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Detection of protein-losing 
enteropathy (PLE) 
ultrasonographic imaging 
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Artificial intelligence (AI)-based models and algorithms may aid in achieving 
overall more efficient and accurate diagnostics in various medical specialties. 
Such AI-based tools could be integrated and potentially offer advantages over 
currently used diagnostic and monitoring algorithms, enabling the pursue of more 
individualized treatment options with potentially improved patient outcomes in 
the future. However, very few studies exploring the potential of AI-based tools 
have been reported in veterinary medicine. Diagnosis and subclassification of 
chronic inflammatory enteropathy (CIE) and protein-losing enteropathy (PLE), 
requiring an integrated approach including several diagnostic modalities, remains 
a challenge in clinical canine gastroenterology and might benefit from AI-based 
tools. Thus, we aimed to use AI-based deep learning to develop a model that 
can differentiate clinical cases of protein-losing PLE from non-PLE CIE using 
ultrasonographic (B-mode) images. This pilot study included anonymized data 
extracted from the electronic medical records and diagnostic images from routine 
diagnostic evaluations of 59 dogs. Following several optimization steps, the final 
model had a high accuracy (91.57%), precision (0.9286), recall (0.9070), F1 score 
(0.9176), and AUC-ROC (0.9529). This model was highly sensitive and specific for 
the detection of ultrasonographic features associated with clinicopathologic and/
or histological lesions consistent with a PLE diagnosis. Combining sonographic 
diagnostics with machine learning yielded a high degree of accuracy in PLE 
differentiation. The results of this study underscore the potential of integrating 
an AI-based model into CIE diagnostics and PLE differentiation in clinical canine 
gastroenterology.
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1 Introduction

Protein-losing enteropathy (PLE) in dogs is a clinical syndrome caused by excessive 
protein loss through the intestines (Jablonski, 2022). This loss can result in hypoalbuminemia 
or panhypoproteinemia, which can lead to reduced oncotic pressure and extravascular fluid 
accumulation (e.g., edema or ascites) and other complications (e.g., thrombosis or 
thromboembolism) (Wennogle et al., 2021). PLE can be caused by several underlying diseases 
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(Allenspach and Iennarella-Servantez, 2021; Craven and Washabau, 
2019), the most common of which are chronic inflammatory 
enteropathy (CIE), characterized by an excessive immune response in 
the intestinal mucosa, primary intestinal lymphangiectasia (ILE), a 
dilation of the lymphatic vessels that impairs the transport of lymph 
and proteins, and neoplastic diseases such as intestinal lymphoma 
(Jablonski, 2022; Allenspach and Iennarella-Servantez, 2021; Craven 
and Washabau, 2019). Severe infections (e.g., endoparasites, fungal 
diseases) and right heart failure with intestinal lymph congestion or 
portal hypertension can also cause PLE and must be ruled out (Dossin 
and Lavoué, 2011). Non-infectious, non-neoplastic PLE can therefore 
be classified into primarily non-inflammatory PLE due to ILE (where 
impaired lymphatic drainage can lead to crypt abscesses and 
infiltration of inflammatory cells) and PLE secondary to CIE (where 
marked inflammatory infiltration impairs lymphatic drainage and 
increases intestinal mucosal permeability) (Jablonski, 2022; Craven 
and Washabau, 2019). However, both can be challenging to distinguish 
clinically and/or microscopically at the time of diagnosis (Jablonski, 
2022; Craven and Washabau, 2019). Certain dog breeds, such as the 
Yorkshire terrier, Maltese, Basenji, and Chinese Shar Pei, are reported 
to be predisposed (Jablonski, 2022; Wennogle et al., 2021; Allenspach 
and Iennarella-Servantez, 2021; Craven and Washabau, 2019; Dossin 
and Lavoué, 2011; Equilino et al., 2015; Nakashima et al., 2015).

PLE has considerable clinical significance in canine medicine as 
it presents one of the potentially most critical chronic intestinal 
conditions in dogs, and despite intensive treatment, often has an 
unfavorable prognosis (Jablonski, 2022; Craven and Washabau, 2019; 
Dossin and Lavoué, 2011). Affected dogs often require repeated 
hospitalizations, medical and/or dietary treatment, and long-term 
management including regular veterinary visits for clinical 
reevaluation (Jablonski, 2022; Craven and Washabau, 2019; Dossin 
and Lavoué, 2011). This can represent a considerable emotional and 
financial burden for the owners of affected dogs. PLE is often detected 
at a late stage because early clinical signs can be nonspecific, and 
sonographic diagnosis requires experienced interpretation (Craven 
and Washabau, 2019; Dossin and Lavoué, 2011). The variability of the 
clinical findings and the lack of objective and reproducible criteria 
make early diagnosis particularly difficult (Jablonski, 2022; Craven 
and Washabau, 2019; Dossin and Lavoué, 2011). Improved diagnostic 
tools would, therefore, offer improved clinical decision-making, 
patient health and individual prognosis, and overall welfare.

