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Detection of protein-losing
enteropathy (PLE)
ultrasonographic imaging
features in dogs using deep
learning neural networks
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Artificial intelligence (Al)-based models and algorithms may aid in achieving
overall more efficient and accurate diagnostics in various medical specialties.
Such Al-based tools could be integrated and potentially offer advantages over
currently used diagnostic and monitoring algorithms, enabling the pursue of more
individualized treatment options with potentially improved patient outcomes in
the future. However, very few studies exploring the potential of Al-based tools
have been reported in veterinary medicine. Diagnosis and subclassification of
chronic inflammatory enteropathy (CIE) and protein-losing enteropathy (PLE),
requiring an integrated approach including several diagnostic modalities, remains
a challenge in clinical canine gastroenterology and might benefit from Al-based
tools. Thus, we aimed to use Al-based deep learning to develop a model that
can differentiate clinical cases of protein-losing PLE from non-PLE CIE using
ultrasonographic (B-mode) images. This pilot study included anonymized data
extracted from the electronic medical records and diagnostic images from routine
diagnostic evaluations of 59 dogs. Following several optimization steps, the final
model had a high accuracy (91.57%), precision (0.9286), recall (0.9070), F1 score
(0.9176), and AUC-ROC (0.9529). This model was highly sensitive and specific for
the detection of ultrasonographic features associated with clinicopathologic and/
or histological lesions consistent with a PLE diagnosis. Combining sonographic
diagnostics with machine learning yielded a high degree of accuracy in PLE
differentiation. The results of this study underscore the potential of integrating
an Al-based model into CIE diagnostics and PLE differentiation in clinical canine
gastroenterology.

KEYWORDS
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1 Introduction

Protein-losing enteropathy (PLE) in dogs is a clinical syndrome caused by excessive
protein loss through the intestines (Jablonski, 2022). This loss can result in hypoalbuminemia
or panhypoproteinemia, which can lead to reduced oncotic pressure and extravascular fluid
accumulation (e.g., edema or ascites) and other complications (e.g., thrombosis or
thromboembolism) (Wennogle et al., 2021). PLE can be caused by several underlying diseases
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(Allenspach and Iennarella-Servantez, 2021; Craven and Washabau,
2019), the most common of which are chronic inflammatory
enteropathy (CIE), characterized by an excessive immune response in
the intestinal mucosa, primary intestinal lymphangiectasia (ILE), a
dilation of the lymphatic vessels that impairs the transport of lymph
and proteins, and neoplastic diseases such as intestinal lymphoma
(Jablonski, 2022; Allenspach and Iennarella-Servantez, 2021; Craven
and Washabau, 2019). Severe infections (e.g., endoparasites, fungal
diseases) and right heart failure with intestinal lymph congestion or
portal hypertension can also cause PLE and must be ruled out (Dossin
and Lavoué, 2011). Non-infectious, non-neoplastic PLE can therefore
be classified into primarily non-inflammatory PLE due to ILE (where
impaired lymphatic drainage can lead to crypt abscesses and
infiltration of inflammatory cells) and PLE secondary to CIE (where
marked inflammatory infiltration impairs lymphatic drainage and
increases intestinal mucosal permeability) (Jablonski, 2022; Craven
and Washabau, 2019). However, both can be challenging to distinguish
clinically and/or microscopically at the time of diagnosis (Jablonski,
2022; Craven and Washabau, 2019). Certain dog breeds, such as the
Yorkshire terrier, Maltese, Basenji, and Chinese Shar Pei, are reported
to be predisposed (Jablonski, 2022; Wennogle et al., 2021; Allenspach
and Iennarella-Servantez, 2021; Craven and Washabau, 2019; Dossin
and Lavoué, 2011; Equilino et al., 2015; Nakashima et al., 2015).

PLE has considerable clinical significance in canine medicine as
it presents one of the potentially most critical chronic intestinal
conditions in dogs, and despite intensive treatment, often has an
unfavorable prognosis (Jablonski, 2022; Craven and Washabau, 2019;
Dossin and Lavoué, 2011). Affected dogs often require repeated
hospitalizations, medical and/or dietary treatment, and long-term
management including regular veterinary visits for clinical
reevaluation (Jablonski, 2022; Craven and Washabau, 2019; Dossin
and Lavoué, 2011). This can represent a considerable emotional and
financial burden for the owners of affected dogs. PLE is often detected
at a late stage because early clinical signs can be nonspecific, and
sonographic diagnosis requires experienced interpretation (Craven
and Washabau, 2019; Dossin and Lavoué, 2011). The variability of the
clinical findings and the lack of objective and reproducible criteria
make early diagnosis particularly difficult (Jablonski, 2022; Craven
and Washabau, 2019; Dossin and Lavoué, 2011). Improved diagnostic
tools would, therefore, offer improved clinical decision-making,
patient health and individual prognosis, and overall welfare.

