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Abstract—Change detection (CD) is important for Earth
observation, emergency response and time-series understanding.
Recently, data availability in various modalities has increased
rapidly, and multimodal change detection (MCD) is gaining
prominence. Given the scarcity of datasets and labels for MCD,
unsupervised approaches are more practical for MCD. However,
previous methods typically either merely reduce the gap between
multimodal data through transformation or feed the original
multimodal data directly into the discriminant network for
difference extraction. The former faces challenges in extracting
precise difference features. The latter contains the pronounced
intrinsic distinction between the original multimodal data; direct
extraction and comparison of features usually introduce
significant noise, thereby compromising the quality of the
resultant difference image. In this article, we proposed the MaCon
framework to synergistically distill the common and discrepancy
representations. The MaCon framework unifies mask
reconstruction (MR) and contrastive learning (CL) self-supervised
paradigms, where the MR serves the purpose of transformation
while CL focuses on discrimination. Moreover, we presented an
optimal sampling strategy in the CL architecture, enabling the CL
subnetwork to extract more distinguishable discrepancy
representations. Furthermore, we developed an effective silent
attention mechanism that not only enhances contrast in output
representations but stabilizes the training. Experimental results
on both multimodal and monomodal datasets demonstrate that the
MaCon framework effectively distills the intrinsic common
representations between varied modalities and manifests state-of-
the-art performance across both multimodal and monomodal CD.
Such findings imply that the MaCon possesses the potential to
serve as a unified framework in the CD and relevant fields. Source
code will be publicly available once the article is accepted.

Index Terms—Self-supervised learning, mask reconstruction,
contrastive learning, multimodal data, change detection,
unsupervised learning, remote sensing, Earth observation
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Fig. 1. Overview of the MaCon framework. The green and lines denote
the flow of the MR and CL subnetworks, respectively. The gray dashed line
represents stopping gradient backpropagation. The meaning of these symbols
is the same in all figures. The CL encoder, MR encoder and decoder can be
most mainstream architectures like CNN or Transformer.

1. INTRODUCTION

hange detection (CD) aims to characterize the information

differences between multi-temporal images of the same
area, and use these to identify the spatial changes[1], [2]. At
present, CD is a common task in the field of image vision and
perception [3], [4], as well as an important topic in remote
sensing (RS) and Earth observation [5], [6]. Traditional CD is
performed on monomodal images, namely, monomodal CD [7],
[81, [9]. Recently, the amount of data in various modalities has
increased rapidly with the development of different types and
numbers of sensors and platforms [10], [11], [12], [13].
Researchers found that the availability and quality of
monomodal data are often limited in specific scenarios.
Additionally, many practical applications require fine temporal
resolution, such as military reconnaissance, rescue and
assessment of disasters, whereas acquiring multi-temporal
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monomodal data requires a long period usually. In this context,
multimodal change detection (MCD) brings obvious utility.

MCD identifies changes by comparing specific
multitemporal images captured over the same geographical area
at different times, but under varied conditions [14]. The MCD
is an increasingly popular and challenging research topic,
essentially representing a generalization of the monomodal CD
problem [15], [16]. The input images could be acquired by
different sensors, or recorded with different sensor parameters,
or under different environmental conditions. The advantages of
MCD are two-fold: first, it can increase the temporal resolution
or extend the time span for time-series monitoring by inserting
multimodal data; second, it is beneficial to shorten the response
time of CD by relaxing the data acquisition requirements, which
is imperative for emergency events [17].

Despite the above, MCD is a challenging task since
multimodal data cannot be compared directly to obtain
information about change differences as in monomodal CD.
While numerous supervised methods exist for MCD [18], [19],
[20], they reveal the following limitations. First, the expense of
manual labeling is prohibitive, making it infeasible to label all
scenes, particularly in the era of big data. Second, models
trained on specific domains or geographical regions frequently
lack generalization, making it hard to adaptively and accurately
detect new targets in different environments or scenarios [21].
Third, both datasets and labels are scarce in the MCD task, and
labels are usually subjective and may lack precision for scenes
with intricate surface cover. As a result, the practical
application of these supervised methods is constrained. Instead,
unsupervised methods avoid these limitations as they do not
require labels. For example, SFPPI [22] first generates a
similarity-feature map and then fuses multiple binary
segmentation results to output the final change map. PP [23],
[24] computes differences between pixels in each image
separately before generating the change map by comparing the
difference scores.

