

Constructing a Schottky junctions in PCL scaffolds: NIR triggers photo-electricity-catalysis coupling to promote osteogenic differentiation and antibacterial efficacy

Xiaohui Niu ^{a 1}, Renjie Pan ^{c 1}, Jiaxing Xiong ^e, Xin Liao ^f, Xuanyu Mao ^a, Rongcheng Xu ^a, Siyi Ye ^f, Shanshan Cai ^{d 2}, Hao Xing ^b

^aDepartment of Trauma Orthopedics, Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui 323000, China

^bDepartment of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China

^cDepartment of Laboratory Medicine, Xinghua People's Hospital Affiliated to Yangzhou University, Taizhou 225700, China

^dDivision of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom

^eFaculty of Education, University Malaya, Kuala Lumpur 50603, Malaysia

^fThe First People's Hospital of Jiande, Hangzhou 311600, China

Corresponding authors. E-mail addresses: s.cai6@lancaster.ac.uk (S. Cai), xinghao@sxbqeh.com.cn (H. Xing). 1 These authors contribute equally 2 Shanshan Cai and Hao Xing are co-correspondences authors, with Hao Xing as the first

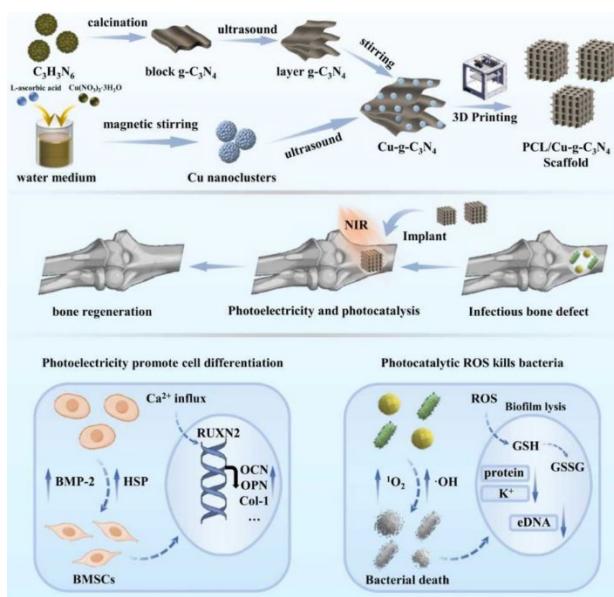
Abstract

Graphite-phase carbon nitride ($g\text{-C}_3\text{N}_4$) has attracted great attention in boosting the repair of infectious bone defects due to its extraordinary photoelectric conversion and carrier mobility. However, the excessive electron injection barrier and inefficient near-infrared (NIR) light absorption restrict its therapeutic efficacy. Herein, Cu nanoclusters (Cu NCs) were originally assembled on $g\text{-C}_3\text{N}_4$ by hydrothermal method, and interface defects were constructed to form Cu- $g\text{-C}_3\text{N}_4$ Schottky junctions, which were then added into polycaprolactone (PCL) scaffolds. On the one hand, Cu NCs induce surface electrons

27 collective oscillation to extend the light absorption into the NIR region, then the produced
28 hot electrons migrate to the built-in electric field of g-C₃N₄ by the Schottky junction, thereby
29 improving the photoelectric properties. On the other hand, Cu NCs can couple with π-
30 conjugated structures to reduce electron injection barrier, and act as electron traps to enrich
31 delocalized electrons, thus boosting electron-hole separation and photocatalysis efficiency.
32 Results prove that the Cu-g-C₃N₄ exhibits excellent NIR absorption, and the enhancement of
33 photoelectric effect can be proved by a 50 % increase in transient photocurrent. The
34 electrical signal can boost osteogenic differentiation as evidenced by a 2.9-fold upregulation
35 of ALP and ARS expression, and a 45 % increase in osteogenic differentiation-related mRNA
36 and BMP-2 levels. ROS with a yield improved to 66.9 % can rapidly destroy biofilms to boost
37 ROS entry into bacteria, causing protein leakage and GSH consumption, thus achieving
38 antibacterial rates of 91.6 % and 92.4 % against *S. aureus* and *E. coli*, respectively.

39

40 **1. Introduction**


41 Infected bone defects (IBD), as a condition involving structural damage to bone tissue caused
42 by surgery, trauma, or pathogenic bacterial invasion, are frequently accompanied by chronic
43 inflammation and impaired bone regeneration, resulting in a significantly higher disability
44 rate than non-infected bone injuries [1], [2]. Data indicates that the global treatment success
45 rate for complex site infectious bone defects below 50 %, posing a severe threat to human
46 health and life [3], [4]. Electrical stimulation therapy, leveraging its non-pharmacological
47 regulatory advantages, can modulate intracellular signaling pathways and ion channel
48 activity to promote the secretion of osteogenic factors such as osteomorphogens, thus
49 creating a favorable microenvironment for bone regeneration [5], [6]. However, conventional
50 electrical stimulation is constrained by external wires and invasive electrodes, which not only
51 disrupt the bone tissue microenvironment but also heighten the risk of infection recurrence
52 and hinder bone healing [7], [8]. Consequently, given the clinical challenges such as difficult
53 infection control, low regeneration efficiency and invasive treatments, it is urgent to develop
54 a safe, effective and non-invasive electrical stimulation bone regeneration strategy [5], [9].

55 Recently, wireless stimulation has garnered significant attention in the field of bone repair
56 due to its wireless power supply, in-situ energy delivery, and controllable electrical signaling.
57 Current research focuses on developing piezoelectric response electrical stimulation and
58 triboelectric nanogenerators. For instance, Wu et al. designed an ultrasonically activated
59 piezoelectric composite membrane capable of generating piezoelectric signals to modulate
60 osteoblast and osteoclast generation, thus promoting osteogenic differentiation. Wang et al.
61 constructed a wearable pulsed triboelectric nanogenerator that harnesses electrical signals
62 generated from human movement deformation to boost angiogenesis, thus enhancing bone
63 repair capabilities. However, the core principle of piezoelectric/triboelectric nanogenerators
64 relies on mechanical deformation to produce electrical signals. Inadequate deformation
65 during patient rest or unstable movement frequencies prevents the generation of sustained,
66 uniform electrical signals, limiting their efficacy in bone defect repair applications.

67 Phototherapy has demonstrated irreplaceable value in bone tissue repair due to its non-
68 invasive, spatiotemporal controllable and deep tissue penetration properties [10], [11].
69 Among numerous photoelectric materials, graphite-phase carbon nitride ($\text{g-C}_3\text{N}_4$) is
70 considered one of the most promising candidate materials due to its advantageous
71 photoelectric conversion, carrier mobility, and physicochemical stability [12], [13]. Besides,
72 the internal electric field and electron traps formed between the "six-fold cavity" center and
73 the band structure in $\text{g-C}_3\text{N}_4$ facilitate the transition of photogenerated charges to active
74 sites, further reacting with O_2 to produce ROS for antibacterial, proving its application
75 prospects in the treatment of infectious bone defects [14], [15]. For example, Liu et
76 al. [16] developed a $\text{CuO}/\text{g-C}_3\text{N}_4$ thin film that exhibits a photocurrent density of
77 -2.27 mA/cm^2 . Zhang et al. [17] constructed an antibacterial agent with efficient electron
78 transfer based on $\text{RGO}/\text{g-C}_3\text{N}_4$, which showed excellent antibacterial activity against *E.*
79 *coli* under illumination. Nevertheless, the excessive electron injection barrier and inefficient
80 near-infrared light absorption severely restrict its application effectiveness [18], [19], [20].

81 In this study, Cu nanoclusters (Cu NCs) were anchored in-situ on $\text{g-C}_3\text{N}_4$ by hydrothermal
82 method, forming a $\text{Cu-g-C}_3\text{N}_4$ Schottky junctions. Subsequently, it was added into a
83 polycaprolactone (PCL) scaffold prepared by laser additive manufacturing, aiming to achieve

84 infectious bone defect repair (Fig. 1). On the one hand, Cu NCs can induce electrons
 85 collective oscillation to extend the light absorption to the near-infrared region, then the
 86 produced hot electrons migrate to the built-in electric field via the Schottky junction,
 87 enhancing the photoelectric effect. On the other hand, Cu NCs can introduce defect energy
 88 levels to weaken electron injection barrier, and act as electron traps to capture delocalized
 89 electrons, thus enhancing photocatalysis efficiency. The microstructure and physicochemical
 90 properties of the material were systematically analyzed, and the photoelectric and
 91 photocatalysis performance of the scaffold were thoroughly studied. The coupling
 92 enhancement mechanisms of photo-electricity-catalytic were identified by
 93 photoelectrochemical analysis. The promotion effect of scaffolds on cell osteogenic
 94 differentiation was explored by cell experimental, and the antibacterial properties and
 95 potential mechanism of scaffolds were comprehensively evaluated via antibacterial tests.

96 Fig. 1. (a) Schematic of PCL/Cu-g-C₃N₄ scaffold fabrication and (b) dual-pathway mechanism
 97 for infected bone repair via photoelectric stimulation and photocatalytic activation.
 98
 99

100 **2. Materials and methods**

101 **2.1. Materials and reagents**

102 Poly- ϵ -caprolactone (PCL) power was purchased from Guangzhou Chuangsai Biomedical
103 Materials Co., Ltd. L-ascorbic acid (> 99.9 %), Cu(NO₃)₂·3 H₂O (> 99.9 %), and melamine
104 (C₃H₆N₆, > 99.9 %) were provided by Shanghai McLean Biochemical Technology Co., Ltd.

105 2.2. Preparation of Cu-g-C₃N₄ and scaffold

106 Graphite-phase carbon nitride (g-C₃N₄) was synthesized via thermal polymerization following
107 established methodologies. Briefly, 10 g of melamine was subjected to calcination at 550°C
108 for 6 h (heating rate: 10 °C/min) to produce bulk g-C₃N₄. Nanosheets were subsequently
109 obtained through aqueous exfoliation, wherein 500 mg of bulk powder was dispersed in
110 200 mL deionized water and ultrasonicated for 24 h. The resulting suspension underwent
111 centrifugation at 10,000 rpm to isolate exfoliated nanosheets. For copper modification, a
112 colloidal copper nanocrystal (Cu NC) solution was first prepared by vigorously stirring L-
113 ascorbic acid with Cu(NO₃)₂·3 H₂O in aqueous medium at ambient temperature for 4 h,
114 yielding a pale-yellow dispersion. This Cu NC solution was then combined with the g-
115 C₃N₄ nanosheets, followed by 2 h of sonication and 2 h of magnetic stirring. The
116 homogenized mixture was finally dried at 80°C for 24 h to obtain Cu-g-C₃N₄ composite.

117 Composite scaffolds were fabricated via laser additive manufacturing technique. Initially, PCL
118 was blended with g-C₃N₄ or Cu-g-C₃N₄ powders, followed by drying and ball-milling to obtain
119 homogeneous PCL/g-C₃N₄ and PCL/Cu-g-C₃N₄ composite feedstocks. Then, PCL/g-C₃N₄ and
120 PCL/Cu-g-C₃N₄ scaffolds were constructed by selective laser sintering, with the following
121 preparation conditions: (I) powder deposition: composite powders were uniformly spread
122 into thin layers (100 μ m layer thickness) using a precision roller; (II) laser sintering: a fiber
123 laser selectively fused powder layers at 8 W power with a scanning speed of 600 mm/s; (III)
124 hatching strategy: parallel scanning vectors were applied at 100 μ m hatch spacing to ensure
125 structural continuity; (IV) atmosphere control: processing occurred under nitrogen
126 atmosphere to prevent polymer oxidation; (V) layer stacking: sequential powder deposition
127 and sintering cycles built scaffolds layer-by-layer.

