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Abstract

Cardiometabolic multimorbidity (CMM) has emerged as a major threat to health among older adults, yet the effects of air
pollution and physical activity on CMM remain insufficiently investigated. This study aimed to examine the associations
between air pollutant exposure, physical activity, and CMM risk, and to analyze the potential moderating and mediating
roles of physical activity in the relationship between pollutants and CMM. This study utilized data from the China Health
and Retirement Longitudinal Study (CHARLS) from 2015-2020, including 17,718 participants. We assessed exposure
levels to PM,s, PM,,, NO,, SO,, CO, and O,, and categorized physical activity into four levels (Q1-Q4) based on
metabolic equivalent quartiles. Cox regression models were employed to analyze the effects of pollutants and physical
activity metabolic equivalents on CMM, with restricted cubic splines for dose-response analysis. Additionally, Baron
& Kenny's method was applied to evaluate the mediating effect of physical activity. During the follow-up period, 741
participants developed CMM. After multivariate adjustment, all pollutants were significantly associated with increased
CMM risk, with SO, (HR=2.768, 95% CI: 2.526-3.033) showing the most significant impact. Higher levels of physical
activity demonstrated pronounced protective effects. Dose-response analyses revealed non-linear relationships between
pollutants and CMM (P for nonlinear < 0.001), while physical activity exhibited a protective non-linear relationship with
CMM (P for nonlinear = 0.037). Mediation analysis identified significant partial mediating effects of physical activity in
the relationships between pollutants (PM, 5, PM,,, NO,, and O;) and CMM, with mediation proportions ranging from
5.71% to 19.88%, with NO, showing the highest mediation proportion (19.88%). Long-term exposure to air pollutants
is significantly associated with increased CMM risk, while higher levels of physical activity confer substantial protective
effects. Pollutants may partially increase CMM risk indirectly by inhibiting physical activity.
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Introduction Valderas et al. 2009), has emerged as a major global public

health challenge. With accelerating global population aging,

Cardiometabolic multimorbidity (CMM), typically defined
as the coexistence of at least two cardiometabolic diseases
(such as heart disease, stroke, and diabetes) (Han et al. 2021,
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the incidence of CMM shows a continuous upward trend,
not only significantly increasing patients’ mortality risk but
also imposing a heavy burden on healthcare systems (Adair
et al. 2014; Zhang et al. 2019). Research indicates that
compared to those with a single disease, CMM patients may
have more than twice the risk of death, along with markedly
decreased quality of life (Zhang et al. 2019). Previous
studies have identified smoking, sedentary behavior, and
other behaviors as risk factors for CMM (Chudasama et al.
2020), but many other potential causes remain unexplored.
In recent years, environmental factors, especially air pol-
lution, have been recognized as important risk factors for
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cardiovascular and metabolic diseases. Numerous studies
have confirmed that long-term exposure to air pollutants is
associated with increased risk of individual diseases such
as coronary heart disease, stroke, and diabetes (Chudasama
et al. 2020; Ning et al. 2024). However, research on the
relationship between air pollutant exposure and the risk of
CMM development is relatively limited, particularly among
populations in developing countries. Specifically, the UREP
survey observed that for every 10 pg/m? increase in PM, 5
concentration, the risk of CMM increased by 2.2%—7.6%.
Similarly, a Chinese cohort study found that each 10 pg/
m® increase in PM, s concentration was associated with
a 17.9% increase in CMM risk (Chudasama et al. 2020).
Physical activity, as a modifiable lifestyle factor, plays an
important role in preventing and managing cardiometabolic
diseases. Many studies have found that sufficient physical
activity can reduce inflammation levels, enhance insulin
sensitivity, and improve lipid metabolism, thereby reduc-
ing the incidence of cardiovascular disease and diabetes
(German et al. 2021; Valenzuela et al. 2023). However, the
complex relationship among air pollution, physical activity,
and CMM risk has not been thoroughly studied, particularly
the potential moderating and mediating effects of physical
activity in the relationship between air pollution and CMM.

To address these gaps, this study utilizes longitudinal fol-
low-up data from the China Health and Retirement Longitudi-
nal Study (CHARLS) to investigate the associations between
air pollutant exposure, physical activity levels, and CMM
risk, and to analyze the potential moderating and mediating
roles of physical activity in the relationship between pollut-
ants and CMM. Our results will provide important evidence
for understanding the comprehensive impact of environmen-
tal factors and physical activity on cardiometabolic health in
older adults, and provide scientific basis for developing more
effective public health intervention strategies.

