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Abstract

Adaptive enrichment designs allow subgroup selection of the patient population
within a confirmatory trial via an interim analysis. However, this design complicates
treatment effect estimation and uncertainty quantification. This paper introduces a
p-value inversion method using various sample space orderings to construct confidence
intervals either unconditionally or conditional on the subgroup selected for a general
class of two-stage two-group designs. In addition, the p-value functions can be used
to derive median-unbiased estimators and conditional moment estimators. Through
simulation it is shown that the proposed intervals have close to nominal coverage,
in contrast to naive confidence intervals based on the maximum likelihood estimator.
Moreover, the median-unbiased estimators and conditional moment estimators have
good performance with respect to median and mean bias, respectively. The method is
illustrated by a re-analysis of a trial investigating treatment interactions with KRAS
mutation type in patients with metastatic colorectal cancer.

1 Introduction

With the widespread adoption of human genome sequencing techniques, there is an increas-
ing need to identify patient heterogeneity in medical practice [1]. As a result, precision
medicine has become an appealing concept in clinical treatment development and has led to
the realization that the traditional one-size-fits-all approach to treatment is insufficient [2].
Identifying the most appropriate patient population group has begun to be part of the drug
development process. In order to screen out the promising population of an experimental
medication, the adaptive enrichment design was introduced in Phase II/III clinical trials [3].
The enrichment design allows for various modifications based on the interim analysis, such
as sample size re-estimation and subgroup selection. However, those adaptive modifications
inevitably introduce bias and difficulties in parameter inference.

There is already a large body of research on enrichment designs, such as the approach
proposed by Wang et al. [4, 5] which considers adaption in sample size and futility stopping
in the first interim analysis. Rather than allowing only one subgroup to be selected in the
first interim analysis, the design of Magnusson and Turnbull [6] considers cases in which more



than one subgroup treatment effect exceeds the futility threshold and proceeds to subsequent
stages. They assume that the sampling rule following selection is fixed. In other words, for
every possible selection result, the sample size in subsequent stages should be prespecified.
Based on Magnusson and Turnbull’s approach, Lin et al. [7] proposed a design involving
sample size re-estimation for stage 2 that depends on the observed statistic values in stage
1 to ensure the conditional power is maintained at a desired level. Several recent papers
have considered Bayesian decision-theoretic approaches to determining the sample size and
decision boundaries in enrichment designs. Ondra et al. [8] and Burnett et al. [9] proposed
Bayesian optimal rules for subgroup selection that maximize or improve expected utilities at
the interim analysis. Rosenblum et al. [10] use sparse linear programming to optimize the
decision rule for subgroup selection and multiple testing procedures.

Developing an unbiased or consistent point estimator of the treatment effect remains a
significant research area because of the impact of treatment or subgroup selection character-
istics in adaptive enrichment. As the naive maximum likelihood estimate fails to account for
the selection bias in the initial stage, it often yields an overestimation of the actual treatment
effect. Robertson et al. provide a methodological review[11] and practical guidance[12] on
point estimation for adaptive trial designs in general. Moreover, several researchers have
proposed different unbiased or bias-reduced point estimators to address the issue specifically
for adaptive enrichment designs. Kimani et al. [13] proposed two estimators for a two-stage
multi-arm enrichment design, where the most effective treatment in the first stage proceeds
to the second stage, and any ineffective treatments are dropped at the first stage for futility.
One of the estimators is an extension of the uniformly minimum variance conditionally un-
biased estimator (UMVCUE) proposed by Cohen and Sackrowitz [14]. However, Cohen and
Sackrowitz [14] assumed that the design would always continue to the second stage, whereas
Kimani et al.’s [13] approach allows for an early stop in the first stage. The other estimator
proposed by Kimani et al.[13] is the bias-adjusted estimator, which extends the estimator
proposed by Stallard and Todd [15]. Kunzmann et al. [16] proposed a conditional moment
estimator based on the work of Luo et al. [17]. The main idea is that the conditional expec-
tation of the statistic of the target subgroup S given interim analysis result and the observed
statistic of the complimentary subgroup is a function of the true treatment effect s and does
not depend on complementary subsets. Magnusson and Turnbull [6] evaluated the condi-
tional and unconditional bias of the naive maximum likelihood estimate of the treatment
effect and pointed out the absence of a perfectly unbiased estimator. Hence, they suggested
utilizing the bootstrap method to reduce bias. Di Stefano et al.[18] performed a simulation
study to compare different methods for adjusting for selection bias in the context of adaptive
enrichment designs with a time-to-event endpoint. They found that UMVCUE was most
successful at removing bias, but at the cost of a high variance, resulting in the highest mean
squared error (MSE), while shrinkage estimators gave the best trade-off between bias and
variance to produce the lowest MSE.

The use of point estimates alone neglects the uncertainty of parameter inference, which
is why many regulations mandate reporting confidence intervals for all treatment effects in
clinical trials. Furthermore, the ICH E9 guideline [19] requires that “Estimates of treatment
effects should be accompanied by confidence intervals, whenever possible, and the way in
which these will be calculated should be identified”. To address this, numerous studies
have focused on developing confidence interval construction for various types of adaptive



designs. One such method is the confidence region approach proposed by Posch et al. [20]
for the flexible group sequential design, which utilizes the close testing procedure to adjust
p-values at each stage and combines them using various combination functions. Stallard
and Todd[15] adopt the straightforward p-value inversion approach to construct confidence
intervals; however, their design only allows the most effective treatment to be chosen at
the interim analysis. Their p-value function is based on the ordering method proposed by
Armitage [21] and Fairbanks and Madsen [22] which prioritizes subgroups that stop at the
earlier stage for efficacy over those that stop at the later stages.

For those designs that allow flexible selection of treatment arms, Magirr et al. [23]
proposed an approach that utilizes the closed testing principle and p-value combination
functions to construct a confidence region for all experimental treatment arms that strongly
controls the family-wise error rate at the desired level and is guaranteed to be concordant
with the results of the hypothesis tests. Kimani et al. [24] adopted this confidence region
construction method to derive two-sided confidence intervals for time-to-event data with
subgroup partition that is not prespecified but depends on the observed outcomes of patients.
Nevertheless, Magirr et al.’s [23] confidence intervals do not offer information for rejected
hypotheses when just a subset of hypotheses are rejected, which potentially contributes to
the conservativeness of the confidence region. Magnusson and Turnbull [6] suggested using a
double bootstrap technique for constructing confidence intervals. This approach commences
with the basic maximum likelihood estimators and generates the initial set of bootstrap
samples by simulating new datasets assuming the MLE values are correct. However, the
simulation results in the paper indicated that the coverage probabilities of this method is
often poor.