128 2.3. Materials characterization

129 The microstructure and elemental mapping of g-C₃N₄ and Cu-g-C₃N₄ were characterized

130 using transmission electron microscopy (TEM, JEM-ARM300F, JEOL Ltd, Japan) coupled with
131 energy-dispersive spectroscopy (EDS, QUANTAX, Bruker, Germany). Crystalline phase
132 identification was performed via X-ray diffraction (XRD, D8 ADVANCE, Bruker, Germany).
133 Surface chemical states were analyzed by X-ray photoelectron spectroscopy (XPS, PHI 5000,
134 ULVAC-PHI, Japan), while ultraviolet photoelectron spectroscopy (UPS, AXIS Supra+,
135 Shimadzu-Kratos, Japan) determined the work function. UV-Vis-NIR spectrophotometers
136 (Lambda 365, PerkinElmer, Singapore) are used to measure the light absorption properties of
137 materials.

138 2.4. Photoelectric property detection of scaffold

139 Photoelectricity properties were assessed through electrochemical measurements (VSP-300,
140 Bio-Logic Science Instruments, France) under the illumination of the set light source.
141 Specifically, a standard three-electrode system was employed for all measurements,
142 comprising: catalyst-coated indium-tin oxide (ITO, 1 cm²) as the working electrode; Platinum
143 wire counter electrode (Ø 0.5 mm, length 5 cm); Ag/AgCl (saturated KCl) reference electrode
144 in 0.5 mol·L⁻¹ Na₂SO₄ electrolyte. Measurements were executed at 10 mV bias in this
145 consecutive sequence: cyclic voltammetry (50 mV·s⁻¹ scan rate), linear sweep voltammetry
146 (0–1.2 V vs. RHE), current density-voltage profiling, electrochemical impedance spectroscopy
147 (0.001–0.1 Hz, 0.5 V bias) and transient photocurrent response. Amone, transient
148 photocurrent used automated shutter-controlled irradiation cycles (20 s light/20 s dark) with
149 300 W xenon lamp (AM 1.5 G, 100 mW·cm⁻²). All procedures complied with ISO 17025
150 testing standards for electrochemical measurements.

151 2.5. Photocatalytic activity detection of scaffold

152 Firstly, the signal peak of ROS was detected using ESR to determine the type of ROS, as
153 detailed in S1. The hydroxyl radical (·OH) and singlet oxygen (¹O₂) generated by the scaffolds
154 were quantified via oxidative degradation of specific molecular probes- 1,3-
155 diphenylisobenzofuran (DPBF) for ¹O₂ and methylene blue (MB) for ·OH. These probes exhibit
156 unique absorption peaks that proportionally decrease upon reaction with their respective
157 ROS, enabling indirect ROS measurement under NIR irradiation. Prior to testing, scaffolds

158 from each experimental group were equilibrated in 1.5 mL of probe solution (20 mg/L
159 MB/DPBF in phosphate-buffered saline, pH 7.0) via 1 h dark incubation to establish
160 adsorption-desorption equilibrium. Following addition of 10 μ L 30 % H₂O₂ as an oxidant
161 enhancer, the systems were subjected to NIR illumination while being monitored by UV–
162 visible spectroscopy. The evolution of ROS production was tracked by recording probe
163 absorbance after 10 min of irradiation, with the degradation rates of MB (664 nm) and DPBF
164 (410 nm) directly correlating to ·OH and ¹O₂ generation capacities, respectively. This
165 spectrophotometric approach provides a sensitive and quantitative test of scaffold
166 photocatalytic activity via well-established probe decomposition kinetics under controlled
167 experimental conditions.

168 2.6. Antibacterial experiment

169 The antimicrobial efficacy of scaffolds was quantitatively assessed through standardized
170 colony counting. Prior to testing, scaffolds underwent sequential sterilization: immersion in
171 75 % ethanol followed by UV irradiation (3 h). Bacterial suspensions were cocultured with
172 sterilized scaffolds at 37°C for 12 h, followed by 10 min light exposure (test group) or dark
173 incubation (control). Post-treatment, cultures were diluted to 1×10^{12} CFU/mL, with 30 μ L
174 aliquots spread on LB agar plates. After 24 h incubation at 37°C, colony formation was
175 documented photographically and quantified using ImageJ. Antibacterial rate (%) was
176 calculated as:

$$\text{Antibacterial rate}(\%) = \frac{(\text{CFU}_{\text{control}} - \text{CFU}_{\text{treatment}})}{\text{CFU}_{\text{control}}} \times 100\%$$

177 where CFU_{control} represents the bacterial count in untreated samples, while
178 CFU_{treatment} indicates the bacterial survival after scaffold exposure under both illuminated and
179 non-illuminated conditions.

181 Bacterial morphology following treatment was examined via scanning electron microscopy
182 (SEM). After 12 h co-culture with *S. aureus* or *E. coli* (37°C), scaffolds underwent either
183 808 nm NIR irradiation (10 min) or dark incubation. Fixed in 2.5 % glutaraldehyde (30 min)
184 and dehydrated through an ethanol gradient (30–100 %), samples were gold-sputtered for

185 SEM imaging to evaluate bacterial adhesion and structural integrity. Subsequently, AM/PI
186 probes were used to evaluate bacterial viability/death, with live bacteria emitting green
187 fluorescence and dead bacteria emitting red fluorescence. Post-treatment bacterial
188 suspensions were washed, centrifuged, and incubated with 150 μ L probes (1 h, dark). Then,
189 ImageJ software quantifies survival rate based on green/red emission ratio.

190 To evaluate biofilm permeability, crystal violet staining was performed, with detailed
191 procedures provided in Supporting Information S2. Besides, intracellular ROS levels,
192 biomolecule leakage, and glutathione (GSH) depletion were quantified to assess oxidative
193 stress responses (methodological details in Supporting Information S3).

194 2.7. Cell behavior analysis

195 Bone marrow mesenchymal stem cells (BMSCs) were employed as an in vitro model to
196 evaluate cellular responses to scaffold intervention. Cells (2×10^4 /mL) were initially cultured
197 in RPM-1640 medium containing horse serum (10 %), fetal bovine serum (10 %), penicillin
198 (100 U/mL) and streptomycin (100 μ g/mL) under standard conditions (37°C, 5 % CO₂).
199 Following cell adhesion, sterilized scaffolds were introduced into the culture system. During
200 the experimental period (duration adjusted per study objectives), samples received
201 intermittent laser exposure (20 s ON/OFF cycles) administered every 24 h.

202 2.7.1. Cytotoxicity and proliferation

203 After co-culturing for 1 and 3 days, cell viability was evaluated using live/dead staining
204 (Calcein-AM/PI). After scaffold removal, cells were detached using trypsin-EDTA, washed with
205 PBS ($\times 3$), and stained for 1 h at 37°C before fluorescence microscopy. Additionally, the cell
206 survival rate (viability) was calculated by previously reported formula [21], [22], [23]. After
207 co-culturing for 1 and 3 days, cell proliferation was quantified via CCK-8 assay: cell-laden
208 scaffolds were transferred to serum-free medium with 10 % CCK-8 solution, incubated for
209 1 h, and OD values measured at 450 nm.

210 2.7.2. Cell adhesion and F-actin labeling

211 Following 3-day co-culture, cell attachment was evaluated by SEM. Samples underwent

212 fixation (2.5 % glutaraldehyde, 1 h, RT) and ethanol gradient dehydration before imaging to
213 assess cellular adhesion density and morphology. Following 3 days of co-culture, cells were
214 gently washed with PBS to detach from scaffolds before undergoing 30 min of fixation and
215 subsequent rinsing to eliminate fixative residues. The samples were then simultaneously
216 stained with an F-actin probe (for cytoskeletal visualization) and DAPI (for nuclear labeling)
217 for 1 h, followed by fluorescence microscopic examination to evaluate actin fiber
218 organization, density and spatial distribution patterns.

219 2.7.3. Ca^{2+} influx and cell differentiation

220 During cellular differentiation, calcium ion (Ca^{2+}) influx was monitored using Fluo-4 AM
221 staining, where cells were incubated with the fluorescent probe at 37°C for 30 min after 3
222 days of co-culture to ensure complete cellular uptake. Fluorescence microscopy captured the
223 green emission signals, whose intensity variations directly correlated with intracellular
224 Ca^{2+} concentration dynamics, followed by semi-quantitative analysis of fluorescence intensity
225 using ImageJ software to evaluate calcium influx levels.

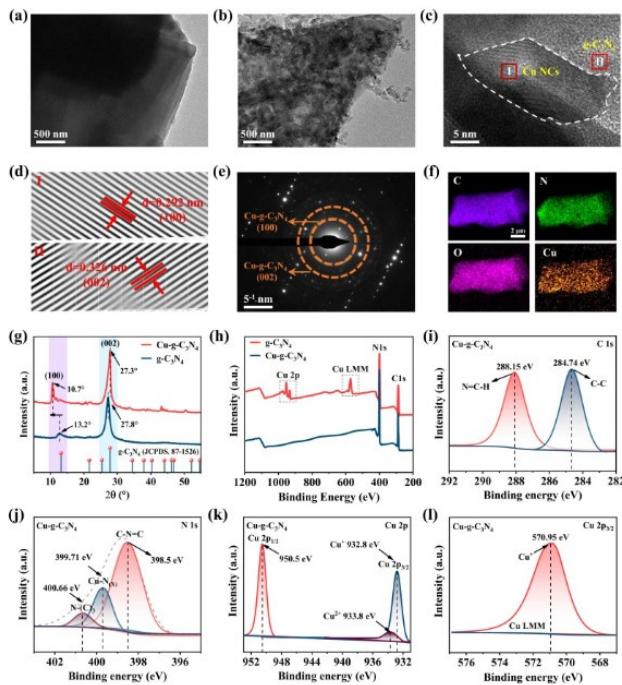
226 The osteogenic potential of scaffolds was evaluated through alkaline phosphatase (ALP)
227 activity and calcium deposition analysis. After 14 days of co-culture, cells were stained with
228 BCIP/NBT for ALP detection (30 min incubation) or Alizarin Red S (ARS) for calcium nodule
229 visualization, followed by scaffold removal. Fluorescence microscopy revealed dark purple
230 ALP staining indicating early osteogenic differentiation and pink ARS staining reflecting
231 mineralized matrix formation. Both ALP and ARS staining intensities were quantified using
232 ImageJ software to assess differentiation progression from early to late stages.

233 2.7.4. Protein and RT-qPCR analysis

234 After 5 days of scaffold co-culture, cells underwent immunostaining beginning with 5 % BSA
235 blocking (12 h, 4°C) before sequential incubation with BMP-2 primary antibody and
236 fluorescent secondary antibody, followed by nuclear counterstaining with DAPI. Fluorescence
237 microscopy visualized green (BMP-2 expression) and blue (nuclear) signals, with quantitative
238 analysis performed using ImageJ software to determine protein expression levels based on
239 fluorescence intensity measurements. The detailed process of RT-qPCR analysis can be found

240 in Supporting Information S4.

241 **2.8. Statistics**


242 Quantitative results are presented as mean \pm SD (standard deviation). Statistical significance
243 between groups was determined by one-way ANOVA, with significance levels denoted as
244 follows: $p < 0.001$ (***) $,$ $p < 0.01$ (**), and $p < 0.05$ (*).