Materials and methods
Research subjects

This study utilizes data from the China Health and Retirement
Longitudinal Study (CHARLS) for analysis. CHARLS began
in 2011, with its survey coverage spanning 125 cities across
China and follow-up visits conducted every 2-3 years. The
design concept and methodological framework of this survey
have been detailed in relevant literature (Zhao et al. 2014).
The research protocol was approved by the Ethics Review
Committee of Peking University (IRB00001052-11015),
with all respondents providing written informed consent. The
research procedures strictly adhered to the ethical guidelines
stipulated in the 1964 Declaration of Helsinki.
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As the CHARLS database only comprehensively col-
lected physical activity-related data between 2015 and
2020, this study selected tracking data from three time
points—2015, 2018, and 2020—for longitudinal analysis
(K. Zhang et al. 2025a, b; Zhou et al. 2023). The initial
sample included 25,419 participants. We extracted key vari-
ables including demographic characteristics (gender, age,
etc.), health behaviors (smoking, alcohol consumption sta-
tus), chronic diseases (heart disease, stroke, diabetes), and
physical activity. The study excluded participants diagnosed
with cardiovascular diseases or diabetes at baseline (3,131
individuals), those younger than 45 years of age, and par-
ticipants with missing environmental factors and baseline
information, ultimately including 17,718 subjects for analy-
sis (Figure S1).

Assessment of physical activity

The CHARLS questionnaire categorizes physical activity
into vigorous activity (such as lifting weights, digging),
moderate-intensity activity (such as cycling, mopping),
and light activity/walking (including walking during work,
housework, and daily travel). The metabolic equivalent
(MET) values for these three types of physical activities
are 8.0, 4.0, and 3.3 METs/hour, respectively (Ding et al.
2021; Tian And Shi 2022). Subjects reported the frequency
and duration of each activity per week, with duration clas-
sified into five levels: 0 min, 10-29 min, 30-119 min,
120-239 min, and >240 min. We calculated the total
metabolic equivalent per week (Total MET-minutes/week)
using the formula “MET value x duration (minutes, using
the median value of each interval) x weekly frequency.
(Ainsworth et al. 2000)” Specifically, the five duration
intervals used 0, 20, 75, 180, and 300 min, respectively,
as the basis for calculation. Based on quartile analysis,
participants were divided into four physical activity level
groups: Q1 group (<1732.5 MET-min/week, as the refer-
ence group), Q2 group (1732.6-4158 MET-min/week),
Q3 group (4158.1-9864 MET-min/week), and Q4 group
(>9864 MET-min/week).

Definition of CMM

Our study defines Cardiometabolic Multimorbidity (CMM)
as having at least two of the three cardiometabolic diseases:
heart disease, stroke, and diabetes (Xie et al. 2022; Zhu et al.
2023). Disease status assessment was based on self-reported
information from subjects, determined through standardized
questionnaires asking, “Has a doctor ever informed you that
you have heart disease, stroke, or diabetes/elevated blood
sugar (including impaired glucose tolerance and elevated
fasting blood glucose)?”
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Environmental exposure assessment

Data for PM, 5, PM,,, NO,, SO,, CO, and O; were sourced
from the China High Air Pollutants (CHAP) dataset (Wei,
Li, Lyapustin, et al. 2021; Wei et al. 2023; Wei, Li, Xue, et
al. 2021; Yang et al. 2025). This dataset was constructed
by integrating dense ground-based observation networks,
satellite remote sensing, atmospheric reanalysis,
and multi-model simulation data. The study utilized
monitoring data from 2015 to 2020, with PM, 5, PM,,,
and O; having a high spatial resolution of 1 km X% 1 km,
while NO,, SO,, and CO had a spatial resolution of 10 km
x 10 km. The coefficient of determination (R?) obtained
through ten-fold cross-validation for each pollutant
indicator ranged between 0.74 and 0.93, indicating good
reliability and predictive capability of the data. The study
estimated pollutant concentration data at the city level
based on participants’ residential addresses and calculated
the average exposure levels during the one-year period
before the start or end of the study.