Diagnosis of non-infectious, non-neoplastic PLE currently
requires a stepwise approach, which integrates the results of a
thorough patient history, physical examination, clinicopathologic
testing, diagnostic imaging, and treatment trials to narrow down the
diagnosis and exclude PLE mimics such as eunatremic-eukalemic
hypoadrenocorticism, hepatic insufficiency, and protein-losing
nephropathy (Allenspach and Iennarella-Servantez, 2021; Dossin and
Lavoué, 2011). Documentation of structural and inflammatory
intestinal lesions requires biopsies for histopathologic examination of
the affected
esophagogastroduodenoscopy in combination with ileocolonoscopy
(Jablonski, 2022; Craven and Washabau, 2019; Equilino et al., 2015).
These require a stable patient as a good anesthetic candidate.

intestinal ~ wall, preferably obtained via

Management of canine PLE can be challenging and may require a
multimodal approach, where dietary intervention plays a key role and
other treatments must be tailored to the individual patient. However,
outcomes vary, and early diagnosis and treatment initiation can
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improve the overall prognosis and quality of life of affected dogs
(Jablonski, 2022; Nakashima et al., 2015), creating an urgent need for
reliable, objective, and readily available diagnostic tools that can assist
veterinarians in their assessment.

Imaging diagnostics in dogs with suspected CIE, and particularly
PLE, is performed to evaluate the abdomen for possible
ultrasonographic lesions consistent with CIE and/or PLE and exclude
other conditions (Equilino et al., 2015; Nakashima et al., 2015;
Allenspach et al., 2007; Walker et al., 2013; Wennogle et al., 2019; Leib
et al., 2012). Ultrasonographic assessment may reveal changes in the
intestinal wall, regional lymph nodes, and/or the presence of
abdominal free fluid (Allenspach et al., 2007; Gaschen et al., 2008).
The sections from the duodenum to the ileum are of particular
diagnostic interest in the investigation of chronic gastrointestinal
diseases causing PLE. The physiological wall diameter of the individual
intestinal segments varies depending on the patient size and luminal
filling status. In dogs, the physiological wall diameter of the duodenum
is approximately 3-6 mm, that of the jejunum 2-5 mm, and of the
ileum 2-4 mm, whereas the diameter of the colon wall is 2-3 mm
(Delaney et al., 2003; Gladwin et al., 2014). PLE can cause generalized
or segmental thickening of the individual wall layers (muscularis,
submucosa, or mucosa) and mucosal echogenicity changes (e.g.,
hyperechoic striations) (Ohta et al., 2021).

Mucosal speckles are irregular, focal hyperechogenicities within
the mucosal layer of the intestinal wall (Figure 1) that indicate an
altered mucosal composition or protein and lipid deposition and can
be seen with PLE, but these are a non-specific finding (Ohta et al.,
2021; Nisa et al., 2019). Mucosal striations are radial hyperechoic lines
within the intestinal mucosa, which are caused by lymph and fat
deposits resulting in fibrotic remodeling and are a characteristic sign
of impaired lymph drainage in the context of PLE (Ohta et al., 2021).
Lymphadenomegaly, disruption of the physiological layering of the
intestinal wall, and accumulation of free fluid in the abdomen due to
hypoalbuminemia can also indicate pathology but are not specific for
CIE or PLE (Equilino et al., 2015; Salavati Schmitz et al., 2019).
Ultrasonographic findings vary in CIE and PLE patients and must
always be interpreted in the context of clinical and laboratory
diagnostic parameters (Gaschen et al., 2008; Salavati Schmitz et
al,, 2019).

Digital health applications and artificial intelligence (AI) tools
have the potential to significantly aid in improving the standard of
care in both human and veterinary medicine, particularly in diagnostic
algorithms, individualized treatment options, and therapeutic
monitoring (Nguyen et al., 2022; Stafford et al., 2022; Chen et al,,
2025). The tools, if adequately trained and passing rigorous validation,
may enable an enhanced analysis of complex data sets (e.g., within a
very short time) and integrated detection of features in standardized
imaging diagnostics (Reagan et al., 2022; Kathrani et al., 2024).

Standardized diagnostic and management algorithms involving
Al-supported models have not been evaluated or established in
canine PLE but might bear clinical potential given the complex
etiology, varied clinical presentations, and required stepwise
integrative diagnostic and treatment plan. The present study addresses
this gap by developing, validating, and testing an Al-based model that
assists in analyzing sonographic features to facilitate the
differentiation between PLE and non-PLE CIE. We hypothesized that
an Al-assisted model provides a reliable tool that can enable
accelerated and precise (sensitive and specific) imaging detection of
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FIGURE 1

accumulation of free fluid in the abdomen (arrows; C,E)

Ultrasonographic lesions in dogs with CIE and/or PLE. In contrast to (A) the physiological structure of the canine intestinal wall comprised of (1) serosa,
(2) muscularis, (3) submucosa, and (4) mucosa, followed by (5) the intestinal lumen, (B—F) ultrasonographic features that can be seen in dogs with CIE/
PLE but vary greatly in terms of sensitivity and specificity include intestinal wall thickening, mucosal hyperechoic speckles and striations (asterisks;
B-E), corrugation and dilation of the intestinal lumen (arrowheads and vertical lines; B—D,F), disrupted intestinal wall layering (circles; B,D), and

PLE lesions in dogs with suspected CIE, and following a training and
validation phase, can aid in distinguishing PLE and non-PLE CIE
cases. Thus, the study aimed to develop a model that uses
Al-supported deep learning to differentiate PLE based on
ultrasonographic images of the intestinal wall and peri-intestinal
tissue in CIE and/or PLE suspected dogs.