245

246 **3. Result and discussion**

247 **3.1. Characterization of Cu-g-C₃N₄**

248 Firstly, the morphology and elemental distribution of Cu-g-C₃N₄ were characterized using
249 transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS).
250 TEM imaging shows that g-C₃N₄ has a unique ultra large specific surface area and smooth
251 surface morphology (Fig. 2a) [24]. Fig. 2b shows abundant Cu NCs deposited on the surface
252 of g-C₃N₄, maximizing the utilization its surface structural advantages. Further observations
253 of the microstructure of Cu NCs in g-C₃N₄ was conducted through HAADF-STEM (Fig. 2c). Fig.
254 2d shows the Fourier transform image in Fig. 2c, where 0.292 nm corresponds to the (100)
255 crystal plane and 0.326 nm corresponds to the (002) crystal plane of g-C₃N₄ [25], [26]. The
256 diffraction ring further confirmed the existence of crystal planes in Cu-g-C₃N₄ (Fig. 2e).
257 Notably, the diffraction spots exhibited no regular features, which can be attributed to the
258 crystalline order of the material, sample preparation quality, and testing conditions. The core
259 reason is that after modifying pristine g-C₃N₄ with 1–10 nm Cu-NCs, the formation of Cu-N
260 coordination bonds disrupts the long-range order of the g-C₃N₄ ring structure. Cu-NCs tend
261 to be amorphous or low-crystalline, and their synergistic effect prevents the Cu-g-
262 C₃N₄ composite from generating regular diffraction signals. Additionally, the EDS elemental
263 map confirmed the uniform distribution of the main constituent elements, including carbon
264 (C), nitrogen (N), oxygen (O) and copper (Cu) (Fig. 2f), and the mapping revealed the
265 uniformly dispersed Cu nanoclusters throughout Cu-g-C₃N₄ [27].

266

267 Fig. 2. (a) TEM image of $g\text{-C}_3\text{N}_4$; TEM (b), HRTEM (c), Fourier transform lattice (d) and
268 diffraction ring images (e) of $\text{Cu-g-C}_3\text{N}_4$; (f) EDS element distribution of $\text{Cu-g-C}_3\text{N}_4$; XRD (g)
269 and XPS spectra (h) of $g\text{-C}_3\text{N}_4$ and $\text{Cu-g-C}_3\text{N}_4$; XPS orbital peaks of (i) C 1 s, (j) N 1 s, (k) Cu 2p,
270 and (l) Cu LMM in $\text{Cu-g-C}_3\text{N}_4$.

271

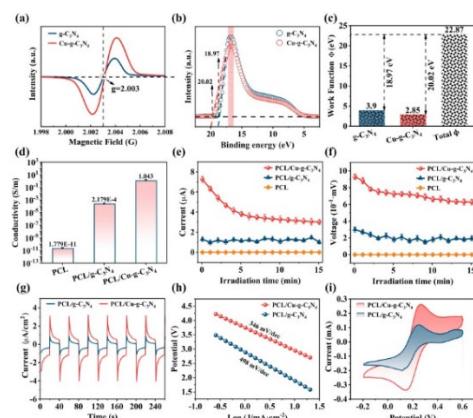
272 The unique crystallographic characteristics of $g\text{-C}_3\text{N}_4$ and $\text{Cu-g-C}_3\text{N}_4$ were revealed using XRD
273 analysis (Fig. 2g). The pristine $g\text{-C}_3\text{N}_4$ showed characteristic reflections at 13.2° ((100) plane,
274 corresponding to in-plane tri-s-triazine periodicity) and 27.8° ((002) plane, corresponding to
275 π -stacked aromatic layers) [28]. In contrast, Cu NCs incorporation induced systematic peak
276 displacements to 10.7° and 27.3° , consistent with lattice expansion from Cu nanocluster
277 intercalation [29]. The intensified (100) reflection indicated Cu-mediated crystallite
278 enlargement [30]. Crucially, no distinct diffraction peaks corresponding to copper oxides
279 ($\text{CuO}/\text{Cu}_2\text{O}$), or Cu-C clusters were detected, indicating the absence of such crystalline
280 phases. This suggests that Cu may exist in an amorphous state, possibly forming Cu-N
281 coordination bonds with the tri-s-triazine motifs of $g\text{-C}_3\text{N}_4$ rather than aggregating into
282 metallic or oxidized species [31], [32].

283 XPS was employed to characterize the elemental composition and chemical states of the

284 samples (Fig. 2h-l). Survey scan confirmed the presence of C, N, Cu, and surface-adsorbed O
285 in Cu-g-C₃N₄, with the detection of Cu signal directly verifying the successful incorporation of
286 Cu species (Fig. 2h). High-resolution C 1 s spectrum (Fig. 2i) exhibited two characteristic
287 peaks at 284.74 eV (C-C bonds, edge graphitic carbon) and 288.15 eV (N = C-H bonds, sp²-
288 hybridized carbon in triazine rings) [33]. No peak shift was observed compared to pristine g-
289 C₃N₄, indicating that Cu doping did not alter the carbon skeleton structure of g-C₃N₄ [34].

290 Detailed analysis of N 1 s spectrum (Fig. 2j) revealed conventional peaks at 398.5 eV (C-N = C
291 bonds, bridging nitrogen) and 400.66 eV (N-(C)₃ bonds, edge amino defects), along with a
292 new characteristic peak at 399.1 eV. This new peak was assigned to Cu-N coordination bonds
293 (Cu-N(x) structure, tertiary amine nitrogen) formed by nitrogen atoms in the six-membered
294 ring cavity of g-C₃N₄ donating lone pair electrons to Cu NCs, serving as direct evidence for
295 chemical bonding between Cu and the triazine ring framework [35].

296 Cu 2p spectrum (Fig. 2k) displayed spin-orbit splitting peaks at 932.8 eV (Cu 2p_{3/2},
297 corresponding to Cu⁺) and 950.5 eV (Cu 2p_{1/2}), with satellite peaks of Cu 2p_{3/2} indicating trace
298 amounts of Cu²⁺ (surface oxidation products). Combined with the main peak at 570.05 eV in
299 Cu LMM Auger spectrum (Fig. 2l, characteristic signal of Cu⁺), these results proved that Cu in
300 the composite primarily exists in Cu⁺-N coordination structure, with no metallic Cu⁰ or
301 substantial oxidized Cu²⁺ detected [36]. This Cu-N coordination interaction significantly
302 enhances the π -electron delocalization of g-C₃N₄ via electron transfer from N to Cu [37].
303 Concurrently, triazine ring units form interlayer extended conjugated systems, reducing the
304 dissociation energy barrier of O₂ molecules at CuN_x sites and facilitating ROS generation [38].


305 Furthermore, XPS elemental analysis verified the coexistence of C, N and Cu in the Cu-g-
306 C₃N₄ composite and provided crucial quantitative data for determining the Cu nanoclusters
307 (Cu NCs)/g-C₃N₄ binding ratio. The atomic percentages of C, N and Cu were 58.2 %, 33.5 %
308 and 8.3 %, respectively. Based on these data and g-C₃N₄'s chemical composition (theoretical
309 formula C₃N₄, C: N atomic ratio 3:4), the Cu NCs/g-C₃N₄ molar ratio was calculated as
310 approximately 1:12 via molar conversion.

311 To further confirm the existence of Cu nanoclusters, FT-IR testing yielded results as shown

312 in Supporting Information Fig. S1. In the Cu-g-C₃N₄ composite material, the characteristic
 313 functional group absorption peak of g-C₃N₄ underwent significant changes, especially the N
 314 related vibration peak (1200–1600 cm⁻¹ interval), which was caused by the formation of
 315 coordination bonds between Cu NCs and N atoms on the surface of g-C₃N₄, further
 316 confirming the existence of Cu NCs from the perspective of ligand interactions.

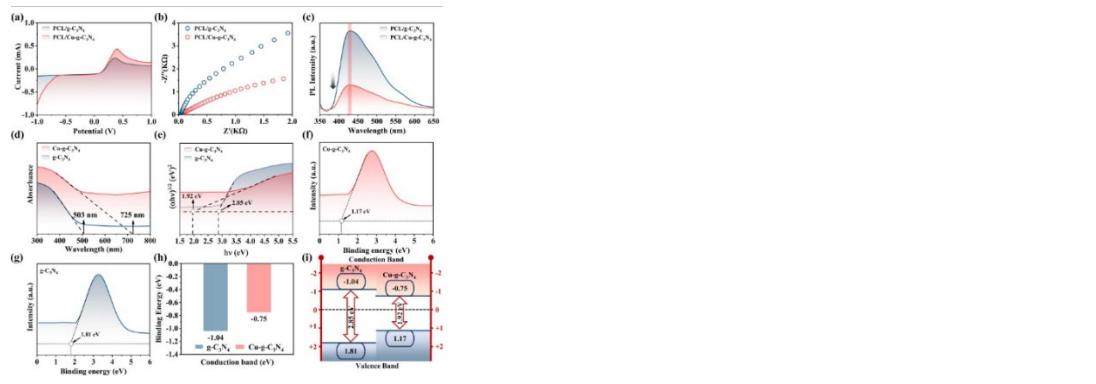
317 3.2. Photoelectric effect and enhancement mechanism of scaffold

318 Firstly, electron paramagnetic resonance (EPR) quantified delocalized electron density in the
 319 samples (Fig. 3a). Cu-g-C₃N₄ exhibited a sharp resonance at g= 2.00393, arising from
 320 unpaired π -electrons in tri-s-triazine rings [39]. Notably, its spin intensity was significantly
 321 higher than pristine g-C₃N₄, indicating more delocalized charge carriers [40]. This result stems
 322 from Cu-N coordination bonds, which donate electrons to extend π -conjugation in g-
 323 C₃N₄ [37], [41]. The enhanced delocalization improves electron transfer kinetics, creating an
 324 efficient charge transport pathway for catalysis.

325

326 Fig. 3. Electron paramagnetic resonance (a) and work function (b, c) of g-C₃N₄ and Cu-g-C₃N₄;
 327 conductivity (d), output current (e) and output voltage (f) of PCL, PCL/g-C₃N₄ and PCL/Cu-g-
 328 C₃N₄; transient response photocurrent (g), Tafel fitting curve (h), cyclic voltammetry curve (i)
 329 of PCL/g-C₃N₄ and PCL/Cu-g-C₃N₄.

330


331 Then, Ultraviolet photoelectron spectroscopy was utilized to determine the work function
 332 (WF , Φ) of the samples, providing critical insights into interfacial charge migration

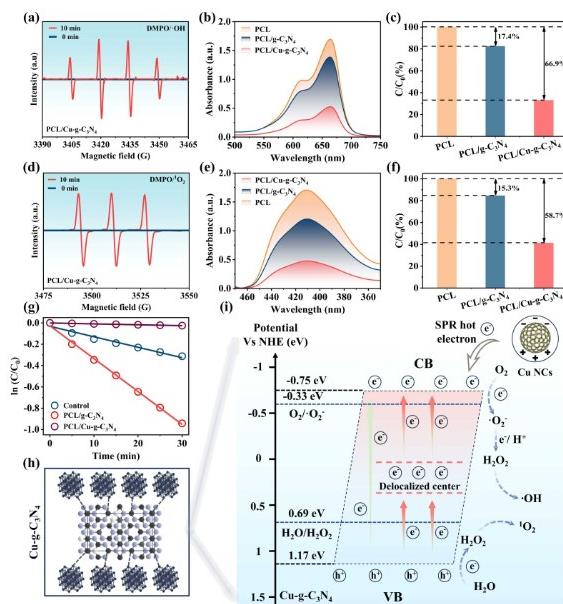
333 behavior [42], [43]. As depicted in Figs. 3b and 3c, Cu-g-C₃N₄ exhibits a reduced WF
334 ($\Phi=2.85$ eV) compared to pristine g-C₃N₄ ($\Phi = 3.9$ eV). This downward shift in Φ indicates a
335 lowered Fermi level, facilitating electron overflow from the valence band and enhancing
336 electron-supply [44]. The decreased WF not only promotes interfacial electron transfer to
337 adsorbed reactants but also strengthens the driving force for charge separation, collectively
338 contributing to the observed enhancement in catalytic activity by optimized redox
339 kinetics [45].

