurately and enhancing patient management.

5.10. Summary

In conclusion, this chapter is a pioneering initiative in the prediction of NSCLC stages. This

study substantially enhances NSCLC staging techniques by presenting a novel deep learning
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architecture for TNM stage classification, employing Vision Transformers to improve TNM
classification, and creating a direct model for overall stage prediction with a multi-input
framework. The integration of these advanced techniques significantly improves the accuracy
and interpretability of lung cancer staging, offering a more precise and personalised framework
for clinical decision-making. These contributions demonstrate how deep learning can bridge
the gap between tumour segmentation and clinical staging, establishing a foundation for

automated, end-to-end cancer assessment.

Building upon these results, the next chapter provides the overall conclusion and future
research directions, summarizing the key outcomes from all three technical chapters and
outlining how the proposed Al-based solutions can be further developed for real-world clinical

integration.
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Chapter 6

6. Conclusion

6.1.1. Thesis Summary

The primary objective of this thesis is to classify Chest X-ray images based on lung
problems, segment lung tumors using CT and PET images, and predict the overall stage of lung
cancer. The primary contribution of this study is the implementation of an efficient deep-
learning framework for the precise classification of lung diseases, including pneumonia, lung
cancer, tuberculosis, lung capacity, and COVID-19. The design employs a pre-trained VGG16
model and three convolutional neural network blocks for classification. The U-Net-based deep
models are employed to segment lung cancer in PET and CT images, effectively identifying
and separating lung cancer across various data types. The structures have profound
consequences for comprehending and managing NSCLC. The study also examines the
classification of the TNM stage and predicts the overall stage, evaluating the suggested
segmentation and prediction models using well-established performance measures. The

discoveries have substantial ramifications for comprehending and managing NSCLC.

The thesis is organized into six chapters, with Chapter 2 offering a thorough analysis of
existing studies on lung diseases utilizing medical imaging techniques, primarily focusing on
Chest X-ray pictures. The literature's second portion looks at segmentation methods used with
multi-modality images, specifically CT and PET scans. The third section emphasizes on studies
for classifying lung cancer stages using clinical and imaging data. Several methods have been
studied in the literature that make use of applied pre-processing, transfer learning, deep

learning, and ML

Chapter 3 presents a novel deep-learning system that utilizes chest X-ray images to
classify Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and COVID-19. There is
also a thorough explanation of the pre-processing procedures that were done on the dataset and
the open-source dataset that was used. The architecture of the proposed model is provided for
the suggested method. There is also an explanation of the mathematical notations used for the
performance indicators. Moreover, a thorough presentation and discussion of the accuracy and

loss graphs, together with the results, are provided. The chapter concludes with a discussion of
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future directions and possibilities for categorizing chest X-ray images into various lung

disorders, including lung cancer.

In Chapter 4, the recommendation is to utilize a powerful deep-learning architecture
known as U-net for accurate segmentation of lung cancer. This approach utilizes several types
of imaging data, mostly CT and PET scans, to obtain accurate outcomes. The proposed models
exhibit intricate structures that incorporate various fusion approaches, such as early, late, dense,
hyper-dense, and hyper-dense VGG16 U-Net. Each model's benefits and drawbacks are
highlighted. All model's results are compared with those of the benchmark models. The
experiments with various loss functions are performed in model training, and their performance
is compared. The predicted segmented image of each model is compared with the matching

ground truth, and a performance evaluation is performed using standard performance metrics.

Chapter 5 introduces an innovative method for classifying the overall stage of non-small
cell lung cancer (NSCLC) by employing advanced deep-learning algorithms, including Vision
Transformers. This approach entails the examination of a dataset that has many inputs, such as
radiological and clinical data. This considers the conventional TNM approach in staging,
investigates the stage determining clinical variables, and justifies the application of
Transformers in the medical sector. The stage predictions performed using the TNM staging

classifier are compared with the overall stage classifier and the benchmarked models.

6.1.2. Limitations and Future Work

6.1.2.1.  Multi-class Lung Disease Classification
The research emphasized the categorization of different types of chest diseases using CXR
images and achieved remarkable results. However, there are some drawbacks and some

prospects for further research.

The primary limitations pertain to the quality and representativeness of the training data.
Biases within the dataset may potentially affect the model’s generalizability, particularly with
respect to classes that are underrepresented. Furthermore, the model's performance may differ

among various populations or imaging protocols not included in the training data.

