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Abstract: The rapid spread of invasive plants such as Spartina alterniflora has emerged as a
major ecological and economic threats to coastal wetlands, while existing management
strategies often fail to adapt to dynamic invasion processes and limited financial resources. To
address this challenge, this study develops a novel data-driven-simulation-optimization (DDSO)
framework that enables dynamic and spatially explicit management of biological invasions.
The core innovation lies in coupling data-driven ecological parameterization based on multi-
source observations with a simulation model that captures life-cycle transitions and spatial
dispersal, and a mixed-integer optimization module that allocates control budgets and
intervention intensities across space and time. By integrating heterogeneous environmental,
biological, and management data, the framework constructs time-varying ecological parameters
that reflect evolving invasion conditions and underlying ecological processes. The optimization
component then generates cost-effective intervention schedules under fixed budget constraints.
Comparative evaluation against system dynamics (SD) and simulation-optimization (SO)
models shows that DDSO outperforms conventional approaches not only in budget efficiency,
but also by revealing counterintuitive management logics: management effectiveness hinges
more on the presence of a coordinated optimization framework than on investment scale, and
economically efficient strategies inherently favor highly uneven spatial resource allocation.
These mechanism-level insights underscore the importance of early intervention and cross-
regional coordination, establishing DDSO as a policy-relevant framework for adaptive invasive

species management.
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1. Introduction

Biological invasions by non-native species are a major driver of global ecological
degradation and biodiversity loss, while also imposing substantial economic and social costs
through ecosystem service decline and rising management expenditures (Chen et al., 2016).
The dynamic, uncertain, and spatially heterogeneous nature of invasion processes, combined
with limited control resources, poses significant challenges for effective and cost-efficient
management. Developing decision frameworks that can adapt to changing ecological
conditions and support optimal resource allocation has therefore become a central issue in
invasion management and environmental decision science.

Spartina alterniflora (S. alterniflora) is among the most destructive invasive plants in coastal
wetlands. Originally introduced for shoreline stabilization because of its tolerance to salinity
and flooding, it has spread rapidly through vigorous clonal growth and high seed production,
displacing native vegetation, altering hydrological processes, and degrading habitats for benthic
organisms and migratory birds. Owing to these severe ecological impacts, S. alterniflora is
listed among the world’s 100 worst invasive alien species, highlighting the urgent need for
effective, adaptive, and resource-efficient management strategies. The Yancheng coastal
wetlands along the central Yellow Sea provide a representative case for studying this invasion.
As the largest mudflat ecosystem on the western Pacific coast and a core component of the
UNESCO-listed Yellow (Bohai) Sea Migratory Bird Habitats, Yancheng supports high
biodiversity and critical ecosystem services, yet its flat terrain and dynamic sedimentary
environment make it particularly vulnerable to S. alterniflora expansion, offering an ideal
setting for developing and validating adaptive, system-based management models for invasive
species control.

Managing invasive species is a complex decision problem involving resource allocation,
intervention design, and cost-effectiveness. Operations research and management science offer
valuable tools for addressing these challenges by integrating biological characteristics, invasion
intensity, treatment costs, and expected effectiveness into optimization-based decision models.
Previous studies have applied optimal control and mathematical programming models to
analyze population dynamics and dispersal processes (Baker et al., 2019), identify effective
intervention timing and strategies (Haight et al., 2023), and allocate limited resources to
maximize ecological benefits under budget constraints (Howerton et al., 2024). Scenario-based
modeling has further been used to assess the long-term performance of alternative management
strategies, supporting evidence-based policy decisions (Kibis et al., 2021).

Despite substantial advances in invasion ecology and management modeling, important gaps
remain. Most studies do not integrate real-time data with dynamic dispersal and adaptive
control, and key ecological parameters are typically assumed constant despite pronounced

spatiotemporal variability. In addition, feedbacks between species dynamics and management



actions are often underrepresented, and optimal spatiotemporal allocation of limited control
resources remains insufficiently explored. Recent advances in data-driven offer new
opportunities to address these challenges by extracting dynamic ecological parameters from
multi-source data and coupling them with simulation-optimization models, thereby enhancing
adaptability, realism, and decision support for invasive species management.

To overcome these limitations, we develop a Data-Driven-Simulation-Optimization (DDSO)
framework that integrates time-varying parameter estimation, ecological simulation, and
optimization-based control. The framework is validated through a case study in the Yancheng
coastal wetlands, integrating multi-source environmental data to simulate invasion dynamics
and to optimize spatial resource allocation for Spartina alterniflora management. Scenario
analyses with different budget levels and invasion intensities are further conducted to evaluate
management effectiveness.

The remainder of this paper is organized as follows: Section 2 reviews related work on
optimization-based invasive species management. Section 3 presents the problem formulation
and DDSO framework. Section 4 reports computational experiments and scenario analyses.
Section 5 discusses key insights and management implications, and Section 6 concludes the
paper.

2. Literature review

Recent advances in invasive species research reflect a growing integration of field ecology,
remote sensing, and computational modeling. Traditional field surveys rely on capture-
recapture techniques, isotopic and genetic tracing, and GPS-based monitoring to estimate
population size and spatial distribution (Fancourt et al., 2021). Complementing these efforts,
remote sensing and UAV-based image analysis have enabled large-scale monitoring using
machine learning algorithms such as Random Forest, Support Vector Machines, and
Convolutional Neural Networks (Aota et al., 2021; Wang et al., 2025; Luo et al., 2026). Recent
studies further combine these algorithms with GIS and Google Earth Engine platforms to map
invasion dynamics with high spatial and temporal resolution (Wu & Wu, 2023; Min et al., 2023).