340 The output electrical signal, photoresponse and charge transfer properties of the scaffolds
341 were systematically evaluated. Fig. 3d showed that the electrical conductivity of PCL/Cu-g-
342 C₃N₄ (1.043 S/cm) was enhanced by 4 orders of magnitude compared to PCL/g-
343 C₃N₄ ($\sim 10^{-4}$ S/cm) and 11 orders of magnitude relative to PCL ($\sim 10^{-11}$ S/cm), which could be
344 ascribed to the Cu-N coordination-induced extension of π -conjugation in g-C₃N₄, facilitating
345 efficient charge carrier transport via the conductive network [23]. As observed in Figs. 3e
346 and 3f, PCL/Cu-g-C₃N₄ exhibited a stable output of current (~ 3 μ A) and voltage (~ 0.6 mV).
347 Although accompanied by attenuation (Voltage of about 30 % within 15 min), it's value
348 significantly better than PCL/g-C₃N₄ (~ 1 μ A, ~ 0.25 mV) and PCL.

349 The transient photocurrent further validated the charge separation mechanism, and it was
350 evident that the photocurrent generated by the PCL/Cu-g-C₃N₄ scaffold exceeded twice that
351 of PCL/g-C₃N₄ (Fig. 3g), which was due to Cu-N coordination sites acting as electron traps,
352 suppressing e⁻-h⁺ recombination. The Tafel fitting line in Fig. 3h shows that the Tafel slope
353 (346 mV/dec) of PCL/Cu-g-C₃N₄ is smaller than that of PCL/g-C₃N₄ (498 mV/dec), indicated
354 accelerated reaction kinetics via delocalized π -electrons promoting O₂ activation. Cyclic
355 voltammetry curve (Fig. 3i) proved superior charge storage in PCL/Cu-g-C₃N₄, with higher
356 current density, redox potential and enhanced I-V loop rectangularity, reflecting efficient
357 double-layer charge accumulation.

358 Further systematic analysis of the enhancement mechanism of Cu NCs doping on g-
359 C₃N₄ photoelectric effect. Specifically, linear sweep voltammetry (Fig. 4a) showed enhanced
360 redox peaks for PCL/Cu-g-C₃N₄ versus PCL/g-C₃N₄, while Nyquist plots (Fig. 4b) revealed
361 smaller charge transfer resistance (reduced semicircle diameter), confirming Cu-N

364 Fig. 4. Linear sweep voltammetry (a), Nyquist impedance spectra (b), and PL spectra (c) of
 365 PCL/g-C₃N₄ and PCL/Cu-g-C₃N₄; UV-Vis-NIR absorption spectra (d), bandgap (e), XPS valence
 366 band (f, g), and conduction band potential (h) of g-C₃N₄ and Cu-g-C₃N₄.

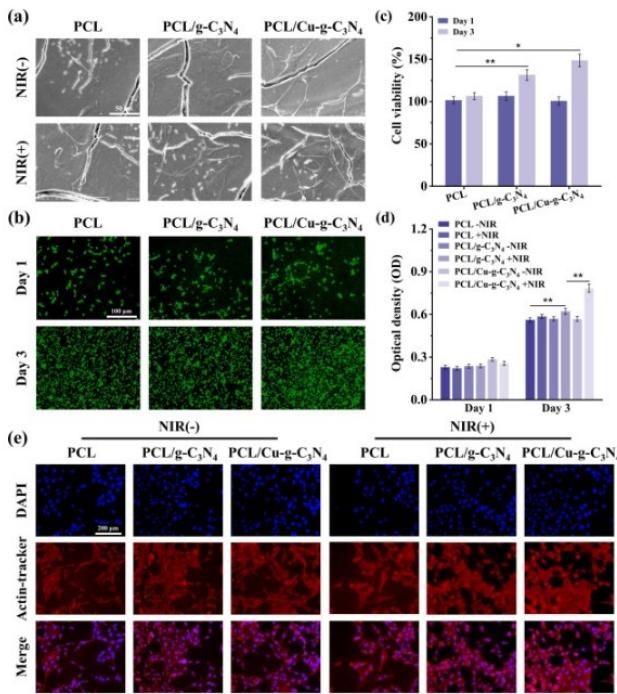

368 PL quenching (Fig. 4c) verified extended carrier lifetime in PCL/Cu-g-C₃N₄ via Cu-N electron
 369 trapping. The quenching of PL intensity in the PCL/Cu-g-C₃N₄ system is primarily attributed to
 370 a dual mechanism facilitated by Cu NCs for enhanced photogenerated carrier separation: On
 371 one hand, the formation of a Schottky junction between Cu NCs and g-C₃N₄ positions the
 372 Fermi level of Cu NCs below the conduction band minimum (CBM) of g-C₃N₄. This energy
 373 alignment drives the rapid transfer of photogenerated electrons to the Cu NCs surface,
 374 creating an “electron trap” that significantly suppresses e⁻-h⁺ recombination. On the other
 375 hand, Cu-N coordination bonds enhance π -electron delocalization, establishing efficient
 376 charge transport pathways that further accelerate charge separation.

377 UV-Vis-NIR absorption spectra (Fig. 4d) displayed a redshift of the absorption edge from
 378 503 nm (g-C₃N₄) to 725 nm (Cu-g-C₃N₄) with increased intensity, and Tauc plots (Fig. 4e)
 379 confirmed band gap narrowing (from 2.85 to 1.92 eV), expanding light absorption range and
 380 boosting e⁻-h⁺ pair generation. Valence band spectrum shows that the valence band top (VB)
 381 of g-C₃N₄ is about 1.81 eV, while the VB of Cu-g-C₃N₄ drops to 1.17 eV (Figs. 4f and 4g).
 382 Combined with the conduction band bottom (CB) calculation (Fig. 4h, E_{CB}=E_{VB}-E_g), the CB of g-
 383 C₃N₄ is about -1.04 eV, and the CB of Cu-g-C₃N₄ rises to -0.75 eV, indicating that Cu NCs

384 doping adjusts the band structure. Band structure diagrams (Fig. 4i) summarized Cu doping
 385 effects: enhanced photoelectric performance arises from expanded light absorption/band
 386 gap narrowing (increased carrier generation) and reduced charge transfer resistance
 387 (improved charge transport).

388 3.3. Photocatalytic activity and enhancement mechanism of scaffold

389 To investigate the photocatalytic activity of the scaffold, ESR spectroscopy (Figs. 5a and 5d)
 390 was first used to detect the ROS production of PCL/Cu-g-C₃N₄ scaffold under NIR
 391 radiation [46]. Results showed that no characteristic signals were observed under dark
 392 conditions, but the addition of H₂O₂ and light induction resulted in clear free radical features.
 393 Specifically, the characteristic of DMPO/·OH adduct is a 1:2:2:1 quadruple (Fig. 5a), while the
 394 characteristic of TEMP/·O₂ is a 1:1:1 triple (Fig. 5d) [47]. The above demonstrated that Cu
 395 NCs significantly enhance the photocatalytic ability to generate both ·OH and ·O₂ via
 396 improved light absorption and charge separation efficiency.


397
 398 Fig. 5. ESR spectrum of ·OH (a) and ·O₂ (d) in PCL/Cu-g-C₃N₄; absorbance of MB (b) and DPBF
 399 (e) in PCL, PCL/g-C₃N₄ and PCL/Cu-g-C₃N₄; degradation rate of MB (c) and DPBF (f) in various
 400 scaffolds; (g) degradation kinetics curve of various scaffolds; Schematic diagram of the
 401 chemical state binding and photocatalytic enhancement mechanism of Cu-g-C₃N₄.

403 Meanwhile, photocatalytic ROS generation was quantified using MB (\cdot OH probe) and DPBF
404 ($^1\text{O}_2$ probe) [48], [49]. PCL/Cu-g-C₃N₄ showed higher MB and DPBF degradation than PCL/g-
405 C₃N₄ and PCL in 15 min (Figs. 5c and 5e), attributed to enhanced charge separation and hole
406 mobility. Subsequently, quantitative analysis confirmed the superior photocatalytic activity of
407 Cu NCs-modified scaffolds (Figs. 5c and 5f). Specifically, during MB degradation, the
408 degradation efficiency of pure PCL approaches 100 %, indicating no catalytic activity.
409 Compared to PCL/g-C₃N₄ (C/C₀=17.4 %), the degradation efficiency of PCL/Cu-g-
410 C₃N₄ increased by 49.5 % (C/C₀=66.9 %). This enhancement was attributed to Cu-N
411 coordination-promoted π -electron delocalization and carrier separation, which accelerates
412 substrate degradation rates [50]. For DPBF, PCL remained catalytically inactive, while PCL/Cu-
413 g-C₃N₄ achieved a degradation efficiency of 58.7 %, representing a 43.4 % increase compared
414 to PCL/g-C₃N₄ (C/C₀ = 15.3 %).

415 First-order kinetic model fitting ($-\ln(C/C_0) = kt$, Fig. 5g) revealed a reaction rate constant k for
416 PCL/Cu-g-C₃N₄ is 0.0309 min⁻¹, representing a 3.15-fold increase compared to PCL/g-
417 C₃N₄ (0.0098 min⁻¹) [51], [52]. This kinetic optimization stems from the dual regulation of Cu
418 NCs: the electronic de-saturation effect of Cu NCs narrows the bandgap to broaden light
419 absorption, while the Cu-g-C₃N₄ Schottky barrier promotes charge separation, ultimately
420 synergistically accelerating the generation of \cdot OH and $^1\text{O}_2$ [53], [54]. As illustrated in Figs. 5h
421 and 5i, the downward shift of the VB enhanced the oxidation capacity of holes (facilitating
422 the oxidation of H₂O to produce \cdot OH), while the upward shift of the CB increased the
423 reduction capacity of electrons (facilitating the reduction of O₂ to produce ROS) [55], [56].
424 This synergistically promotes carrier separation and interfacial catalytic reactions.

425 The core objective of this study is to improve the photocatalytic performance of g-C₃N₄ by
426 modifying it with copper clusters (Cu NCs). The experimental results showed that PCL/Cu-g-
427 C₃N₄ increased the degradation efficiency of methylene blue (MB) by 49.5 % compared to
428 PCL/g-C₃N₄. The core mechanism of this performance improvement is due to the π -electron
429 delocalization effect caused by Cu-N coordination and the enhanced carrier separation
430 efficiency. This catalytic system provides new ideas for the long-term treatment and clinical
431 translation of bone scaffolds.

432 3.4. Cell behavior of scaffold

433 3.4.1. Cell adhesion and biocompatibility

434 SEM analysis revealed distinct cell adhesion behaviors of cells after 3 days of co-culture
435 under NIR irradiation (Fig. 6a), with PCL scaffold showing poor cell attachment and limited
436 pseudopodia extension compared to the enhanced cellular protrusions of PCL/g-C₃N₄. The
437 PCL/Cu-g-C₃N₄ scaffold exhibit superior cell density, spreading and early osteogenic
438 differentiation. Then, the biocompatibility of different scaffolds was evaluated via live-dead
439 staining and CCK-8 assays after 1 day and 3 days of co-culture with BMSCs [57]. Fluorescence
440 imaging reveals predominant green signals across all groups (Fig. 6b), indicating minimal
441 cytotoxicity. Fig. 6c presents NIR-irradiated cell viability (normalized to PCL control), showing
442 minimal differences among scaffolds after 1 day but progressive survival increases by day 3,
443 with PCL/Cu-g-C₃N₄ proving exceptional viability (148.5 %). CCK-8 results (Fig. 6d) display
444 similar OD values between groups at each timepoint but progressive increases over culture
445 duration, confirming unaffected proliferation. These collective findings verify the excellent
446 biocompatibility of PCL/Cu-g-C₃N₄. The PCL/Cu-g-C₃N₄ system shows increased cell
447 viability/density from day 1 to day 3 with no obvious Cu toxicity, due to two key factors: (I)
448 ultra-low Cu content (well below cytotoxic levels), Cu-g-C₃N₄ constitutes 3 % of the
449 composite with a Cu/g-C₃N₄ molar ratio of 1:12, preventing toxic Cu ion release; (II) synergy
450 of natural cell proliferation over 3 days and the NIR-responsive bioactivity of Cu-g-C₃N₄,
451 which offers a more favorable microenvironment than PCL and PCL/g-C₃N₄.