In this paper, we propose a p-value inversion method for the subgroup confidence interval
construction similar to the approach for multiple treatment arms trial proposed by Stallard
and Todd [15]. Stallard and Todd’s [15] method first establishes a confidence region and
then reduces it to a confidence interval for the chosen treatment through two approaches: 1)
assuming that the treatment effects of the unselected subgroups are equal to their maximum
likelihood estimator; 2) assuming that the treatment effects of the unselected subgroups are
equal to zero. Nonetheless, the naive maximum likelihood estimator and the null assumption
overlook the bias introduced by the selection rule. Thus, we embrace a concept similar to
the conditional moment estimator proposed by Luo et al. [17] to formulate the p-value
function for a subgroup by conditioning on the interim statistic for the other group(s). In
enrichment designs, only subgroups with evidence of a positive treatment effect are kept
following the interim analysis. Therefore, our focus lies on estimating the treatment effects
for the selected group(s). Nevertheless, there is also interest in estimating the outcomes of
all enrolled subgroups, but requiring adjustment for multiplicity. Hence, we construct both
conditional and unconditional confidence intervals to address these considerations. In the
following sections, the term “conditional” means conditioning on the event that the certain
subgroup is chosen in the first stage, while the term “unconditional” refers to the process of
constructing confidence intervals for the target individual subgroup regardless of the selection
results in the interim analysis. In addition, our approach incorporates enrichment designs
that allow more than one subgroup to be selected at the first interim analysis and the trial to
be terminated early due to futility and efficacy. By inverting the p-value function derived for
the confidence interval at the 0.5 significance level, we also construct the median-unbiased



estimator for the enrichment design. A conditional moment estimator can also be constructed
by noting that the p-value function corresponds to the conditional survivor function of the
test statistic.

We focus on the class of adaptive enrichment designs that comprise two stages and two
subgroups, incorporating an experimental arm and a control arm. In Section 2, we initially
introduce a general form of the p-value function specific to the target subgroup, conditioning
on its selection, as well as the p-value function applicable to the individual target subgroup
irrespective of the selection outcome. Point estimates and confidence intervals are established
using these p-value functions. The method is evaluated by simulation in Section 3. To
illustrate the general method, we present a re-analysis of a clinical trial on patients with
metastatic colorectal cancer in Section 4. The article concludes with a discussion.

2 General method of confidence interval construction
and point estimate

2.1 Notation and setting

We assume a two-arm trial where at the first stage patients are recruited from a general
patient population, but are screened to determine their membership in one of two disjoint
groups j = 1,2. For instance, j = 1,2 could represent biomarker positive and negative
patients, respectively. More generally, a series of baseline covariates could be measured
and group membership represents some known partition of the whole covariate space into
two disjoint sets. The prevalence of the groups is assumed known apriori, such that if n
patients are planned to be recruited at the first stage then the number, Ny;, recruited from
subgroup j satisfies E[Ny; | ni] = pjny for j = 1,2 and 0 < py = 1 — p; < 1. Patients are
randomized to either the experimental treatment or the control treatment and interest lies
in determining which subgroup of the patient population benefits from the new treatment.
Hence, at the end of the first stage there is an interim analysis which selects a subgroup,
S*, from § = {1,2}, {1}, {2}, 0 and determines whether to proceed to a second stage where
recruitment is restricted to patients from the selected subgroup. Stopping for either futility
or efficacy may also be possible.

Some designs may utilize prior knowledge of the treatment effect mechanism. For in-
stance, if the treatment is assumed to be more promising for patients in group j = 1, then
selection of §* = {2} could be precluded. Often, designs will specify a fixed stage 2 sam-
ple size assuming the trial proceeds. However, more generally, the stage 2 sample size can
depend on the stage 1 data.

It is assumed that the treatment effects (experimental compared to control) for groups
J = 1,2 can be characterized by 8 = (1, 62). For continuous response data, #; could represent
the mean treatment difference in responses for patients in group j, for binary data, ¢; could
represent the log-odds ratio, and for survival data ¢, could represent the log-hazard ratio.

Let X; for j = 1,2 denote the score statistic corresponding to Hy : §; = 0. Asymptot-
ically, X1; ~ N(0;A1;, A1) where Ay is the Fisher information (see for instance chapter
13.4 of Jennison and Turnbull [25]). X3; and X5 are assumed to be independent. In each
case the alternative hypothesis to be tested is H; : 6; > 0.



The selected subgroup, §* and the stage 2 Fisher information, (Asy, Agy) are assumed to
be functions of X; = (X1, Xi2). Conditional on the decision, D = (§*, Ag1, Ags), the score
statistics from the data observed in the second stage are then Xy; ~ N(6;Az;, Ay;), where
Xo; = Ag; = 0 if group j is not enriched at the second stage. In what follows,

ij ij
denotes the density of X;; for 7,5 = 1,2 given A;.

Let Y; = X+ Xy, represent the cumulative score statistic for group j at the termination
of the trial, and define the cumulative Fisher information for group j at termination as
Ij = Alj + AQ]‘.

We can also define X;y to be the score statistic at stage i = 1,2 corresponding to Hj :
0y = 0, where it is assumed that #; = 05 = 0y, and hence the score statistic is computed on
data pooled across both groups. Asymptotically, and provided the homogeneity assumption
holds, X;0 ~ N(0sA, ) and, moreover, X;q is asymptotically equivalent to Zjes Xij,
where A;p = 2]2.:1 A;j. Similarly, Yy = Xjo + Xy is the cumulative score statistic for the
whole population, with Iy = I; + I5. The global statistic is also tested against a one-sided
alternative, Hy : 6y > 0.

2.2 Framework for decisions

We assume that the adaptive enrichment design defines a mapping d : 0y — D that maps
from the sample space of stage 1 score statistics, Qo = {(z11,712)} = R?, to a decision space
consisting of (S§*, No) where S* € {{1},{2}, {1} U {2}} denotes the subgroup selection and
N is the stage 2 sample size. When Ny = 0, the trial terminates at stage 1, rejecting the null
for §* and concluding futility for the unselected subgroup(s). It is assumed that (A, Ajs)
are known in advance.

In general, the sample space Q = {(211,712)} = R? can be partitioned into up to seven
disjoint subspaces corresponding to the subspaces of D to which they are mapped:



where some designs may preclude one or more of these types of decisions leading to an
empty subspace. Note that this notation differs from the used in Magnusson and Turnbull
6], where €, corresponds to the set of patients in group j of the patient population.

For designs where the stage 2 sample size is not set in advance, the stage 2 information

may depend on precisely where within €y, €23 or {24 the stage 1 statistics lie, meaning that
Ay and Ay are functions of Xy = (X1, Xi9).

2.3 Magnusson-Turnbull design

In the general case, the enrichment design proposed by Magnusson and Turnbull[6] involves
an initial stage to establish the selected subgroup, §*, followed by a group sequential design
of an arbitrary number of stages. The design also allows for the patient population to be
partitioned into an arbitrary number of subpopulations. Here we focus on the two-stage
design with two subgroups.

In the first stage, the treatment effect is individually evaluated in each of the subgroups,
and we only continue randomization for selected populations (i.e. subgroups with evidence
of a positive treatment effect). In other words, we only use observations from the remaining
subgroups when performing conditional hypothesis tests.