2 Materials and methods

2.1 Ethics

Anonymized data from archived electronic medical records
(EMR) of clinical patients presented between March 2019 and
January 2021 for routine diagnostic evaluation to the Small Animal
Internal Medicine Service of the Department for Small Animals
were considered for inclusion in this retrospective case-control
study. At the time of clinical admission and diagnostic evaluation of
the patient, pet owners give their written consent on the admission
form of the Small Animal Clinic of the Leipzig University College
of Veterinary Medicine to the use of anonymized data, images, and
surplus biological specimens of their dog for research and teaching
purposes. This form has been reviewed and approved by the Ethics
Committee of the Leipzig University College of Veterinary
Medicine.

Frontiers in Artificial Intelligence

2.2 Patient data

Retrospective anonymized EMR data from a total of 157 dogs
with chronic inflammatory enteropathy (CIE) were evaluated, and
these dogs were categorized as either PLE or non-PLE CIE cases. This
group assignment was derived from the dog’s medical and dietary
history, signalment (breed, sex, neuter status, body weight, and age),
physical examination findings, laboratory diagnostics (hematology,
blood biochemistry panel with electrolytes, urinalysis, fecal
examination, and B vitamins, pancreatic markers, and resting cortisol
measurement), diagnostic imaging results, sequential diagnostic
treatment trials and, in some dogs, gastrointestinal endoscopy with
biopsies for histopathological examination. If indicated, additional
diagnostics (e.g., ACTH or bile acid stimulation test, urine protein-to-
creatinine ratio, tissue molecular diagnostics) were performed at the
discretion of the attending clinician.

Sonographic B-mode still images of relevant small intestinal
sections (obtained as part of the routine diagnostic evaluation of the
dogs) were selected and cropped to predominantly depict the relevant
structures. Smaller portions of adjacent organs (e.g., kidneys,
mesenteric lymph nodes, liver, or spleen) were left in the images
during the initial training phase. Measurement markers or annotations
within the images were removed to prevent interference with the
recognition of specific features during the training and/or validation
phase. Dogs for which adequate ultrasonographic images of the
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gastrointestinal tract were not available for analysis were excluded
from the study.

2.3 Image selection, pre-processing, and
heatmap generation

The dataset was split into training, validation, and testing sets,
comprising 70%, 10%, and 20% of the data, respectively. This split
prior to data augmentation served to avoid augmented images being
spread across all three different dataset splits and possibly inflating or
yielding inaccurate performance estimates. Patient-level separation—
although a good practice-was not performed due to the small size of
the dataset. Instead, it was ensured that only non-augmented images
were found across the splits. Potential inflation or inaccurate
performance estimates were avoided as multiple images from the same
dogs were separate crops of different regions of the small intestinal
wall and did not closely resemble one another.

Data augmentation was performed for training the model due to
varying numbers of adequate, high-quality B-mode images available
to assess sonographic features in affected dogs (Gaschen et al., 2008;
Salavati Schmitz et al., 2019). The pre-processed anonymized images
were assigned to one of two separate datasets based on the final
classification of the dogs as either PLE or non-PLE CIE. A machine
learning (ML) model was then trained to distinguish these two patient
groups with high diagnostic accuracy.

To increase the diversity and amount of the training data and
ensure robust learning of the ML model to detect general features
rather than noise, a specific set of affine transformations was applied
to the original images. This process also served to address class
imbalance by generating additional examples for the minority class
(PLE) until it matched the size of the non-PLE class. An average of 3-8
augmented versions were generated for each original image, applying
the following transformations randomly to introduce variation while
preserving fundamental patterns: (1) rotation: images were randomly
rotated within a full range of 0-360°; (2) zooming: a random zoom
factor was applied ranging from 0.8 (zoom-out) to 1.5 (zoom-in); and
(3) brightness: the pixel intensity was randomly adjusted with a factor
ranging from 0.5 (darker) to 1.5 (brighter). Only the training dataset
was augmented, while the validation and testing datasets contained
only the original, un-augmented images to avoid introducing
performance inflation and inaccurate results.