Beyond monitoring, ecological modeling has evolved from static niche-based approaches
(e.g., BIOCLIM, CLIMEX, GARP, MAXENT) toward dynamic, scenario-driven frameworks
that explicitly represent population processes and spatial spread (Tanga et al., 2021). Methods
such as cellular automata, integro-difference equation models, reaction-diffusion and
competition systems, Markov decision processes, Bayesian inference models, and agent-based
simulations have been used to reconstruct invasion trajectories, simulate population transitions,
and evaluate control strategies (Hudgins et al., 2020; Eppinga et al., 2021; Barnes et al., 2023).
Compared with traditional niche-based models, scenario-driven dynamic approaches, such as
system dynamics (Bushaj et al., 2022), can not only reproduce invasion trajectories

(Yemshanov et al., 2017) but also simulate population changes (Carrillo et al., 2023), construct



dynamic control processes (Rosso & Venturino, 2023), and describe population variations
through mathematical formulations (Dia et al., 2020). These models provide quantitative
insights into invasion extent and speed, offering a theoretical foundation for designing effective
management and control strategies.

Given the complexity and heterogeneity of biological invasions, optimization has emerged
as a promising tool for allocating limited management resources. Scholars have applied multi-
objective optimization (Biiyiiktahtakin et al., 2014), robust optimization (Jafari et al., 2018),
stochastic dynamic programming (Kumar et al., 2022), Bayesian hierarchical models
(Nishimoto et al., 2021), scenario simulations (Liu et al., 2023), and various mathematical
programming approaches-including linear programming (Zhang et al., 2025), 0-1 integer
programming (Hultberg et al., 2020), mixed-integer programming (Haight et al., 2021), mixed-
integer linear programming (Kibig & Biiyiiktahtakin, 2017) and mixed-integer nonlinear
programming to allocate limited management resources effectively (Marangi et al., 2023).
These models typically incorporate management costs and budget constraints to allocate
resources across prevention, monitoring, and control actions, aiming to reduce ecological and
economic losses or enhance post-control benefits (Yemshanov et al., 2019). Notably, Onal et al.
(2020) and Yemshanov et al. (2020a) have integrated simulation with optimization to address
spatiotemporal decision-making under uncertainty, demonstrating the advantages of
coordinated, time-phased, and spatially explicit control strategies.

Recent years have witnessed a growing interest in integrating big data, simulation, and
optimization to address complex resource-constrained decision problems. In invasive species
management, spatial optimization under fixed budgets has been used to identify cost-effective
surveillance and control strategies across heterogeneous landscapes, with budget constraints
and spatial heterogeneity shown to strongly affect marginal management returns (Yemshanov
et al., 2020b; Lampert & Liebhold, 2023). Reviews of operations research approaches further
highlight budget-constrained, spatiotemporal resource allocation as a core analytical paradigm
(Biiytiktahtakin & Haight, 2018). More recent work applies cost, benefit optimization and
dynamic threat, response models to prioritize spatial control under limited funding (Salgado-
Rojas et al., 2025). Together, these studies demonstrate the potential of combining data-driven
estimation with simulation-optimization under budget constraints. However, existing
approaches have not yet integrated time-varying ecological parameters estimation, dynamic
invasion simulation, and mixed-integer optimization within a unified Data-Driven-Simulation-
Optimization (DDSO) framework for ecological invasion management. This study addresses
this gap.

Despite these advances, important gaps remain. Most studies rely on single data sources or
standalone algorithms, with limited integration of multi-source monitoring data into intelligent

decision-support frameworks. Although multi-sensor time-series imagery (e.g., Sentinel-2 and



GF-1) has improved monitoring of S. alterniflora, its potential to inform adaptive, optimization-
based resource allocation remains underexplored. In addition, ecological niche models often
assume static or simplified environmental conditions, limiting their ability to capture dynamic
invasion processes. Existing optimization approaches likewise tend to adopt static parameter
settings and rarely incorporate time-varying ecological information derived from real
observations. Given that invasion dynamics and environmental conditions evolve continuously,
there is a clear need for integrated frameworks that can assimilate updated ecological data to
enhance the realism and effectiveness of management decisions.

Building on these insights, our study makes the following key innovations:

(1) Multi-source data integration and intelligent processing: Satellite remote sensing is
combined with image recognition and Random Forest and K-Nearest Neighbors methods on
platforms such as Google Earth Engine and Python to quantify the spatiotemporal spread of S.
alterniflora, improving monitoring accuracy and efficiency through data fusion.

(2) Environmental parameter learning and environmental response functions: Data-
driven models based on KNN and RF are used to estimate key ecological parameters and
construct dispersal and migration rates, capturing the interactions between environmental
conditions and interregional spread dynamics.

(3) Explicit coupling of ecological process simulation and optimization: By integrating
spatial dispersal mechanisms with optimization-driven control decisions within an ecological
simulation, this study overcomes the conventional separation between process-based modeling
and resource allocation. The framework provides a coherent representation of invasion
dynamics, spanning life-cycle transitions and interregional spread pathways, and supplies a
dynamic foundation for spatiotemporally explicit optimization.

(4) Integrated data-driven-simulation-optimization framework: To address the key
challenges of invasive plant management—namely data scarcity, latent ecological parameters,
and complex decision-making—we propose a systematic framework spanning the entire DDSO
chain. The framework achieves full-link integration from constrained latent parameter
inference, through stage-structured ecological simulation, to spatiotemporally explicit
optimization.

(5) An extensive case study for real-world management: Scenario-based analyses across
varying budgets, invasion intensities, intervention timings, and other key parameters are
conducted to assess management performance beyond static or single-scenario approaches.

3. Data-Driven-Simulation-Optimization model (DDSO model)
3.1 Modeling framework

This study establishes an integrated modeling framework that quantitatively links multi-

source environmental information with optimal management strategies for controlling Spartina

alterniflora invasions in coastal wetlands. Decision granularity is defined at the site-year level,



where the optimizer determines when and where to implement control, and treatment costs are
determined by current infestation abundance. Accordingly, the study area is divided into spatial
units 7 € R, time is discretized into decision periods ¢ € T, and k£ € K represents the life cycle

stage.
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Figure 1. Schematic framework of the Data-Driven-Simulation-Optimization model

As illustrated in Figure 1, the framework consists of two major components: (i) a data-driven-
based ecological parameterization module and (ii) a simulation-optimization module. The data-
driven module integrates heterogeneous data sources, including remote sensing imagery
(Sentinel-2, Landsat-5/8), and statistical datasets covering climate, soil, topography, and
hydrodynamic conditions. By applying RF and KNN algorithms, this module extracts

distribution data and estimates key ecological and dispersal parameters, such as reproduction

rate &°

e fj ,» Natural mortality rate (prf‘t‘l and dispersal coefficient ﬂl.(ir, interregional migration
rate 4., The integration of these time-varying parameters captures the spatial and temporal
heterogeneity of species growth, dispersal, and environmental conditions, thereby enhancing
the realism of subsequent simulation and optimization analyses.