The choice of §* is based on a boundary [;. Specifically, group j can only be included in
S*if Xy; > l14/Ay;. Two variant decision rules are considered:

e A priori ordering: without loss of generality, it is assumed that ¢, > 5. In that case
the trial terminates if Xy; < l;4/A;; and group 2 is only included in S* if Xy; > l1/Ay;
for j =1 and j = 2. Hence the possible values of §* are (), {1} and {1,2}.

e No prior ordering: S* involves all groups for which X3; > l;1/A;;. Hence §* = {1, 2}
is also permissible.

If S* = () then the trial terminates. Otherwise, let X;q = Zjes* Xy and Ayg =
ngS* Ayj, then the trial stops for efficacy if X135 > u1v/Ajs and proceeds to stage 2,
otherwise.

At the second stage, patients will only be recruited from the selected groups. However,
the total information at stage 2, Ay is assumed invariant to S*. The final decision at the
end of stage 2 is based on the cumulative score statistic Yg = > jes+ Yj and corresponding
cumulative Fisher information Ig =) jest I;, where efficacy for S* is declared if Yg > uylg
and the null hypothesis is accepted otherwise.

A choice can be made regarding the timing of the interim analysis, in relation to the
maximum information level, I,,,. = 2?21 Ao, for instance Ajy = Ay corresponding to
equal stagewise sample sizes. The values of [;,u; and us are chosen to ensure the Type
[ error under 8 = (0,0) is equal to «, with the stage 1 boundaries set via error spending
functions. The value of I,,,, is then chosen to satisfy a power constraint, where the power
can either be to reject the null for {1,2} or for any individual group. Full details of the
calculations involved in setting the boundaries and sample size are given in Magnusson and
Turnbull’s [6] work.

Figure 1 illustrates the values of X; corresponding to €2;, 7 = 1,...,7, in the cases where
there is a priori ordering, 61 > 6, (left panel) and where there is no prior ordering (right



Figure 1: Partition of the sample space of X; for Magnusson and Turnbull’s design in the
presence of a priori ordering (a) and without prior ordering (b).

panel). In the former case, the prior ordering forces Q3 = Q5 = (). The stage 2 information
for group j, Ag; only depends on which region €2; in which X, lies. Specifically

(Ayy  if X, €O
Aoy = Agopr  if Xy €

\ 0 otherwise

and
(A if X, € Q3

AQQ = Agopg if X; € Qy

0 otherwise.

\

In Section S2 of the Supplementary Material we show that the design of Lin et al (2021)
[7] also adheres to the same general framework, with the complication that the stage 2 sample
size depends on the specific value of X; = (Xj;, Xj2) rather than just the region €; in which
X, lies.

2.4 P-value functions

Whitehead [26] describes an approach to constructing confidence intervals based on exploiting
the relationship between hypothesis testing and confidence intervals. Assuming the parame-
ter to be estimated is denoted by 6, the general p-value function based on such relationship
as p(0,x) = Pr(X > x;0) where X is some summary statistic which is a random variable
depending on 6, and x is the observed statistic. If the value of p(f,x) is monotonically
increasing on 6 and 0, (x) is defined by p(0,(x), ) = «, then Pr(6 < 6,(X)) = «, which
provides a method for obtaining a distinct value of 8 for a given data set  with a minimum
coverage probability of 1 — a.

To construct a p-value function for a given parameter in the adaptive enrichment design,
we consider the class of space orderings proposed by Emerson and Fleming[27]. Specifically,



using the score statistic and associated Fisher information from Section 2.1, we define a
summary statistic Y; = lej_k, J = 0,1,2 and for some choice of k& > 0. Here j = 0
corresponds to the case where §* = {1,2}. If £ = 0.5, then Yj is the standardized score
statistic, whereas k = 1 results (asymptotically) in the maximum likelihood estimate. Hence
the p-value function considers the probability that }73 would exceed the observed value y;,
considering the possibility of stopping at any stage, as a function of 6;.

As noted in the introduction, interest may lie either in a confidence interval for the
treatment effect in the selected subgroup &* or an individual component of S&*, in which
case the p-value function should consider probabilities conditional on that selection having
occurred. Here, we assume that the subgroup selection occurs at the interim analysis and so
a conditional confidence interval would still be computed after stage 2 even if ultimately the
null hypothesis for 65« was not rejected. In this way, the p-value functions do not depend
on the decision boundaries of the design at the end of stage 2.

Alternatively, interest could instead lie in 6; for a given group j = 1,2, regardless of
whether group j was selected. In this case, simultaneous confidence intervals for the treat-
ment effects for group 1 and 2 would be required. In what follows, we consider the two main
cases, conditional or not conditional on selection, separately.

2.4.1 Conditional on selection

Initially, suppose that the stage 1 data lead to a single group being chosen, such that S* = {j}
for j =1 or j = 2. For the p-value function conditional on selection, ordering is with respect
to Y; and we condition on the event S* = {j}. This is equivalent to an event X; € Qf where

o _ ] U0s if S ={1}

The p-value function therefore concerns the probability of the event

p(y;;0;) =P(3:/j >y | 8" =1{j};0;)
:P(Yj > gj | X € Q;,‘g])

In the general case, ()] is not necessarily a rectangular region of 9. As a consequence,
P(X; € Qj) for 7 = 1,2, depends on the whole vector 8. To avoid this issue, in addition to
conditioning on X; € )3, we also condition on xy, the realized value of X;; where j' # j.
Hence the probability of interest reduces to

p(5:05) = P(Y; > 5; | X1j € Q3 (215);0;)

where Qf(z12) = {z1 : (z1,212) € Q7 } and Q§(z11) = {x2 : (211, 22) € Q5}. This is similar to
the construction of the conditional moment estimator [17], which considers the expectation
of the score statistic given the decision and the stage 1 statistic in the unselected group.
Note that in the special, but common, case where €27 is a rectangular region of R2, Q2 ()
is invariant to the value of z;; and hence the additional conditioning has no effect.

When calculating the p-value function, the stage at which the trial terminates is not
conditioned upon. As a consequence, the p-value function can be written as p = p; + pa,
where the two terms correspond to the probability of exceeding the observed statistic by
stopping at stage 1 for efficacy, and by proceeding to stage 2, respectively.



Contribution of stopping at stage 1

For the contribution of stopping at stage 1, the probability of interest is
P55 8" = {j}.0;) = P[Xis > ;A | X € Q3 (1))
We can first define
R e
which represents the regions for which group j is chosen but the trial stops at stage 1, and

then QY(y; ;) = Q' (zy) N {z : > y}, corresponding to the region where Y; > y, and
hence

p1(y;:S* =1{7},0))
=P(Xy; > ;AL | Xiy € Q7 (21y))
=P(Xy; € Q(y;A%;215) | Xuy € Q2 (a157)). (1)

Since €25(zy1;) and Q%(y; x1;/) are at most a union of disjoint intervals of R and Q} (y; z1;:) C

Q2(w1y7), Equation (1) can be represented by a ratio of sums of differences of normal cdfs.