At present, unsupervised MCD methods can be divided
broadly into three classes: classification, transformation and
discrimination. The classification methods first classify
multimodal images. Subsequently, the derived classification
outcomes can be compared directly to identify changes, such as
the multidimensional evidential reasoning method, post-
classification comparison method and compound classification
method [25], [26], [27]. Since unsupervised classification
models struggle to obtain accurate classification results, the
classification methods are susceptible to the accumulation of
classification errors.

In general, the core objective of transformation methods is to
make the multimodal images comparable. Most transformation
methods aim to either transfer “incomparable” images to a
common domain or transform one image to the domain of
another, thereby rendering them “comparable” [28]. In the
transformation approach, the mappings of multimodal data
typically demand training using unchanged pairs of multimodal
data. Consequently, these transformation-based MCD methods
either need pre-constructed pseudo labels [29], [30] or prior
results [31] to guide the training. Alternatively, they may
involve a complex iterative process to create the pseudo labels
set concurrently with learning the mappings [32], [33].

Therefore, these methods can be deemed as pseudo or
automatic supervised learning. Another limitation is that, after
transformation, prevailing methods typically employ directly
simple algorithms to extract the discrepancy information, such
as difference [34], [35], [36], ratio [29], [37], distance function
[30], [32], [34] or compound [14], [25], [38]. Regrettably, these
methods are incompetent at deriving high-quality differences
since neighbor information and further discrepancy
enhancement are not utilized.

The discrimination approach is an emerging approach. It is
intuitive and represented by self-supervised contrastive
learning (CL) methods [39], which discriminate the
characteristics between the dual stream outputs of the network
by designing positive and negative pretext samples and loss
function [9], [40]. However, there are two deficiencies in
existing discrimination methods. First, the design of positive
and negative samples is improper. They simply deem patch
pairs at different locations as negative samples; positive
samples are patch pairs at the same locations [9], [39], [40], [41].
However, patch pairs at different locations may be of the same
class, and those at the same locations may be changed as well.
Therefore, the obtained samples contain numerous exceptions.
Second, existing methods input multimodal data directly into
the CL network for learning [39], [40]. Since there are
considerable distinctions between the original multimodal data,
those methods are not conducive to accurate difference
discrimination, thereby weakening the ability to extract
differences.

In the context of the above shortcomings, we sought to
couple the transformation and discrimination unsupervised
methods and utilize both of their merits. The transformation
module alleviates the domain deviation between multimodal
data, and the discriminant module extracts refined differences.
At the same time, we aimed to improve the sampling strategy
to enable the mnetwork to distill better discrepancy
representations. The main contribution of this paper can be
summarized as follows:

1) A generic end-to-end self-supervised learning framework,
namely MaCon. The MaCon innovatively coupled the mask
reconstruction (MR) and CL architecture. Within this
framework, the MR subnetwork distills the global information
and transforms the multimodal data into a common domain, and
the CL subnetwork extracts local information and discriminates
the distinction between multimodal representations.

2) An optimal sampling strategy in the CL architecture. This
strategy enhances the framework’s ability to learn more
distinguishable object representations by utilizing more
accurate samples, thereby enhancing the efficacy of subsequent
change detection tasks.

3) A robust and plug-and-play attention mechanism. It can
suppress features with low correlation, enhance contrast in
output representations and stabilize training.

4) Experimental results on multiple multimodal and
monomodal datasets show that the performance of the MaCon
framework is better than the compared state-of-the-art (SOTA)
methods, and even exceeds some supervised methods. The
MaCon is expected to provide a unified framework for the task
of CD.



The rest of this paper is structured as follows. Section II
reviews the related work on self-supervised learning and its
situation in CD task. Section III elaborates on the principle and
algorithm of the MaCon framework. Section IV expounds on
the experiments on multimodal and monomodal datasets.
Section V analyzes the working mechanism of MaCon. Section
VI draws the concluding remarks.

