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One of the most surprising features of e!ectively non-Hermitian physical systems is their potential
to exhibit a striking nonlinear response and fragility to small perturbations. This feature arises
from spectral singularities known as exceptional points, whose realization in the spectrum typically
requires fine-tuning of parameters. The design of such systems receives significant impetus from
the recent conception of exceptional deficiency, in which the entire energy spectrum is composed of
exceptional points. Here, we present a concrete and transparent mechanism that enforces exceptional
deficiency through lattice sum rules in non-Hermitian topological square-root insulators. We identify
the resulting dynamical signatures in static broadband amplification and non-Abelian adiabatic state
amplification, di!erentiate between bulk and boundary e!ects, and outline routes to implementation
in physical platforms.

E!ectively non-Hermitian physical systems can ex-
hibit striking responses to small perturbations, a behav-
ior rooted in spectral singularities known as exceptional
points (EPs) [1–6]. At an EP, the eigenstates associ-
ated with the degenerate eigenvalue become identical,
in contrast to the situation in Hermitian systems where
the eigenstates form a basis. This eigenstate coalescence
leads to dramatically altered static and dynamical re-
sponses to external perturbations [7, 8] and driving [9, 10]
down to the quantum limit [11–13], which can be ex-
ploited, for instance, for sensing [14–20], lasing [21, 22],
amplification [23, 24], and mode conversion [25, 26]. Re-
alizing EPs typically requires fine-tuning, making their
robust engineering a central challenge. The number of
parameters required to obtain a single EP in the spec-
trum can be lowered by symmetries, such as parity-time
symmetry in gain-loss balanced structures [27]. The
realization of higher–order EPs, in which the number
of coalescing states is larger than two, has benefitted
from the introduction of non-reciprocal and unidirec-
tional coupling schemes, which can be realized in topolec-
tric [28, 29], mechanic [30–33], and quantum-optical [34]
lattice systems as well as resonator-waveguide arrange-
ments [35, 36]. Despite these advances, conventional EP
implementations remain limited in scope: their function-
ality is typically restricted to narrow spectral regions near
isolated EPs, and their realization often hinges on deli-
cate parameter tuning or symmetry constraints that fix
the position of the EP in the spectrum. This poses a
fundamental limitation for broadband applications or ro-
bust device design. In light of this, the recently intro-
duced concept of exceptional deficiency [37]—in which
every energy level of a system is an exceptional point—
marks a significant conceptual breakthrough. It opens
the door to broadband EP-enhanced phenomena and of-
fers a new route toward practical non-Hermitian func-
tionalities. The original proposal, implemented in active
mechanical lattices, achieves this through a tailored cou-
pling between two subsystems with matching spectra.

Here, we present a concrete and transparent mecha-
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FIG. 1. (a) Construction principle of an exceptionally defi-
cient topological insulator (TI) based on a sublattice sum rule
inherited from a squared parent system. The sum rule con-
strains the nonreciprocal non-Hermitian couplings with part
C (arrows) so that the squared parent system displays uni-
directional couplings from subpart B to subpart A (double
arrow). (b) Interpretation as a square-root TI, resulting in a
nontrivial system with chiral symmetry.

nism that enforces exceptional deficiency via lattice sum
rules in non-Hermitian square-root topological insulators.
The square-root construction principle [38] provides con-
crete guidance for the design and interpretation of a wide
range of lattice systems with topological properties [39–
45], including higher-order topological systems such as
quadrupole insulators (QIs) [46, 47], which we will em-
ploy to illustrate our results. Applied to exceptional de-
ficiency, this approach o!ers a natural path to identify
two subsystems with matching spectra, provided by mu-
tually coupled sublattices, as well as an explicit condition
for the required coupling configuration. As square-root
topological insulators o!er a wide range of phenomena,
they also present an ideal platform for identifying signa-
tures of exceptional deficiency. We demonstrate this here
for static broadband amplification and adiabatic state
amplification, and show that this leads to state-selective
and non-Abelian amplification mechanisms. Before we
discuss these phenomena, we describe the general con-
struction principle of exceptionally deficient topological
square-root topological insulators and their implementa-
tion in the QI setting.