The simulation-optimization module integrates a plant growth and dispersal simulator with
a resource allocation optimization model to characterize the dynamic invasion trends of S.
alterniflora under multiple scenarios. The simulation component is formulated as a stage-
structured system dynamics model, in which key ecological parameters estimated by data-
driven are incorporated as exogenous drivers. Through biologically informed transition

dynamics, the model represents the full life cycle of S. alterniflora, including seed bank

dynamics, growth, reproduction, dispersal, and migration. Based on the simulated ecological



evolution, the optimization component identifies the most cost-effective spatial and temporal
allocation of control resources under budget constraints. The binary decision variable x,,
represents whether control is implemented in region r at time t, while A7, ,f‘, denotes the
remaining S. alterniflora population in stage k after intervention. Notably, AT,.{‘t functions as a
coupling variable linking the simulation and optimization modules, serving simultaneously as
the output of ecological dynamics and a constraint input for treatment decisions (see Eq. (9)).

Through the integration of data-driven parameter estimation, system dynamics simulation,
and optimization-based decision analysis, this framework provides a unified platform for
evaluating where and when to implement control measures, thereby supporting evidence-based
and cost-effective management of coastal invasive species.
3.2 S. alterniflora control optimization model

Building on the framework in Section 3.1, this section formalizes the S. alterniflora control
optimization model by specifying the key ecological processes, management actions, and
decision constraints that link population dynamics with management interventions:

(1) Simulation of the growth and diffusion

1) Dispersal dynamics

Seeds of S. alterniflora can disperse over long distances via waves and tides. For any region
r, the quantity of seeds migrating from neighboring regions i€M(») to region r at time ¢+1

can be expressed as:

ADF,HIZZ Z /li,tﬂﬂ,i,.Aﬂ{{tSik Vit (1
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Here, 4;,.; denotes the proportion of seeds leaving region i at time #+1 via waterborne
dispersal (migration rate). ﬂ?ﬂr represents the probability of seeds from neighboring region
IEM(r) dispersing to region » in wave direction @, and M(r) is the set of all neighboring
regions of T. ATff ; denotes the post-control number of plants in stage & inregion i attime ¢,

and S,-k represents the number of seeds produced by stage-k plants in region i.
Some seeds remain within region r rather than dispersing outward due to hydrodynamic

conditions, expressed as:

K
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where ®,,,; is the proportion of seeds retained in region 7 after dispersal at time #+1.
2) Seed bank dynamics

The retained seeds in region r, together with seeds dispersed from neighboring regions, form

the seed bank. The constraint for the seed bank is thus defined as:
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3) Population transition dynamics
S. alterniflora reproduces both sexually (via seeds) and asexually (via rhizomes and plant
fragments). Seeds in the seed bank and asexually propagated rhizomes germinate into seedlings
at specific rates. As seedlings grow, natural mortality occurs at each stage. Mature plants then

produce seeds. The state transition equations are:

AP =0m, & AB, oy +1(1-p I AT PRES | k=1 and V 1t 4)
APfyy= (1-p)] ) ATS +e(1-p/l DATEL PRES | k=2 and v 1t (5)
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Here, AP,,ktH denotes the number of stage-k plants in region r at time #+1, &’ is the
seed survival rate. 7, is the seed germination rate, o is the seed-to-seedling transition rate,

is the vegetative propagation rate from rhizomes. P k" is the number of rhizomes produced by

k-1

stage-k plants. frdt .1 1s the rhizome survival rate, and ¢,

represents the natural attrition
during the transition from stage k-1 to stage k.
4) Carrying capacity and actual population
Since each region r contains S. alterniflora at different life stages, plants compete for
limited resources such as soil and living space. The carrying capacity L, specifies the
maximum population that region r can sustain, and is estimated from field survey data
reported in Liu et al. (2017). As the population approaches L,, survival and growth become
increasingly suppressed. Thus, the pre-control population of stage-k plants in region r», BT, r,kt,
is defined as:
BT} =min{aAPt, L} k=K and ¥ 1t @)
BTY . =min{APf  NEL} k=1, K-1 and V 1t (®)
We adopt a Lotka-Volterra competition framework to model inter-stage suppression, where
the population dynamics Z\/,,,ktﬂ detailed in the supplementary (see supplementary material S1).
(2) Treatment mechanism
To mitigate the damage caused by invasive species, government agencies periodically

implement control measures against S. alterniflora. In this study, based on the local context, we

adopt combined physical and chemical control method to control for region r. After treatment,

the population of stage-k plants in region r at time t+1, AT,,,]‘}H, can be expressed as:
AT} =BT x(1-px,01) Ytk )

Here, y is the effective control rate, and x,, is a binary decision variable indicating whether



control is applied to region » at time ¢.
(3) Budget constraint
Since the budget for controlling S. alterniflora is limited, the total expenditure across the

planning horizon must satisfy:

T R

Z Z C*S4,, %5, < B (10)
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where C includes labor and machinery costs, S4,, is the area of S. alterniflora in region r
at time ¢, obtained from GEE and machine-learning-based monitoring, and B is the total
budget.