452

453 Fig. 6. (a) SEM images of cellular adhesion with or without NIR irradiation; live/dead staining
 454 analysis (b) and corresponding cell survival rate (c) after co-culture 1 and 3 days under NIR
 455 irradiation; (d) CCK-8 assays after co-culture 1 and 3 days in different scaffolds with or
 456 without NIR irradiation; (e) cytoskeletal organization staining via F-actin/nuclear co-staining
 457 after 3 days co-culture.

458

459 Comprehensive analysis of cytoskeleton structure using dual fluorescence staining after co-
 460 culture for 3 days, wherein rhodamine phalloidin specifically labeled F-actin filaments with
 461 red emission and DAPI counterstained nuclei with blue fluorescence. Detailed microscopic
 462 evaluation (Fig. 6e) proved progressively enhanced actin network organization across scaffold
 463 variants, revealing substantially improved filament integration and structural complexity in
 464 PCL/g-C₃N₄ composites compared to basic PCL controls. Most significantly, the PCL/Cu-g-
 465 C₃N₄ scaffold exhibited exceptional cytoskeletal development characterized by dense, well-
 466 aligned actin bundles and extensive cellular spreading morphology. This superior
 467 architectural organization persisted consistently under both near-infrared irradiated and non-
 468 irradiated experimental conditions, providing visual confirmation of the material's enhanced
 469 biocompatibility through robust cell-scaffold integration and favorable mechanobiological

470 interactions that support cellular health and function.

471 3.4.2. Cell differentiation and BMP-2 levels

472 Alkaline phosphatase (ALP) constitutes a critical early-stage biomarker for assessing
473 osteogenic differentiation in BMSCs, with expression levels directly correlating to
474 mineralization competence during osteogenic commitment [58]. Fig. 7a demonstrates
475 substantially elevated ALP staining intensity in all NIR-exposed groups versus non-irradiated
476 controls after co-culture for 14 days, confirming enzymatic activation requires NIR irradiation.
477 Pure PCL exhibit negligible differentiation response under NIR, evidenced by minimal ALP
478 staining, indicating inadequate photoelectrical performance. Conversely, NIR-irradiated
479 PCL/g-C₃N₄ and PCL/Cu-g-C₃N₄ groups show significantly expand ALP-positive regions, with
480 PCL/Cu-g-C₃N₄ displaying maximal intensity, indicating enhanced induction capacity.
481 Quantitative analysis (Fig. 7b) validated these observations, proving that PCL/Cu-g-
482 C₃N₄ exhibit higher staining intensity versus all groups at 14 days, establishing its superior
483 osteogenic performance.

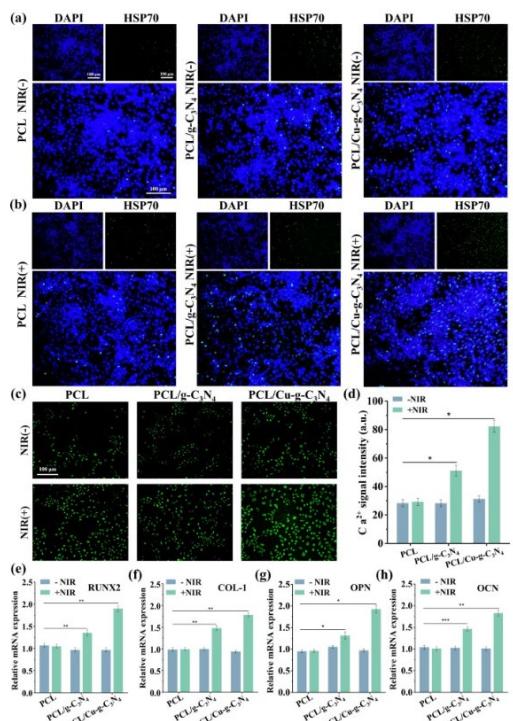
484

485 Fig. 7. (a) ALP expression following 14-day culture with or without NIR exposure, and (b)
486 corresponding quantification; (c) mineralized matrix visualization via ARS staining, and (d)
487 corresponding quantification at 14 days; (e) BMP-2 fluorescence staining after co-culturing

488 with each scaffold for 5 days.

489

490 Alizarin Red S (ARS) staining, a well-established histochemical technique that specifically
491 binds to calcium-rich deposits and forms a bright red complex [59]. ARS staining at day 14
492 evaluated calcium deposition as a measure of late-stage osteogenic differentiation in BMSCs,
493 with Fig. 7c showing comparably weak mineralization across non-irradiated groups.


494 Following NIR application, the PCL and PCL/ g-C₃N₄ scaffold maintained minimal calcium
495 nodule formation, confirming its photobiological inertness, while the PCL/Cu-g-C₃N₄ group
496 demonstrate substantially enhanced mineralized nodule formation under identical
497 irradiation conditions, indicating accelerated calcium accumulation. Complementary
498 quantitative analysis of ARS staining intensity (Fig. 7d) provides conclusive evidence of
499 PCL/Cu-g-C₃N₄ scaffold superior ability to promote advanced osteogenic maturation
500 processes.

501 Bone morphogenetic protein-2 (BMP-2) functions as a core osteogenic regulator by
502 activating Smad signaling to induce BMSC differentiation into osteoblasts while promoting
503 bone matrix synthesis and mineralization [60]. Immunofluorescence analysis (Fig. 7e) reveals
504 after 5 days of cultivation without NIR irradiation, the expression of BMP-2 on all scaffolds is
505 weak and there is no significant difference between the groups. Following NIR exposure, PCL
506 and PCL/g-C₃N₄ groups show unchanged fluorescence intensity, confirming their inability to
507 stimulate BMP-2 expression. Notably, PCL/Cu-g-C₃N₄ group exhibits the most intense
508 fluorescence with ubiquitous cellular distribution, indicating maximal photoelectricity
509 enhancement of BMP-2 production through Cu-g-C₃N₄ synergy.

510 3.4.3. HSP70 and gene expression

511 HSP70 critically regulates cellular stress responses by maintaining protein folding integrity,
512 suppressing apoptosis, and directly modulating BMSC osteogenic differentiation through
513 upregulation of bone-related genes, serving as a key molecular indicator of differentiation
514 progression [61]. As show in Fig. 8a, after co-culturing with the scaffold for 5 days, the green
515 fluorescence of all experimental groups is very weak in a dark environment. Fig. 8b exhibit a

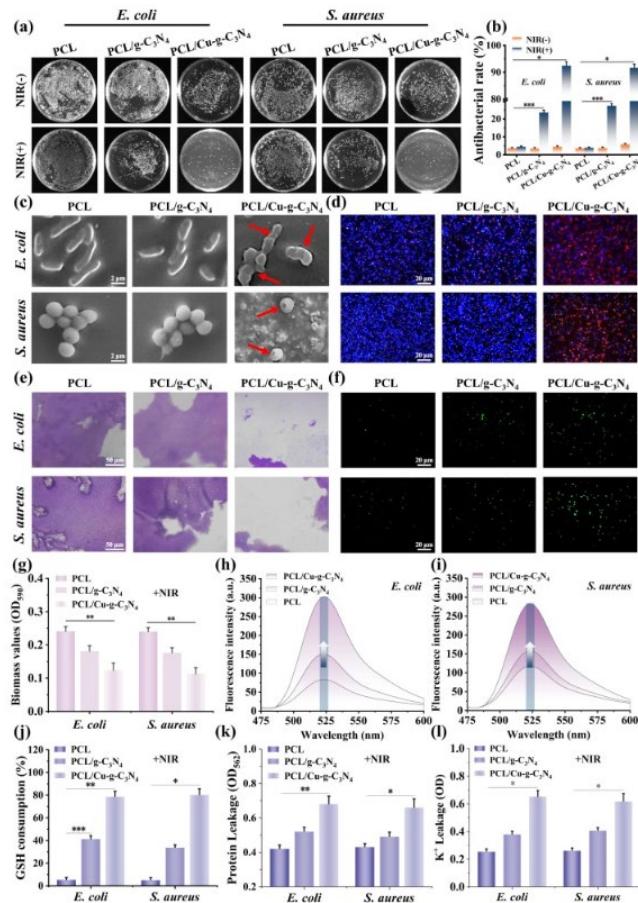
516 minimal HSP70 expression (green) in PCL group under NIR, whereas PCL/g-C₃N₄ show
 517 moderately increase fluorescence distribution. The PCL/Cu-g-C₃N₄ group exhibit near-
 518 complete cellular coverage by intense green signals, which is attributed to the
 519 electrophysiological microenvironment bring about by the photoelectricity generated by Cu-
 520 g-C₃N₄. The expression of HSP70 by photoelectric stimulation establishes a favorable
 521 intracellular environment for osteogenesis, confirming early ALP activity and calcium
 522 deposition results.

523
 524 Fig. 8. Fluorescence staining under non NIR irradiation (a) and NIR irradiation (b) after co-
 525 culturing for 5 days; Ca²⁺ fluorescence staining (c) and corresponding quantitative results (d)
 526 after 3 days of cultivation; Relative mRNA expression of RUNX2, COL-1, OPN and OCN after 7
 527 days of cultivation with or without NIR.

528
 529 Intracellular Ca²⁺ serves as a crucial osteogenic signaling molecule, activating the
 530 Ca²⁺/CaM/CaMKII pathway to regulate bone matrix synthesis and mineralization-related
 531 gene expression [62]. Fluo-4 fluorescence tracking revealed minimal Ca²⁺ levels in PCL and
 532 PCL/g-C₃N₄ scaffolds without NIR after 3 days of cultivation, while PCL/Cu-g-C₃N₄ exhibits

533 slightly higher baseline activity. NIR irradiation triggered dramatic Ca^{2+} influx in PCL/Cu-g-
534 C_3N_4 , evident through cell fluorescence (Figs. 8c and 8d), correlating with superior osteogenic
535 performance in early differentiation markers, mineralization capacity, and genetic expression
536 profiles compared to other groups.

537 The sequential activation of osteogenic genes forms the core molecular foundation
538 governing BMSC differentiation dynamics, with RUNX2 functioning as the primary
539 transcriptional activator initiating osteoblast lineage commitment during early
540 differentiation, COL1 serving as the essential structural protein for bone matrix formation at
541 intermediate stages, OPN acting as a mineralization process regulator coordinating calcium
542 deposition, and OCN indicating terminal osteogenic maturation through direct reflection of
543 bone mineralization completion. RT-qPCR analysis (Fig. 8e-h) proving that all relative mRNA
544 expressions are upregulated in the PCL/g- C_3N_4 and PCL/Cu-g- C_3N_4 groups activated by NIR,
545 compared to PCL. The strength of PCL/Cu-g- C_3N_4 reach a maximum of around 1.9. However,
546 all experimental groups show a weak expression intensity of around 1.0 in dark condition.


547 Therefore, the photoelectric effect generated by PCL/Cu-g- C_3N_4 may promote Ca^{2+} influx,
548 activate CaMKII/CREB signaling and epigenetic modification, synergistically amplify the
549 BMP/Smad and Wnt/ β -catenin pathways, explaining its superior bone induction at all
550 differentiation stages [63], [64].

551 3.5. Antibacterial properties of scaffold

552 3.5.1. Antibacterial activity

553 Antibacterial efficacy of various scaffolds was quantitatively assessed via agar plate colony
554 counting using *E. coli* and *S. aureus* models, with Fig. 9a revealing negligible bactericidal
555 activity in dark conditions across all groups, confirming light-dependent ROS generation is
556 essential for activation. Under NIR irradiation, PCL controls show minimal colony reduction,
557 while PCL/g- C_3N_4 group exhibits moderate antibacterial effects attribute to limited ROS
558 production. Differently, PCL/Cu-g- C_3N_4 can achieve massive bacterial eradication (<9 %
559 residual colonies) through enhancing photocatalytic environmental oxygen generation of
560 ROS. Quantitative antibacterial rates further prove the superior photocatalytic performance

561 of PCL/Cu-g-C₃N₄, exhibiting 91.6 % and 92.4 % inhibition against *S. aureus* and *E.*
 562 *coli* respectively, conclusively establishing its exceptional antibacterial properties.