Construction principle. Figure 1 depicts the general
construction principle of exceptionally deficient topolog-
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FIG. 2. (a) Implementation based on a ω-flux quadrupole
insulator with reciprocal couplings s → 1 and t as well as ad-
ditional nonreciprocal couplings of strength ε. The squared
parent system (box) decomposes into the AB and CD sub-
systems, where the sum rule enforces unidirectional couplings
between A and B. (b) The two corner states for the system in
(a) with 10 ↑ 10 unit cells and in ε = ↓t = 1/2. Each state
belongs to two degenerate eigenvalues forming an exceptional
point, and this also applies to all other states of this excep-
tionally deficient system. The bottom part shows the energy
spectrum of the system, with the zero-energy corner states
marked in green.

ical square-root insulators, along with a specific imple-
mentation based on a quadrupole insulator. The square-
root construction connects uncoupled parent systems
with Hamiltonian H

2 with a non-trivially coupled sys-
tem with Hamiltonian H. In our example, the parent
systems provide four sublattices, labelled A, B, C, and
D, which are taken to be equivalent in the Hermitian
limit. We consider nontrivial square roots that mutually
couple sublattices (A,B) to sublattices (C,D), resulting
in a generic block Hamiltonian

H =





0 0 HAC HAD

0 0 HBC HBD

HCA HCB 0 0
HDA HDB 0 0



 (1)

possessing a chiral sublattice symmetry XHX = →H

with X = diag(11, 11,→11,→11). Taking the couplings to
be real, we also obtain a conventional time-reversal sym-
metry corresponding to complex conjugation K. Excep-
tional deficiency will be enforced by demanding the lat-
tice sum rule (lattice assignment without loss of general-
ity)

HBCHCA +HBDHDA = 0, (2)

and supplementing this with a generalized transposition

symmetry [48, 49]

RH
T
R = H, R =





0 11 0 0
11 0 0 0
0 0 →11 0
0 0 0 11



 , (3)

where the involution R, inherited from the sublattice per-
mutation symmetry of the parent system, commutes with
the chiral operator, XRX = R.
Given the sublattice sum rule (2), we can construct

right eigenstates ul = (al,0, cl,dl)T (a column vector)
by solving the reduced eigenvalue problem

(HACHCA +HADHDA)al = E
2
l al (4)

associated with the A sublattice of the parent system,
choosing El as the positive or negative square root of
E

2
l , and completing the eigenstate with cl = E

→1
l HCAal,

dl = E
→1
l HDAal. Analogously, we obtain left eigenstates

vm = (0,b↑
m, c↑m,d↑

m) (a row vector) by solving the re-
duced eigenvalue problem

b↑
m(HBCHCB +HBDHDB) = E

2
mb↑

m (5)

associated with the B sublattice of the parent sys-
tem, choosing Em as the positive or negative square
root of E

2
m, and completing the eigenstate with c↑m =

E
→1
m b↑

lHBC , d↑
m = E

→1
m b↑

lHBD.
The sublattice sum rule (2) guarantees that

vm · ul = 0, (6)

and crucially this holds even when El = Em. The gen-
eralized transposition symmetry transforms the reduced
eigenvalue problems (4) and (5) into each other, so that
the constructed right and left eigenstates can be paired
up throughout the whole spectrum. In a Hermitian set-
ting, where right and left eigenstates can furthermore be
translated into each other, we have constructed a basis,
and realize that all eigenvalues are even-fold degenerate,
without resorting, for instance, to an explicit Kramers
degeneracy [50, 51]. In generic non-Hermitian systems,
however, the condition (6) amounts to self-orthogonality,
which marks out EPs [1–5]. Thereby, we have con-
structed an exceptionally deficient system.
QI based realization. To illuminate how this construc-

tion results in exceptional deficiency, we turn to the con-
crete implementation given in Fig. 2(a). This implemen-
tation is based on a standard Hermitian QI model [46],
formed by a unit cell with four sites, intracell couplings
t, and intercell couplings s ↑ 1. The non-Hermitian
modification is obtained from additional nonreciprocal
intracell couplings of strength ω, while the topologically
nontrivial features arise from ε fluxes attached to each
plaquette. The Hermitian system possesses a four-fold
rotational symmetry induced by

C4 =

(
0 11

→iϑ2 0

)
, (7)
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FIG. 3. Static state amplification in the exceptionally defi-
cient QI with 6 ↑ 6 unit cells and fixed ε = 1/4, t = ↓1/2.
The insets show the intensity distribution of the chosen ini-
tial states, which are uniformly localized on the A, B, C, or
D sublattices. The main panels display the time dependence
of the total intensity. Significant state amplification ↔ t2 (red
curves from polynomial fits) occurs whenever the initial state
has components outside of the span of the eigenstates (the A
sublattice lies within this span). This provides a broadband
signature of exceptional deficiency.

with block Pauli matrices ϑi, where notably C
4
4 = →11.