(4) Objective function

The goal of the model is to minimize the total damage caused by S. alterniflora across all
regions and time periods within the planning horizon (obstruct waterways, destroy habitats,
etc.). Let E,, denote the expected economic benefits of region r at time ¢. The objective
function thus minimizes invasion-induced economic losses subject to budget constraints

through optimized control strategies, and is formulated as follows:

R T I
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3.3 Data-driven parameterization for invasion dynamics simulation

To address the limitations of conventional field- and laboratory-based monitoring, this study
adopts a data-driven parameterization framework that integrates multi-source observations with
a process-based dispersal-control model. Specifically, the data-driven approach serves two
purposes: (i) reconstructing the spatiotemporal distribution of Spartina alterniflora from
historical environmental and remote-sensing data, and (ii) inferring environmentally driven,
time-varying invasion parameters by learning nonlinear relationships between environmental
factors and biological processes. These data-derived parameters are then embedded into the
process-based simulation model, providing dynamically updated inputs that enhance the
realism and adaptability of invasion dynamics representation (see Supplementary Material S2).
3.3.1 Remote sensing-based data extraction using GEE and Python

Using multi-source data, including remote sensing, climate records, and statistical surveys,
this study examined the dynamic evolution of S. alterniflora in the coastal areas of Yancheng
from 1990 to 2022. On the Google Earth Engine (GEE) platform, we extracted vegetation and
water indices from Sentinel-2 and Landsat-5/8 imagery, including Normalized Difference
Vegetation Index, Enhanced Vegetation Index, and Normalized Difference Water Index.
Random Forest classifiers was then employed to identify different growth stages of S.

alterniflora and to derive the initial invasion maps (Figure 2).
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Figure 2. Spatial distribution of S. alterniflora in selected years from 1990 to 2022
3.3.2 Ecological environmental parameters inference

Because direct observation of seed survival, vegetative sprouting, and natural mortality is
challenging, corresponding dispersal parameters were represented as latent process variables.
These are jointly driven by multi-source environmental predictors and bounded by ecological
constraints informed by prior studies (Liu et al., 2017; Wang et al., 2021). To appropriately
capture the distinct ecological processes represented by each parameter, we implemented
tailored strategies. Cross-validation results indicate that the data-driven parameterization
achieves consistently high explanatory power (mean R? ranging from approximately 0.79 to
0.88) with low prediction errors, supporting the internal consistency and stability of the inferred
spatiotemporal patterns (Table S1). All models operate under strict ecological boundary
constraints and are intended to represent the relative structure and spatiotemporal heterogeneity
of parameter responses to environmental change, rather than to estimate unobservable true
parameter values. The resulting outputs provide ecologically plausible, time-varying inputs for
the simulation-optimization framework (see supplementary material S3).

(1) Reproductive rate of S. alterniflora

Let the proportional contribution of seed-based reproduction be f; and that of rhizome-

based reproduction be f, satistying f +f =1.



The seed survival rate &, is regulated by an environmental adaptability coefficient a,,:

&= f, Vit (12)

as=¢(TS,Nay,, PAT) V1t (13)

Here, g(-) denotes a K-Nearest Neighbor (KNN) regression model based on temperature
(7), salinity (S), soil exchangeable sodium ( Nay,;), precipitation (P), and temperature

variability (AT), with its output normalized to [0, 1].

iii:ag,fvanew(t) Vit (14)
The rhizome survival rate fj , 1s also governed by an environmental adaptability coefficient

a,,;, with key drivers including silt content (Silf), seawater flow velocity (U), and PH.

&l=al f, Vit (15)

al,=h(Silt,S,U,Na,;,PHP) V¥ 1t (16)
(2) Natural attrition rate

The attrition rate at growth stage £, (,/)rkt, is modeled as a function of environmental factors.

Using Random Forest models for stage-specific estimation, we impose the constraint

i) <1,

nt—

¢} =a(TS,Nay, ATPH,P) V1t (17)
3.3.3 Quantification of migration and dispersal dynamics
(1) Migration rate
Hydrodynamic conditions are the primary drivers of long-distance seed dispersal for S.
alterniflora in coastal regions. We introduce a hydrodynamic index to characterize seed
migration probability, incorporating both water flow velocity and wind strength (see Eq. 18).
To standardize migration rates, the hydrodynamic index is normalized (Eq. 19) to derive seed

migration rates for each region:

K
WS, (R WV, (h)

MP, = X 7

(18)
k=1
 MPy-MP
n MPmax,t'MPmin,t
Here, MP, denotes the average hydrodynamic intensity in region » over the planning

A Vit (19)
horizon T. WS,, and WV,, are the average wind speed and water flow velocity in region r
at time ¢, respectively, and MP,,,, and MP,,;, are the maximum and minimum average
hydrodynamic intensities across all regions. A, is the normalized hydrodynamic index
representing the seed migration rate in region r. A larger A, indicates weaker hydrodynamic

conditions and thus a lower probability of seed movement from region i to region r.



(2) Diffusion rate

Beyond hydrodynamic intensity, water flow direction and the spatial distance between
0

neighboring regions also influence seed dispersal. We define . as the probability of S.

alterniflora seeds dispersing from region i to region » along migration direction 6, given by:

1
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Here, S; represents the mudflat area of region i. d,_,. denotes the distance between the
geographic centers of mudflats in regions i and r, and ¢ is the diffusion coefficient. As
expressed in Eq. (20), larger mudflat areas and greater interregional distances both reduce the
proportion of seeds migrating from region i to region r.

3.4 Linearization of the DDSO model

Because constraints (7) and (8) contain minimum operators, we employed Big-M
formulations with binary variables to linearize the constraints, transforming them into a mixed-
integer programming (MIP) model ((7a)-(7d) and (8a)-(8d)). Likewise, constraint (9) was
linearized into equivalent sub-constraints (9a-9d). The auxiliary upper bounds used in these
linearizations are defined as U'=1.5L, and U?=1.5N*. These values provide biologically
plausible, conservative bounds that improve the conditioning of the MIP. Thus, the DDSO
model is expressed by equations (1)-(6), (7a)-(7d), (8a)-(8d), (9a2)-(9¢), and (10)-(11).