Contribution of proceeding to stage 2

For the contribution of proceeding to stage 2, let Z;(x1) = ¥;(A1;+Agj(x1))" — 21, represent
the value of the stage 2 statistic for group j that produces the observed cumulative score
statistic if X;; = x1; and S* = {j}. The probability of interest can then be expressed as

p2(95: 8" = {7}, 05, Xay = m1y) =
Jo, oy, er Pl > To5 (1) | X = xa] fo (w15)desy
P(Xy; € Q9(x150)) ’

where
02() = {z: (z,z;) € Qs} lfj =1
{x:(zj,2) € Qs} ifj=2

which represent the regions of €y for which § is chosen but the trial proceeds to stage 2,
conditional on the stage 1 statistic in the unselected group.

2.4.2 P-value functions conditional on j € §*

For some designs, such as Lin et al’s design considered in Section S2 of Supplementary
Material, the range of possible values of x1; given §* = j and given a particular x;;; may not
include +oo. In those cases, rather than seeking a confidence interval for 6; given S* = {j},
better-behaved confidence intervals will be obtained by conditioning only on j € §*. Equally,
if &* = {1,2} we could consider individual confidence intervals for 6, or 6, conditional on
S* = {1,2}. Since in the above, we already condition on X;;; = x1;/, the approach used in
Section 2.4.1 can be easily adapted. It is only necessary to alter the definitions of (),



Q9 (x15) and QZ(x15) to accommodate values that lead to either §* = {j} or S* = {1, 2}.
For instance, if we seek p(y;;6;,j € S*, X1 = x1;7) then we would take

ol {z:(r,z;) e QUQ} ifj=1
Qj (zj) = e
{z: (xj,2) €e Q3UQ} if j =2,

whereas for p(y;;0;, S* = {1,2}, X1 = z1j/) we use

0 (1) = {z: (z,z;) € Qr} 1f] =1
! {z: (zj,2) € Qr} ifj=2.

2.4.3 P-value functions for the common treatment effect

When §* = {1,2}, the adaptive enrichment design will typically test Hy : 6y = 0. Tt is
therefore natural in that situation to seek a confidence interval for #y. For this purpose, we
assume @ = (0, 6y), although the consequences of making this assumption when it is not
correct will be explored in Section 3.

Emulating the previous notation, define 2§ = €2, U2; as the set of values of X; that lead
to S* = {1,2}, and Q' = Q4 as the set of values for which the trial stops at stage 1 with
S* ={1,2}. Then in general we can write

p1(7o; S* = {1,2},60) = P(X; € Qf(5oAly) | X1 € ),

where QU (y) = Q' N {(x1,22) : 71 + 23 > y}.
Similarly, let Q3% = Q; be the set of values of x; for which §* = {1,2} and the trial
proceeds to stage 2, then

fﬂgz P[Xs > Too(x1) | Xy = x3] f1(x1)dx;
P(Xl c QS)

P2(P0; S = {1,2},00) = (3)

where i’Qo(Xl) = go(Alo + Ago(Xl))k — T10 and fl (X) = fll(l'l)flz(l'g) is the joint density of
X;.

Often Z99(x;) and the distribution of Xy will depend at most on X9 = X1 + X2, in
which case (3) can be simplified to be in terms of integrals over the conditional density of
Xip given X; € . This is the case in the examples considered below.

2.5 Unconditional p-value

Rather than considering a p-value function conditional on a given selection we may seek
to construct a p-value function for 6;, the treatment effect for group j = 1,2 regardless of
whether j € §*. In order to produce a probability that only depends on the 8; of interest,
we again condition on X, the stage 1 score statistic for the other group. The ordering
is with respect to Yj, and as before the p-value function can be decomposed into two parts
corresponding to group j stopping at stage 1, or group j proceeding to stage 2.

10



Group j could stop at stage 1 either for futility or for efficacy. Hence we first define

v 91UQ3UQ5UQGUQ7 lszl
J QUQBUQUQgUQ, if j =2,

which gives the region of €y for which group j will stop at stage 1, and then let

Qvl('iL‘ )_ {$:($7xj’)69¥}ﬂ{x>y} ifj:l
PV TN e ) e YN e > y) ifj=2
which gives the set of values of x;; that lead to stopping at stage 1 with an unstandardized
score statistic that exceeds y. The probability of interest is then pi(y;;0;) = P[Xy; €
le(glA]fj; T1j0)).
In order for group j to stop at stage 2, the stage 1 score statistic must lie within regions
in which group j is enriched. We therefore define

o {r:(z,25) € QUQ} ifj=1
Qj (.Tj/) = oo
{.’EI (Jlj/,.f) GQgUQ4} lfj =2,
and hence
pa(yj30;) = / , P[Xy; > ¥9(x1) | Xy = x1] f1j(z15)dwy;,
i
where Z9j(x;) is defined as in Section 2.4.1. As before, the overall p-value function is then
given by p(y;;6;) = p1(;:0;) + p2(5; 0;).
The explicit forms of the p-value functions for the Magnusson-Turnbull design used in

Sections 3 and 4 are given in the Appendix. The form of the p-value functions for Lin et
al.[7]’s design is given in Section S2 of the Supplementary Material.

2.6 Confidence interval construction

Once the relevant p-value function has been defined for a given case, confidence interval
construction then involves inverting the function. Define A$(y;) = {0 : p(y;;0;) > a} for
j =0,1,2 then P(0; € A$(Y;)) = 1 — . Hence A§(y;) serves as a 100(1 — a)% confidence
region for 6;. Provided p(y;;0;) is a monotonically increasing function in 6;, there exists a
unique u such that p(y;;u) = a and hence A$(y;) = [u,00) gives a one-sided 100(1 — )%
confidence interval. Moreover, if desired, (u;,u,) defined by p(y;;w) = /2 and p(y;; u,) =
1 —a/2, for 0 < a < 0.5, gives a two-sided 100(1 — «)% confidence interval. Assuming a
monotonic function, the boundaries for the confidence intervals can be computed by using a
numerical line search.

For an entirely arbitrary design and an arbitrary choice of ordering parameter k, there is
no guarantee that p(y;;6;) increases with ¢;. This can occur, for instance, if score ordering
is chosen (k = 0.5), but the stage 1 and stage 2 sample sizes are very imbalanced, and
is more prone to occur for the unconditional p-values. In the context of group sequential
designs, it is proven that the MLE ordering (k = 1) is guaranteed to lead to proper intervals
whereas counter-examples exist for other orderings (Emerson and Fleming, 1990). We did not

11



encounter any issues with the Magnusson-Turnbull design using score ordering. In contrast,
implementing Lin et al’s design where the second stage sample size can be substantially
larger than stage 1 led to issues using score ordering (k = 0.5), but was well-behaved for
MLE ordering. However, if the p-value function is non-monotonic a (conservative) one-sided
confidence interval could be constructed by setting the lower limit to be inf AF(7). In the
simulations given below, we compare these confidence to naive confidence intervals based on
the MLE and Fisher information which do not account for selection. Specifically, a naive
one-sided 100(1 — )% confidence interval for 6; has lower bound Y;/I; — (1 — ) /+/1;.