The symmetries can further be combined into a gen-
eralized time-reversal symmetry operation T = KC

2
4 ,

T 2 = →1, rendering all energy levels in the Hermitian
model two-fold Kramers degenerate. Importantly, the
C4 symmetry is broken in the non-reciprocal couplings
of strength ω, and the system does not display non-
Hermitian Kramers degeneracy [51]. Instead, the stated
sum rule and generalized transposition symmetry enforce
exceptional deficiency.

By construction of the model, these features apply to
finite systems with open boundary conditions. In the
range |t| < 1 the Hermitian QI then exhibits four corner
states that appear in two-fold degenerate pairs at oppo-
site energies close to zero. In the non-Hermitian model,
these states instead form two EPs. We illustrate these
corner states in Fig. 2 (b), where ω = →t = 1/2. Be-
cause of the exceptional deficiency, not only these corner
states, but all size-quantized states in this finite system,
are EPs. Next, we identify two dynamical signatures of
the exceptional deficiency in such finite systems, obtained
from the state evolution i

d
dtω(t) = H(t)ω(t) with static

or adiabatically time-dependent Hamiltonian H(t).

Static broadband state amplification. For time-
independent Hamiltonians H, the key dynamical signa-
ture of exceptional points is the occurrence of a solution
exp(→iElt)wl → it exp(→iElt)ul along with the standard
solution exp(→iElt)ul, where El is the degenerate eigen-
value, ul the degenerate eigenvector, and wl the general-

ized eigenvector obeying Hwl = Elwl+ul [1]. The total
intensity I(t) = |ω(t)|2 then acquires a t

2 dependence,
which is absent only when the initial state does not over-
lap with the generalized eigenvector. In an exceptionally
deficient system, this static state amplification should oc-
cur for any initial condition that lies outside of the span
of the eigenvectors ul, elevating it to a broadband e!ect.
To obtain a clear signature of this broadband e!ect, we
utilize the fact that in the QI realization, the A sublat-
tice lies completely within the span of the eigenvectors,
while the B sublattice lies completely outside this span.
As shown in Fig. 3, the dynamical signatures are then
directly observable in the time-dependent intensity from
initial states that are uniformly distributed on a given
sublattice [52]. As expected, state amplification is ab-
sent for the initial state on the A sublattice, but occurs
for initial states localized on any of the three other sub-
lattices, and it is most pronounced for the initial state on
the B sublattice. In all these three cases, we observe a
clear t2 dependence, up to coherent periodic oscillations
that generally depend on the initial state.
Non-Abelian adiabatic state amplification. Next, we

utilize the corner states in the QI model to illuminate
the dynamical consequences of the exceptional deficiency
in a second setting. For this, we exploit the fact that
the deficiency is maintained across the whole parameter
range, which provides us with the opportunity to explore
how states dynamically evolve while being stabilized at
an EP. This feature leads us to consider the phenomenon
of adiabatic state amplification [53–55], concerning the
intensity change I(t) = |ϖ(t)|2 of a state as parameters
ε are slowly changed along a path C. This e!ect is man-
ifestly non-Hermitian, as Hermitian evolution preserves
the norm of a state. Initialized in a long-living, spec-
trally isolated, right eigenstate |R(ε(0))↓, with the long
lifetime required so that the adiabatic theorem applies
[56, 57], the state follows the instantaneous right eigen-
state |R(ε)↓, while the intensity acquires a geometric am-
plification factor

Ag(C) = exp

[
→2

∫

C
Im

[
ALR(ε)→ARR(ε)

]
· dε

]
(8)

connected with the imaginary part of the Berry connec-
tions

ALR(ε) = i
↔L(ε)|↗ωR(ε)↓
↔L(ε)|R(ε)↓ , (9)

ARR(ε) = i
↔R(ε)|↗ωR(ε)↓
↔R(ε)|R(ε)↓ , (10)

where ↔L(ε)| is the associated instantaneous left eigen-
state. As the intensity is a measurable physical quantity,
the geometric amplification factor is gauge invariant even
when the path C is open. On the other hand, expression
(8) implies Ag = 1 for any closed path C that retraces
itself back to the starting point, a feature tied to the
Abelian nature of the associated complex Berry phase.
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FIG. 4. Adiabatic state amplification in the exceptionally deficient QI with 6 ↑ 6 unit cells and t = ↓1/2, as ε is ramped up
and down. The insets show the chosen initial state (predominantly localized in one of the four corners) and the corresponding
final state, which is always predominantly localized in the lower left corner. Significant state amplification ↔ (dε/dt)→2 occurs
whenever the initial state di!ers from this dynamically selected final state.