II. RELATED WORK

Self-supervised learning focuses on various pretext tasks
instead of the labels for pre-training, and they show a strong
learning ability for representation and have seen significant
interest in artificial intelligence [42], [43]. Currently,
mainstream self-supervised learning can be broadly categorized
into two paradigms: mask reconstruction (MR) and contrastive
learning (CL) [44].

A. Mask Reconstruction

The MR self-supervised learning paradigm reserves a
segment of the input sequence and trains models to forecast the
masked content. Research has indicated their great performance
and scalability, and evidence suggests that these pre-trained
representations exhibit strong generalization across diverse
downstream tasks [42], [45], [46].

In RS, all existing works using the MR paradigm employ MR
as a foundation model for pre-training, followed by supervised
fine-tuning for downstream CD. Wang et al. [47] made the first
attempt to explore pre-training vision models tailored to RS
tasks with large-scale RGB dataset. This work pre-trained
multiple networks and tested transfer performance on CD task.
After that, Sun et al. [48] developed an RS foundation model
based on the MR self-supervised learning, RingMo, which is
designed for dense and small objects in complicated RS scenes
and training on massive monomodal datasets. The final change
map can be generated by an appended CD head after fine-tuning
on downstream CD dataset. To more effectively process RS
spectral images, Hong et al. [49] created a large RS foundation
model using a three-dimensional MR method with three-
dimensional tokens to couple spatial-spectral information. This
model was initially trained on one million RS optical images,
and then, the CD task was performed by supervised retraining.

B. Contrastive Learning

The CL is an important paradigm in self-supervised learning.
The core idea is to maximize the similarity between views
augmented from the same image while minimizing the
similarity between views augmented from distinct images [50],
[51]. Numerous studies have shown that positive and negative
samples are essential for CL, and the quantity and quality of
negative samples generally determine the effectiveness of CL
[50], [52], [53].

Some studies have adopted CL for CD. Akiva et al. [41]
presented a material and texture-based method, which
compares multi-temporal, spatially aligned large-scale
multispectral images over unchanged regions to learn
invariance to illumination and viewing angle as a mechanism to
achieve consistency of material and texture representation.
Then, the change map can be obtained by fine-tuning on a CD
head. To leverage domain knowledge and characteristics of

satellite images to learn better self-supervised features, Li et al.
[54] proposed a geographical knowledge-driven CL method for
multispectral RS images, which adopts global land cover (LC)
products and geographical location associated with each RS
image as geographical knowledge to provide supervision for
network pre-training. Mall et al. [55] developed a new
contrastive loss and used the temporal signal to contrast
enormous RGB images with long- and short-term differences.
Then, the CD task can be conducted with supervised retraining
on specific datasets.

C. Limitations

Although the experimental results of the abovementioned
methods show great performance on downstream CD task, the
following limitations exist in these self-supervised methods.

1) It not only requires massive data and resources for pre-
training but also necessitates retraining for downstream tasks,
making it highly cost-intensive and difficult to develop
extensively.

2) Only designed for monomodal datasets and are unsuitable
for multimodal datasets.

3) Mounting a simple CD head in the downstream CD task
makes extracting the great discrepancy representations
challenging for high-performance change detection.

4) Some studies have shown that fine-tuning with labels can
lead to catastrophic forgetting, and results are unsatisfactory
when applied to new data with substantial changes in domain
and distribution [56].

To deal with these limitations, we creatively couple MR and
CL into a framework to leverage their strengths synergistically.
Specifically, MR is designed to serve as a transformation
mechanism for multimodal data, while CL is employed to
effectively distinguish differences. Furthermore, instead of
adopting a two-stage strategy with pre-training and fine-tuning,
we trained and inferred end-to-end on the target multimodal CD
dataset directly.