Diagnosis of non-infectious, non-neoplastic PLE currently 
requires a stepwise approach, which integrates the results of a 
thorough patient history, physical examination, clinicopathologic 
testing, diagnostic imaging, and treatment trials to narrow down the 
diagnosis and exclude PLE mimics such as eunatremic-eukalemic 
hypoadrenocorticism, hepatic insufficiency, and protein-losing 
nephropathy (Allenspach and Iennarella-Servantez, 2021; Dossin and 
Lavoué, 2011). Documentation of structural and inflammatory 
intestinal lesions requires biopsies for histopathologic examination of 
the affected intestinal wall, preferably obtained via 
esophagogastroduodenoscopy in combination with ileocolonoscopy 
(Jablonski, 2022; Craven and Washabau, 2019; Equilino et al., 2015). 
These require a stable patient as a good anesthetic candidate. 
Management of canine PLE can be challenging and may require a 
multimodal approach, where dietary intervention plays a key role and 
other treatments must be tailored to the individual patient. However, 
outcomes vary, and early diagnosis and treatment initiation can 

improve the overall prognosis and quality of life of affected dogs 
(Jablonski, 2022; Nakashima et al., 2015), creating an urgent need for 
reliable, objective, and readily available diagnostic tools that can assist 
veterinarians in their assessment.

Imaging diagnostics in dogs with suspected CIE, and particularly 
PLE, is performed to evaluate the abdomen for possible 
ultrasonographic lesions consistent with CIE and/or PLE and exclude 
other conditions (Equilino et al., 2015; Nakashima et al., 2015; 
Allenspach et al., 2007; Walker et al., 2013; Wennogle et al., 2019; Leib 
et al., 2012). Ultrasonographic assessment may reveal changes in the 
intestinal wall, regional lymph nodes, and/or the presence of 
abdominal free fluid (Allenspach et al., 2007; Gaschen et al., 2008). 
The sections from the duodenum to the ileum are of particular 
diagnostic interest in the investigation of chronic gastrointestinal 
diseases causing PLE. The physiological wall diameter of the individual 
intestinal segments varies depending on the patient size and luminal 
filling status. In dogs, the physiological wall diameter of the duodenum 
is approximately 3–6 mm, that of the jejunum 2–5 mm, and of the 
ileum 2–4 mm, whereas the diameter of the colon wall is 2–3 mm 
(Delaney et al., 2003; Gladwin et al., 2014). PLE can cause generalized 
or segmental thickening of the individual wall layers (muscularis, 
submucosa, or mucosa) and mucosal echogenicity changes (e.g., 
hyperechoic striations) (Ohta et al., 2021).

Mucosal speckles are irregular, focal hyperechogenicities within 
the mucosal layer of the intestinal wall (Figure 1) that indicate an 
altered mucosal composition or protein and lipid deposition and can 
be seen with PLE, but these are a non-specific finding (Ohta et al., 
2021; Nisa et al., 2019). Mucosal striations are radial hyperechoic lines 
within the intestinal mucosa, which are caused by lymph and fat 
deposits resulting in fibrotic remodeling and are a characteristic sign 
of impaired lymph drainage in the context of PLE (Ohta et al., 2021). 
Lymphadenomegaly, disruption of the physiological layering of the 
intestinal wall, and accumulation of free fluid in the abdomen due to 
hypoalbuminemia can also indicate pathology but are not specific for 
CIE or PLE (Equilino et al., 2015; Salavati Schmitz et al., 2019). 
Ultrasonographic findings vary in CIE and PLE patients and must 
always be interpreted in the context of clinical and laboratory 
diagnostic parameters (Gaschen et al., 2008; Salavati Schmitz et 
al., 2019).

Digital health applications and artificial intelligence (AI) tools 
have the potential to significantly aid in improving the standard of 
care in both human and veterinary medicine, particularly in diagnostic 
algorithms, individualized treatment options, and therapeutic 
monitoring (Nguyen et al., 2022; Stafford et al., 2022; Chen et al., 
2025). The tools, if adequately trained and passing rigorous validation, 
may enable an enhanced analysis of complex data sets (e.g., within a 
very short time) and integrated detection of features in standardized 
imaging diagnostics (Reagan et al., 2022; Kathrani et al., 2024).

Standardized diagnostic and management algorithms involving 
AI-supported models have not been evaluated or established in 
canine PLE but might bear clinical potential given the complex 
etiology, varied clinical presentations, and required stepwise 
integrative diagnostic and treatment plan. The present study addresses 
this gap by developing, validating, and testing an AI-based model that 
assists in analyzing sonographic features to facilitate the 
differentiation between PLE and non-PLE CIE. We hypothesized that 
an AI-assisted model provides a reliable tool that can enable 
accelerated and precise (sensitive and specific) imaging detection of 
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PLE lesions in dogs with suspected CIE, and following a training and 
validation phase, can aid in distinguishing PLE and non-PLE CIE 
cases. Thus, the study aimed to develop a model that uses 
AI-supported deep learning to differentiate PLE based on 
ultrasonographic images of the intestinal wall and peri-intestinal 
tissue in CIE and/or PLE suspected dogs.