Simultaneous confidence intervals

Often, it will be desirable to ensure the individual confidence intervals for #; and 6, collec-
tively have 100(1 — )% coverage. Since the p-value functions for ¢; and 65 condition on the
stage 1 score statistic for the other group, p(Y3;6;) and p(Ys; 6) will not be independent and
will have a dependence that is difficult to characterize. We therefore propose to construct
simultaneous confidence intervals for ; and 6, by using a Bonferroni correction. Specifically,
we take A%%(g1) x AY*() to obtain a simultaneous (1 — &)100% confidence interval for
0 = (01,05), where we would expect the resulting confidence region to be slightly conserva-
tive. Note that this approach can be used either with the individual unconditional p-values
defined in Section 2.5 or alternatively the individual p-values conditional on S* = {1,2}
considered in Section 2.4.2.

2.7 Point estimation

While the main focus of this paper is the construction of confidence intervals for the treat-
ment effects, the construction of the p-value function naturally also facilitates a median
unbiased estimator for 6;, and also gives a direct approach for calculating conditional mo-
ment estimators.

Specifically, a median unbiased estimator is given by letting éjM U satisty p(y;; é;” Uy = 0.5,
where this approach can be applied to any of the p-value functions defined above.

Moreover, the conditional moment estimator [17, 16], éjCM satisfies j; = E[Y] | é]CM ,S* Xy =
x1j]. In general, we can note that p(y;S*,0;, X1, = z1;/) is the corresponding conditional
survivor distribution function of Y; and hence

_ 0 a 79"9*7)( o= T
E[}/;|9j78*aX1]’:$1]/]:—/ y p(y J ay 1j l])

:/ P(?J%@jaS*,lef = l"lj/)dy
0

dy

0
- / {1 _p<y;9j78*7X1j’ = 'rlj'>}dy'

In practice, the additional integration may need to be performed numerically, making the
CME significantly more computationally intensive to calculate than the corresponding me-
dian unbiased estimate.

An additional disadvantage of the conditional moment estimator is that in some cases it
will be undefined. This can occur if the statistic in group j’ is sufficiently large that given

12



group j is chosen it is guaranteed that the procedure terminates for efficacy at stage 1. In
that situation, Y; has a lower bound at llAl_jk and E(Y};0; = —o00) > llAl_jk. It is then
possible to have llAl_jk <Y, < BE(Y;;0; = —00) leading to no solution for the CME equation.

In the simulations given below, we compare these point estimators with the naive max-
imum likelihood estimate given by 93” LE =Y, /I; where Y; and I; are the cumulative score

statistic and Fisher information for 6;, respectively.

3 Numerical studies

In this section, we evaluate the performance of confidence intervals and point estimates for
Magnusson and Turnbull’s design via simulation. We consider a similar setup to the trial
described in Magnusson and Turnnull’s paper [6], but using two rather than three subgroups.
Patients in each subgroup have an equal chance of receiving either the experimental treatment
or the placebo treatment. We assume patient outcomes are normally distributed with a
common variance o2, and where ¢ ; and pp ; denotes the expected response for subgroup j
under the control and experimental treatment, respectively. Thus the true treatment effect
difference in subgroup j is 0; = pg,; — po; = e, and the efficient score and observed
information are defined as
_ _ n
Y = (g — fic)I, and I = 102
o

where fiy, for k € {E, C'} is the sample mean of the treatment or control arm. The prevalence
of subgroup 1 and subgroup 2 is 0.6 and 0.4, respectively, and we randomly generate the
sample size of each subgroup by drawing from a binomial distribution. The trial is designed
on the basis of a clinically relevant treatment effect of 0.2 for each subgroup, meaning a
maximum of 625 patients are needed for each stage to ensure 90% power to reject the null
hypothesis for at least one subgroup assuming ; = 6, = 0.2, and that ¢? = 1, assuming
a Type I error of 0.025. Utilizing the spending error functions delineated in the work of
Magnusson and Turnbull [6], the standardized boundaries are computed as follows:

Without loss of generality, jic; = 0 in the simulations, meaning pg; = 6;. We test the
one-sided hypotheses Hys : 0s = 0 and Hy; : ; = 0 at « significance level. When eval-
uating the performance of confidence intervals that are conditional on a particular selected
subgroup S, we use rejection sampling to obtain 10,000 trials in which §* = §. While for the
unconditional intervals, we simply simulate 10,000 trials and retain them regardless of the
selected subgroup(s). We consider seven scenarios with respect to the true treatment effects,
where the first three correspond to the most anticipated outcomes - a null scenario where the
target treatment causes no difference from the placebo treatment for the entire population,
i.e. 8 =(0,0), a scenario where 8 = (0.2,0) which means the treatment is only effective for
subgroup 1 and a further scenario where (0.2, 0.2) represents that the experimental treatment
is effective for the entire population and treatment effect is homogeneous among them, which
is also the scenario for which the design aims to have 90% power. The remaining scenarios
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consider less anticipated situations such as a more extreme positive treatment effect or cases
where the treatment is harmful for one of the subgroups.

Let N1, and N¢ 15 be the sample size of the experimental treatment arm and the control
treatment arm. All o2s are estimated by pooled sample variance

2 2 ety Ve = 1D)Seay + X ic 10y (Ney — 1)Sc,;
N N, —4 ’

where Sg1; and Sc 1, are the sample variances of the experimental treatment arm and the
control treatment arm.

3.1 Confidence intervals

Here, we assess the coverage properties of the proposed confidence intervals. Histograms
of the distribution lower bounds under different scenarios are shown in Figure 2 given that
only subgroup 1 is chosen in the first stage. Each row displays lower bounds of confidence
intervals obtained under scenarios @ = (0,0), 8 = (0.2,0) and 8 = (0.2,0.2) respectively.
The red vertical line in each single histogram is the 97.5% quantile. Figure 2 illustrates that
around 2.5% of the lower bounds, derived from both the score and MLE ordering methods,
exceed the true treatment effect. This observation suggests that the coverage probability of
these confidence intervals closely matches the nominal level.

Table 1 gives empirical coverage probabilities and powers of confidence intervals condi-
tioned solely on subgroup 1 selected in the interim analysis, respectively. Here power refers to
the probability that the confidence interval excludes 0 and hence coincides with Type I error
for # = (0,0). These conditional confidence intervals are constructed using score and MLE
sample space ordering approaches. In comparison to the naive confidence intervals, both
the score and MLE confidence intervals exhibit coverage probabilities close to the nominal
level. However, under scenarios @ = (0.2,0) and @ = (0.2,0.2), the score ordering confi-
dence intervals demonstrate higher power than MLE ordering confidence intervals. For the
two-sided conditional confidence intervals, the results for the scenarios are also outlined in
Table 1. Again, coverage probabilities demonstrate favorable performance across all scenar-
ios. The naive confidence interval neglects any selection process during the interim analysis,
leading to extremely poor coverage probability when at least one subgroup is likely to be
chosen. However, its statistical power surpasses that of the conditional confidence intervals
constructed through the score and MLE sample space ordering.

In the scenario where both subgroups are chosen at the first interim, Table 2 reveals that
the coverage probability remains close to the nominal level. However, when the treatment
effect varies across subgroups, the p-value function, which assumes the treatment effects
are equal, is misspecified. As a consequence, the coverage probability in relation to the
population-averaged effects is somewhat below the nominal 97.5%, with this issue becoming
more pronounced for the # = (0.5,0) and 6 = (0.2, —0.2) cases.