The Berry phase becomes non-Abelian when the state
is degenerate [58], and in the non-Hermitian setting, this
non-Abelian phase again acquires imaginary parts [59].
As shown in Fig. 4, concrete non-Abelian e!ects man-
ifest for the exceptionally deficient non-Hermitian QI,
making them directly observable in the state amplifica-
tion. In the figure, we amplify a state by slowly vary-
ing ω over time from the Hermitian starting point ω = 0
to ω = 1/4, and then back to ω = 0. For the initial
state we consider, in turn, one of the four corner states,
predominantly localized on the A, B, C, or D sublattice
(see insets). The first non-Abelian manifestation is the
observation that at the end of the evolution, the final
state has been transformed into the state predominately
localized on the A sublattice. The second non-Abelian
manifestation is the observation that, with the excep-
tion of the situation where the initial state is equal to
this universal state, a significant intensity amplification
has occurred. Notably, both e!ects occur even though
the path C retraced itself, thus, would be absent in the
Abelian case. The state amplification is systematic, scal-
ing as ↘ (dω/dt)→2 [60] in analogy with the t

2 scaling of
static amplification described above, and is equal for the
two evolutions starting predominantly on the C and D
sublattices, while the amplification of the state starting
on the B sublattice is twice as large.

Signatures of broken bulk-boundary correspondence.
The dynamical e!ects described so far occur for finite
systems, benefiting from the exactness of the described
construction principle. However, the spectral features of
non-Hermitian systems with non-reciprocal couplings are
known to be highly sensitive to the boundary conditions,
invalidating the bulk-boundary principle that connects
finite and infinite periodic systems in Hermitian topol-
ogy [61, 62]. This characteristic is exemplified by the
non-Hermitian skin e!ect [63–67], where the bulk and
boundary spectra for periodic and open boundary condi-
tions drastically di!er. In the described non-Hermitian
QI model, we find that while states of the infinitely peri-
odic system remain strictly degenerate, the degeneracies
are no longer necessarily exceptional points, so that the

system is only partially exceptionally deficient. This be-
havior follows directly from analyzing the Bloch Hamil-
tonian [52]

H(kx, ky) =





0 0 r + e
→ikx t+ e

→iky

0 0 →t→ e
iky t+ e

ikx

t+ e
ikx →r → e

→iky 0 0
t+ e

iky t+ e
→ikx 0 0



 ,

(11)

where r = t + ω and we set the lattice constant a ↑ 1.
The sum rule (2) is obtained from the identity

(→t→ e
iky )(t+ e

ikx) + (t+ e
ikx)(t+ e

iky ) = 0, (12)

highlighting the role of the ε fluxes generated by the non-
trivial square root. The generalized transposition sym-
metry takes the form

(
ϑ1 0
0 →ϑ3

)
H(kx, ky)

(
ϑ1 0
0 →ϑ3

)
= H

T (ky, kx),

(13)
amounting to a reflection about the line x+y = 0. Hence,
the four bands

E
(1)
± (kx, ky) = ±

√
|t+ eikx |2 + |t+ eiky |2 + ω(t+ eikx),

E
(2)
± (kx, ky) = ±

√
|t+ eikx |2 + |t+ eiky |2 + ω(t+ eiky ),

(14)

whose winding in the complex plane signifies the non-
Hermitian skin e!ect [67], respect the spectral symmetry

E
(1)
± (kx, ky) = E

(2)
± (ky, kx). For kx ≃= ky, the band de-

generacy occurs between di!erent locations in the Bril-
louin zone, involving two mutually orthogonal extended
Bloch states, as in a Kramers-degenerate system. There-
fore, the continuous spectrum of this system exhibits ex-
ceptional deficiency only for kx = ky ↑ k, where each

of the twofold degenerate bands E
(1)
+ (k, k) = E

(2)
+ (k, k)

and E
(1)
→ (k, k) = E

(2)
→ (k, k) is associated with a unique

extended Bloch eigenstate u±(k, k)eik(x+y). The pro-
posed construction principle of exceptionally deficient
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models thus also opens up a new avenue for exploring
the breakdown of the bulk-boundary correspondence in
non-Hermitian systems.