II1. MACON FRAMEWORK

A. Framework Overview

The overview of the proposed framework is shown in Fig. 1.
The framework comprises two pseudo-Siamese subnetworks,
that is, MR and CL subnetworks, and all of them have two
branches for multimodal images. Given two images from any
modality, MaCon distills common representations and
highlights discrepancy representations in the learning phase
first, and then predicts the changed area in the inference phase.

The learning phase is the core of the MaCon framework. In
the learning phase, the MaCon learns how to cross the gap
between different modalities and differentiate the LC
discrepancy from multi-temporal images in a self-supervised
way. Next, we first expound the components and principles of
the learning phase and then extend them to the inference phase.
The dimension variation during the forward phase is annotated
above all operation blocks to facilitate understanding.

B. Common Representations Learning with MR

The architecture of the MR subnetwork is shown in Fig. 2.
The detailed forward pipeline of the MR subnetwork is as
follows. Firstly, to extend and take full advantage of the data,
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one adopts several data augmentation strategies to the
normalized multimodal data X and ¥, including random crop
with an Hc x Wc fixed-size window, and random horizontal or
vertical flip. Next, the augmented data Xc and Yc are tokenized
to overlapping patches via a convolutional layer with a small
stride, then flattened to a batch of embedded vectors with a
dimension of E; this differs from other MR networks [45], [48],
[57], [58] and is important for the proposed MaCon, especially
for RS images, because it provides the universally fundamental
embeddings for both MR and CL subnetworks and induces the
patch tokens to assimilate more neighbor information. Notably,
for clarity and to aid visual interpretation, the patches in Fig. 2
are illustrated in non-overlapping form.

Subsequently, to force the network to learn global
information better and extract high-level semantic features,
instead of just storing the pixel mapping relationship between
multimodal data, the patch tokens are masked randomly with a
fixed mask ratio f after prepending a learnable class token to
the patch tokens. We recommend setting £ in the range of [0.4,
0.7] based on numerical experiments to achieve optimal
performance. Then, the unmasked patch tokens Xy and Yy are
fed into the MR encoder to distill the unmasked common

representations R, and R]_ of the multimodal data. Here,
we fill the MR encoder with a series of Transformer blocks.

Next, the R, and R/ are concatenated with the masked
tokens, and they are restored to their original patch positions.
Then, they are decoded to reconstruct the masked pixels of
another modality (¥,, and X,, ) through the MR decoder. Here,
the MR decoder is composed of Transformer blocks and a linear
predictor.

Finally, the loss can be evaluated by the mean squared L
distance between the reconstructed (¥, and X,, ) and actual
normalized pixels in another modality ( ¥, and X, ).
Additionally, we attach a regularization term to reduce
overfitting by penalizing the magnitude of the network
parameters. Thus, the MR loss £, (6,,6,) is defined as

L, (6,6,) = £,,(6)+ 4, (6,) . (1)

where 6, and 6, are the parameters of the two MR branches,

L,,(6) and L, (6,) are the MR losses of two MR branches
and derived as

£,,@) =ER,@)-¥,@)[ +Alal, .

£,,(6,) = B|X,,(6) - X,,(60,)

where the A1 and 1, are the regularization coefficients,
determined automatically by the optimization algorithm. With
this pipeline, the MR encoder will learn the common
representations with reduced domain bias in multimodal data.

2 b
,+Aafe,

C. Discrepancy Representations Learning with Optimized CL

The architecture of the CL subnetwork is illustrated in Fig. 3.
Due to the architecture being general for different modalities
and space limitations, Fig. 3 takes a single branch as an example.
The CL subnetwork is responsible for learning local
information and high-level semantics, and generates
discrepancy representations.

As shown in Fig. 3, after the MR encoder outputs the
common representations R. for all patch tokens, the R. are
shuffled and permuted into R; with shape N x B x E (length
batch size % embeddings), and where B is 1, that is,
R =Pm(Sf(R))), where Sf(-) and Pm(-) denote shuffle and

permutation operations, respectively. Then, a loop is run over
the dimension N of R, with a mini-batch step of Ny, which
means the loop will iterate the following operations for & times.

1) Sample mini-batch representations Ry from the R, and
prepend a class token to the Ry, i.e., R, =Pp(Sp(R,)), where

Sp(:) and Pp(-) denote sampling and prepend operations,

respectively.