(DDSO) Obj (11)
S.t.:
BTY \<AP)., k=K and ¥ rt (7a)
BTY <L, k=K andV rt (7b)
BT} 24P} -UN(1-2} ) k=K and ¥ 1t (7¢)
BT)2L,-Ujz}y k=K and ¥ 1t (7d)
BTY APy, k=1,...K-1 and ¥ 1t (8a)
BT <N k=1,...,K-1 and ¥ 1t (8b)
BT} AP} -UN (12} ) k=1,...K-1 and ¥ 1t (8¢)
BT >N -Ulz k=1, K-1 and ¥ 1t (8d)
wn]‘,+1§yBY",{‘t+1 V itk (9a)
wn]‘,JrlSyfont Ytk (9b)

Wl 2BT -y Ur(1x,) ¥ 5tk (9c)
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(D)-(6), (10).

By incorporating data-driven, time-varying parameters estimated from multi-source
observations and remote-sensing inversions as exogenous inputs, the proposed DDSO
framework tightly integrates a mechanistic stage-structured simulation with a rigorously
linearized deterministic MIP formulation. This integration enhances ecological realism while
preserving computational robustness and model reproducibility. In the following section, we
apply this framework to a case study of S. alterniflora invasion control across six severely
affected coastal areas of Yancheng, Jiangsu Province, China, where a scenario-based analysis
is conducted to examine optimal control strategies under alternative invasion and budget
conditions.

4. Case study
4.1 Parameter settings

This study focuses on six coastal regions in Yancheng, Jiangsu Province—Xiangshui (XS),
Binhai (BH), Sheyang (SY), Tinghu (TH), Dafeng (DF), and Dongtai (DT)-to validate the
computational feasibility and rationality of the proposed DDSO model. Drawing upon peer-
reviewed literature, government reports, and expert consultation, and integrating Yancheng’s
regional environmental characteristics with multi-source datasets, key parameters governing
population dynamics and management interventions were calibrated. Table 1 summarizes the
initial population structure and model parameters, while Figure 3 illustrates the growth
dynamics parameters derived from multi-source data.

We adopt a scenario-based comparative framework to assess management performance
across a range of plausible invasion conditions, using alternative invasion scenarios to examine
how management outcomes vary with invasion intensity and spatial extent. Invasion scenarios
are defined according to the severity of S. alterniflora infestation, characterized by two key
ecological dimensions: invasion frequency (spatial distribution proportion) and invasion
abundance (initial population per region). Each dimension is specified at three levels: Low (L),
Medium (M), and High (H). The M-M scenario, which represents the observed S. alterniflora
distribution derived from GEE-based mapping and machine-learning analysis, is used as the
baseline ecological scenario. Building upon this reference condition, nine hypothetical invasion
scenarios are constructed by systematically adjusting invasion frequency (-20%, baseline,
+25%) and invasion abundance (-10%, baseline, +5%), thereby generating a spectrum of

ecological conditions for model evaluation (see supplementary material S4).



Table 1. Initial population structure and model parameters

Description Notations Unit Value Reference
Initial frequency L,M,H - -20%, Based, +25% -
Initial abundance L,M,H - -10%, Based, +5% -
Seed-to-seedling transition rate o - 0.15 Hayasaka et al., 2020; Liu et
Seed germination rate T, - 0.225,0.2,0.175,0.25,0.21,0.19  al., 2017; Xu etal., 2014
Vegetative propagation rate from . ) 03
rhizomes i An et al., 2007; Trilla et al.,
The number of rhizomes produced by k 2009
P - 5,15
stage-k plants
The effective control rate y - 0.85 Wang et al., 2016
Labor and machinery costs C CNY 2400 An et al., 2024
Proportior}al contribution of seed-based r ) 25% Hayasaka et al., 2020
reproduction s
Proportional contribution of rhizome-
basep d reproduction /, - 75% Hayasaka et al., 2020
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Figure 3. Survival and attrition rates of S. alterniflora

We solved the mixed-integer programming model proposed in Section 3 using IBM ILOG
CPLEX Optimization Studio 22.1 to identify optimal S. alterniflora control strategies under
varying scenarios. All computations were performed on a personal computer equipped with an
Apple M1 processor (8-core CPU) and 8 GB RAM. The full-scale model covers 33 time steps
x 6 regions x 5 growth stages, all tested instances were solved within 180 seconds. Scalability
experiments for extended time horizons indicate that computational effort grows approximately
linearly with the number of periods, and the model remains tractable under default solver
configurations.

4.2 Comparative analysis of models

To evaluate the benefits of optimization-based management, three models—System Dynamics
(SD), Simulation-Optimization (SO, i.e., simulation optimization model with fixed parameters),
and Data-Driven-Simulation-Optimization (DDSO)-were compared under a fixed budget of
CNY 300 million (Table 2). First, the contrast between the SD and control-based models (SO
and DDSO) demonstrates that the inclusion of optimized control decisions fundamentally
determines the order of magnitude of economic losses, reducing total damage by nearly two

orders of magnitude. This finding implies that, once invasion reaches a regional scale, the



critical policy question is no longer the precise tuning of control intensity, but whether
coordinated, forward-looking control is embedded in the decision framework at all. Second, the
optimal solutions consistently favor highly uneven spatial allocation of budgets and treatment
intensity, concentrating resources in Sheyang, Dafeng, and Dongtai. This pattern indicates that
economically efficient management prioritizes regions with high marginal control returns and
strong roles in invasion propagation, rather than pursuing uniform loss reduction across space.
Such results quantitatively support a node-based or leverage-oriented control strategy in
invasive species management. Third, comparing SO and DDSO shows that incorporating finer
ecological or life-stage structure does not increase overall costs or losses, but instead produces
more temporally distributed and less extreme control pathways. This suggests that greater
ecological realism enhances the robustness and sustainability of management strategies by
reducing reliance on short-term, high-intensity interventions.

Overall, this scenario analysis reveals a fundamental decision logic: the existence of control
decisions determines the magnitude of economic losses, the spatial-temporal allocation of
control resources determines management efficiency, and the depth of ecological process
representation influences the robustness and sustainability of control pathways. These insights
not only provide strategic guidance for S. alterniflora management but also offer a transferable
decision framework for the coordinated regional control of other coastal invasive species.