Images initially containing additional structures, such as the
spleen or kidneys, were later removed due to presenting a source of
interference for training the model. To further improve the accuracy
of the model, additional processing was performed by subjecting each
anonymized image to up to four iterations of cropping and
pre-processing, followed by retraining of the model. These steps
yielded an original PLE dataset with 200 images and a non-PLE CIE
dataset including 387 images. Following an initial validation, the
image data was further optimized to improve the performance of the
model (e.g., targeted cropping to the intestinal wall, exclusion of
insufficiently visible intestinal wall layers). This optimization resulted
in an expansion of the PLE dataset from 200 to 214 and finally 227
images, and a reduction of the non-PLE CIE dataset from 387 to 190
and finally 194 images.

A preprocessing pipeline was set up using PyTorch, in which all
images before entering the model were resized to 224 x 224 pixels to
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match the input size expected for model architectures such as ResNet
and EfficientNet-B0. The images were then normalized using the mean
and standard deviation of the ImageNet dataset, due to using a
pre-trained ResNet model that is trained on ImageNet.

A subset of sonographic images and associated heatmaps—
generated through the ML model—were manually evaluated in a
blinded fashion (A-KR and RH) and areas with features consistent
with PLE were manually marked based on expert consensus. These
manual markings were compared with the heatmaps of the final
models to evaluate each model’s ability to correctly identify affected
regions and/or relevant lesions.

2.4 Model selection, training, and validation

Models were selected based on recent scientific literature
(Kathrani et al., 2024; Saber et al., 2025; Yuan et al., 2025), in which
deep learning was applied to sonographic images (training) and were
then tested (validation). Four pre-trained convolutional neural
networks (CNNs), MobileNetV2, AlexNet, EfficientNet-B0, and
ResNet50, were utilized and evaluated for their performance in
classifying sonographic images to distinguish PLE from non-PLE
CIE. For each model, accuracy, precision, and recall were evaluated,
as well as the F1 score and the area under the curve determined using
the receiver operating characteristic (AUC-ROC). A high F1 score
reflects a model that makes few false-positive and few false-negative
predictions, and the AUC-ROC indicates how well the model
distinguishes between positives and negatives (model selectivity)
(Yuan et al., 2025; Ali, 2025).

2.5 Hyperparameter tuning and model
adjustment

The selected Al model was modified to optimize the classification
performance (differentiation between dogs with PLE vs. non-PLE
CIE) and improve the accuracy and transferability of the model to
new, unknown clinical cases (i.e., dogs with suspected CIE). These
steps focused on fine-tuning important parameters in the Al learning
process (hyperparameter tuning). Selecting the correct learning rate
was the key factor, as models learn inaccurately when the learning rate
is too high (overfitting), whereas training is ineflicient if the learning
rate is too low. Thus, various intermediate values were tested to select
a learning rate that offers a good balance between learning speed,
accuracy, and stability for Al training (Ali, 2025; Tetko and Clevert,
2025). Several techniques served to avoid overfitting. These included
modification of the training images (e.g., rotation, zoom-in, and
adjustment of brightness) to increase diversity of the data. In addition,
mathematical methods such as L2 regularization and dropout were
applied to prevent weights in the model from becoming too large and
ensure the model gains robustness by randomly deactivating certain
connections in the network during training (Clara et al., 2024).

The final classification layer of each chosen model was adjusted
from its original output dimension to a single output neuron,
producing a score in the range from 0 to 1. A threshold of 0.5 was
applied, classifying values above the threshold as “PLE” and below this
threshold as “non-PLE” Due to computational constraints,
hyperparameter tuning was performed only on the single
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best-performing model identified during initial experiments (i.e.,
ResNet) with default settings (e.g., the standard Adam learning rate of
1.0 x 10~ across all four architectures). To tune the learning rate of the
Adam optimizer, upper and lower bounds were tested to limit the
search space before determining an ideal value. An iterative process of
refinement served to identify the optimal learning rate for the model
training (Figure 2). To regularize the model and prevent overfitting,
regularization techniques, including L2 weight decay (1 =1 x 10~°)
and a dropout layer (p = 0.5), were added in the classification head.

2.6 Annotated heat maps

Heatmaps visualize regions that are classified as particularly
relevant, which can be accurately assessed by using index colors (red

10.3389/frai.2025.1707957

for high relevance and blue for low relevance). To evaluate the
accuracy of the model in selecting or highlighting image areas with
patterns or features consistent with PLE, the test data set (i.e., manually
annotated regions of interest, ROIs) was compared with the heatmaps
generated by the ML model (Ali, 2025). Sensitivity and specificity of
the annotated images to distinguish PLE from non-PLE CIE were
calculated based on dichotomous outcomes.

2.7 Application using a PLE detector (digital
health application)

Following the training of the model, a website was designed where
various sonographic images could be uploaded for testing purposes.
The aim was to assess the efficiency of the final model’s classification
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FIGURE 2

learning rate for model training was identified as 5.0 x 10-° (E,F).