2 Materials and methods

2.1 Ethics

Anonymized data from archived electronic medical records 
(EMR) of clinical patients presented between March 2019 and 
January 2021 for routine diagnostic evaluation to the Small Animal 
Internal Medicine Service of the Department for Small Animals 
were considered for inclusion in this retrospective case–control 
study. At the time of clinical admission and diagnostic evaluation of 
the patient, pet owners give their written consent on the admission 
form of the Small Animal Clinic of the Leipzig University College 
of Veterinary Medicine to the use of anonymized data, images, and 
surplus biological specimens of their dog for research and teaching 
purposes. This form has been reviewed and approved by the Ethics 
Committee of the Leipzig University College of Veterinary 
Medicine.

2.2 Patient data

Retrospective anonymized EMR data from a total of 157 dogs 
with chronic inflammatory enteropathy (CIE) were evaluated, and 
these dogs were categorized as either PLE or non-PLE CIE cases. This 
group assignment was derived from the dog’s medical and dietary 
history, signalment (breed, sex, neuter status, body weight, and age), 
physical examination findings, laboratory diagnostics (hematology, 
blood biochemistry panel with electrolytes, urinalysis, fecal 
examination, and B vitamins, pancreatic markers, and resting cortisol 
measurement), diagnostic imaging results, sequential diagnostic 
treatment trials and, in some dogs, gastrointestinal endoscopy with 
biopsies for histopathological examination. If indicated, additional 
diagnostics (e.g., ACTH or bile acid stimulation test, urine protein-to-
creatinine ratio, tissue molecular diagnostics) were performed at the 
discretion of the attending clinician.

Sonographic B-mode still images of relevant small intestinal 
sections (obtained as part of the routine diagnostic evaluation of the 
dogs) were selected and cropped to predominantly depict the relevant 
structures. Smaller portions of adjacent organs (e.g., kidneys, 
mesenteric lymph nodes, liver, or spleen) were left in the images 
during the initial training phase. Measurement markers or annotations 
within the images were removed to prevent interference with the 
recognition of specific features during the training and/or validation 
phase. Dogs for which adequate ultrasonographic images of the 

FIGURE 1

Ultrasonographic lesions in dogs with CIE and/or PLE. In contrast to (A) the physiological structure of the canine intestinal wall comprised of (1) serosa, 
(2) muscularis, (3) submucosa, and (4) mucosa, followed by (5) the intestinal lumen, (B–F) ultrasonographic features that can be seen in dogs with CIE/
PLE but vary greatly in terms of sensitivity and specificity include intestinal wall thickening, mucosal hyperechoic speckles and striations (asterisks; 
B–E), corrugation and dilation of the intestinal lumen (arrowheads and vertical lines; B–D,F), disrupted intestinal wall layering (circles; B,D), and 
accumulation of free fluid in the abdomen (arrows; C,E).

https://doi.org/10.3389/frai.2025.1707957
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Reichert et al.� 10.3389/frai.2025.1707957

Frontiers in Artificial Intelligence 04 frontiersin.org

gastrointestinal tract were not available for analysis were excluded 
from the study.

2.3 Image selection, pre-processing, and 
heatmap generation

The dataset was split into training, validation, and testing sets, 
comprising 70%, 10%, and 20% of the data, respectively. This split 
prior to data augmentation served to avoid augmented images being 
spread across all three different dataset splits and possibly inflating or 
yielding inaccurate performance estimates. Patient-level separation–
although a good practice–was not performed due to the small size of 
the dataset. Instead, it was ensured that only non-augmented images 
were found across the splits. Potential inflation or inaccurate 
performance estimates were avoided as multiple images from the same 
dogs were separate crops of different regions of the small intestinal 
wall and did not closely resemble one another.

Data augmentation was performed for training the model due to 
varying numbers of adequate, high-quality B-mode images available 
to assess sonographic features in affected dogs (Gaschen et al., 2008; 
Salavati Schmitz et al., 2019). The pre-processed anonymized images 
were assigned to one of two separate datasets based on the final 
classification of the dogs as either PLE or non-PLE CIE. A machine 
learning (ML) model was then trained to distinguish these two patient 
groups with high diagnostic accuracy.

To increase the diversity and amount of the training data and 
ensure robust learning of the ML model to detect general features 
rather than noise, a specific set of affine transformations was applied 
to the original images. This process also served to address class 
imbalance by generating additional examples for the minority class 
(PLE) until it matched the size of the non-PLE class. An average of 3–8 
augmented versions were generated for each original image, applying 
the following transformations randomly to introduce variation while 
preserving fundamental patterns: (1) rotation: images were randomly 
rotated within a full range of 0–360°; (2) zooming: a random zoom 
factor was applied ranging from 0.8 (zoom-out) to 1.5 (zoom-in); and 
(3) brightness: the pixel intensity was randomly adjusted with a factor 
ranging from 0.5 (darker) to 1.5 (brighter). Only the training dataset 
was augmented, while the validation and testing datasets contained 
only the original, un-augmented images to avoid introducing 
performance inflation and inaccurate results.