Covariates

This study incorporated multiple covariates based on
previous research (Chen et al. 2023; Peng et al. 2024),
including demographic characteristics (age, gender),
body mass index (BMI), socioeconomic factors (educa-
tion level, marital status, place of residence, retirement
status), geographical location, and lifestyle habits (smok-
ing, alcohol consumption). Additionally, information on
sleep duration, mental health (depression score), and his-
tory of chronic diseases (hypertension and pulmonary dis-
ease) was collected. These variables were primarily used
for subsequent sensitivity analyses to verify the robust-
ness of the model results.

Statistical analysis

We applied repeated measures ANOVA for continuous
variables (such as age, pollutant concentrations, physi-
cal activity) and chi-square tests for categorical variables
(such as gender, smoking, residence) to analyze baseline
characteristics.

We employed Cox proportional hazards regression
models with time-varying exposures to quantify the
relationship between air pollutants (PM,s, PM;,, NO,,
SO,, CO, and O,), physical activity metabolic equivalents,
and CMM risk. We established three different models.
Model 1 was a crude model without adjustments. Model 2
adjusted for age, gender, and BMI. Model 3 further adjusted
for education level, marital status, place of residence,

retirement status, geographical location, smoking, and
alcohol consumption variables. Furthermore, we conducted
stratified analyses by physical activity levels (Q1-Q4),
testing the strength of association between environmental
exposure and CMM risk in each stratum to verify the
moderating effect of physical activity. We assessed the
interaction effects between pollutants and physical activity
by adding interaction terms to the models.

To evaluate the non-linear relationships between air
pollutants (PM, 5, PM,,, NO,, SO,, CO, and O;), physi-
cal activity metabolic equivalents, and CMM risk, we
employed Restricted Cubic Splines (RCS) for dose-
response analysis. The knots in the RCS models were
placed at the 10th, 50th, and 90th percentiles of the vari-
able distribution, with the 10th percentile serving as the
reference point. Additionally, RCS analyses were con-
ducted for all pollutants across different physical activity
levels to assess whether the dose-response relationships
between pollutants and CMM changed across different
physical activity levels.

We analyzed whether PM, s, PM,, NO,, and O, affected
CMM risk through the mediation of physical activity, apply-
ing the Baron & Kenny stepwise method for evaluation
(Baron And Kenny 1986; Birhanu et al. 2022). Direct effects
reflected the independent impact of pollutants on CMM,
while indirect effects demonstrated the pathway through
which pollutants influenced CMM via physical activity.
The mediation proportion was calculated to determine the
strength and relative importance of physical activity in the
process of pollutant-induced CMM.

Sensitivity analyses

We conducted several sensitivity analyses to test the
robustness of the results. First, we reassessed the model
results by separately adding four covariates, which included
hypertension, lung disease, sleep duration, and depression
score. Second, we conducted a nested case-control study
using the current dataset, where participants with CMM
were assigned to the case group, while the control group
was selected through propensity score matching with a
caliper value of 0.02 and a matching ratio of 1:3. Factors
considered during the matching process included age,
gender, BMI, education level, marital status, residence,
retirement status, geographical location, smoking,
hypertension, lung disease, sleep duration, and alcohol
consumption. Third, to address potential concerns about
the validity of quartile-based classification thresholds, we
reassessed the association using the International Physical
Activity Questionnaire (IPAQ) classification standards
(Chu et al. 2015; Macfarlane et al. 2011; Mou et al. 2025).
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Participants were categorized into three levels of activity:
low level (<600 MET-minutes/week), moderate level
(600-3000 MET-minutes/week), and high level (>3000
MET-minutes/week). Fourth, to validate the robustness of
our mediation analysis findings, we conducted sensitivity
analysis using bootstrap methods with 10,000 resampling
iterations to calculate bias-corrected confidence intervals
for indirect effects, complementing our primary Baron &
Kenny approach (Mackinnon et al. 2004).

All statistical analyses were performed using R software
(version 4.4.1), with P value<0.05 considered statistically
significant.

Results

We recruited a total of 17,718 participants with a total
follow-up time of 35,198 person-years, among which
741 individuals (4.2%) had CMM (Table 1 and Table
S1). The mean age of the CMM group (64.87+9.16
years) was significantly higher than the non-CMM group
(61.13£9.66 years) (P<0.001), while BMI showed no
significant difference between the two groups (P=0.084).
Regarding environmental exposure, except for CO, other
pollutants showed significant differences between the
two groups (P<0.05). In terms of physical activity, the
total metabolic equivalent (MET) in the CMM group
(4438.57+£5051.17) was significantly lower than in
the non-CMM group (6476.22+6257.24) (P<0.001).
The proportion of people with the lowest activity level

(Ql) was higher in the CMM group (44.5%), while
the proportion of people with the highest activity level
(Q4) was lower (13.1%) (P<0.001). Table S2 shows the
Spearman correlations between all pollutants, indicating
strong positive correlations among them. Among these,
PM, 5, PM,,, and NO, had correlation coefficients greater
than 0.8, showing stronger correlations.