Conclusions and outlook. In summary, we provided
a transparent construction principle to design non-
Hermitian systems that exhibit exceptional deficiency.
The square root construction allowed us to equip the sys-
tem with topological features, which we exemplified by
a quadrupole insulator model with corner states. Excep-
tional deficiency gives rise to striking dynamical signa-
tures, including in broadband and adiabatic state amplifi-
cation, and unveils non-Abelian geometric characteristics
that can be utilized for mode conversion. Our framework
is readily implementable in existing platforms such as
topolectric circuits [28, 29], active acoustic and mechani-
cal metamaterials [30–33], and quantum-optical systems
[68], including dissipative cold atom setups [34], only re-
quiring rearrangement of components in previous setups
to adapt the nonreciprocal couplings to the stated sum
rule. Thereby, our work establishes a versatile route for
designing exceptionally deficient systems that can be flex-
ibly equipped with desired features, enabling new phe-
nomena across a broad range of non-Hermitian settings.

This research was funded by EPSRC via Grant No.
EP/W524438/1.

The data that support the findings of this work are
openly available [69].
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SUPPLEMENTARY MATERIAL: Exceptionally deficient topological square-root
insulators

Subhajyoti Bid and Henning Schomerus

Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom

SPECTRAL DEGENERACIES IN THE BLOCH HAMILTONIAN

In the main text we remarked that the infinite periodic counterpart of the designed exceptionally deficient squsre-

rrot insulator displays exceptional points (EPs) only for kx = ky. Here we provide further details on the emergence

of these EPs, and contrast these with the degeneracy of the original Hermitian quadrupole insulator (QI).

Kramers degeneracy in the Hermitian QI model

We start with the Hermitian QI model [1, 2], accounting for all its symmetries. The Bloch Hamiltonian of this

model is given by

HQI(kx, ky) =





0 0 t+ e
→ikx t+ e

→iky

0 0 →t→ e
iky t+ e

ikx

t+ e
ikx →t→ e

→iky 0 0

t+ e
iky t+ e

→ikx 0 0



 , (S1)

where we set the intercell coupling s ↑ 1. The model exhibits spinless time-reversal symmetry

T HQI(kx, ky)T →1
= HQI(→kx,→ky) (S2)

where T = K corresponds to complex conjugation, and respects a fourfold rotational

C4 HQI(kx, ky)C
→1
4 = HQI(ky,→kx), (S3)

where the transformation matrix

C4 =

(
0 112

→iω2 0

)
(S4)

fulfills C
4
4 = →11, a feature induced by the ε fluxes in all plaquettes. The Bloch Hamiltonian also possesses an intrinsic

chiral symmetry arising from the bipartite nature of the lattice,

X HQI(kx, ky)X = →HQI(kx, ky), (S5)

where the chiral operator

X =

(
112 0

0 →112

)
(S6)

is traceless, reflecting the equal number of sites belonging to the two sublattices within each unit cell.

Upon diagonalizing the Hamiltonian in Eq. (S1), the energy dispersion takes the form

E±(kx, ky) = ±
√
2[1 + t2 + t(cos kx + cos ky)], (S7)

where each band is twofold degenerate. This degeneracy can be attributed to the presence of a generalized time-reversal

symmetry T ↑ ↑ KC
2
4 , fulfilling

T ↑
HQI(kx, ky)T ↑→1

= HQI(kx, ky), (S8)

and thereby constraining the Bloch Hamiltonian for any fixed quasimomenta kx, ky. As T ↑2
= →11, this results in the

formation of Kramers degenerate pairs across the entire Brillouin zone.

This interpretation is significantly simplified by interpreting the system as a square-root insulator. The squared

Hermitian Bloch Hamiltonian takes a simple diagonal form [3]

H
2
QI(kx, ky) = E

2
(kx, ky) 11, (S9)

which signifies that the four sublattices in the squared system are completely decoupled.
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FIG. S1. Energy bands for the infinitely periodic counterpart of the exceptionally deficient QI model, with Bloch Hamiltonian
(S10), as a function of kx with fixed ky = 0 (real part in blue, imaginary part dotted in red). The energy bands follow from
the analytic expressions in Eq. (S14), where the parameters ω = →t = 1/2 are the same as those in Fig. 2 of the main text. On
the symmetry line kx = ky, the four dispersion branches coallesce in two EPs.