Images initially containing additional structures, such as the 
spleen or kidneys, were later removed due to presenting a source of 
interference for training the model. To further improve the accuracy 
of the model, additional processing was performed by subjecting each 
anonymized image to up to four iterations of cropping and 
pre-processing, followed by retraining of the model. These steps 
yielded an original PLE dataset with 200 images and a non-PLE CIE 
dataset including 387 images. Following an initial validation, the 
image data was further optimized to improve the performance of the 
model (e.g., targeted cropping to the intestinal wall, exclusion of 
insufficiently visible intestinal wall layers). This optimization resulted 
in an expansion of the PLE dataset from 200 to 214 and finally 227 
images, and a reduction of the non-PLE CIE dataset from 387 to 190 
and finally 194 images.

A preprocessing pipeline was set up using PyTorch, in which all 
images before entering the model were resized to 224 × 224 pixels to 

match the input size expected for model architectures such as ResNet 
and EfficientNet-B0. The images were then normalized using the mean 
and standard deviation of the ImageNet dataset, due to using a 
pre-trained ResNet model that is trained on ImageNet.

A subset of sonographic images and associated heatmaps—
generated through the ML model—were manually evaluated in a 
blinded fashion (A-KR and RH) and areas with features consistent 
with PLE were manually marked based on expert consensus. These 
manual markings were compared with the heatmaps of the final 
models to evaluate each model’s ability to correctly identify affected 
regions and/or relevant lesions.

2.4 Model selection, training, and validation

Models were selected based on recent scientific literature 
(Kathrani et al., 2024; Saber et al., 2025; Yuan et al., 2025), in which 
deep learning was applied to sonographic images (training) and were 
then tested (validation). Four pre-trained convolutional neural 
networks (CNNs), MobileNetV2, AlexNet, EfficientNet-B0, and 
ResNet50, were utilized and evaluated for their performance in 
classifying sonographic images to distinguish PLE from non-PLE 
CIE. For each model, accuracy, precision, and recall were evaluated, 
as well as the F1 score and the area under the curve determined using 
the receiver operating characteristic (AUC-ROC). A high F1 score 
reflects a model that makes few false-positive and few false-negative 
predictions, and the AUC-ROC indicates how well the model 
distinguishes between positives and negatives (model selectivity) 
(Yuan et al., 2025; Ali, 2025).

2.5 Hyperparameter tuning and model 
adjustment

The selected AI model was modified to optimize the classification 
performance (differentiation between dogs with PLE vs. non-PLE 
CIE) and improve the accuracy and transferability of the model to 
new, unknown clinical cases (i.e., dogs with suspected CIE). These 
steps focused on fine-tuning important parameters in the AI learning 
process (hyperparameter tuning). Selecting the correct learning rate 
was the key factor, as models learn inaccurately when the learning rate 
is too high (overfitting), whereas training is inefficient if the learning 
rate is too low. Thus, various intermediate values were tested to select 
a learning rate that offers a good balance between learning speed, 
accuracy, and stability for AI training (Ali, 2025; Tetko and Clevert, 
2025). Several techniques served to avoid overfitting. These included 
modification of the training images (e.g., rotation, zoom-in, and 
adjustment of brightness) to increase diversity of the data. In addition, 
mathematical methods such as L2 regularization and dropout were 
applied to prevent weights in the model from becoming too large and 
ensure the model gains robustness by randomly deactivating certain 
connections in the network during training (Clara et al., 2024).

The final classification layer of each chosen model was adjusted 
from its original output dimension to a single output neuron, 
producing a score in the range from 0 to 1. A threshold of 0.5 was 
applied, classifying values above the threshold as “PLE” and below this 
threshold as “non-PLE.” Due to computational constraints, 
hyperparameter tuning was performed only on the single 
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best-performing model identified during initial experiments (i.e., 
ResNet) with default settings (e.g., the standard Adam learning rate of 
1.0 × 10−3 across all four architectures). To tune the learning rate of the 
Adam optimizer, upper and lower bounds were tested to limit the 
search space before determining an ideal value. An iterative process of 
refinement served to identify the optimal learning rate for the model 
training (Figure 2). To regularize the model and prevent overfitting, 
regularization techniques, including L2 weight decay (λ = 1 × 10−3) 
and a dropout layer (p = 0.5), were added in the classification head.

2.6 Annotated heat maps

Heatmaps visualize regions that are classified as particularly 
relevant, which can be accurately assessed by using index colors (red 

for high relevance and blue for low relevance). To evaluate the 
accuracy of the model in selecting or highlighting image areas with 
patterns or features consistent with PLE, the test data set (i.e., manually 
annotated regions of interest, ROIs) was compared with the heatmaps 
generated by the ML model (Ali, 2025). Sensitivity and specificity of 
the annotated images to distinguish PLE from non-PLE CIE were 
calculated based on dichotomous outcomes.

2.7 Application using a PLE detector (digital 
health application)

Following the training of the model, a website was designed where 
various sonographic images could be uploaded for testing purposes. 
The aim was to assess the efficiency of the final model’s classification 

FIGURE 2

Optimization of the learning rate and success of training. While rapid overfitting and very unstable training of the selected ResNet50 model were seen 
with a learning rate of 1.0 × 10−3 (A,B) and very little training with underfitting of the model at a lower learning rate of 1.0 × 10−7 (C,D), the optimal 
learning rate for model training was identified as 5.0 × 10−6 (E,F).
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(differentiation between PLE and non-PLE CIE) using new, unknown 
data and to test the potential practical applicability of the AI-guided 
application. Seventeen ultrasonographic still images from other 
sources, including 7 dogs with PLE and 10 non-PLE cases, were tested 
for the correct classification by using this application.