Optimization of the learning rate and success of training. While rapid overfitting and very unstable training of the selected ResNet50 model were seen
with a learning rate of 1.0 x 10~° (A,B) and very little training with underfitting of the model at a lower learning rate of 1.0 x 10~ (C,D), the optimal
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(differentiation between PLE and non-PLE CIE) using new, unknown
data and to test the potential practical applicability of the Al-guided
application. Seventeen ultrasonographic still images from other
sources, including 7 dogs with PLE and 10 non-PLE cases, were tested
for the correct classification by using this application.

3 Results
3.1 Patient population

Considered for inclusion in the study and analysis were EMR data
from 157 dogs; 42 dogs were diagnosed with PLE (PLE group) and 98
dogs with CIE lacking any clinicopathologic and/or histological evidence
of PLE (non-PLE CIE group). For the remaining 17 dogs, definitive
assignment to one of these two groups (PLE vs. non-PLE CIE group)
was not possible based on retrospective EMR evaluation, including
follow-up for some dogs, and these dogs were excluded from further
analyses. Of the 140 dogs with complete EMR data, an additional 81
dogs were excluded due to (a) lack of access to (1 = 74) or availability of
adequate ultrasonographic still images (1 = 7) of the gastrointestinal tract.

The 59 dogs that could be included in the study comprised 22 dogs
in the PLE group and 37 dogs in the non-PLE CIE group (Table 1).
From this cohort, a total of 421 sonographic B-mode still images were
included in the final analysis (PLE group: n =227, non-PLE CIE
group: n = 194), with 1-31 still images (median: 6 still images) per dog.

The first set of altogether 587 images focused on intra-abdominal
areas that included relevant intestinal segments and peri-intestinal

TABLE 1 Characteristics of the dogs included in the study (n = 59).

10.3389/frai.2025.1707957

tissues. An initial validation test showed an accuracy for detecting
non-PLE CIE cases of 80%. The detection rate for PLE cases was lower,

prompting further optimization that yielded a total of 421 images.

3.2 ML models for PLE diagnostics

MobileNetV2 achieved high accuracy and precision, strong recall,
and a high F1 score (Table 2). The AUC-ROC was at a high level,
indicating reliable classification ability. MobileNetV2 was the second-
best model, which is considered lightweight and requires low
computing power. This model outperformed larger models such as
AlexNet. AlexNet, the largest model, showed the weakest performance.
Accuracy, precision, and recall were moderate, resulting in the lowest
F1 score and AUC-ROC. EfficientNet-BO delivered results with
moderate accuracy, precision, and recall, and consequently, a good F1
score and AUC-ROC. ResNet50 outperformed all other models with the
highest accuracy, precision, recall, and the best F1 score and AUC-ROC
(Figure 3), yielding a sensitivity of 96.7 and 79.5% specificity on a test
set of 69 images (30 PLE, 39 Non-PLE CIE). This made ResNet50 the
most powerful pre-trained model for this application (Table 2).

3.3 Hyperparameter tuning and model
adaptation

Applying a learning rate of 1.0 x 10~ caused rapid overfitting with
very unstable training of the model, while a lower rate of 1.0 x 10~

Parameter PLE Non-PLE CIE p-value
N 22 37 —
Patient characteristics
Age (in years) 8.5 [3.8-11.1] 4.0 [1.8-9.4] 0.0568
Body weight (in kg) 11.1 [6.1-24.9] 13.2 [5.7-29.7] 0.5153
Sex
Female 8 [36%] 14 [38%] 0.9098
Male 14 [64%] 23 [62%]
Reproductive status
Intact 16 [73%] 21 [57%] 0.2148
Neutered 6 [27%] 16 [43%]
Breed
Pure-bred 22 [100%] 37 [100%] —
Mixed breed 0 0
Serum biochemistry variables
Albumin (in g/L) 21 [13-25] 34[32-37] <0.0001
Hypoalbuminemic 21 [95%] 0 <0.0001
Normoalbuminemic 1 [5%)] 37 [100%)]
Total protein (in g/L)* 39 [33-52] 65 [60-66] <0.0001
Hypoproteinemic 17 [81%)] 0 <0.0001
Normo—/hyperproteinemic 4 [19%] 37 [100%)]

“Available from 58 dogs; values in bold font reflect statistically significant differences or associations. CIE, chronic inflammatory enteropathy; PLE, protein-losing enteropathy.

Summary statistics are presented as medians [interquartile ranges] or 1 [%].
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TABLE 2 Evaluation of four different ML models.

10.3389/frai.2025.1707957

Model Accuracy Precision Recall F1 score AUC-ROC
ResNet50 89.16% 0.9048 0.8837 0.8941 0.9442
MobileNet V2 87.95% 0.9024 0.8605 0.8810 0.9349
EfficientNet-B0 85.54% 0.8780 0.8372 0.8571 0.9192
AlexNet 81.93% 0.8333 0.8140 0.8235 0.8994

Summarized are the accuracy, precision, recall, F1 score, and area under the curve determined using the receiver operating characteristic (AUC-ROC) for the four ML models used.

showed very little training and underfitted (Figure 2). An iterative
process of refinement identified 5.0 x 107° as the optimal rate for
model training (Figure 2).