Formation of EPs in the non-Hermitian model

With these preparations, we now describe the key modifications of the symmetries and degeneracy in the non-

Hermitian model. For convenience, we reproduce the Bloch Hamiltonian of the non-Hermitian model [Eq. (11) in the

main text],

H(kx, ky) =





0 0 r + e
→ikx t+ e

→iky

0 0 →t→ e
iky t+ e

ikx

t+ e
ikx →r → e

→iky 0 0

t+ e
iky t+ e

→ikx 0 0



 (S10)

with r = t+ϑ. The model exhibits the conventional time-reversal symmetry T and chiral symmetry X , but breaks the

rotational symmetry C4. Furthermore, the generalized time-reversal symmetry T ↑
becomes reduced to the generalized

transposition symmetry

(
ω1 0

0 →ω3

)
H(kx, ky)

(
ω1 0

0 →ω3

)
= H

T
(ky, kx), (S11)

given as Eq. (13) in the main text. Importantly, in contrast to Eq. (S8), this generalized transposition symmetry

constrains the Bloch Hamiltonian only for coinciding quasimomenta kx = ky.

To analyze the implications for the spectral degeneracy, we again study the squared parent Hamiltonian. This

parent Hamiltonian takes the block-diagonal form

H
2
(kx, ky) =

(
HI 0

0 HII

)
, (S12)

where the upper block

HI =

(
E

2
1(kx, ky, ϑ) →ϑ

(
e
→ikx + e

→iky + 2t+ ϑ
)

0 E
2
2(kx, ky, ϑ)

)
(S13)

contains the squared dispersions relations

E
2
1(kx, ky, ϑ) = |t+ e

ikx |2 + |t+ e
iky |2 + ϑ(t+ e

ikx),

E
2
2(kx, ky, ϑ) = |t+ e

ikx |2 + |t+ e
iky |2 + ϑ(t+ e

iky ) (S14)

of the non-Hermitian QI on its diagonals, in agreement with Eq. (14) of the main text. The lower block

HII =

(
2t

2
+ 2tϖ+ 2 + (2t+ ϖ)(cos kx + cos ky) + iϖ(sin kx + sin ky) →ϖ(t+ e

ikx)

ϖ(t+ e
iky ) 2t

2
+ 2 + 2t(cos kx + cos ky)

)
(S15)
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FIG. S2. Static state amplification (a) and adiabatic state amplification (b) for a reduced system size (4 × 4 unit cells) of the
exceptionally deficient QI in panel, computed using the same parameter values and initial conditions as in the main text (cf.
Figs. 3 and 4 of the main text).

FIG. S3. Analogous to Fig. S2, but for a system of 10↑ 10 unit cells.

delivers, by construction, the same energy spectrum. The upper triangular form of HI is a direct consequence of

the sublattice sum rule (2) of the main text, which in this specific case takes the form of Eq. (12) of the main

text. We now note that at fixed kx and ky, the two squared dispersion branches coincide only when these satisfy

kx = ky. Because of the upper triangular form of HI , the eigensystem is then furthermore defective, so that the

degeneracies along this symmetry line correspond to EPs. For kx ↓= ky, we still observe degeneracy in the form

E
2
1(kx, ky, ϑ) = E

2
2(ky, kx, ϑ). However, this then connects Bloch wave functions with di!ering quasimomenta, hence,

mutually orthogonal plane-wave components exp(ikxx+ ikyy). In line with this, HI is then no longer defective.

For further illustration, we depict in Fig. S1 the band structure of the system as a function of kx with fixed ky = 0,

displaying the two EPs at kx = 0.

ADDITIONAL NUMERICAL RESULTS AND EXPERIMENTAL CONSIDERATIONS

For further illustration of the signatures of exceptional deficiency, we here provide additional numerical results for

smaller and larger system sizes (Figs. S2 and S3, as well as systems with reduced non-Hermiticity parameters and

disorder (Figs. S4 and S5). In the latter case, we perturbed all Hermitian and non-Hermitian couplings with relative

disorder drawn from a box distribution of width W = 10
→3

, thereby breaking the sum rule and all symmetries, and

lifting the exact exceptional deficiency. Ref. [4] establishes that exceptionally deficient systems behave predictably

against such indiscriminate disorder, where in particular, the overlap of eigenspaces from two di!erent sectors of the

o!-diagonal Hamiltonian remains large. The figure verifies numerically that these mathematical features also carry

over to the practically observable amplification mechanisms.
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FIG. S4. Analogous to Fig. S2, but for a system of 6↑ 6 unit cells with reduced non-Hermiticity parameter ω = 0.15.

FIG. S5. Analogous to Fig. S4, but in presence of disorder, where all Hermitian and non-Hermitian couplings are independently
perturbed by a relative disorder drawn from a box distribution of width W = 10→3.
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