3 Results

3.1 Patient population

Considered for inclusion in the study and analysis were EMR data 
from 157 dogs; 42 dogs were diagnosed with PLE (PLE group) and 98 
dogs with CIE lacking any clinicopathologic and/or histological evidence 
of PLE (non-PLE CIE group). For the remaining 17 dogs, definitive 
assignment to one of these two groups (PLE vs. non-PLE CIE group) 
was not possible based on retrospective EMR evaluation, including 
follow-up for some dogs, and these dogs were excluded from further 
analyses. Of the 140 dogs with complete EMR data, an additional 81 
dogs were excluded due to (a) lack of access to (n = 74) or availability of 
adequate ultrasonographic still images (n = 7) of the gastrointestinal tract.

The 59 dogs that could be included in the study comprised 22 dogs 
in the PLE group and 37 dogs in the non-PLE CIE group (Table 1). 
From this cohort, a total of 421 sonographic B-mode still images were 
included in the final analysis (PLE group: n = 227, non-PLE CIE 
group: n = 194), with 1–31 still images (median: 6 still images) per dog.

The first set of altogether 587 images focused on intra-abdominal 
areas that included relevant intestinal segments and peri-intestinal 

tissues. An initial validation test showed an accuracy for detecting 
non-PLE CIE cases of 80%. The detection rate for PLE cases was lower, 
prompting further optimization that yielded a total of 421 images.

3.2 ML models for PLE diagnostics

MobileNetV2 achieved high accuracy and precision, strong recall, 
and a high F1 score (Table 2). The AUC-ROC was at a high level, 
indicating reliable classification ability. MobileNetV2 was the second-
best model, which is considered lightweight and requires low 
computing power. This model outperformed larger models such as 
AlexNet. AlexNet, the largest model, showed the weakest performance. 
Accuracy, precision, and recall were moderate, resulting in the lowest 
F1 score and AUC-ROC. EfficientNet-B0 delivered results with 
moderate accuracy, precision, and recall, and consequently, a good F1 
score and AUC-ROC. ResNet50 outperformed all other models with the 
highest accuracy, precision, recall, and the best F1 score and AUC-ROC 
(Figure 3), yielding a sensitivity of 96.7 and 79.5% specificity on a test 
set of 69 images (30 PLE, 39 Non-PLE CIE). This made ResNet50 the 
most powerful pre-trained model for this application (Table 2).

3.3 Hyperparameter tuning and model 
adaptation

Applying a learning rate of 1.0 × 10−3 caused rapid overfitting with 
very unstable training of the model, while a lower rate of 1.0 × 10−7 

TABLE 1  Characteristics of the dogs included in the study (n = 59).

Parameter PLE Non-PLE CIE p-value

N 22 37 —

Patient characteristics

 � Age (in years) 8.5 [3.8–11.1] 4.0 [1.8–9.4] 0.0568

 � Body weight (in kg) 11.1 [6.1–24.9] 13.2 [5.7–29.7] 0.5153

Sex

 � Female 8 [36%] 14 [38%] 0.9098

 � Male 14 [64%] 23 [62%]

Reproductive status

 � Intact 16 [73%] 21 [57%] 0.2148

 � Neutered 6 [27%] 16 [43%]

Breed

 � Pure-bred 22 [100%] 37 [100%] —

 � Mixed breed 0 0

Serum biochemistry variables

 � Albumin (in g/L) 21 [13–25] 34 [32–37] <0.0001

 � Hypoalbuminemic 21 [95%] 0 <0.0001

 � Normoalbuminemic 1 [5%] 37 [100%]

Total protein (in g/L)a 39 [33–52] 65 [60–66] <0.0001

 � Hypoproteinemic 17 [81%] 0 <0.0001

 � Normo−/hyperproteinemic 4 [19%] 37 [100%]

aAvailable from 58 dogs; values in bold font reflect statistically significant differences or associations. CIE, chronic inflammatory enteropathy; PLE, protein-losing enteropathy.
Summary statistics are presented as medians [interquartile ranges] or n [%].
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showed very little training and underfitted (Figure 2). An iterative 
process of refinement identified 5.0 × 10−6 as the optimal rate for 
model training (Figure 2).

To further improve classification performance, the ResNet50 
architecture was adapted by replacing the final fully connected (FC) 
layer with a custom sequence of dense layers. Each of these layers was 
combined with batch normalization and the ReLU activation function: 
(i) layer 1 = linear transformation to 512 features, (ii) batch 
normalization and ReLU activation (to increase efficiency and stability 
of the model), (iii) layer 2 = linear transformation to 256 features, (iv) 
batch normalization and ReLU activation, and (v) layer 3 = final linear 
transformation to an output neuron for binary classification. This 
custom extension significantly improved the model’s performance, 
achieving the highest accuracy (91.57%), precision (0.9286), recall 
(0.9070), F1 score (0.9176), and AUC-ROC (0.9529) compared to all 
previously tested models (for code see Supplementary material S1).