2) Flow through the CL encoder to extract high-level
semantic distinctions. Here, we use multiple Transformer
blocks as the CL encoder.

3) Normalize the representations with layer normalization to
reduce the impacts of internal covariate shift, leading to faster
convergence.

4) Feed into a deeper and larger MLP than that in the
Transformer blocks and project the embeddings to dimension
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Ey. Deeper and larger hidden layers help to learn and capture
more complex patterns, and more GELUs increase stronger
nonlinear modeling capabilities.

5) Conduct the L, normalization to encourage the CL
subnetwork to distribute the importance of embeddings more
evenly and prevent any single embedding from dominating the
learning process by constraining the weights to stay small,
resulting in the model being more robust and better generalized.

6) Map the representations to sampling space R, e R

to further extract better discrepancy representations of different
LC types.

7) Optimize sampling for the representations with the
detailed algorithm presented in Section III-D and output
optimized sampling space R e R™".

8) Estimate the contrastive loss £, with Eq. (13) in terms
of optimized sampling space between the current modality R__
and another modality R_ .

9) Backpropagate gradients and update the parameters of the
CL subnetwork.

D. Optimal Sampling and Contrastive Loss

After the linear heads of the CL subnetwork output the
representations in two branches, the previous methods use these
representations directly to calculate contrastive loss and update
the network [9], [39], [40], [59], which means that all patch
pairs corresponding to different locations are deemed as
negative samples. Obviously, the traditional sampling methods
are defective, given that not all patch pairs cover different land
classes. Therefore, we designed a better strategy for sampling.

First, L, normalization Norm,, is performed on the

and R/ , followed by
concatenation along the dimension N,
R’ (17,,1m,) = Concat,, (NormL2 (R, (m,,m,)),

Norm,, (Ry., (7,.7,)))
where 77, and 7, are the parameters of the two CL branches,

multimodal representations R

b-o

3

Concat, (-) means the operation to concatenate the input along

dimension N, .

Then, considering spatial distance and topological relation
have a slight association with the positive and negative samples
in the CD task, compared with similarity, we adopt the inner
product similarity with efficient and intuitive characteristics as

the sampling metric. To accelerate calculation in parallel, we
estimate the similarity matrix § as
12 12
S (771 5 772) = Rb.o * Trans(Rbﬂ ) > 4
where Trans(-) denotes the transpose operation and * is matrix

multiplication. In essence, the similarity matrix .S contains four
subblocks, that is, S|, (upper left), S|, (upper right), S,, (low
left), and §,, (low right), and implies self-similarities with S
and §,, and cross-similarities with §,, and §,, , as shown in
Fig. 4. The four blocks of similarities signify four sampling
spaces, so we can impose constraints on them to optimize
sampling. For this purpose, we obtain the preliminary negative
samples Sy, as follows:

Sy, (17,,17,) = Samp, (Samp, (exp(S /7)), (5)

where 7 is the temperature to scale the similarity and set as 0.5.
Since there is a logarithmic operation in the objective loss to be
adopted later, we resort to an exponential operator here to
ensure non-negativity. Samp,() and Samp,(-) are the

sampling functions and can be expressed as
{Sampl(’) = topk,, ,, ®topk,, ;,

, (6)
Samp, () = topk, ,, @ topk,, ,,

where topk,,,, ®topk,,,, means sampling in §,, followed by
in ), with the constraint of similarity smaller than %, then
sampling in S, followed by in §,, with the same constraint;
topk,, ,, @ topk,, ,, is analogous. Such a sampling strategy
ensures that negative samples are sufficiently clean in all four
similarity blocks. The threshold k represents k£ times of M,
k €(0,1]. An illustration of the preliminary negative sampling
is shown in Fig. 4, where the N, and k£ are 4 and 0.75,
respectively. Notably, the negative samples are essential to
contrastive learning, and their quantity and quality jointly
determine the performance of contrastive learning [50], [52],
[61], so the number of negative samples should be of adequate
size. Additionally, because the final equivalent threshold is the
square of k in the two-fold sampling, after experiment (in
Section V) and trade-off, we recommend setting & in the range
of [0.7, 0.95], generally.