The simultaneous confidence intervals for both subgroups are constructed using the Bon-
ferroni approach outlined in Section 2.6 where the significance level assigned to each subgroup
is /2 = 0.0125. Table 3 compares the family-wise error rate (FWER), overall power, and
average number of rejections in each trial of three scenarios. We notice that all of those
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Figure 2: Distribution of the lower bound of a one-sided 97.5% confidence interval for 6,
given subgroup 1 has been selected, based on score-ordering, MLE-ordering and a naive Wald
confidence interval in the Magunsson-Turnbull design. The red line is the 97.5% quantile.

FWERs are close to the nominal level we desired, but not all of them are smaller than 0.025.
Theoretically, by adopting the classic Bonferroni correction, the FWER should be slightly
conservative. However, under the null scenario, the coverage of the 97.5% confidence is
slightly below the nominal level. This is likely to be due to the intervals not accounting for
the random variation in the observed subgroup prevalence or that the pooled sample variance
is used in the statistic rather than the true population value of o2. Moreover, in a single
trial, score ordering simultaneous confidence intervals reject more hypotheses compared to
MLE-ordered simultaneous confidence intervals, consistent with its superior overall power
performance. Histograms for the distribution of the simultaneous confidence interval lower
bounds are presented in Figure 3. The left histogram lists all lower bounds from subgroup 1
simultaneous confidence intervals and the right histogram lists those from subgroup 2. What
can be seen in Figure 3 is that the 98.75% quantiles (vertical red line) are approximately
located around the true treatment effect for every case which also implies that our individual
p-value functions ensure the individual confidence intervals have coverage probabilities close
to the nominal level. As for the conditional simultaneous confidence intervals, Table 4 tells
that the coverage probabilities are still close to the nominal level we desire under both score
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Table 2: Empirical coverage and power (Type I error for null case) of conditional one-sided
97.5% confidence intervals when both subgroups are selected under different scenarios for 6
in the normal distribution case.

Coverage probability Power Mean of lower bounds
Scenario Score  MLE  Naive Score MLE Naive Score MLE  Naive
0 =(0,0) 0.9772 0.9758 0.8238 0.0228 0.0242 0.1762 -0.1495 -0.1496 -0.0429

(0.2,0) 0.9681 0.9581 0.9100 0.3624 0.2683 0.8239 -0.0221 -0.0316 0.0505
6 =1(0.2,0.2) 0.9719 0.9734 0.9659 0.6673 0.5172 0.9774 0.0396 0.0219 0.0939
= (0.5,0.5) 0.9732 0.9732 0.9732 0.9999 0.9999 1.0000 0.3394 0.3425 0.3443
(0.5,0) 0.9313 0.9281 0.9259 0.9768 0.9832 1.0000 0.1747 0.1893 0.2040
(—0.2,0) 0.9665 0.9665 0.4624 0.002 0.0038 0.0162 -0.2658 -0.2656 -0.1145
(0.2,—0.2) 0.9134 0.8927 0.6469 0.1777 0.182 0.5365 -0.0761 -0.0750 0.0121
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Figure 3: Distribution of the Bonferroni simultaneous confidence interval lower bounds with
FWER constrained at or below 0.025. The vertical red lines are the 98.75% quantiles.

and MLE orderings, but the score ordering confidence intervals have greater power.

3.2 Point estimates

In this section, we present the outcomes of the median unbiased estimate (MUE) for the
treatment effect, obtained by inversely applying the associated p-value functions at the 0.5
significance level and also the conditional moment estimates (CME) obtained by treating the
p-value function as the conditional survival distribution of the test statistic. These estimates
are compared to the naive maximum likelihood estimate (MLE). Tables 5 and 6 present the
mean and median bias and root-mean squared error of point estimators of the treatment effect
when just subgroup 1 and when both groups are selected. In all circumstances, the median
bias of the MUE is close to zero and is generally nearer than either the corresponding CMEs
or naive maximum likelihood estimates (MLEs). However, CMEs perform best in terms of
mean bias. The naive MLE usually overestimates the treatment effect as its bias is mostly
positive.

However, while reducing bias, there is often a trade-off with the performance of root
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Table 5: Performance of point estimators for #; when subgroup 1 is selected. MUE=Median
unbiased estimate, CME=Conditional moment estimate, MLE=naive maximum likelihood
estimate. MUE and CME are computed based on p-value functions using MLE ordering (k
=1).

Mean bias Median bias RMSE
Scenario MUE CME MLE MUE CME MLE MUE CME MLE
0 =(0,0) -0.0002 -0.0017 0.0479 -0.0006 -0.0028 0.0040 0.0781 0.0782 0.0794

(0.2,0) 0.0237 0.0184 0.0295 -0.0004 -0.0031 0.0191 0.1094 0.1027 0.0884
(0.2,0.2)  0.0227 0.0178 0.0299 -0.0050 -0.0070 0.0177 0.1103 0.1039 0.0909
(0.5,0.5)  -0.0015 -0.0054 0.0002 -0.0015 -0.0035 -0.0014 0.1025 0.1063 0.0997
6 = (0.5,0) 0.0016 -0.0023 0.0031 -0.0004 -0.0022 -0.0003 0.1022 0.1059 0.0997
(—0.2,0)  -0.0020 -0.0027 0.1068 -0.0029 -0.0034 0.1060 0.0780 0.0775 0.1188
6 =(0.2,—-0.2) 0.0107 0.0012 0.0295 0.0003 -0.0100 0.0189 0.0857 0.0861 0.0868

mean square error (RMSE). We notice that there are cases, where both bias and RMSE are
big, such as the conditional MLE under the null scenario. This is due to the significant bias
present in this scenario (i.e. RMSE is the sum of the variance and squared bias). Addition-
ally, when there is heterogeneity in treatment effects, the estimate of the treatment effect
exhibits the highest bias and RMSE among all three estimators. This is also a consequence
of the homogeneity assumption we employ in the p-value function.

A similar set of simulations based upon the design of Lin et al (2021) is presented in
Section S2.2 of the Supplementary Materials.

4 Illustrative Example: panitumumab-FOLFIRI ver-
sus FOLFIRI alone in patients with metastatic col-
orectal cancer

As a realistic motivating example, we re-analyse data from a randomized phase 3 trial on the
use of FOLFIRI with panitumumab compared to FOLFIRI alone as a second-line treatment
of metastatic colorectal cancer [28, 29].

The original trial (20050181) was initially designed as a conventional parallel group de-
sign, unselected by KRAS mutation status. However, emerging KRAS data from other
studies of panitumumab indicated that monotherapy clinical benefit was isolated to patients
with wild-type KRAS. As a consequence, the protocol was amended after completion of
enrollment to incorporate patient stratification by KRAS status. Were information on the
impact of KRAS status and recent advancements in adaptive enrichment design methods
known at the onset of the trial, it may have been more appropriate to design the trial as
a two-stage adaptive enrichment design. Given there is an a priori assumption of higher
efficacy among those with wild-type KRAS, it would make sense to only continue to the
second stage if there is evidence of a survival benefit for wild-type KRAS patients using
panitumumab + FOLFIRI, but select the whole population if there is also evidence of a
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Table 6: Performance of point estimators for 6s when both subgroups are selected.
MUE=Median unbiased estimate, CME=Conditional moment estimate, MLE=naive max-
imum likelihood estimate. MUE and CME are computed based on p-value functions using
MLE ordering (k = 1). Assumed true value of s = 0.12 used when 6 = (0.2,0), 6s = 0.30
when 0 = (0.5,0), s = —0.12 when 6 = (—0.2,0) and s = 0.04 when 6 = (0.2, —0.2).