3.4 Annotated heatmaps and digital health 
application

Heatmaps showed that the optimized ResNet50 model was very 
good at recognizing relevant areas (ROIs), such as intestinal wall 
changes and accumulations of free fluid (ascites) in the area around 
the intestine (Figure 4).

The annotations served to verify the accuracy of the model, which 
could be used in two key clinical applications. As a diagnostic support, 
the model can assess whether the findings support or rule out PLE in 
dogs and thus function as a diagnostic aid that could be integrated 
into the current stepwise diagnostic algorithm for CIE and PLE in 
dogs. The assessment yields a fraction, where 1.00 corresponds to a 
100% probability (Figure 4). As a tool to mark relevant image areas, the 
model can highlight suspicious regions containing features of PLE. The 
digital health application used on a small set of still images obtained 
from other sources and using other ultrasound machines could 
correctly classify cases of PLE vs. non-PLE cases with approximately 
30% accuracy.

4 Discussion

Artificial intelligence (AI) plays an increasingly important role in 
various areas of everyday life, ranging from applications such as 
ChatGPT to modern individualized medicine using digital health 
tools (Rodgers et al., 2023). With the help of digital tools, simple 
routine tasks and also complex problems may be solved within a very 
short time. These advantages are increasingly being exploited in 
medical diagnostics, treatment, and therapy monitoring. However, the 

use of AI-assisted tools in the medical field also presents challenges 
and limitations. Particularly in the context of canine PLE, the 
combination of the clinical relevance of the disease and the lack of 
standardized diagnostic algorithms makes research into such 
innovative methods not only technologically exciting, but also 
urgently necessary in canine clinical medicine. As with any 
technological innovation, AI cannot work error-free on its own, 
making human verification by experienced specialists (i.e., validation) 
essential (Aggarwal et al., 2024; Rohan Krishna et al., 2025). Thus, the 
combination of AI and professional expertise offers great potential for 
further optimizing patient care and increasing efficiency in everyday 
medical practice and clinical settings.

The promising results of this pilot study suggest that the AI 
model developed could be used as a surrogate tool for the detection 
of PLE in dogs, either as primary ILE or a more severe form of 
idiopathic CIE. Early detection of affected canine patients enables 
early planning of adequate diagnostics and/or therapeutic 
intervention, thereby helping to optimize the prognosis for an 
affected dog (Jablonski, 2022; Craven and Washabau, 2019; Caulfield 
et al., 2021). However, further steps are necessary before such a 
model can be introduced and recommended for use in clinical 
practice or veterinary training. These include more comprehensive 
testing and validation under practical conditions, technical 
integration into existing diagnostic imaging systems, and the 
establishment of recommended workflows and diagnostic 
algorithms. A larger group of experts in diagnostic imaging and 
veterinarians should be involved to define how the model can be 
integrated into the diagnostic decision-making process and what 
significance the results have in diagnostically ambiguous cases.

ResNet50 belongs to the family of residual networks (He et al., 
2016) and is a relatively large and robust model that requires high 
computing power for training, which extends the training time and 
requires significant resources (i.e., memory). Because ResNet50 is a 
deep network characterized by its ability to recognize complex visual 
patterns, it appears suitable for integrating complex and potentially 
artifact-laden sonographic still images (Remedios et al., 2021; Fu et 
al., 2025). A major advantage of ResNet is the introduction of residual 
connections or skip connections, where not every layer is added to the 
previous one, but some layers are skipped and added to a deeper layer 
(Sanchez-Cesteros et al., 2023; Liu et al., 2025). This has the advantage 
of avoiding information loss and enables filtering highly abstract 
features from the available data set, allowing such deep networks to 
learn faster and more efficiently, as only changes need to be actively 
learned (Ali, 2025).

The potential limitation of the model to slightly overfitting to the 
specific characteristics of the dataset has to be considered, despite a 
good performance on the unknown test set (Tetko and Clevert, 2025; 
Riahi et al., 2025). This means that a model could learn the training 

TABLE 2  Evaluation of four different ML models.

Model Accuracy Precision Recall F1 score AUC-ROC

ResNet50 89.16% 0.9048 0.8837 0.8941 0.9442

MobileNetV2 87.95% 0.9024 0.8605 0.8810 0.9349

EfficientNet-B0 85.54% 0.8780 0.8372 0.8571 0.9192

AlexNet 81.93% 0.8333 0.8140 0.8235 0.8994

Summarized are the accuracy, precision, recall, F1 score, and area under the curve determined using the receiver operating characteristic (AUC-ROC) for the four ML models used.
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data too well, including all confounding factors and irrelevant details 
(e.g., random patterns such as iatrogenic markers or sections of other 
abdominal organs that may be present in sonographic still images) 
(Alnaggar et al., 2024; Galić et al., 2023). An indication for overfitting 
would be a high training accuracy with significantly poorer validation 

accuracy (Ali, 2025). Although regularization techniques (e.g., 
dropout L2 weight decay) were applied, it remains possible that the 
model learned patterns that are only effective on the same source of 
ultrasonographic images and might perform different (e.g., worse) on 
images from different sources. This also requires more study and 

FIGURE 3

Performance of the ResNet50 model. Shown are the results graphs for (A) Training and validation loss. (B) Training and validation accuracy. (C) The 
AUC-ROC. (D) The confusion matrix with the tuned hyperparameters. Note that these refer to the non-custom model.

https://doi.org/10.3389/frai.2025.1707957
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Reichert et al.� 10.3389/frai.2025.1707957

Frontiers in Artificial Intelligence 09 frontiersin.org

multicenter validation to more effectively evaluate the capabilities of 
the model.