563

564 Fig. 9. The digital images of colonies after *E. coli* and *S. aureus* treated by scaffold (a), and the
 565 corresponding antibacterial rate (b); SEM images (c) and viability staining (d) of *E. coli* and *S.*
 566 *aureus* on the scaffold under NIR irradiation; Crystal violet staining (e) and corresponding
 567 quantitative results (g) under NIR irradiation; DCF fluorescence (f) and corresponding signal
 568 strength (h, i) in bacteria under NIR irradiation; GSH consumption (j), protein loss (k), and
 569 K⁺ leakage (l) of bacteria in scaffolds.

570 Subsequently, SEM analysis of bacterial morphology further demonstrates the antibacterial
 571 efficacy of PCL/Cu-g-C₃N₄ scaffolds under NIR irradiation. Results revealing intact elongated *E.*
 572 *coli* and spherical *S. aureus* adhering to material surfaces in the PCL (Fig. 9c). Although NIR-
 573 exposed PCL group maintain normal bacterial morphology, PCL/g-C₃N₄ exhibit membrane
 574 folding in both bacterial. Strikingly, PCL/Cu-g-C₃N₄ group under identical illumination induced

575 severe cellular damage characterized by membrane rupture and structural collapse,
576 confirming its unique capacity for bacterial structural destruction through photocatalytic
577 mechanisms.

578 Membrane integrity assessment via PI/DAPI co-staining revealed PI selectively labels
579 compromised membranes (red) while DAPI universally stains nuclei (blue), with Fig. 9d
580 display minimal apoptotic signals in illuminated PCL group versus substantially increased PI
581 fluorescence in PCL/g-C₃N₄. Notably, PCL/Cu-g-C₃N₄ exhibit intense PI penetration across
582 both *E. coli* and *S. aureus* populations, confirming superior membrane disruption capacity
583 attributable to photocatalytic copper clusters degrading biofilm barriers and facilitating ROS
584 influx, thus establishing its mechanism for inducing irreversible photocatalytic impairment
585 via targeted oxidative damage.

586 3.5.2. Antibacterial mechanism

587 To further explore the antibacterial mechanism of the scaffold, the integrity of the biofilm
588 was first evaluated using crystal violet staining, as show in Fig. 9e. Under NIR irradiation,
589 results reveal negligible biofilm disruption in PCL (dense purple coverage) versus partial
590 biofilm degradation in PCL/g-C₃N₄ due to limited ROS generation ability. Remarkably, PCL/Cu-
591 g-C₃N₄ exhibit near-complete biofilm elimination attribute to the enhancement of
592 photocatalytic potency by Cu NCs. Furthermore, quantitative biomass confirms that the
593 maximal biofilm accumulation of PCL, the larger biomass of PCL/g-C₃N₄, and the minimal
594 biomass of PCL/Cu-g-C₃N₄ (Fig. 9g).

595 Subsequently, DCFH-DA fluorescence probing quantitatively measured bacterial ROS levels
596 through oxidation-triggered green fluorescence emission (intensity proportional to ROS
597 concentration). Fig. 9f displays negligible signals in PCL group versus moderate enhancement
598 in PCL/g-C₃N₄ due to limited photocatalytic ROS generation under NIR illuminated.
599 Interestingly, PCL/Cu-g-C₃N₄ group exhibit intense fluorescence, confirming maximal ROS
600 production. DCF fluorescence intensity quantification shows markedly elevated intracellular
601 signals in PCL/Cu-g-C₃N₄ treated bacteria post 10 min irradiation (Figs. 9h and 9i), confirming
602 efficient ROS internalization via Cu NCs enhanced photocatalytic delivery mechanisms. These

603 results are attribute to the enhanced catalytic activity of Cu NCs, while damaging the
604 integrity of the membrane, thereby promoting the influx of large amounts of ROS
605 demonstrated by this photodynamic amplification cascade.
606 ROS incursion compromises bacterial antioxidant defenses, necessitating evaluation of
607 intracellular GSH depletion and biomolecule leakage. Fig. 9j demonstrates negligible GSH loss
608 in PCL group versus limit clearance in PCL/g-C₃N₄, while PCL/Cu-g-C₃N₄ group around 80 %
609 GSH depletion in both bacterial under NIR irradiation. Protein leakage assays reveal
610 substantial cytoplasmic efflux under NIR in PCL/Cu-g-C₃N₄ compared to other groups, the
611 leakage intensity in *E. coli* and *S. aureus* can reach 0.7 (Fig. 9k). Then, the loss rate of
612 K⁺ affecting bacterial respiration was evaluated (Fig. 9l). Specifically, sodium
613 tetraphenylborate was used to detect the leakage intensity of K⁺ under NIR radiation.
614 Obviously, the PCL/Cu-g-C₃N₄ group significantly exceeding the marginal leakage of PCL/g-
615 C₃N₄, proving that Cu NCs enhanced photocatalysis potentiates bacteriolytic capacity via
616 coordinate ion dysregulation and accelerate metabolic collapse.

617

618 **4. Conclusion**

619 In this work, Cu nanoclusters (Cu NCs) were assembled in-situ on g-C₃N₄ to form Cu-g-
620 C₃N₄ Schottky junctions via hydrothermal synthesis, followed by preparation of PCL/Cu-g-
621 C₃N₄ scaffold. On the one hand, Cu NCs induce collective electron oscillations extending light
622 absorption into the NIR region, then the generated hot electrons are efficiently transferred
623 to g-C₃N₄ via the Schottky junction, leveraging its built-in electric field to enhance
624 photoelectric activity. On the other hand, Cu NCs interact with π-conjugated structures in g-
625 C₃N₄ to weaken electron injection barrier, and simultaneously serve as electron traps to
626 accumulate delocalized electrons, thus optimizing overall photocatalysis efficiency. Results
627 prove that the scaffold exhibits excellent NIR absorption and sustained photoresponsive
628 wireless current. The electrical signal can boost osteogenic differentiation as evidenced by a
629 2.9-fold upregulation of ALP and ARS expression, and a 45 % increase in osteogenic
630 differentiation-related mRNA and BMP-2 levels. NIR activated scaffolds can rapidly lyse

631 biofilms to promote ROS entry into bacteria, reduce oxidative stress defense to accelerate
632 bacterial death, thereby achieve antibacterial rates of 91.6 % and 92.4 % against *S.*
633 *aureus* and *E. coli*, respectively. This study provides innovative strategies for the
634 development of light activated electricity-catalysis integrated bone implants. This work
635 achieves integrated osteogenesis and antibacterial therapy by coupling photo-electro-
636 catalytic effects, providing novel insights into the clinical treatment of infected bone defects.

637

638 **Authorship contribution statement**

639 Jiaxing Xiong: Resources, Methodology, Investigation. Rongcheng Xu: Visualization,
640 Validation. Siyi Ye: Validation, Supervision. Xin Liao: Software, Resources, Funding
641 acquisition. Xuanyu Mao: Supervision, Software. Shanshan Cai: Visualization, Validation,
642 Software, Resources, Methodology, Conceptualization. Hao Xing: Writing – review & editing,
643 Funding acquisition, Formal analysis. Xiaohui Niu: Writing – original draft, Data curation,
644 Conceptualization. Renjie Pan: Visualization, Validation, Investigation, Formal analysis.

645

646 **Declaration of Competing Interest**

647 The authors declare that they have no known competing financial interests or personal
648 relationships that could have appeared to influence the work reported in this paper.

649

650 **Acknowledgments**

651 This study was supported by the following funds: (1) The basic research project of Shanxi
652 Science and Technology Department (202403021222396); (2) Hangzhou Medical Health
653 Science and Technology Plan Project (B20251637, B20220091); (3) Jiande Medicine Health
654 Science and Technology Plan Project (2024SJZX08).

655

656 **Supporting Information**

657 **S1. ESR analysis**

658 To unequivocally identify the reactive species generated during photocatalysis, electron spin
659 resonance (ESR) spectroscopy was employed using 2,2,6,6-tetramethylpiperidine (TEMP) as a
660 singlet oxygen ($^1\text{O}_2$) trap and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a hydroxyl radical
661 ($\cdot\text{OH}$) spin-trapping agent. Measurements were conducted using a Bruker EMXplus X-band
662 spectrometer (9.85 GHz, 100 kHz modulation frequency) under controlled experimental
663 conditions (microwave power: 10 mW, modulation amplitude: 1.0 G, temperature: 298 K).

664 For $^1\text{O}_2$ detection, scaffolds were dispersed in an aqueous solution containing 100 mM TEMP,
665 and ESR spectra were recorded before and during 660 nm LED irradiation (100 mW/cm 2). The
666 characteristic 1:1:1 triplet signal ($a^N = 16.5$ G, $g = 2.006$) confirmed $^1\text{O}_2$ generation. For $\cdot\text{OH}$
667 detection, samples were sonicated in 50 mM DMPO solution, and ESR spectra were acquired
668 under dark and 532 nm laser illumination (50 mW/cm 2). The distinctive 1:2:2:1 quartet signal
669 ($a^N = a_H = 14.9$ G, $g = 2.006$) verified $\cdot\text{OH}$ formation. This ESR analysis quantitatively
670 demonstrated the light-dependent generation of $^1\text{O}_2$ and $\cdot\text{OH}$, providing mechanistic insights
671 into the photocatalytic ROS production pathways.

672 **S2. Biofilm permeability**

673 The crystal violet staining method is used to determine the survival rate of the biofilm after
674 the action of the scaffold. Specifically, after 10 min of NIR irradiation, the scaffold is removed
675 from the well plate and the plate is gently rinsed three times with PBS to remove the residual
676 culture medium. Then, 200 μL of crystal violet solution was added and the plate was stained
677 at 37 °C for 1 h. After washing with PBS and allowing to air dry naturally, observe the
678 distribution of purple areas under a fluorescence microscope. Meanwhile, use a
679 multifunctional microplate reader for quantitative analysis of the stained bacterial solution.

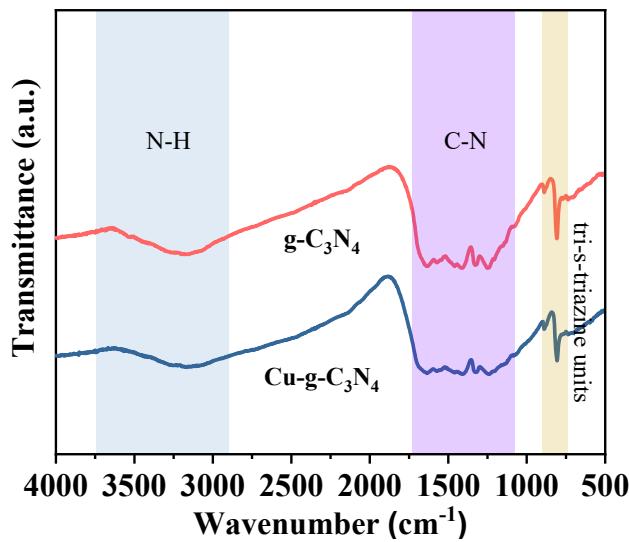
680 **S3. Detection of intracellular ROS, biomolecule leakage and GSH consumption**

681 Intracellular reactive oxygen species (ROS) were detected using the fluorescent probe 2',7'-
682 dichlorodihydrofluorescein diacetate (DCFH-DA). Bacterial suspensions were co-incubated
683 with the scaffolds for 24 h, followed by 10 min of near-infrared (NIR) irradiation or dark

684 control treatment. After removing the scaffolds, bacterial cells were washed, centrifuged,
685 and stained with 300 μ L DCFH-DA at 37°C for 1 h. Intracellular ROS accumulation was
686 visualized via green fluorescence imaging using a fluorescence microscope, and DCF
687 fluorescence intensity (λ_{ex} =488 nm, λ_{em} =525 nm) was quantitatively analyzed using a
688 microplate reader to assess ROS generation levels.