Table 2. Optimal budget allocation, treatment capacity, and associated economic losses under different

models
Model Time | Gap Objective City Regiqnal O.p?Budget Control Treatm.ent
Sec. % CNY Ec Loss | Million CNY Year Intensity
Xiangshui 18329916 - - -
Binhai 37397940 - - -
Sheyang 281920608 - - -
SD 0.08 - 521595663 Tinghu 63024022 - - -
Dafeng 59517669 - - -
Dongtai 61405508 - - -
Total 521595663 - - -
Xiangshui 133244 8.82 6 1097693
Binhai 345837 15.49 6 622944
Sheyang 1749445 58.69 7 9345237
SO 2.81 0.08 5651560 Tinghu 382216 41.11 5 26915933
Dafeng 2361063 82.14 5 26376299
Dongtai 679754 93.74 5 15770451
Total 5651560 299.99 34 80128557
Xiangshui 144472 11.50 7 1201357
Binhai 368399 20.02 7 668732
Sheyang 1802625 58.69 7 9676748
DDSO 3.49 0.07 5705480 Tinghu 374991 55.54 6 26605569
Dafeng 2479850 82.14 5 27903752
Dongtai 535143 69.55 4 12277739
Total 5705480 297.44 36 78338967

4.3 Effects of different budget levels

Using the medium invasion abundance-frequency scenario as a baseline, the optimization
results under different budget scenarios reveal three interrelated decision insights concerning
marginal returns, budget thresholds, and the evolution of control pathways (Table 3). First,

under the zero-budget scenario, total economic losses exceed CNY 774 million, indicating that



without intervention the invasion system evolves toward severe and cumulative regional
damage. When the budget increases to CNY 100 million, losses drop by more than two orders
of magnitude, demonstrating a pronounced initial leverage effect whereby relatively modest
but coordinated investments fundamentally alter invasion dynamics. Second, as the budget rises
from CNY 100 to 200 million, total losses continue to decline but at a markedly diminishing
rate; beyond the CNY 200-400 million range, further budget increases yield almost no
additional reduction in economic losses, which stabilize at approximately CNY 5.7 million.
This pattern reveals a clear budget threshold and diminishing marginal returns, identifying an
economically efficient investment interval beyond which additional funding primarily enhances
coverage and persistence rather than outcome effectiveness. Third, higher budgets do not
change the spatial prioritization of control but are absorbed through longer control horizons and
greater continuity of treatment, rather than intensified short-term interventions. This indicates
a strategic shift from rapid suppression toward maintenance-oriented and stabilization-focused
control pathways as financial constraints are relaxed.

Table 3. Optimal budget allocation, treatment capacity, and associated economic losses under different

budgets
Budget Time Ga o . Regional OptBudget Treatment
Milliongyuan Sec. %p Objective City Econogmic Loss Miﬁion CgNY Control Plan Intensity
0 0.07 - 774420984 Xiangshui 168428929 - - -
Binhai 241206722 - - -
Sheyang 166152008 - - -
Tinghu 69569053 - - -
Dafeng 118213723 - - -
Dongtai 10850549 - - -
Total 774420984 - - -
100 8.14 597 9575297 Xiangshui 157022 6.60 5 1201151
Binhai 386122 11.68 5 668607
Sheyang 2273848 20.23 3 9631804
Tinghu 591040 20.29 3 26472003
Dafeng 4539683 26.50 2 27102211
Dongtai 1627582 14.08 1 10644558
Total 9575297 99.38 19 75720334
200 5.24 0.19 5808421 Xiangshui 157022 6.60 5 1201151
Binhai 371045 15.50 6 668710
Sheyang 1812367 37.75 5 9675381
Tinghu 406200 29.59 4 26582104
Dafeng 2514243 61.04 4 27886137
Dongtai 547544 48.47 3 12248167
Total 5808421 198.95 27 78261650
400 0.5 0.01 5697889 Xiangshui 144481 8.82 6 1201373
Binhai 368401 20.02 7 668734
Sheyang 1802677 59.87 7 9676812
Tinghu 374308 73.66 7 26606187
Dafeng 2474265 137.67 7 27907578
Dongtai 533757 93.74 5 12282151
Total 5697889 393.78 39 78342835
500 0.12 0.00 5697488 Xiangshui 144472 11.50 7 1201357
Binhai 368399 20.02 7 668732
Sheyang 1802617 58.69 7 9676731
Tinghu 374292 73.66 7 26606193
Dafeng 2474122 133.82 7 27907597
Dongtai 533586 153.13 7 12282806
Total 5697488 450.82 42 78343416

Overall, the analysis suggests a hierarchical budget logic: budget availability determines

whether system trajectories can be reversed, threshold levels define efficiency limits, and post-



threshold allocations shape long-term stability rather than immediate loss reduction. This
framework provides a concise and transferable basis for investment planning in invasive species
management under fiscal constraints.
4.4 Effects of different invasion frequencies and abundances

Under a fixed budget of CNY 300 million, increasing invasion frequency and abundance
fundamentally alters the control mechanism rather than proportionally increasing losses

(Figures 4 and 5).
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Figure 4. Budget allocation and economic losses across different invasion scenarios

Note: The left vertical axis in the figure represents the treatment costs, and the right vertical axis represents the economic loss value.
Scenarios are categorized as follows: Low frequency and low abundance (L-L), Low frequency and medium abundance (L-M), Low
frequency and high abundance (L-H), Medium frequency and low abundance (M-L), Medium frequency and medium abundance (M-M),
Medium frequency and high abundance (M-H), High frequency and low abundance (H-L), High frequency and medium abundance (H-M),
and High frequency and high abundance (H-H).).