Table 2 demonstrates the association between air
pollutants and CMM risk. In three progressively adjusted
Cox models, all studied pollutants were significantly
associated with CMM risk (P<0.001). In model 3, PM,
(HR=1.444, 95% CI: 1.386-1.504), NO, (HR=1.620,
95% CI: 1.517-1.731), and SO, (HR=2.768, 95% CI:
2.526-3.033) showed strong associations with CMM
risk, while PM,, (HR=1.103, 95% CI: 1.092-1.115) and
O; (HR=1.107, 95% CI: 1.055-1.161) showed relatively
weaker associations. Each 1 pg/m® increase in CO
(HR=1.712,95% CI: 1.600-1.831.600.831) was associated
with a 71.2% increase in risk. Overall, long-term exposure
to air pollutants was significantly associated with CMM
risk, with SO, showing the highest risk.

Table 3 shows the association between physical
activity levels and CMM. In model 3, compared to Q1,
all higher levels of physical activity were significantly
associated with reduced CMM risk. Q2 physical activity
level was associated with a 17.4% reduction in CMM risk
(HR=0.826, 95% CI: 0.722-0.945, P=0.005), Q3 level
was associated with a 33.5% reduction (HR=0.665, 95%
CI: 0.577-0.766, P<0.001), while the highest activity level
Q4 was associated with a 49.3% reduction (HR=0.507,

Table 1 Baseline characteristics

Characteristic Overall CMM p-value
of participants No Yes

Population, n

No. of participants 17,718 16,977 741

Demographic factors, mean (SD)

Age (years) 61.28(9.67) 61.13(9.66) 64.87(9.16) <0.001

BMI (kg/m?) 22.14(2.98) 22.13(2.97) 22.33(3.06) 0.084
Abbreviations: CMM, cardio- Environmental factors, mean (SD)
metabolic multimorbidity; PM, s, PM, 36.67(13.52) 36.57(13.50) 38.76(13.92) <0.001
atmospheric particulate matter  ppp o 64.90(30.90) 64.64(30.53) 70.72(37.99) <0.001
Zvr“eh 3§I?§§C5dﬁiﬁit§feﬁithan NO, 24.44(8.34) 24.39(8.31) 25.51(8.97) <0.001
PME’ atmosﬁheric particuléw SO, 13.86(7.26) 13.89(7.32) 13.19(5.75) 0.01
matter with a kinetic diameter co 0.84(0.20) 0.84(0.20) 0.83(0.19) 0.178
less than or equal to 10 microme-  Os 96.09(11.48) 95.95(11.45) 99.51(11.74) <0.001
ters; NO,, nitrogen dioxide; SO,,  Physical Activity
sulphur dioxide; CO, carbon Total MET, mean (SD) 6391.00(6224.76) 6476.22(6257.24) 4438.57(5051.17) <0.001
monoxide; O;, ozone Physical Activity Group, n (%)
Age, BMI and environmental Q1 (<1732.5) 5484(31.0) 5154(30.4) 330(44.5) <0.001
factors are presented as mean Q2 (1732.6-4158) 3622(20.4) 3457(20.4) 165(22.3)
(standard) deviation; other vari- 4 ) 56 1 gg4) 4182(23.6) 4033(23.8) 149(20.1)
ables are presented as numbers
(percentages) Q4 (>9864) 4430(25.0) 4333(25.5) 97(13.1)
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Table 2 Associations between PM, 5, PM,,, NO,, SO,, CO, O; and CMM
Exposure Model 1 Model 2 Model 3

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value
PM, s 1.415 (1.359, 1.474) <0.001 1.434 (1.377, 1.494) <0.001 1.444 (1.386, 1.504) <0.001
PM,, 1.107 (1.095, 1.118) <0.001 1.110 (1.098, 1.122) <0.001 1.103 (1.092, 1.115) <0.001
NO, 1.607 (1.506, 1.716) <0.001 1.639 (1.535, 1.751) <0.001 1.620 (1.517, 1.731) <0.001
SO, 2.619 (2.391, 2.868) <0.001 2.714 (2.478,2.971) <0.001 2.768 (2.526, 3.033) <0.001
Cco 1.649 (1.544, 1.763) <0.001 1.693 (1.583, 1.810) <0.001 1.712 (1.600, 1.831) <0.001
(O 1.087 (1.037, 1.141) <0.001 1.106 (1.055, 1.160) <0.001 1.107 (1.055, 1.161) <0.001

Model 1, crude model;

Model 2, adjusted for age, gender, BMI;

Model 3, adjusted for age, gender, BMI, marital status, Retirement status, residence, education level, region, smoking and drinking.