In addition, we generate the preliminary positive samples

S, by evaluating the cross-similarity of corresponding

locations between the multimodal representations R, and
R/, thatis

Ps

S, (77,,17,) = exp (z.—l <N0rmL2 (Rb-o (-1, )) )

Norm,, (Rl;-o (-1, ))>b )
where <~, > ,. represents the inner product in rows between input

tensors. Then, we purify positive samples with
’ KNy, b
St 01,12) = Concat (L1 topk(S, )] opk(S,.)) . (8)

where HZ topk(S;,) means retaining the elements from b,

to b, in descending order of S, , and Hko topk(S,,) 1is

analogous; b,=kN,/2+(1-k)N, =Q2~-k)N, /2 and



b, = kN, /2. Recall that the similarity matrix § contains two

symmetric blocks of cross-similarities, §,, and §,,, and the

21

rows of Sy, is 2Np; whereas only a single cross-similarity

block is considered in S, and S} with M, rows. We obtain

Pos

’

the optimized positive samples S5

pos DY concatenating S

Pos
sequentially, ensuring that positive and negative samples have
equal sizes for tensor computation and that their numbers are
balanced to a certain degree, that is

sl(’)os (771 ) 772) = COl‘lcat(Sl;
After the S g and SO

Pos

Shos) - (€))

are obtained, we derive the

0s 2

reweighted negative samples Sy, as
—-p-Ng-Sp. + 8!
See (1,571,) = sl_; (10)

where Ny denotes the number of preliminary negative samples,
p is the class probability and generally set to 0.1 [60], S{,g
represents the reprojected negative samples and can be deduced
as

X, exp(alog Sy, )- Sy,

S’ b ) = i 2
) =2 e oo Tog i)

(In

where ois the concentration parameter, scheduled linearly with
an initial value of 1.

Finally, the optimized negative samples Sgeg can be

determined by rectifying the outliers, that is
Sy, (m,m,) = Max(NS exp(-1/7), SNeg) .

Neg (12)

The contrastive loss L., between the optimized negative
and positive samples can be evaluated as

Leo (1,17,) =—E| lo _ Se
Con 771’772 gsl?os +S§eg

lel(m,nz)llz, (13)

where p is the regularization coefficient and is determined
automatically by the optimization algorithm. The
computational complexity of optimal sampling and contrastive

loss is 0((Nb)2 Eo) . In implementation, we run Algorithm 1.

Algorithm 1. Optimal sampling and contrastive loss

Input: multimodal representations R, and R/ , mini-
batch My, similarity threshold &
Operation:

1: Calculate the similarity matrix S with Eqgs. (3) and (4)

2: Obtain preliminary samples Sy, and S, with Egs. (5)
to (7)

3: Determine the optimized samples Sp.
Egs. (9) and (12)

4: Estimate the contrastive loss £, with Eq. (13)
Output: The contrastive loss £,

and Sy, with

on

E. Silent Attention

The vanilla attention mechanism in the Transformer can be
expressed as

T
Attention(Q, K, V') = softmax (QLJ v, (14)

Jd

where O, K, and V' denote queries, keys and values with
dimension of n x d, respectively; the softmax is defined as

pr(xf) , (15)
D exp(x)

where x is a vector with dimension n. Then the negative limit of
the softmax is deduced as

s, = softmax(x)=

(16)

which means the negative limit of the softmax is a positive
constant. This raises a problem: the softmax restrains the
attention from outputting zero values, even if there is no
correlation between two tokens. Consequently, these irrelevant
tokens are assigned weights to extract information with 7, and
learning is unstable and prone to collapse in our experiments.

To address this problem, we proposed an improved softmax
function as

lim --- lim (softmax(x)) =l,
X, >0 ! n

X;—>—o0

exp(x,)
C, + Z;’_:] exp(xj)

where C, is a positive constant. The key difference from the

s, = softmax_(x) = , (17)

original softmax is the negative limit
lim --- lim (softmax(x)) =0.