First, total economic losses escalate sharply with increasing invasion severity, yet
governance costs remain relatively constrained, indicating a nonlinear sensitivity of the system
to invasion levels. This divergence indicates that, once control coverage and timing approach
saturation, residual losses are driven primarily by exogenous risk intensity rather than
insufficient management effort. Under high-risk conditions, budgets and control capacity
therefore function more as loss buffers than as instruments of loss elimination. Second, the
optimal temporal structure is remarkably stable across scenarios, characterized by early and
persistent control beginning at the initial period and maintained throughout the planning
horizon. As scenario severity increases, the model responds not by shifting control timing, but
by scaling treatment intensity within existing time windows. This reflects a strategic transition
from timing-based intervention to scale-based risk hedging under elevated invasion pressure.
Third, spatial prioritization remains largely invariant across all scenarios: Sheyang, Dafeng,

and Tinghu consistently dominate control effort and residual losses, while Xiangshui and



Binhai play secondary roles. This stability suggests that regional priorities are determined by
structural ecological and diffusion characteristics, rather than by budget or capacity
assumptions. Scenario escalation thus affects the cost of maintaining a given spatial control
pattern, not the pattern itself.

Overall, these results imply a hierarchical decision logic: management resources determine
the system’s capacity to absorb risk, whereas scenario severity determines the irreducible loss
floor. Under high-risk regimes, the objective of control shifts from minimizing losses to
preventing systemic loss escalation, underscoring the importance of integrating routine
management with risk-tiered and scenario-responsive strategies in long-term invasive species

control.
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Figure 5. Distribution of treatment decisions across different invasion scenarios

Note: The left vertical axis in the figure represents the six research areas, and the horizontal axis at the bottom represents the time at which
the treatment measures were implemented. 0 = no treatment, 1 = treatment implemented

4.5 Effects of different intervention timings

Under a fixed budget of CNY 300 million, delaying eradication leads to a strongly nonlinear
deterioration in outcomes (Figure 6). First, the timing of control implementation is highly
determinant of economic outcomes. Early intervention (e.g., Delay 1) limits total losses to
approximately CNY 1.08 x 10%, whereas delayed intervention (e.g., Delay 3 or Delay 5) leads
to dramatic increases, up to CNY 7.14 x 103, This highlights a pronounced early-action leverage,
where timely, coordinated interventions maximize marginal returns before invasion expansion
amplifies system-wide risks. Second, delayed interventions induce resource concentration:
under late scenarios, critical regions such as Sheyang, Dafeng, and Tinghu bear the majority of
control effort, while peripheral regions receive minimal treatment. This demonstrates that when

invasion pressure is high or intervention is postponed, the optimal strategy shifts from balanced



coverage to risk-focused allocation, concentrating resources in areas of greatest influence to
prevent systemic loss escalation. Third, spatial prioritization remains largely invariant across
scenarios. Despite differences in timing and budget absorption, the ranking of key regions is
stable, indicating that underlying ecological and dispersal structures drive spatial control
priorities, while intervention timing primarily affects the intensity and cost of management
rather than the spatial configuration.

Overall, these findings suggest a hierarchical logic: early interventions determine the
magnitude of system-wide losses, delayed interventions necessitate concentrated risk-based
resource allocation, and spatial priorities are structurally determined by ecological and dispersal
characteristics. Integrating intervention timing with spatial structure and budget allocation is

therefore critical for designing robust, long-term invasive species management strategies.
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Note: The bar charts represent treatment costs, while the line charts depict economic loss values. The heat map illustrates the management
scheduling, where 0 = no treatment and 1 = treatment implemented. “Delay1”-“Delay5” indicate interventions commencing 5, 10, 15, 20,
and 25 years later, respectively.

4.6 Effects of migration

Under a fixed budget of CNY 300 million, incorporating migration mainly alters the spatial-
temporal deployment of control rather than total cost (Figures 7 and 8). Comparing no-
migration and migration scenarios highlights the critical influence of dispersal on invasive
species management. Migration amplifies economic losses across all invasion intensities,
emphasizing that connectivity drives both regional vulnerability and required control effort.

In no-migration scenarios, interventions are consistently applied across all regions, reflecting
the localized and predictable spread of the invasion. With migration, control efforts concentrate
on high-risk regions, demonstrating that resource allocation must adapt to dispersal pathways
rather than static regional risk. Intervention timing and intensity also interact with invasion
severity: high-intensity invasions demand larger budgets and prolonged treatment, whereas
lower-intensity invasions achieve effective control with moderate, shorter interventions.

These findings suggest three strategic implications: Incorporate dispersal dynamics into



spatial prioritization to optimize resource allocation; Adjust intervention intensity to invasion
severity, balancing coverage and efficiency; And prioritize early and sustained interventions
under low-connectivity scenarios, while targeting key dispersal nodes under high connectivity.

Overall, both invasion intensity and ecological connectivity critically shape optimal
governance strategies, and neglecting migration can lead to under-resourced interventions and

higher cumulative losses.
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Figure 7. Regional budget allocations and economic losses under non-migration scenarios across different

invasion levels

Note: The left vertical axis in the figure represents the treatment costs, and the right vertical axis represents the economic loss value.

Figure 8. Regional management decisions under non-migration scenarios across different invasion levels
Note: The left vertical axis in the figure represents the time at which the treatment measures were implemented, and the horizontal axis at

the bottom represents the six research areas. 0 = no treatment, 1 = treatment implemented.



4.7 Sensitivity analysis of other key parameters
To assess the model’s sensitivity to key biological parameters, we conducted perturbation
tests on lifecycle attributes of S. alterniflora, including the number of seeds produced (Sf-‘), the

seed-to-seedling transition rate (o), and the number of rhizomes produced by vegetative

reproduction at different stages (P k), adjusting each by £10% or 1% (Figure 9 and Table 4,
see supplementary material S8).

Results show a clear hierarchy of parameter influence. Seed production exhibits the strongest
sensitivity: a 10% decrease reduces total losses to 5.13x10° CNY, whereas a 10% increase raises
losses to 6.35%10° CNY and markedly increases treatment demand, particularly in high-density
regions such as Sheyang and Dafeng. In contrast, perturbations in ¢ produce only minor
changes in aggregate outcomes, indicating effective buffering by density regulation and
optimized control. Vegetative propagation has intermediate, stage-dependent effects, with
increased late-stage rhizome production modestly elevating control effort and losses in later
periods (T = 5-8), while early-stage propagation remains less influential.