689 Protein leakage and potassium ion (K^+) efflux assays were performed to evaluate bacterial
690 membrane damage. For protein quantification, 25 μ L of centrifuged bacterial supernatants
691 (after scaffold co-incubation) was mixed with 100 μ L Coomassie Brilliant Blue G250 reagent,
692 incubated in the dark at 37 °C for 30 min, and absorbance was measured at 562 nm using a
693 microplate reader. Parallel K^+ leakage analysis was conducted following the same
694 supernatant collection protocol, with ion concentration quantified via flame atomic
695 absorption spectroscopy (FAAS) or ion-selective electrode (ISE) to assess membrane
696 permeability changes.

697 Glutathione (GSH) depletion capacity was evaluated using 5,5'-dithiobis(2-nitrobenzoic acid)
698 (DTNB) as a colorimetric probe. Scaffolds were incubated with reduced GSH in the dark at
699 37 °C for 1 h, followed by 10 min of NIR irradiation (or dark control). The reaction mixture
700 was then supplemented with 300 μ L Tris-HCl buffer (pH 8.5) and 150 μ L DTNB solution (500
701 mg/L), and absorbance was measured at 420 nm using a microplate reader after thorough
702 mixing. GSH consumption efficiency was calculated using the formula:


$$703 \text{ GSH loss rate (\%)} = (1 - \frac{A_{\text{negative}}}{A_{\text{scaffold}}}) / 100\%$$

704 where A_{sample} and A_{control} represent absorbance values of NIR-irradiated and non-irradiated
705 groups, respectively.

706 **S4. RT-qPCR analysis**

707 On day 5 of co-culture, total RNA was extracted following the Easy Total RNA assay protocol,
708 with concentration measured using a B-500 biophotometer. The extracted RNA underwent
709 reverse transcription after mixing with All-In-One RT-qPCR Mix, ds-DNase and nuclease-free
710 water, followed by cDNA synthesis via PCR instrumentation. Following centrifugation and

711 defoaming to prepare the qPCR reaction solution, amplification cycles were performed on a
712 sealed PCR plate to determine relative expression levels of osteogenesis-related marker
713 genes through quantitative analysis.

714
715 Fig. S1. FT-IR test results of $\text{g-C}_3\text{N}_4$ and $\text{Cu-g-C}_3\text{N}_4$ nanoparticles.

716
717 References

718 [1] J. Tang, J. Hu, X. Bai, Y. Wang, J. Cai, Z. Zhang, B. Geng, D. Pan, L. Shen, Nearinfrared
719 carbon dots with antibacterial and osteogenic activities for sonodynamic
720 therapy of infected bone defects, *Small* 20 (49) (2024) 2404900.
721 [2] J. Du, Y. Chu, Y. Hu, J. Liu, H. Liu, H. Wang, C. Yang, Z. Wang, A. Yu, J. Ran,
722 A multifunctional self-reinforced injectable hydrogel for enhancing repair of
723 infected bone defects by simultaneously targeting macrophages, bacteria, and bone
724 marrow stromal cells, *Acta Biomater.* 189 (2024) 232–253.
725 [3] W.J. Metsemakers, T.F. Moriarty, M. Morgenstern, L. Marais, J. Onsea, R.
726 V. O'Toole, M. Depypere, W.T. Obrembskey, M.H. Verhofstad, M. McNally, The
727 global burden of fracture-related infection: can we do better? *Lancet Infect. Dis.* 24

728 (6) (2024) e386–e393.

729 [4] N. Yan, H. Zhou, P. Jin, T. Li, Q. Liu, H. Ning, Z. Ma, L. Feng, T. Jin, Y. Deng,

730 A Multifunctional cobalt-containing implant for treating biofilm infections and

731 promoting osteointegration in infected bone defects through macrophage-mediated

732 immunomodulation, *Adv. Sci.* 12 (3) (2025) 2409200.

733 [5] J. Sun, W. Xie, Y. Wu, Z. Li, Y. Li, Accelerated bone healing via electrical

734 stimulation, *Adv. Sci.* 12 (24) (2025) 2404190.

735 [6] T. Wang, H. Ouyang, Y. Luo, J. Xue, E. Wang, L. Zhang, Z. Zhou, Z. Liu, X. Li,

736 S. Tan, Rehabilitation exercise-driven symbiotic electrical stimulation system

737 accelerating bone regeneration, *Sci. Adv.* 10 (1) (2024) eadi6799.

738 [7] K. Chen, B. Wu, D. Krahe, A. Vazquez, J.R. Siegenthaler, R. Rechenberg, W. Li, X.

739 T. Cui, T.D. Kozai, Potential of photoelectric stimulation with ultrasmall carbon

740 electrode on neural tissue: new directions in neurostimulation technology

741 development, *Adv. Funct. Mater.* 34 (41) (2024) 2403164.

742 [8] Y. Huang, K. Yao, Q. Zhang, X. Huang, Z. Chen, Y. Zhou, X. Yu, Bioelectronics for

743 electrical stimulation: materials, devices and biomedical applications, *Chem. Soc.*

744 *Rev.* 15 (11) (2024) 2403175.

745 [9] Y. Yao, X. Cui, S. Ding, K. Wang, M. Zhang, Advances in electrical materials for

746 bone and cartilage regeneration: developments, challenges, and perspectives, *Adv.*

747 *Sci.* (2025) 2411209.

748 [10] D. Xu, X. Wang, M. Li, L. Xie, K. Liu, Y. Liu, J. Lan, P. Han, H. Lin, L. Song,

749 Enhancing titanium-osteointegration: antimicrobial, anti-inflammatory and

750 osteogenic properties of multifunctional coatings through layer-by-layer selfassembly, *Appl.*
751 *Surf. Sci.* 686 (2025) 162149.

752 [11] M. Xie, T. Gong, Y. Wang, Z. Li, M. Lu, Y. Luo, L. Min, C. Tu, X. Zhang, Q. Zeng,
753 Advancements in photothermal therapy using near-infrared light for bone tumors,
754 *Int. J. Mol. Sci.* 25 (8) (2024) 4139.

755 [12] X. Yang, J. Peng, L. Zhao, H. Zhang, J. Li, P. Yu, Y. Fan, J. Wang, H. Liu, S. Dou,
756 Insights on advanced g-C₃N₄ in energy storage: applications, challenges, and
757 future, *Carbon Energy* 6 (4) (2024) e490.

758 [13] J. Pei, H. Li, D. Yu, D. Zhang, g-C₃N₄-based heterojunction for enhanced
759 photocatalytic performance: a review of fabrications, applications, and
760 perspectives, *Catalysts* 14 (11) (2024) 825.

761 [14] B. Zhang, S. Xia, Z. Wang, W. Li, B. Li, H. Zhang, Y. Xin, K. Wu, J. Ma, X. He,
762 Enhanced permanganate activation by g-C₃N₄ under visible light irradiation:
763 unraveled mechanism involving Mn (V) and photo-induced electron, *Appl. Catal. B*
764 *Environ. Energy* 349 (2024) 123861.

765 [15] G. Wu, Q. Wang, Q. Ren, Z. Mo, H. Xu, Molecular structure engineering of graphitic
766 carbon nitride for photocatalytic hydrogen evolution: recent advances and
767 perspectives, *Small* 22 (18) (2025) 2503954.

768 [16] D. Liu, M. Xiao, S. Jiang, J. Bai, R. Tao, Z. Chu, X. Fan, Y. Han, Fabricating CuO/gC₃N₄ films
769 to elucidate the critical role of surface state regulation in enhancing
770 photocathode performance, *Appl. Surf. Sci.* 692 (2025) 162687.

771 [17] J. Zhang, W. Wang, S. Huang, Y. Lv, M. Li, M. Wu, H. Wang, Metal-free
772 photocatalyst with reduced graphene oxide-doped graphitic carbon nitride

773 homojunctions for efficient antibacterial applications, RSC Adv. 15 (4) (2025)
774 2444–2451.

775 [18] M. Gao, M. Zhao, Q. Yang, L. Bao, L. Chen, W. Liu, J. Feng, A review on pre-, inprocess,
776 and post-synthetic strategies to break the surface area barrier in g-C₃N₄ for
777 energy conversion and environmental remediation, Nanomaterials 15 (13) (2025)
778 956.

779 [19] F. Zhou, W. Li, J. Wu, W. Yang, Y. Sun, H. Zhou, T. Jia, Y. Ling, P. He, W. Pan,
780 Enhanced solar-driven CO₂ conversion: the role of Yb-doped CuInS₂ quantum dots
781 on g-C₃N₄ nanosheets, Appl. Catal. B Environ. Energy 362 (2025) 124716.

782 [20] S. Deng, W.P. Xiong, G.X. Zhang, G.F. Wang, Y.X. Chen, W.J. Xiao, Q.K. Shi,
783 A. Chen, H.Y. Kang, M. Cheng, Metal-free modification overcomes the
784 photocatalytic limitations of graphitic carbon nitride: efficient production and in
785 situ application of hydrogen peroxide, Adv. Energy Mater. 14 (39) (2024)
786 2401768.

787 [21] Y. Wang, T. Chu, T. Jin, S. Xu, C. Zheng, J. Huang, S. Li, L. Wu, J. Shen, X. Cai,
788 Cascade reactions catalyzed by gold hybrid nanoparticles generate CO gas against
789 periodontitis in diabetes, Adv. Sci. 11 (24) (2024) 2308587.

790 [22] Y. Cai, M. Prochazkova, Y.-S. Kim, C. Jiang, J. Ma, L. Moses, K. Martin, V. Pham,
791 N. Zhang, S.L. Highfill, Assessment and comparison of viability assays for cellular
792 products, Cytotherapy 26 (2) (2024) 201–209.

793 [23] H. Li, X. Shuai, Y. Chen, J. Xiong, Z. Zou, S. Peng, F. Qi, C. Shuai, Engineering a
794 wirelessly self-powered neural scaffold based on primary battery principle to

795 accelerate nerve cell differentiation, *Colloids Surf. B Biointerfaces* 249 (2025)

796 114521.

797 [24] X. Zhang, S. Chen, F. Guo, Q. Jing, P. Huo, L. Feng, F. Sun, S. Chandrasekar, L. Hao,

798 B. Liu, A novel method for synthesizing specific surface area modulable g-C₃N₄

799 photocatalyst with maize-like structure, *Appl. Surf. Sci.* 651 (2024) 159224.

800 [25] B. Zhao, D. Gao, W. Zhong, F. Chen, P. Wang, X. Wang, H. Yu, Highly intra-and

801 inter-plane crystalline ReS_x/g-C₃N₄: facile synthesis and boosted photocatalytic H₂

802 evolution, *Chem. Eng. J.* 479 (2024) 147711.

803 [26] W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Simultaneously improving inter-plane

804 crystallization and incorporating K atoms in g-C₃N₄ photocatalyst for highly efficient H₂O₂

805 photosynthesis, *Acta Phys. Chim. Sin.* 40 (11) (2024) 2406005.

806 [27] H. Islam, B. Jaksani, A. Iqbal, S. Varangane, H.V. Annadata, B. Ghosh, B.B. Sarma,

807 R. Thapa, U. Pal, Atomically dispersed Cu–Ni dual-metal sites on g-C₃N₄ for

808 synergistic enhancement of photocatalytic hydrogen evolution, *ACS Appl. Energy*

809 *Mater.* 14 (35) (2025) 20254438.

810 [28] J. Nie, S. Yue, B. Li, J. Guo, C. Wu, Boosting piezo-catalytic H₂ production on gC₃N₄ via

811 carbon-ring doping to shorten in-plane charge transfer distance, *Ceram.*

812 *Int.* 16 (11) (2025) 20256127.

813 [29] S. Biswas, Y. Negishi, A comprehensive analysis of luminescent crystallized Cu

814 nanoclusters, *J. Phys. Chem. Lett.* 15 (4) (2024) 947–958.