X;—>—0

(18)

When the input x contains significantly negative correlations,
the proposed softmax; (s, ) tries to avoid scoring. Moreover, the
derivative of the s, is positive, so we always have a non-zero

gradient; its sum is in the range of zero to one, and the relative
ratio in the output vector is the same as that in the original
softmax, which means the output is under control.

In addition, we add a dropout operation after s, to balance

the representational and generalized ability, that is

A (O, K, V)= dropout(softmaxs (%[g DV . (19

The softmax; can drive the scores of irrelevant tokens toward
zero while slightly reducing the scores of others. This reduction
is compensated during the subsequent normalization. As a
result, it suppresses features with low correlation, increases the
discrepancy of output features, and stabilizes the training.

Since the attention mechanism costs enormous time and
space resources, we implement silent attention with a specially
optimized algorithm to be faster and simpler. Specifically, for
running in parallel on CUDA, we transform Eq. (17) as

exp(x)
exp(logC,)+ 3" exp(x,)

then, we execute Algorithm 2 on CUDA. Note that we
recommend setting C, to 1, so we just prepend zero to the

s, =softmax (x) =

(20)

scaled correlation in the last dimension and avoid precision loss
during the ferrying between exponentiation and logarithm. In
Algorithm 2, it can be observed that the silent attention receives
the same input as the vanilla attention and can be swapped into
network flexibility. The computational complexity of silent
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Fig. 5. Inference pipeline for multimodal change detection.

TABLE I
DESCRIPTION OF THE FIVE MULTIMODAL DATASETS

Dataset Sensor (& modality) Size Location Event (& Spatial resolution)
0SCD-S2S1 (Ssezt‘[{‘;}[&{ t?:;e“:t‘f;l)z Hx W% 13(2) Scattered around the world Mixed (10 m)
Shuguang ?Sagia{r_sl:t(—é/’g}oogle Earth 593 x 921 x 1(3) Shuguang Village, China Construction (8 m)
Sardinia (Lﬁ?gf;tg]go"gle Earth 300 x 412 x 1(3) Sardinia, Italy Lake expansion (30 m)
Toulouse fé%g?;g%gdgée%_z 2000 %2000 x 3(3) Toulouse, France Construction (0.52 m)
Sutter ~ Landsat-8/Sentinel-1A 875 x 500 11(3)  Sutter County, USA Flooding (= 15m)

(Multispectral-SAR)

attention is the same as that of vanilla attention, which is
O(n*d) . Therefore, we replaced vanilla attention with silent
attention in all Transformer blocks of MaCon.

Algorithm 2. Silent attention

Input: queries Q, keys K, values head V, head dim d
Calculate correlation:

1: Estimate the correlation by matrix multiplication

between the O and transpose of K

2: Divide by the square root of d to scale the correlation
Estimate softmaxs:

1: Prepend log C, in column to scaled correlation in the

last dimension
2: Calculate s, by performing softmax operation with Eq.
(15)
3: Remove the prepended column in the s,
Determine the Silent attention:
1: Conduct dropout on s,
2: Derive the 4, by matrix multiplication between the s,

and V'
Output: The silent attention 4,

F. Optimization and Inference

After completing the forward pass and deriving the MR loss
L,,, and contrastive loss £ , the optimization process begins.

We designed stop-gradient operation in the CL subnetwork and
asynchronous backpropagation for MR and CL subnetworks.
That means the gradients from the £, and [, are

asynchronously backpropagated to update the parameters of the
respective MR and CL subnetworks. In this way, the two
subnetworks not only collaborated in forward modelling, but
were also independent in backpropagation without conflicting
gradient updates.

When the relative changes in both losses £, and L.,

remain below le-3 for 20 epochs, or the maximum training
epochs is reached, learning is stopped. Then, the change map
can be inferred by utilizing the common and discriminative
representations of the multimodal data. The inference pipeline
is shown in Fig. 5. Before the block of discrepancy
measurement, the main difference from the learning phase is
that the inference phase is without crop and mask operations,
MR decoder and reconstruction modules. The difference image
can be derived by measuring the distance between discrepancy
representations output from the head in the CL subnetwork.
After that, the preliminary binary change is output through a
segmentation algorithm, and finally, the refined change map is
obtained through morphological filtering.