To further improve classification performance, the ResNet50
architecture was adapted by replacing the final fully connected (FC)
layer with a custom sequence of dense layers. Each of these layers was
combined with batch normalization and the ReLU activation function:
(i) layer 1=linear transformation to 512 features, (ii) batch
normalization and ReLU activation (to increase efficiency and stability
of the model), (iii) layer 2 = linear transformation to 256 features, (iv)
batch normalization and ReLU activation, and (v) layer 3 = final linear
transformation to an output neuron for binary classification. This
custom extension significantly improved the model’s performance,
achieving the highest accuracy (91.57%), precision (0.9286), recall
(0.9070), F1 score (0.9176), and AUC-ROC (0.9529) compared to all
previously tested models (for code see Supplementary material S1).

3.4 Annotated heatmaps and digital health
application

Heatmaps showed that the optimized ResNet50 model was very
good at recognizing relevant areas (ROIs), such as intestinal wall
changes and accumulations of free fluid (ascites) in the area around
the intestine (Figure 4).

The annotations served to verify the accuracy of the model, which
could be used in two key clinical applications. As a diagnostic support,
the model can assess whether the findings support or rule out PLE in
dogs and thus function as a diagnostic aid that could be integrated
into the current stepwise diagnostic algorithm for CIE and PLE in
dogs. The assessment yields a fraction, where 1.00 corresponds to a
100% probability (Figure 4). As a tool to mark relevant image areas, the
model can highlight suspicious regions containing features of PLE. The
digital health application used on a small set of still images obtained
from other sources and using other ultrasound machines could
correctly classify cases of PLE vs. non-PLE cases with approximately
30% accuracy.

4 Discussion

Artificial intelligence (AI) plays an increasingly important role in
various areas of everyday life, ranging from applications such as
ChatGPT to modern individualized medicine using digital health
tools (Rodgers et al., 2023). With the help of digital tools, simple
routine tasks and also complex problems may be solved within a very
short time. These advantages are increasingly being exploited in
medical diagnostics, treatment, and therapy monitoring. However, the
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use of Al-assisted tools in the medical field also presents challenges
and limitations. Particularly in the context of canine PLE, the
combination of the clinical relevance of the disease and the lack of
standardized diagnostic algorithms makes research into such
innovative methods not only technologically exciting, but also
urgently necessary in canine clinical medicine. As with any
technological innovation, AI cannot work error-free on its own,
making human verification by experienced specialists (i.e., validation)
essential (Aggarwal et al., 2024; Rohan Krishna et al., 2025). Thus, the
combination of Al and professional expertise offers great potential for
further optimizing patient care and increasing efficiency in everyday
medical practice and clinical settings.

The promising results of this pilot study suggest that the AI
model developed could be used as a surrogate tool for the detection
of PLE in dogs, either as primary ILE or a more severe form of
idiopathic CIE. Early detection of affected canine patients enables
early planning of adequate diagnostics and/or therapeutic
intervention, thereby helping to optimize the prognosis for an
affected dog (Jablonski, 2022; Craven and Washabau, 2019; Caulfield
et al., 2021). However, further steps are necessary before such a
model can be introduced and recommended for use in clinical
practice or veterinary training. These include more comprehensive
testing and validation under practical conditions, technical
integration into existing diagnostic imaging systems, and the
establishment of recommended workflows and diagnostic
algorithms. A larger group of experts in diagnostic imaging and
veterinarians should be involved to define how the model can be
integrated into the diagnostic decision-making process and what
significance the results have in diagnostically ambiguous cases.

ResNet50 belongs to the family of residual networks (He et al.,
2016) and is a relatively large and robust model that requires high
computing power for training, which extends the training time and
requires significant resources (i.e., memory). Because ResNet50 is a
deep network characterized by its ability to recognize complex visual
patterns, it appears suitable for integrating complex and potentially
artifact-laden sonographic still images (Remedios et al., 2021; Fu et
al,, 2025). A major advantage of ResNet is the introduction of residual
connections or skip connections, where not every layer is added to the
previous one, but some layers are skipped and added to a deeper layer
(Sanchez-Cesteros et al., 2023; Liu et al., 2025). This has the advantage
of avoiding information loss and enables filtering highly abstract
features from the available data set, allowing such deep networks to
learn faster and more efficiently, as only changes need to be actively
learned (Ali, 2025).