Sonographic image data from dogs of various breeds, obtained 
during routine diagnostic evaluation of dogs at the Internal Medicine 
service of the Small Animal Clinic at the University of Leipzig, were 
utilized to develop and validate the model. The analysis included dogs 
with a suspicion of CIE/PLE that underwent imaging, laboratory, and 
clinical diagnostics and had complete medical records documentation, 
as well as ultrasonographic images of sufficient quality. The resulting 
study population comprised a spectrum of different dog breeds 
(including mixed-breed dogs), breed sizes (small- to large-breed 
dogs), and age groups (young adult to older dogs), deliberately chosen 
to test the robustness of the AI model against breed- and size-related 
variations. Dogs with incomplete clinical data had to be excluded if a 
final diagnosis of “PLE” vs. “non-PLE” could not be determined, as 
the model relies on validated diagnoses. Some dogs could also not be 
included, despite the availability of imaging data, if the images were of 
insufficient quality (e.g., the relevant intestinal segment could not be 
determined, significant artifacts were contained in the images, or a 
clear interpretation of the images was lacking), as these would have 
distorted or falsified the ML model training. While the level of 
attrition in this study increases the risk for selection bias, comparative 
analysis of the demographics between dogs from which sonographic 
images were finally included in the analyses (n = 59) and dogs from 
which this was not possible (n = 81) did not reveal any differences in 
terms of age distribution, body weight, sex and neuter status, breed, 
and proportions of PLE vs. non-PLE dogs, serum albumin and total 
protein concentrations (all p > 0.1).

Still, a significant limitation of this study is the small size of the 
data set, which could limit the transferability of the results to different 
devices, users, and veterinary care facilities. Overall, only a limited set 
of sonographic images from clinical patients with PLE or non-PLE 
CIE could be included in this pilot study, creating a challenge for 
patient-level (dog-level) splitting. Small medical datasets are often 
constrained by the high cost and complexity of data acquisition, and 
enforcing strict subject-level partitioning can make model training 
and evaluation impractical (Shaikhina and Khovanova, 2017). This 

applies to our study, where, given the limited number of samples, 
applying patient-level splitting would have resulted in insufficient 
samples per split, severe class imbalance, and unreliable optimization, 
thereby preventing meaningful model development (Shaikhina and 
Khovanova, 2017). We therefore adopted image-level splitting as a 
pragmatic choice for this exploratory study, while explicitly 
acknowledging our small dataset and the associated risk of correlated 
images due to random splitting creating the risk of an imbalance in 
detecting patient- vs. disease-related features and optimistic estimates 
of accuracy and AUC (Alnaggar et al., 2024; Galić et al., 2023; An et 
al., 2021). Given these limitations, our results should be viewed as 
proof-of-concept demonstrations of feasibility, rather than definitive 
performance metrics.

Expanding the dataset to include a larger number of clinical 
patients and contributions from different secondary and tertiary 
veterinary centers would increase the generalizability of the model 
and possibly further improve its diagnostic accuracy, which appeared 
limited based on the preliminary external validation of the digital 
health application. Such a multicenter study—involving various 
veterinary care facilities and levels, ultrasound machines, operators, 
and operator experience levels—will provide the context to evaluate 
whether and how the trained model can be applied to previously 
unknown datasets (sonographic still images generated during routine 
diagnostic evaluations) and different pre-test probabilities (levels of 
suspicion for PLE or non-PLE CIE). From a practical aspect, however, 
proprietary algorithms incorporating specific ultrasound machines 
and standardized (single veterinary center, imaging, and operator-
based) protocols might still be very attractive and potentially more 
practical than a perfect general model that can be transferred to any 
environment. However, this will still require training and validation 
using large data sets for correct classification.

We acknowledge a further limitation of the study presented by 
data acquisition and processing. Archived sonographic still images of 
the intestine were not available for all 157 dogs considered for 
inclusion in this investigation. In some cases, only a few sections or 
less adequate (e.g., tangential view, motion artifacts) images of the 
intestine were available, whereas a number of images could be 

FIGURE 4

Annotated heatmaps. Sonographic images of select intestinal sections with lesions of PLE (A–C) or absence of such lesions in a dog with non-PLE CIE 
(D) are shown. Each image panel includes the sonographic image with manual markings of the relevant areas (ROIs, orange or yellow) on the left (A: 
Increased wall thickness and mucosal striations; (B): increased wall thickness, mucosal hyperechogenicity, ascites; C: increased wall thickness and 
intestinal corrugation) and the corresponding AI-annotated heatmaps with color markings of the relevant areas on the right. Examples are also 
included for an incorrect classification of non-PLE CIE as PLE (E) and of a dog with PLE as non-PLE (F).
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included for other patients. Because ultrasonography (B-mode) is a 
cross-sectional imaging technique that uses high-frequency sound 
waves to visualize anatomical structures, and resolution depends on 
the frequency of the sound waves, still images are generally inferior to 
video sequences for retrospective diagnostic evaluation (Parsai et al., 
2012; Weimer et al., 2025). Thus, both still images and video sequences 
could be incorporated into future models, but considerably higher 
data storage requirements must be considered.