Abbreviations: CMM, cardiometabolic multimorbidity; PM, 5, atmospheric particulate matter with a kinetic diameter less than or equal to 2.5
micrometers; PM,,, atmospheric particulate matter with a kinetic diameter less than or equal to 10 micrometers; NO,, nitrogen dioxide; SO,,
sulphur dioxide; CO, carbon monoxide; O3, ozone; HR, hazard ratio; CI, confidence interval

Table 3 Association between physical activity levels and CMM. Physical activity was categorized as Q1 (<1732.5 MET-min/week, reference), Q2
(1732.6-4158 MET-min/week), Q3 (4158.1-9864 MET-min/week) and Q4 (>9864 MET-min/week)

Physical activity Model 1 Model 2 Model 3

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value
Level
Ql 1 Ref 1 Ref 1 Ref
Q2 0.805 (0.705, 0.919) 0.001 0.852 (0.745, 0.974) 0.019 0.826 (0.722, 0.945) 0.005
Q3 0.589 (0.512, 0.678) <0.001 0.647 (0.562, 0.745) <0.001 0.665 (0.577, 0.766) <0.001
Q4 0.393 (0.334, 0.463) <0.001 0.462 (0.391, 0.545) <0.001 0.507 (0.429, 0.600) <0.001
P for trend <0.001 <0.001 <0.001

95% CI: 0.429-0.600.429.600, P<0.001). Trend tests
showed a significant downward trend in CMM risk with
increasing levels of physical activity (P for trend<0.001).
This suggests that higher levels of physical activity may
have a protective effect against CMM.

Figure 1 illustrates the non-linear dose-response rela-
tionship between air pollutants and CMM. All studied pol-
lutants showed statistically significant overall associations
with CMM risk (P for overall<0.001), and these associations
exhibited non-linear characteristics (P for nonlinear<0.001).
Figure 2 reveals a significant protective dose-response rela-
tionship between physical activity and CMM, with CMM
risk showing a non-linear downward trend as weekly total
metabolic equivalents increased (P for overall<0.001, P for
nonlinear=0.037), indicating that physical activity has a pro-
tective effect on cardiometabolic health. In the interaction
analysis between physical activity levels and pollutant expo-
sure (Figure S2-7), we found that in all physical activity level
groups (Q1-Q4), increases in all pollutant concentrations
except O; were associated with increased CMM risk (P for
overall<0.05). PM,,, SO,, and CO showed non-linear char-
acteristics in Q2-Q4 groups (P for nonlinear<0.05).

Figure 3 shows the association between air pollutants and
CMM risk at different physical activity levels (P<0.001).
For PM, 5 and PM,,, CMM risk increased with higher phys-
ical activity levels. For PM, s, the risk in the Q4 group (HR:

1.395, 95% CI: 1.224-1.591) was higher than in the Q1
group (HR: 1.276, 95% CI: 1.188-1.371). For SO,, NO,,
and CO, CMM risk was highest in the Q2 group. The impact
of SO, on CMM risk was most significant, with the HR in
the Q2 group at 2.701 (95% CI: 2.184-3.341), higher than
other groups. The HRs for NO, and CO were 1.493 (95%
CI: 1.293-1.724) and 1.639 (95% CI: 1.415-1.897), respec-
tively. The HR for O in the Q1 group was 0.918 (95% CI:
0.847-0.995, P=0.038), while it did not reach statistical
significance in other activity level groups. However, inter-
action analysis indicated that the interactions between pol-
lutants and physical activity levels did not reach statistical
significance (P interaction>0.05).