Across all scenarios, the model consistently prioritizes regions with high invasion potential,
indicating that spatial heterogeneity and local population dynamics are primary drivers of
budget allocation decisions. These results suggest that management strategies should account
for the potential impacts of variations in critical ecological parameters to optimize intervention

timing, intensity, and regional allocation while minimizing cumulative economic losses.
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Figure 9. Regional budget allocations and economic losses under other parameter-sensitivity analyses



Table 4. Decision outcomes from other parameter-sensitivity analyses
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5. Discussion

This study develops an integrated Data-Driven-Simulation-Optimization (DDSO)
framework to dynamically design and evaluate invasive species management under ecological
and economic constraints. By coupling data-driven parameter estimation with a life-cycle-
based time-varying dynamic simulation and a mixed-integer optimization model, the
framework links ecological processes with operational decision-making, enabling systematic
evaluation of management strategies across heterogeneous regions and intervention schedules.
Across all experimental dimensions, a set of consistent and non-trivial decision insights
emerges that transcends individual scenarios.

Framework precedence over intensity. Once biological invasions reach a regional scale,
the order of magnitude of economic losses is determined primarily by whether an optimized
control framework is in place, rather than by marginal adjustments in control intensity. This
underscores that, in complex ecological systems, establishing coordinated and forward-looking
decision structures is more fundamental than localized optimization of effort.

Unevenness as efficiency. Economically efficient management naturally entails highly
uneven spatial allocation of resources, with investments concentrated in key transmission or
leverage nodes (e.g., Sheyang and Dafeng in this study). Pursuing spatially uniform loss
reduction can, counterintuitively, undermine overall budget efficiency, challenging the intuitive
association between equitable allocation and effective management.

Ecological complexity enhances robustness, not cost. Incorporating finer ecological
process representations (e.g., life-history structure) does not increase total costs or aggregate
losses. Instead, it improves strategy robustness by generating smoother and more sustainable
control trajectories. This challenges the common concern that greater model complexity

necessarily entails higher management costs, highlighting ecological realism as a mechanism



for avoiding short-term, high-intensity interventions and achieving long-term stability.

Budget saturation and regime shifts. The marginal effectiveness of budget increases
exhibits a clear threshold effect. Beyond this threshold, additional investments primarily
translate into greater persistence and spatial coverage of control, rather than further loss
reduction. This indicates a qualitative shift in allocation logic: pre-threshold investments aim
to reverse system trajectories, whereas post-threshold investments focus on maintaining long-
term stability.

Risk levels reshape management objectives. Under high invasion pressure, management
resources shift from instruments of loss minimization to buffers against systemic loss escalation.
In such contexts, the primary objective should move away from reducing absolute losses toward
preventing cascading and system-wide amplification, emphasizing the integration of routine
management with risk-tiered response strategies.

Timing shapes intensity, not spatial priority. While intervention timing critically affects
loss magnitude and the degree of resource concentration, optimal spatial priorities remain
structurally determined by underlying ecological and dispersal processes and are largely
invariant to budget or timing assumptions. Effective strategies therefore require early initiation
to secure system-wide benefits, alongside a stable anchoring of structurally critical regions.

Allocation must track dynamic connectivity, not static risk. In the presence of migration,
optimal control must shift from responding to static regional risks toward targeting dynamic
dispersal pathways. Ignoring ecological connectivity leads to systematic misallocation of
resources and higher cumulative losses, even under identical budget constraints.

Overall, this study advances a hierarchical decision logic: control frameworks determine loss
magnitude, spatiotemporal allocation determines management efficiency, and the depth of
ecological representation determines pathway robustness. Strategically, invasive species
governance should prioritize coordinated optimization architectures, deliberately adopt uneven
leverage-based interventions, and recognize how budgets, risks, and timing jointly trigger
fundamental shifts in management objectives to balance resilience and efficiency in dynamic
environments.

6. Conclusion and future work

This study proposes and implements an integrated Data-Driven-Simulation-Optimization
(DDSO) framework to support spatiotemporal management of coastal S. alterniflora under
constrained public budgets. By integrating heterogeneous multi-source observations, the
framework constructs time-varying ecological parameters that characterize evolving invasion
dynamics. These parameters are embedded within a stage-structured population simulation and
a mixed-integer optimization model to determine cost-effective intervention timings, intensities,
and regional budget allocations. Extensive scenario experiments—covering variations in budget

levels, invasion intensity, intervention timing, dispersal conditions, and key ecological



parameters—demonstrate the practical value of the DDSO framework in generating actionable,
data-informed management strategies.

Despite establishing this multi-source DDSO framework and conducting systematic analyses
across diverse budgets, invasion intensities, and intervention scenarios, several limitations
remain. First, many model parameters are derived from historical monitoring data and expert
assumptions, without fully incorporating randomness and uncertainty, which may
underestimate management needs under extreme conditions. Second, this study focuses
primarily on minimizing economic losses as a single objective, without fully accounting for
ecosystem services, social acceptance, or multi-stakeholder trade-offs. Third, the mixed-integer
optimization model faces computational challenges in large-scale scenarios, requiring
dedicated algorithms and high-performance computing resources.

Future research can be expanded in several directions: First, although the present study
adopts economic loss minimization to maintain a transparent and tractable core structure, the
model can be naturally extended to multi-objective formulations that incorporate ecosystem
services, ecological resilience, and social considerations, thereby enabling explicit trade-off
analysis in real-world management. Second, uncertainty-aware decision-making can be
strengthened by integrating multi-stage stochastic or robust optimization approaches, enabling
management strategies to remain effective under environmental variability and parameter
uncertainty. Third, further advances in computational efficiency, including decomposition
techniques, heuristic or approximate dynamic programming methods, and GIS-based decision-
support interfaces, would enhance scalability and facilitate practical implementation by
management agencies. Collectively, these extensions would improve the ecological realism,
policy relevance, and operational robustness of the proposed framework, supporting adaptive
and sustainable long-term management of coastal invasive species.
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