Mean bias Median bias RMSE
Scenario MUE CME MLE MUE CME MLE MUE CME MLE
6 =(0,0) -0.0002 -0.0007 0.0479 0.0021 -0.0016 0.0656 0.0781 0.0782 0.0793

(0.2,0) 0.0205 0.0192 0.0585 0.0138 0.0183 0.0496 0.0857 0.0824 0.0910
(0.2,0.2) 0.0089 0.0051 0.0318 0.0003 -0.0086 0.0291 0.0829 0.0789 0.0697
(0.5,0.5) 0.0006 0.0001 0.0008 0.0010 0.0010 0.0011 0.0805 0.0812 0.0800
= (0.5,0) 0.0551 0.0514 0.0590 0.0554 0.0524 0.0566 0.0908 0.0907 0.0894
(—0.2,0) 0.0055 0.0021 0.1177 0.0048 0.0022 0.1160 0.0807 0.0785 0.1275
6 =(0.2,—0.2) 0.0480 0.0397 0.0953 0.0323 0.0189 0.0755 0.1115 0.1092 0.1241

promising treatment effect for those without wild-type mutations.

Following the assumptions made in the original protocol amendment, we assume that
55% of patients are of wild-type KRAS tumor time and that a hazard ratio of 0.67 with
respect to the primary endpoint of progression-free survival represents a clinically relevant
treatment difference. Using a two-stage Magnusson-Turnbull design, aiming for a 90% power
to reject the null hypothesis for either wild-type KRAS tumors or the whole population,
assuming the clinically relevant effect holds for the whole population, controlling Type I
error at 1% and assuming equal information weights before and after the interim, leads
to decision boundaries (1, u;,us) = (0.519,2.748,2.616), where the maximum cumulative
Fisher information requirement is 102.3.

Since patients are randomized equally to treatment groups, the Fisher information after
r events have been observed is approximately r/4 [30]. Hence the interim analysis should
occur after 205 events have occurred (from either KRAS tumor type). Using the potential
follow-up time variable in the dataset to infer relative recruitment times, the interim analysis
would occur 382 days after the first patient was randomized. At this point the respective
log-rank Z-statistics are 2.73 for the wild type and -0.17 for the non-wild type. Hence, based
on the Magnusson-Turnbull design, while there is strong evidence of a treatment effect in
the wild-type subgroup it is just below the stopping threshold, u; = 2.748. Hence the trial
would proceed to a second stage where subsequent patients would only be enrolled if their
tumor is of wild-type and the final analysis occurs after a further 205 events (among wild-
type tumor patients recruited at either stage). Taking these patients from the remaining
wild-type tumor patients in the original trial, the final analysis would occur at 664 days,
where the final Z-statistic is 2.670. Hence the conclusion is that there is survival benefit of
the combination treatment for wild type tumors (since 2.67 > uy = 2.616). The stagewise
results of the trial are given in Table 7.

In order to implement the methods in Section 2, we make the approximation (which holds
asymptotically) that the score (log-rank) statistic is X;; ~ N(0;A;;, A;;) such that Y;;/1;
can be used as an estimator for ¢; and also approximates the Cox partial likelihood MLE.
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Table 7: Results of the panitumumab-FOLFIRI trial run as a two-stage Magnusson and
Turnbull design. R;; refers to the number of events in group j at stage <.

stage 1 Xy Ry ; Ay X1
Wild type 13.04 94 92.80 2.73
not Wild type -0.87 111 26.29 -0.17
stage 2 Xo1 Ra 1 As,i

Wild type 9.94 207 51.26

Total You Loy Y1i/v/ZIan Y1;/Zoq
Wild type 22.08 72.06 2.67 0.31

When a subgroup stops before stage 2, the corresponding p-value function requires an es-
timate of the stagewise information which would have been observed had the trial proceeded
(and conditional on the stage 1 result for the other subgroup). For normally distributed
response data and assuming the stage two sample size were adhered to, it is reasonably
uncontroversial to use the estimate of the pooled residual variance at stage 1 to estimate the
counterfactual stage two information. For survival data the correct way to estimate the stage
2 information is less clear. Here, we take the convention that the rate of stage 2 information
per observed event is the same as observed in stage 1. For instance, if the same number of
events are to be observed in each stage, the stage 2 information should be equal to that of
stage 1. Therefore, if subgroup j is chosen on its own but stops for efficacy at stage 1, the
potential stage 2 information for group j (had the trial proceeded to stage 2) is taken as
A11 + Aqy. Similarly, if both groups are chosen and the trial stops at stage 1, the stage 2
information for group j is taken as Ay;.

The 95% confidence interval for the log-hazard ratio of wild type KRAS tumor patients,
conditional on selection, using MLE ordering (k = 1) is (-0.526, -0.015), corresponding
to a HR of between 0.59 and 0.99. The median unbiased estimator is -0.284, while the
conditional moment estimator is -0.260. These contrast to the uncorrected Cox proportional
hazards model MLE which is -0.309 (95% CI: -0.536, -0.082), which is itself very close to the
approximate uncorrected estimate —Y; ;/Z; = —0.31.

The simultaneous unconditional 95% confidence intervals for the log-hazard ratios for wild
type and non-wild type tumors are (-0.609, -0.036) and (-0.404, 0.461), respectively, which
in this case, broadly agrees with the conclusions of the trial. To compute the unconditional
p-value function for non-wild type tumors the counterfactual stage 2 information is taken to
be equal to that group’s stage 1 information.

In Section S1 of the Supplementary Materials, additional simulations investigate the
Magnusson-Turnbull designs for a time-to-event endpoint, where it is shown that performance
comparable to the normally distributed case can be achieved for the confidence intervals and
point estimators.
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5 Discussion

In this paper, we have shown that confidence intervals, both conditional and unconditional
on subgroup selection, can be constructed for adaptive enrichment designs by use of p-
value function inversion. Unlike naive confidence intervals based on the MLE and Fisher
information, our proposed intervals have close to nominal coverage in most cases. The
exception is when 60y # 05 but S* = {1,2}. In that case, it was assumed that #; = 65 in order
to obtain a confidence interval for the overall population effect but the simulations indicated
that when 6; # 65, the confidence interval for ¢, assuming homogeneity will have less than
nominal coverage for the population effect 6y = p16; + (1 — p2)02, and it is a remaining open
problem how to construct a confidence interval for 6, in that situation. Nevertheless, when
S* = {1,2} it is also possible to construct simultaneous confidence intervals for 6, and 6,
which were shown to have close to nominal simultaneous coverage even when 6; # 6,.