We conducted mediation analysis on the relationships
between PM, 5, PM,y, NO,, O3 and CMM risk, with physi-
cal activity as a mediator (Fig. 4). We observed that PM, s,
PM,,, NO,, and O; had significant mediating effects on
CMM incidence through physical activity (P <0.001), with
mediation proportions ranging from 5.71% to 19.88%.
NO, had the highest mediation proportion (19.88%), while
O; had the lowest (5.71%). The mediation proportions
for PM, s and PM,, were 15.87% and 13.45%, respec-
tively. All pollutants showed significant direct effects on
CMM (P<0.001), with O; having the highest direct effect
(0.0277). These results suggest that pollutants may par-
tially increase CMM risk by inhibiting physical activity.
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Fig. 1 Dose-response relationships between PM, 5, PM, 5, NO,, SO,, CO, O3 and CMM. Models were adjusted for age, gender, BMI, marital status,
retirement status, residence, education level, place of residence, smoking status, and alcohol consumption

Fig.2 Dose-response relation- PA and CMM
ships between physical activ-
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Sensitivity analysis verified the robustness of our  including 1,423 new CMM cases and matching 4,234 par-
study. After adding other covariates in model 3, all pol- ticipants without CMM as controls at a ratio of 1:3. We
lutants still showed significant associations with CMM  found that except for O;, the results for other pollutants
(Table S3). We conducted a nested case-control study,  were generally consistent with the main analysis results
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Pollutant PA Level HR (95%CI) P value P for interaction
PMb 5
Ql 1.276 (1.188, 1.371) = <0.001 Ref
Q2 1.370 (1.246, 1.508) -+ <0.001 0.191
Q3 1.335(1.202, 1.482) - <0.001 0.52
Q4 1.395 (1.224, 1.591) - <0.001 0.232
PMio
Ql 1.073 (1.053, 1.094) m <0.001 Ref
Q2 1.079 (1.052, 1.106) Bl <0.001 0.606
Q3 1.079 (1.048, 1.112) ] <0.001 0.882
Q4 1.112 (1.073, 1.152) o <0.001 0.134
NO:
Ql 1.356 (1.217, 1.512) - <0.001 Ref
Q2 1.493 (1.293, 1.724) - <0.001 0.285
Q3 1.402 (1.198, 1.641) —— <0.001 0.867
Q4 1.424 (1.163, 1.743) —— 0.001 0.708
SO:
Ql 2.244 (1.913, 2.633) —a— <0.001 Ref
Q2 2.701 (2.184, 3.341) —8— <0.001 0.122
Q3 2.442 (1.959, 3.043) —— <0.001 0.278
Q4 2.371 (1.771, 3.175) —am— <0.001 0.602
CO
Ql 1.364 (1.220, 1.524) - <0.001 Ref
Q2 1.639 (1.415, 1.897) —— <0.001 0.061
Q3 1.579 (1.346, 1.851) —— <0.001 0.175
Q4 1.411 (1.138, 1.750) —— 0.002 0.707
0O;
Ql 0.918 (0.847, 0.995) = 0.038 Ref
Q2 0.948 (0.850, 1.057) o 0.337 0.539
Q3 0.914 (0.813, 1.029) = 0.137 0.988
Q4 0.956 (0.819, 1.117) | - | | 0.571 0.558
0 1 2 3

Fig. 3 Risk for diabetes incidence associated with PM, 5, PM,,, NO,, SO,, CO, Oj stratified by physical activity levels. Models were adjusted for
age, gender, BMI, marital status, retirement status, residence, education level, place of residence, smoking status, and alcohol consumption

(Table S4). When using IPAQ classification standards, the
results were generally consistent with the main quartile-
based analysis, with moderate level (HR: 0.760, 95% CI:
0.654-0.884) and high level (HR: 0.617, 95% CI: 0.537—
0.709) physical activity both showing significant protec-
tive effects against CMM compared to low level activity

(Table S5). Bootstrap sensitivity analysis with 10,000
iterations yielded results consistent with the Baron &
Kenny approach, confirming significant mediation effects
for all pollutants with indirect effects ranging from 0.0181
to 0.0216 and mediation proportions ranging from 8.72%
to 13.67% (Figure S8).
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A Mediation Effect = 0.0013
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B Mediation Effect = 0.0006
P-value < 0.0001

Mediation Proportion =
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Mediation Effect = 0.0022
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Mediation Proportion =
5.71%
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Fig. 4 Mediation analysis of physical activity in the association between PM, 5, PM,,, NO,, O; and CMM

Discussion

Based on CHARLS data, we explored the complex relation-
ship between air pollutant exposure, physical activity levels,
and CMM risk. Our results indicate that long-term exposure
to air pollutants increases CMM risk, while higher levels
of physical activity can reduce CMM risk. Additionally, we
found that physical activity has a partial mediating effect in
the relationship between pollutants and CMM.