Future studies may focus on integrating multi-modal imaging data (e.g., combining CXR
and CT scans) with additional clinical and demographic information such as patient age,
gender, histopathology, and genetic markers. Such integration can enhance diagnostic accuracy

and improve predictive modelling for lung disease progression and treatment outcomes.
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Moreover, the development of more sophisticated segmentation models aimed at identifying
specific ROIs in the chest images may aid the classification model. Nailing specific structures

or pathological abnormalities inside an image may enhance algorithm performance.

6.1.2.2.  Lung Tumor Segmentation Using Multimodality of CT-PET Scans

The deep learning techniques for lung tumor segmentation, as demonstrated in this study,
have been successfully utilized. There are some limitations and possibilities for future scope to
be considered. All trained systems depend on the availability and size of annotated datasets,
which in turn defines the maximal performance of the segmentation model. In such conditions,
the small data size may induce overfitting and restrict the ability of the model to generalize.
Furthermore, inconsistency in the imaging protocols and the annotating standards among

different datasets may also bring challenges during the training and validation of the model.

Future research could apply multiple data sources to overcome these challenges and make
further progress in the investigation. The segmentation model would improve heterogeneous
lung tumor treatment and delineation using complementary imaging datasets. Moreover,
segmentation performance could be enhanced by optimizing the loss functions, for example,
by examining the combination of binary and Dice loss functions. Using the loss functions to
address class imbalances or specific properties of lung tumor variants may help alleviate some
complications arising from data variability and noise. In conclusion, systematic
hyperparameter tuning experiments could improve segmentation performance even further.
Investigating different hyperparameter values and testing them on different datasets would

achieve optimum performance in a variety of imaging conditions.

6.1.2.3.  Non-Small Cell Lung Cancer TNM Classification and Overall Stage Prediction
Using Vision Transformers

To enhance lung cancer staging using the aforementioned Vision Transformer-based
multimodal architecture, it is essential to appreciate the current shortcomings and indicate
avenues for future exploration. The study notes that firstly, it relies on one data source, which,
although useful, is likely to be insufficient to achieve the full variability of data necessary for
an in-depth model. The representation of a few stages in the dataset may still be inadequate, as
class imbalance has been addressed systematically with the use of data augmentation. More
studies, therefore, need to be done to understand possible ways in which this challenge can be

addressed.
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In addition, although Vision Transformers are effective in identifying visual patterns, the
challenge of understanding their workings persists. Future research should prioritize enhancing
the model's transparency in its decision-making procedures. Additionally, the present model
utilizes age and gender solely as textual features. Future work should be geared towards
increasing specificity and prognostic accuracy by accommodating a wider variety of data

concerning patients.

Further studies can focus on conserving more nuanced approaches that incorporate
clinical records, genetic information, and other similar attributes to aid in understanding the
progression of lung cancer. The performance of the model should also be assessed in clinical
settings based on a larger and more diversified data set than the one used to develop the model.
Such prerequisite validation will be designed to involve medical institutions and healthcare
practitioners to prove the applicability of the model in practice. It also recommends developing
approaches to explainable Al to ease the model's acceptance in clinical settings by explicating
the model's decision. Future work should concentrate on improving the computational cost of
the Vision Transformer models to expand their usage in more health care settings. One
important aspect is the design of a real-time support system for decision-making for
oncologists. This needs study into streamlining the model for rapid diagnosis and treatment

planning.

In conclusion, the limitations of the study include factors such as the lack of diversity in
the datasets and poor generalizability across populations and imaging options. Small annotated
datasets and class imbalance add more benefits but also encompass threats to the model
performance, hence posing an overfitting risk. Moreover, the interpretability of deep learning
models is a major barrier to their clinical implementation because conditions of a non-
transparent “black box” lead to considerable discomfort among clinicians regarding the
reliability of predictive capabilities. Future clinical models should concentrate on integrating
multi-modal data, encompassing clinical and imaging information alongside patient-specific
data, such as genomics, to enhance predictive accuracy. Also, advanced explainable artificial
intelligence (XAI) diagnostics derived from these models can be incorporated along with
accelerating processing speed to ensure the clinical applicability of the diagnoses. These
advancements will improve both the performance and efficiency of Al in lung cancer detection

and its practical deployment.
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