The constructed p-value functions were also shown to provide both a MUE and CME.
Through simulation, these estimators were shown to be effective at providing estimates with
low median-bias, or mean-bias, for MUE and CME, respectively. Nevertheless, in many
cases, the naive MLE may be comparable or superior on the basis of RMSE.

Throughout the paper, a trial with two stages and two subgroups is assumed. Assuming,
the subgroup selection still occurs at the end of the first stage, the methods can be extended
to either designs with more than two subgroups or trials with more than two stages, assuming
subgroup selection occurs at the end of the first stage. If there are J > 2 groups then the
sample space of X; will be in J dimensions and the possible decision space will involve
partitioning into a higher number of regions. As in the two-stage case, p-value functions can
be computed by considering, p = Zle pi, where p; is the probability of exceeding ¥; and
stopping at stage i, for ¢ = 1,..., 1. However, in general, the calculation of p; requires an
increasing dimension of integration as ¢ increases.

A limitation of the proposed confidence intervals is that they rely on asymptotic ap-
proximations for the distribution of the score statistic. Generally, these approximations will
perform well for continuous endpoints with moderate sample sizes. Potentially, the methods
in this paper could also be extended to assume a non-central t-statistic for the score statistic
to allow robustness to even lower sample sizes. However, for time-to-event data, the ex-
pected Fisher information depends on the treatment effects 6§ whereas our method assumes
the Fisher information is fixed. Potentially, a larger sample is therefore needed to achieve
accuracy. However, in Section S1 of the Supplementary Materials the intervals are shown to
perform well for a realistically sized trial powered to obtain 80% power to detect a hazard
ratio of 0.74 (log HR = -0.3).

Ideally, confidence intervals in adaptive enrichment trials would have concordance with
the trial conclusion. For trial designs involving a closed testing procedure and using a p-value
combination formulation to combine data across the two stages, it should be possible to adapt
the approach of Magirr et al. [23] to produce concordant simultaneous intervals, although
it is unclear whether they would lead to informative intervals. Our method aims to be
general and to provide informative intervals but has the limitation of having no guarantee of
concordance. Potentially, the degree of disagreement could be reduced by judicious choice of
the ordering parameter k. For instance, in Magnusson and Turnbull’s design score-ordering
(k = 0.5) leads to disagreement due to the design thresholds, u; and us being different.
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Choosing k such that u, [ ?]5 = uﬂ%?‘k removes this form of disagreement, except that the
value of k£ would depend on the group j under consideration.

Functions in R to obtain confidence intervals as well as CME and MUEs for both the
Magnusson-Turnbull design and the Lin et al design are provided in the Supplementary
Materials. Our method can be applied to nearly all adaptive enrichment designs that specify
subgroups in advance. However, further research is needed to develop a more comprehensive
approach capable of accommodating designs like the one proposed by Simon and Simon [31],
where subgroups are not predetermined.
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Appendix: Point estimates and confidence intervals for
the Magnusson-Turnbull design

In this section the methods considered in Section 2.4 are applied directly to the Magnusson-
Turnbull design introduced in Section 2.3. We specifically present the variant of the design
where no prior ordering is assumed. However, the results are easily adapted to the case of a
prior ordering.
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Conditional p-values for 6,

Suppose firstly that S* = {1}, then Q¢ = (l1v/A11,00) and QU7 AY s 210) = (uiv/Aq V
1Ak, 00), and hence

p1(g1; ST = {1},601) =P(X11 > (t1 /A1 V Z71Alf1) | X11 > liv/Aq)
:1 — (ID((ul V glAlfl_O'5) — 01\/ All)
1-— (I)(ll — 81\/ AH) ’

where there is no direct dependence on the specific value of Xio. Similarly, Q? = {z; :

l1v AH < x1 < Uy AH} and if S* = {1} then Agl = Ago. Hence,

po(91: 8™ = {1},0,) = VU P(Xar > 1 (A + Do) — ay) s (w11)darny
’ ’ 1—®(l, — 0;v/A1))

ui VAL 71 (A11+A)F—z T11—
_ znl/Aun {1 B (D(yl( njfz) - 61\/A_2)} o 11\/AA111191)dIL’11 (A.1)
\/All{l—q)(ll —01\/A11)} ’ ’

For situations where either S* = {1} or §* = {1, 2} a confidence interval for ¢, conditional

on 1 € §* can be constructed in a similar manner, except conditioning on X5 = x5 then has
an impact. Specifically, if 215 < l;/Aja, implying §* = {1}, then QY(7; A% ; z15) is as above
and p; and p, stay the same. However, if x15 > [11/A12, then the decision to stop at stage 1
is based on X9, and hence QU(71AY; 212) = {21 1 21 > (VA + Ay — 119) V51 AR}, and
02 = {1 : 1/AL < 21 < upv/Ar + Ay — 219} provided ui /Ay + Arg — 219 > 1vVA,

and is empty otherwise. Let u; = ("1— %ﬁ”_fm Vv l1> then the resulting expressions for

p1 and py will be the same as above, except we replace uq; with ;.

Unconditional p-values for 6,

Using the same definition of u; as above, for the unconditional p-value function for 6y,

(1A}, o0) if 1Ak > a1v/Ap
OV (G Ak 5 200) = { (/B 00) if LAY < g AR < 5 AL

(glA]fla ll vV All] U (?21\/ AH, OO) otherwise.
Hence
pi(; 01) = I(lh > AT ™) X {q’(ll — 01/ An) — (A — 01y An)}
+ @017/ A1y — (6 V 1 AFTOP)).
Similarly, sz(l‘lg) = (ll\/ AH, ﬂl\/ AH) and so

p2(y1;01) =

a1vA11 = k
U1(Ap + Ag)® — a1y } 11 — A0y
1—-¢ — 0/ A e Y N, |
/zlm { ( Ago 1V A 1 0 VAL )V Andr,
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which is identical to the numerator in the conditional case.

Analogous expressions for a confidence interval for #,, unconditionally or conditional on
S* = {2} will have the same form except using 9, 62, Aj5 and z1; in place of gy, 61, Ay; and
T12.

P-value function for 6,

For the p-value function for 6, conditional on &* = {1,2}, let A; = Ay + Ay and let
fijo(x; 0p) represent the distribution of X; = X1 + Xi2 conditional on S* = {1,2}. Here

i/ o g (2705 ) B radn
{1 =@(h — 0V AL H1L = ®(l — 0V A1)}

for x > I;(v/A11 + VA1z) and is 0 otherwise. Then

f1|0($; 90)

pl(gQ;S* = {1,2},90) = h f1|0($ | S,Qo)dl’, (AQ)

l*

where [* = Z70(A11 + Alg)k V U1/ All -+ A12.
Moreover, since the stage 2 information in the design is fixed given S* = {1, 2},

pQ(gS; 8* = {17 2}7 90)

u1 (vVA11+A12) Go(A + A kE_ OAon —
= / f1\0(£U1 ‘ 8,90){1 _ q)(yS( 1 20) 20 1)}d$1. (A.B)
h(VBL+vATR) Ay
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