Previous studies have confirmed an association between
pollutants and increased risk of CMM (Cui et al. 2024; Jiang
et al. 2023; Peng et al. 2024; Zou et al. 2023). A prospec-
tive cohort study from China found that for every 10 pg/
m? increase in PM, 5, CMM risk increased by 17.9% (Peng
et al. 2024). A UK Biobank study found that for each IQR
increase in PM, 5, PM,,, and NO,, the risk of CMM mor-
tality increased by 11% (—2% to 26%), 22% (7% to 38%),
and 33% (17% to 51%) (Jiang et al. 2023), respectively.
Two other studies also found similar associations (Cui et al.
2024; Zou et al. 2023). Furthermore, our research provides
strong evidence for the protective effect of physical activity
against CMM. Two UK Biobank studies showed that mod-
erate to high-intensity physical activity could reduce the
risk of coexistence of diabetes and cardiovascular disease
(Liu et al. 2023; Wang et al. 2025).

@ Springer

Regarding the potential mechanisms by which CMM
is affected by pollutants and physical activity, relatively
few studies currently exist. Most perspectives suggest that
particulate matter can cross the alveolar-blood barrier into the
bloodstream, triggering systemic oxidative stress responses,
disrupting cardiac function, and accelerating atherosclerosis
(Fiordelisi et al. 2017; Fouladi et al. 2020; Haberzettl et al.
2016). Gaseous pollutants can activate the autonomic nervous
system, increase sympathetic nervous activity, causing
vasoconstriction and reduced heart rate variability (Beckett
et al. 1985; Felber Dietrich et al. 2008). Pollutants may
influence gene expression through epigenetic mechanisms.
PM, 5 exposure can alter DNA methylation patterns, leading
to long-term metabolic disorders (Lei et al. 2019). The
protective effect of physical activity on CMM may involve
multiple interrelated molecular and cellular mechanisms.
Moderate physical activity can significantly improve
endothelial function, enhance the body’s antioxidant capacity,
and reduce oxidative stress damage (Salem et al. 2025; Zhang
etal. 2025a, b). Additionally, in terms of metabolic regulation,
physical activity can promote mitochondrial biogenesis and
improved function, enhance insulin sensitivity, promote
energy metabolism, and regulate lipid transport (Melmen et
al. 2025; Sepehri et al. 2025). However, the exact mechanisms
merit clarification in future research.
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Regarding whether physical activity in polluted air
environments remains beneficial, controversy still exists
(D’Oliveira et al. 2023; Tainio et al. 2021). A Chinese study
found that long-term exercise could partially mitigate the
negative impact of pollutant exposure on ischemic heart
disease (Raza et al. 2021). A UK Biobank study found that
physical activity provided benefits for diabetes patients
at different pollution levels, but like our research results,
did not observe an interaction between pollutants and
physical activity (Li et al. 2022). Similar to our findings, a
SALSA study found that in populations with higher levels
of outdoor physical activity, each 10 ppb increase in O,
concentration increased diabetes risk by 52% (Yu et al.
2021). Notably, O; demonstrated a unique pattern where
overall analysis indicated increased CMM risk, yet stratified
analysis revealed protective effects only in the lowest
physical activity group, suggesting effect modification by
activity levels. This may reflect O;’s dual role whereby
potential hormetic benefits occur at low exposure during
minimal exertion, while enhanced respiratory uptake during
increased activity overwhelms protective mechanisms
(Devlin et al. 2012; Juneja Gandhi et al. 2022; Yu et al.
2021). These differences may be related to factors such
as study population characteristics, pollutant composition,
and physical activity measurement methods. In our study,
we found that in the high physical activity level group, the
risk effects of some pollutants (such as PM, 5 and PM,,)
on CMM were slightly higher than in the low activity level
group, suggesting that when engaging in vigorous activity in
highly polluted environments, the body’s intake of pollutants
may increase, potentially offsetting some of the benefits of
physical activity. This phenomenon can be explained by the
physiological changes during exercise: physical activity
increases minute ventilation by 10-20 fold compared
to resting state, with concurrent increases in respiratory
rate and tidal volume, leading to enhanced deposition of
inhaled pollutants in both upper and lower respiratory tracts
(Carlisle And Sharp 2001; Daigle et al. 2003). Additionally,
during exercise, individuals tend to shift from nasal to oral
breathing, bypassing the natural filtration mechanisms of the
nasal cavity and allowing greater penetration of fine particles
into the lungs (Rundell And Caviston 2008; Rundell et al.
2008). Furthermore, exercise-induced bronchodilation and
increased alveolar ventilation may enhance the absorption
and systemic distribution of gaseous pollutants and ultrafine
particles (Miller et al. 2017; Tainio et al. 2021). An intriguing
paradox emerged in our findings regarding SO, exposure.
The CMM group exhibited lower mean SO, levels, yet
SO, showed the highest hazard ratio among all pollutants.
Several explanations may account for this discrepancy.
First, a “healthy survivor effect” may exist whereby high-
risk individuals in heavily polluted areas have relocated or