The potential limitation of the model to slightly overfitting to the
specific characteristics of the dataset has to be considered, despite a
good performance on the unknown test set (Tetko and Clevert, 2025;
Riahi et al., 2025). This means that a model could learn the training
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data too well, including all confounding factors and irrelevant details
(e.g., random patterns such as iatrogenic markers or sections of other
abdominal organs that may be present in sonographic still images)
(Alnaggar et al., 2024; Gali¢ et al., 2023). An indication for overfitting
would be a high training accuracy with significantly poorer validation
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accuracy (Ali, 2025). Although regularization techniques (e.g.,
dropout L2 weight decay) were applied, it remains possible that the
model learned patterns that are only effective on the same source of
ultrasonographic images and might perform different (e.g., worse) on
images from different sources. This also requires more study and
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PLE: 0.88

FIGURE 4

Annotated heatmaps. Sonographic images of select intestinal sections with lesions of PLE (A—C) or absence of such lesions in a dog with non-PLE CIE
(D) are shown. Each image panel includes the sonographic image with manual markings of the relevant areas (ROIs, orange or yellow) on the left (A:
Increased wall thickness and mucosal striations; (B): increased wall thickness, mucosal hyperechogenicity, ascites; C: increased wall thickness and
intestinal corrugation) and the corresponding Al-annotated heatmaps with color markings of the relevant areas on the right. Examples are also
included for an incorrect classification of non-PLE CIE as PLE (E) and of a dog with PLE as non-PLE (F)

multicenter validation to more effectively evaluate the capabilities of
the model.

Sonographic image data from dogs of various breeds, obtained
during routine diagnostic evaluation of dogs at the Internal Medicine
service of the Small Animal Clinic at the University of Leipzig, were
utilized to develop and validate the model. The analysis included dogs
with a suspicion of CIE/PLE that underwent imaging, laboratory, and
clinical diagnostics and had complete medical records documentation,
as well as ultrasonographic images of sufficient quality. The resulting
study population comprised a spectrum of different dog breeds
(including mixed-breed dogs), breed sizes (small- to large-breed
dogs), and age groups (young adult to older dogs), deliberately chosen
to test the robustness of the AI model against breed- and size-related
variations. Dogs with incomplete clinical data had to be excluded if a
final diagnosis of “PLE” vs. “non-PLE” could not be determined, as
the model relies on validated diagnoses. Some dogs could also not be
included, despite the availability of imaging data, if the images were of
insufficient quality (e.g., the relevant intestinal segment could not be
determined, significant artifacts were contained in the images, or a
clear interpretation of the images was lacking), as these would have
distorted or falsified the ML model training. While the level of
attrition in this study increases the risk for selection bias, comparative
analysis of the demographics between dogs from which sonographic
images were finally included in the analyses (n = 59) and dogs from
which this was not possible (n = 81) did not reveal any differences in
terms of age distribution, body weight, sex and neuter status, breed,
and proportions of PLE vs. non-PLE dogs, serum albumin and total
protein concentrations (all p > 0.1).

Still, a significant limitation of this study is the small size of the
data set, which could limit the transferability of the results to different
devices, users, and veterinary care facilities. Overall, only a limited set
of sonographic images from clinical patients with PLE or non-PLE
CIE could be included in this pilot study, creating a challenge for
patient-level (dog-level) splitting. Small medical datasets are often
constrained by the high cost and complexity of data acquisition, and
enforcing strict subject-level partitioning can make model training
and evaluation impractical (Shaikhina and Khovanova, 2017). This
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applies to our study, where, given the limited number of samples,
applying patient-level splitting would have resulted in insufficient
samples per split, severe class imbalance, and unreliable optimization,
thereby preventing meaningful model development (Shaikhina and
Khovanova, 2017). We therefore adopted image-level splitting as a
pragmatic choice for this exploratory study, while explicitly
acknowledging our small dataset and the associated risk of correlated
images due to random splitting creating the risk of an imbalance in
detecting patient- vs. disease-related features and optimistic estimates
of accuracy and AUC (Alnaggar et al., 2024; Gali¢ et al., 2023; An et
al., 2021). Given these limitations, our results should be viewed as
proof-of-concept demonstrations of feasibility, rather than definitive
performance metrics.

Expanding the dataset to include a larger number of clinical
patients and contributions from different secondary and tertiary
veterinary centers would increase the generalizability of the model
and possibly further improve its diagnostic accuracy, which appeared
limited based on the preliminary external validation of the digital
health application. Such a multicenter study—involving various
veterinary care facilities and levels, ultrasound machines, operators,
and operator experience levels—will provide the context to evaluate
whether and how the trained model can be applied to previously
unknown datasets (sonographic still images generated during routine
diagnostic evaluations) and different pre-test probabilities (levels of
suspicion for PLE or non-PLE CIE). From a practical aspect, however,
proprietary algorithms incorporating specific ultrasound machines
and standardized (single veterinary center, imaging, and operator-
based) protocols might still be very attractive and potentially more
practical than a perfect general model that can be transferred to any
environment. However, this will still require training and validation
using large data sets for correct classification.