Another limitation is that data were extracted exclusively for the 
gastrointestinal tract or affected sections of the intestine. Structures such 
as the kidneys or other abdominal organs were not included in the final 
training data set, as such irrelevant structures could mislead the model 
during the training phase and thus affect the results (Matthees et al., 
2025). Similarly, inaccurate data (e.g., blurred still images of the 
intestinal wall, images including measurement markers) were not 
included in the training of the model. Other factors that impaired 
training accuracy and led to exclusion of images were the presence of 
overlapping structures (e.g., ingesta-filled intestine) or artificial 
distortions (patient-related factors such as motion artifacts or technically 
unavoidable sonographic artifacts). In addition, PLE features may be 
focal or multifocally present in the intestine (Jablonski, 2022; Craven 
and Washabau, 2019). Thus, data from different regions of the intestine 
can vary in terms of sonographic findings and PLE differentiation. 
Finally, the training data set of the model included a larger number of 
non-PLE CIE cases than PLE dogs. This slightly imbalanced population 
can lead to a biased model if not adequately compensated for during the 
training of the model (Alnaggar et al., 2024; Galić et al., 2023). Lastly, 
inter-observer reliability could not be calculated for the annotation of 
the heatmaps due to employing a consensus evaluation.

Clinical applications of AI-supported image analysis systems have 
been the subject of intensive research in human medicine for several 
years (Chen et al., 2025; Decharatanachart et al., 2021). Several studies 
suggest that deep learning models can achieve equivalent or even 
superior diagnostic accuracy to human experts when evaluating 
radiographic, sonographic, or endoscopic images (Lång et al., 2023; 
Mosch et al., 2022). Thus, AI-supported image analysis lends itself to 
integration into routine diagnostic algorithms but might also be 
suitable to detect more complex findings or patterns. However, such 
approaches are currently understudied in veterinary medicine, 
particularly for complex conditions such as CIE and PLE. Our pilot 
study aimed to present a first step toward closing this diagnostic gap.

Integration of an AI-based tool, as evaluated in this study, could be 
of value in routine diagnostic evaluations by increasing diagnostic 
certainty and potentially saving time and costs. Ultrasonographic 
findings in chronic intestinal diseases can be inconsistent and depend 
on experience, equipment, and image quality. AI-supported 
identification of disease-relevant patterns at an early stage (e.g., by 
visually highlighting affected areas using heat maps) has the potential 
to reduce inter-examiner variability and increase diagnostic 
consistency. Assessment of patients using an AI-assisted algorithm 
might also accelerate the diagnostic evaluation in CIE- and/or 
PLE-suspected dogs and shorten the time to further diagnostic and/or 
therapeutic decisions, a critical factor as PLE often carries a poor 
prognosis. Integration of an AI-based tool into diagnostic algorithms 
could also provide a suitable educational tool and support veterinary 
students and veterinarians with limited experience in diagnostic 
ultrasound, particularly in diagnosing canine PLE and/or recognizing 
and integrating PLE-related features. A possible integration of an 
explainable AI-based tool in this context could be assistance with 

decision-making algorithms and AI-based annotation of suspicious 
intestinal segments via heat maps (e.g., thickened layers of the intestinal 
wall, altered echogenicity patterns). Thus, the primary target group of 
such an AI-supported tool would be veterinary clinics with ultrasound 
equipment that commonly see dogs with gastrointestinal signs, pets 
and pet owners who might benefit from the incorporation of such 
tools, and veterinary training centers.

However, integration of an AI-based tool into routine clinical 
workflows will raise questions concerning the practical implications 
of false-negative and false-positive outputs and thus liability when 
arriving at diagnostic, therapeutic, or even prognostic decisions. Thus, 
further work is also needed to clarify the appropriate clinical context 
(e.g., prior test probability) for using such AI-based technology in a 
scientifically adequate and clinically responsible way (i.e., as a 
diagnostic assistance system rather than a substitutional technology).

5 Conclusion

The results of this study demonstrate the potential of integrating 
an AI-based model into CIE diagnostics and PLE differentiation in 
canine clinical gastroenterology. By combining sonographic 
diagnostics with ML, a high level of accuracy can be achieved for PLE 
differentiation. Future research is needed to expand the database and 
integrate the model into the currently recommended diagnostic 
algorithm for CIE-/PLE-suspected dogs. These findings should also 
stimulate similar research in other areas of image-guided clinical 
diagnostics, such as endoscopic evaluation.
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