already progressed to severe disease stages (Pearce et al.
2007). Second, CMM patients may intentionally reduce
outdoor activities during high-pollution periods, lowering
measured exposure (An et al. 2018). Third, SO, may
co-occur with unmeasured pollutants in industrial regions
(Thurston et al. 2017). Fourth, SO, may exhibit steeper dose-
response relationships at lower concentrations compared to
particulate matter (Orellano et al. 2021). Fifth, city-level
exposure assessment may introduce misclassification due
to SO,’s heterogeneous spatial distribution (Peng et al.
2006; Wu et al. 2020). Finally, residual confounding from
socioeconomic factors and healthcare access cannot be
excluded. These findings underscore the need for future
studies with individual-level exposure assessment and
comprehensive  co-pollutant measurements. Through
mediation analysis, we discovered for the first time that
physical activity has a partial mediating effect in the
relationship between pollutants and CMM, with mediation
proportions ranging from 5.71% to 19.88%. This finding
has received little attention in previous research. Pollutants
may affect physical activity through multiple pathways. On
one hand, polluted weather may lead to recommendations
to reduce outdoor activities, increasing sedentary behavior
(An et al. 2019; Zhan et al. 2023). On the other hand, long-
term exposure to pollutants may damage respiratory system
function, leading to decreased exercise endurance, thereby
limiting physical activity capacity (Madureira et al. 2019).

This study has several significant advantages. First, it
is based on a large-scale nationally representative cohort
data, including 17,718 middle-aged and elderly people
from 125 cities across China, with a large sample size and
strong representativeness. Second, it included multiple air
pollutant indicators, comprehensively assessed the impact
of environmental exposure, and explored the moderating
role of physical activity. Fourth, it employed mediation
analysis to investigate potential mechanisms by which pol-
lutants affect CMM.

This study also has some limitations. First, the assess-
ment of disease and physical activity was based on self-
reporting, which may involve recall bias and underestimate
the actual impact. Additionally, CMM status lacked clinical
or biochemical validation, potentially missing undiagnosed
cases. Second, due to data limitations, the study could not
distinguish between indoor and outdoor physical activity,
which may have significant differences in terms of pollu-
tion exposure. Additionally, air pollution exposures were
not assessed at the individual level but estimated using city-
level data based on residential addresses, which could lead to
non-differential misclassification of exposure. However, this
should typically bias pollutant-related health impacts towards
the null directions. Third, this exposure assessment approach
also did not account for indoor pollution sources, individual
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mobility patterns, and occupational exposures. Fourth, sev-
eral potential confounding factors were not adjusted for,
including dietary factors and healthcare accessibility, which
may influence both physical activity and CMM risk.

Conclusion

We found that long-term exposure to air pollutants is signifi-
cantly associated with increased risk of CMM, while higher
levels of physical activity have a significant protective
effect. Furthermore, physical activity has a partial mediat-
ing effect in the relationship between pollutants and CMM,
suggesting that pollutants may indirectly affect health by
inhibiting physical activity. These findings emphasize the
dual importance of improving environmental quality and
promoting appropriate physical activity in preventing car-
diometabolic multimorbidity.

Future research should focus on mechanistic studies
to elucidate biological pathways linking air pollutants,
physical activity, and cardiometabolic health, as well as
intervention trials examining whether structured exercise
programs can mitigate pollution-related health risks. From
a public health perspective, integrated policies simulta-
neously addressing environmental quality and physical
activity promotion are needed. Future guidelines should
consider pollution levels when recommending outdoor
activities, and personalized interventions accounting for
individual exposure and activity capacity may optimize
disease prevention strategies.
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