We acknowledge a further limitation of the study presented by
data acquisition and processing. Archived sonographic still images of
the intestine were not available for all 157 dogs considered for
inclusion in this investigation. In some cases, only a few sections or
less adequate (e.g., tangential view, motion artifacts) images of the
intestine were available, whereas a number of images could be

frontiersin.org


https://doi.org/10.3389/frai.2025.1707957
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Reichert et al.

included for other patients. Because ultrasonography (B-mode) is a
cross-sectional imaging technique that uses high-frequency sound
waves to visualize anatomical structures, and resolution depends on
the frequency of the sound waves, still images are generally inferior to
video sequences for retrospective diagnostic evaluation (Parsai et al.,
2012; Weimer et al., 2025). Thus, both still images and video sequences
could be incorporated into future models, but considerably higher
data storage requirements must be considered.

Another limitation is that data were extracted exclusively for the
gastrointestinal tract or affected sections of the intestine. Structures such
as the kidneys or other abdominal organs were not included in the final
training data set, as such irrelevant structures could mislead the model
during the training phase and thus affect the results (Matthees et al.,
2025). Similarly, inaccurate data (e.g., blurred still images of the
intestinal wall, images including measurement markers) were not
included in the training of the model. Other factors that impaired
training accuracy and led to exclusion of images were the presence of
overlapping structures (e.g., ingesta-filled intestine) or artificial
distortions (patient-related factors such as motion artifacts or technically
unavoidable sonographic artifacts). In addition, PLE features may be
focal or multifocally present in the intestine (Jablonski, 2022; Craven
and Washabau, 2019). Thus, data from different regions of the intestine
can vary in terms of sonographic findings and PLE differentiation.
Finally, the training data set of the model included a larger number of
non-PLE CIE cases than PLE dogs. This slightly imbalanced population
can lead to a biased model if not adequately compensated for during the
training of the model (Alnaggar et al., 2024; Gali¢ et al., 2023). Lastly,
inter-observer reliability could not be calculated for the annotation of
the heatmaps due to employing a consensus evaluation.

Clinical applications of AI-supported image analysis systems have
been the subject of intensive research in human medicine for several
years (Chen et al., 2025; Decharatanachart et al., 2021). Several studies
suggest that deep learning models can achieve equivalent or even
superior diagnostic accuracy to human experts when evaluating
radiographic, sonographic, or endoscopic images (Lang et al., 2023;
Mosch et al., 2022). Thus, Al-supported image analysis lends itself to
integration into routine diagnostic algorithms but might also be
suitable to detect more complex findings or patterns. However, such
approaches are currently understudied in veterinary medicine,
particularly for complex conditions such as CIE and PLE. Our pilot
study aimed to present a first step toward closing this diagnostic gap.

Integration of an Al-based tool, as evaluated in this study, could be
of value in routine diagnostic evaluations by increasing diagnostic
certainty and potentially saving time and costs. Ultrasonographic
findings in chronic intestinal diseases can be inconsistent and depend
on experience, equipment, and image quality. Al-supported
identification of disease-relevant patterns at an early stage (e.g., by
visually highlighting affected areas using heat maps) has the potential
to reduce inter-examiner variability and increase diagnostic
consistency. Assessment of patients using an Al-assisted algorithm
might also accelerate the diagnostic evaluation in CIE- and/or
PLE-suspected dogs and shorten the time to further diagnostic and/or
therapeutic decisions, a critical factor as PLE often carries a poor
prognosis. Integration of an Al-based tool into diagnostic algorithms
could also provide a suitable educational tool and support veterinary
students and veterinarians with limited experience in diagnostic
ultrasound, particularly in diagnosing canine PLE and/or recognizing
and integrating PLE-related features. A possible integration of an
explainable Al-based tool in this context could be assistance with
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decision-making algorithms and AlI-based annotation of suspicious
intestinal segments via heat maps (e.g., thickened layers of the intestinal
wall, altered echogenicity patterns). Thus, the primary target group of
such an Al-supported tool would be veterinary clinics with ultrasound
equipment that commonly see dogs with gastrointestinal signs, pets
and pet owners who might benefit from the incorporation of such
tools, and veterinary training centers.

However, integration of an Al-based tool into routine clinical
workflows will raise questions concerning the practical implications
of false-negative and false-positive outputs and thus liability when
arriving at diagnostic, therapeutic, or even prognostic decisions. Thus,
further work is also needed to clarify the appropriate clinical context
(e.g., prior test probability) for using such Al-based technology in a
scientifically adequate and clinically responsible way (ie., as a
diagnostic assistance system rather than a substitutional technology).

5 Conclusion

The results of this study demonstrate the potential of integrating
an Al-based model into CIE diagnostics and PLE differentiation in
canine clinical gastroenterology. By combining sonographic
diagnostics with ML, a high level of accuracy can be achieved for PLE
differentiation. Future research is needed to expand the database and
integrate the model into the currently recommended diagnostic
algorithm for CIE-/PLE-suspected dogs. These findings should also
stimulate similar research in other areas of image-guided clinical
diagnostics, such as endoscopic evaluation.
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