815 [30] X. Xu, Y. Zhong, M. Wajrak, T. Bhatelia, S.P. Jiang, Z. Shao, Grain boundary

816 engineering: an emerging pathway toward efficient electrocatalysis, *InfoMat* 6 (8)

817 (2024) e12608.

818 [31] J. Huang, K. Geng, Y. Sun, Y. Wei, H. Hou, Electron localization engineering to
819 construct Cu single-atom bridges between g-C₃N₄ layers for regulating third-order
820 nonlinear optical properties, *Nano Today* 65 (2025) 102836.

821 [32] J. Qiu, D. Wang, Y. Chang, Q. Feng, Z. Liu, M. Pang, D. Meng, Y. Feng, C. Fan,
822 Anchoring single-atom Cu on tubular g-C₃N₄ with defect engineering for enhanced
823 Fenton-like reactions to efficiently degrade carbamazepine: performance and
824 mechanism, *Chem. Eng. J.* 479 (2024) 147841.

825 [33] W.T. Chen, H.W. Shiu, Y.X. Chen, E. Batsaikhan, Y.L. Lai, S.L. Cheng, T. Araki, J.
826 F. Lee, M. Hayashi, Y.J. Hsu, Highly selective toward HER or CO₂RR by regulating
827 Cu single and dual atoms on g-C₃N₄, *Adv. Funct. Mater.* 18 (35) (2025) e14183.

828 [34] S. Dwivedi, G. Pandey, Synergistic photocatalytic performance of MoO₃: Cu/gC₃N₄
829 heterojunction semiconductor for efficient crystal violet dye degradation: a
830 sustainable approach for environmental remediation, *J. Mol. Struct.* 1318 (2024)
831 139386.

832 [35] W. Zhang, M. Chen, Y. Luo, Y. He, S. Liu, Y. Ye, M. Wang, Y. Chen, K. Zhu, H. Shu,
833 Utilizing 2D layered structure Cu-g-C₃N₄ electrocatalyst for optimizing polysulfide
834 conversion in wide-temperature Li-S batteries, *Chem. Eng. J.* 486 (2024) 150411.

835 [36] S.P. Chenakin, N. Kruse, Surface composition and electronic properties of Co-Cu
836 mixed oxalates: A detailed XPS analysis, *Appl. Surf. Sci.* 669 (2024) 160460.

837 [37] C. Ding, L. Yang, X. Lu, H. Chi, Y. Yang, J. Yuan, X. Wang, X. Wu, Y. Zhang,
838 Y. Zhou, Outstanding CO₂ photoreduction in single-atom thulium modified carbon
839 nitride, *Adv. Sci.* 11 (38) (2024) 2406329.

840 [38] M. Shao, Y. Shao, H. Pan, Progress on enhancing the charge separation efficiency of
841 carbon nitride for robust photocatalytic H₂ production, *Phys. Chem. Chem. Phys.*
842 26 (15) (2024) 11243–11262.

843 [39] F. Attar, H. Yin, S.L. Schumann, J. Langley, N. Cox, Z. Zeng, K. Catchpole,
844 S. Karuturi, Z. Yin, Advanced electron paramagnetic resonance in chemical energy
845 conversion: current status and future potential, *Energy Environ. Sci.* 17 (10) (2024)
846 3307–3328.

847 [40] S.K. Kuila, D.K. Gorai, S. Agarwal, R. Sarkar, C.S. Tiwary, T.K. Kundu, Gd³⁺
848 encapsulation on 2D-g-C₃N₄ nanostructure for spintronics and ultrasound assisted
849 photocatalytic applications: first-principles and experimental studies, *Small* 20
850 (33) (2024) 2401670.

851 [41] X. Wang, Y. Li, R. Chu, Z. Zhang, W. Hou, L. Wang, L. Li, P. Zhang, Engineered an
852 organic Z-scheme heterojunction of cu porphyrin-COF/g-C₃N₄ with planar covalent
853 interaction for sustainable solar energy conversion, *Chem. Eng. J.* 16(13) (2025)
854 164922.

855 [42] C. Zhang, Y. Wang, W. Sun, Z. Hua, Z. Zhang, S. Gong, D. Wang, Y. Tian, Tailoring
856 non-covalent interaction via single atom to boost interfacial charge transfer toward
857 photoelectrochemical water oxidation, *Adv. Mater.* 37 (4) (2025) 2410632.

858 [43] X. Zhang, F. Wu, G. Li, L. Wang, J. Huang, A. Song, A. Meng, Z. Li, Dual electric
859 field coupling with tunable schottky barrier synergistically regulating electronic
860 configuration in CoP@Ni-CdS heterojunction for efficient photocatalytic H₂
861 evolution, *Adv. Funct. Mater.* 35 (2) (2025) 2412527.

862 [44] X. Wu, Q. Yan, H. Wang, D. Wu, H. Zhou, H. Li, S. Yang, T. Ma, H. Zhang,
863 Heterostructured catalytic materials as advanced electrocatalysts: classification,
864 synthesis, characterization, and application, *Adv. Funct. Mater.* 34 (42) (2024)
865 2404535.

866 [45] W. Zhang, L. Yang, Z. Li, G. Nie, X. Cao, Z. Fang, X. Wang, S. Ramakrishna, Y. Long,
867 L. Jiao, Regulating hydrogen/oxygen species adsorption via built-in electric fielddriven
868 electron transfer behavior at the heterointerface for efficient water splitting,
869 *Angew. Chem.* 136 (16) (2024) e202400888.

870 [46] X. Liang, X. Yang, J. Liu, L. Tu, W. Wei, H. Wang, M. Wu, L. Cai, Y. Zheng, Y. Chen,
871 ROS-scavenging bioactive scaffold orchestrates bone regeneration for osteoporotic
872 bone defect repair, *Compos. Part B Eng.* 281 (2024) 111528.

873 [47] D. Qin, C. Zhang, F. Qin, Y. Zhou, D. Huang, H. Wang, H. Luo, Q. Wang, L. Tang,
874 W. Li, Cu single atoms mediated multiple active site reconfiguration to trigger
875 Dual-pathway nonradical peroxymonosulfate activation process, *Chem. Eng. J.* 493
876 (2024) 152580.

877 [48] M. Kou, F. Qin, Y. Wang, L. Peng, Z. Hu, H. Zhao, Z. Zhang, Determination of
878 singlet oxygen quantum yield based on the behavior of solvent dimethyl sulfoxide
879 oxidation by singlet oxygen, *Anal. Chim. Acta* 1329 (2024) 343222.

880 [49] E.T.P. Ayala, F. Alves, I.S. e Carvalho, M. de Oliveira Souza, V.S. Bagnato, S.
881 Pratavieira, Assessing reactive oxygen species generation during
882 sonophotodynamic activity using chemical probes, *Optical Methods for Tumor*
883 *Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy*,

884 23(19) (2024) 202435-202444.

885 [50] Y. Yao, Z. Sun, T. Li, Z. Zhao, Z. Li, X. Lu, Y. Wan, Y. Fan, Z. Chen, Advances in the

886 STructure–activity Relationship of Electrocatalytic C-N coupling: from

887 nanocatalysis to single metal site catalysis, ACS Nano 19 (20) (2025)

888 18947–18975.

889 [51] M. Li, J. Zhou, R. Di, Z. Zhang, X. Mu, X. Wang, Y. Gu, L. Su, J. Liu, C. Liu,

890 Piezoelectric potential activated interfacial electric field in BiFeO₃@BaTiO₃

891 heterojunction for rapid and round-the-clock photocatalytic degradation of organic

892 pollutants, J. Adv. Ceram. 13 (12) (2024) 2030–2042.

893 [52] X. Yang, Z. Guo, Y. Xu, Z. Li, Y. Zhou, Z. Yang, Z. Zhou, Y. Gao, J. Zhang, In situ

894 preparation and visible-light-driven photocatalytic degradation performance of

895 nano 3C-SiC@multilayer graphene oxide heterostructure, Chem. Res. Chin. Univ.

896 40 (3) (2024) 536–547.

897 [53] H. Wang, X. Zhou, J. Su, Z. Liu, B. Xiao, L. Yang, J. Wang, Y. Li, X. Lu, X. Zhu, Spinstate

898 regulation of heteronuclear Cu-Co dual-atomic sites via tuning electronic

899 asymmetry for enhanced oxygen reduction, Chem. Eng. J. 506 (2025) 160020.

900 [54] Q. Liu, Y. Lan, H. Shi, Y. Shi, Q. Pan, D. Yang, T. Wang, Cu–Ni bimetallic nanowires

901 with various structures originating from Ni reduction kinetics, Nano Lett. 24 (38)

902 (2024) 11992–11999.

903 [55] T. Shan, S. Ke, X. Yang, X. Yang, B. Weng, L. Shen, M.Q. Yang, Efficient hole

904 extraction to reactive oxidation sites over a Co₃O₄/Cs₃Sb₂Br₉ pn heterojunction for

905 enhanced benzylic C(sp₃)-H bond oxidation, Appl. Catal. B Environ. Energy 361

906 (2025) 124602.

907 [56] H. Phuoc Toan, D.-V. Nguyen, P.D.M. Phan, N. Hoai Anh, P.P. Ly, M.-T. Pham, S.

908 H. Hur, T.D.T. Ung, D.D. Bich, M.C. Nguyen, Simultaneously utilizing excited holes

909 and electrons for piezoelectric-enhanced photoproduction of H₂O₂ from S-scheme

910 2D S-Doped VO_x/g-C₃N₄ nanostructures, ACS Appl. Mater. Interfaces 16 (22)

911 (2024) 29421–29438.

912 [57] H. Li, F. Qi, J. Xiong, G. Pan, X. Gao, J. Chen, T. Ye, J. Zan, W. Xiong, C. Lin,

913 Vacancy elimination enables scaffold with amplified photo-thermal-electric effect

914 to promote osteoblast differentiation, Mater. Today Chem. 47 (2025) 102807.

915 [58] Z. Li, Q. Yu, X. Cui, Y. Wang, R. Xu, R. Lu, J. Chen, X. Zhou, C. Zhang, L. Li,

916 Exosomes from young plasma stimulate the osteogenic differentiation and prevent

917 osteoporosis via miR-142-5p, Bioact. Mater. 49 (2025) 502–514.

918 [59] F. Wei, M. Hughes, M. Omer, C. Ngo, A.S. Pugazhendhi, E. Kolanthai, M. Aceto,

919 Y. Ghattas, M. Razavi, T.J. Kean, A multifunctional therapeutic strategy using P7C3

920 as a countermeasure against bone loss and fragility in an ovariectomized rat model

921 of postmenopausal osteoporosis, Adv. Sci. 11 (21) (2024) 2308698.

922 [60] S. Zhu, W. Chen, A. Masson, Y.P. Li, Cell signaling and transcriptional regulation of

923 osteoblast lineage commitment, differentiation, bone formation, and homeostasis,

924 Cell Discov. 10 (1) (2024) 71.

925 [61] L. Wang, M. Ruan, Q. Bu, C. Zhao, Signaling pathways driving MSC osteogenesis:

926 mechanisms, regulation, and translational applications, Int. J. Mol. Sci. 26 (3)

927 (2025) 1311.

928 [62] S. Li, X. Cai, J. Guo, X. Li, W. Li, Y. Liu, M. Qi, Cell communication and relevant
929 signaling pathways in osteogenesis-angiogenesis coupling, *Bone Res.* 13 (1) (2025)
930 45.

931 [63] Q. Han, F. Wang, Electroacupuncture at GB20 improves cognitive ability and
932 synaptic plasticity via the CaM-CaMKII-CREB signaling pathway following cerebral
933 ischemia–reperfusion injury in rats, *Acupunct. Med.* 42 (1) (2024) 23–31.

934 [64] M. Wu, S. Wu, W. Chen, Y.-P. Li, The roles and regulatory mechanisms of TGF- β
935 and BMP signaling in bone and cartilage