Note that we developed a trick for the MaCon framework to
hack the parameters of patch embedding so as to change the
patch stride in the inference phase. In this way, we can set a
smaller stride size to model finer boundaries and
representations or a larger one to accelerate inference.

IV. EXPERIMENTS AND ANALYSIS

To evaluate the performance of the proposed MaCon
framework, we experimented on both multimodal and
monomodal datasets, as well as analyzed the computational cost
and impact of key submodules and hyperparameters on
performance.

A. Datasets Description

1) Multimodal datasets: We experimented on five
multimodal datasets, including 14 multimodal image pairs
distributed worldwide, as listed in Table I. The Shuguang
dataset contains SAR and RGB modalities, with a size of 593 x
921 x 1(3). The Sardinia dataset includes NIR and RGB data
before and after the lake expansion. The Toulouse dataset
consists of large-scale images with a size of 2000 x 2000 x 3(3),
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Fig. 6. Rendered change hlap obtained by the proposed framework and representative comparison methods on the multimodal datasets. From top to bottom, they
correspond to the Lasvegas case, Shuguang, Sardinia, Toulouse and Sutter datasets, respectively. In the rendered change maps, white: true positives (TP); black:
true negatives (TN); azure: false positives (FP); magenta: false negatives(FN). The meaning of these symbols is the same in all figures.

TABLE II
PERFORMANCE COMPARISON ON THE MULTIMODAL DATASETS

Method  Metric OSCD-S2S1 Shuguang Sardinia Toulouse Sutter
MaCon __ FI 0.217 0.815  0.736 0559 0.531
(oursy  KC  0.175 0.806  0.717 0503 0.507
SSCD Fl 0.202 0713 0714 0519 0511
KC  0.165 0.697 0692 0414 0.486

Fl 0.186 0.791 0704 0542 0514

HGIR-MREp 14y 0.779 0683 0487 0.491
NPSG Fl 0.165 0.737 0651 0472 0443
KC 0112 0724 0.624 0380 0.406

Fl 0.163 0.768 0591 0457 0425

M3CD-EMAP o o111 0754 0514 0348 0393
Fl 0.142 0690 0632 0398 0465

ACENet e 91 0.680  0.601 0258 0428
oNet Fl 0.138 0.735 0587 0434 0426
KC 0088 0710 0.548 0321 0385

MBCD Fl 0.146 0622 0603 0480 0.187
KC  0.097 0602 0526 0405 0.124

EPMS Fl 0.143 0662 0562 0311 0429
KC  0.086 0645 0533 0145 0388

including RGB and pseudo-RGB modalities. The Sutter dataset
contains multispectral and SAR images before and after the
flood, with a size of 875 x 500 x 11(3).

It should be noted that the OSCD-S2S1 dataset [18] we used
is its test set, which contains 10 image pairs. The OSCD-S2S1
dataset is more challenging and practical than the other datasets
because it possesses the following characteristics: mixed
changing events, complex LC, very few changed pixels in
several cases, more small changing elements and discrete
distribution, fine temporal resolution and accessibility for the
data of Sentinel-1 and 2. Regrettably, the recently published
OSCD-S2S1 dataset comprises many wrong labels, likely due
to its complexity, and unsupervised CD methods were rarely
tested on the OSCD-S2S1 dataset. Therefore, we want to
provide a benchmark for testing on the OSCD-S2S1 dataset.

2) Monomodal datasets: To evaluate the performance of the
proposed method on the monomodal dataset, we tested it on two
optical datasets, Montpellier and ZY3, and one SAR dataset,
San Francisco. The Montpellier dataset, contained in the
OSCD-S2S2 dataset [62], consists of a pair of multispectral
images of size 426x 451 x 13(13) pixels and a spatial resolution
of 10 m. The ZY3 dataset [63] contains two RGB images of size
458 x 559 x 3(3) pixels and a spatial resolution of 5.8 m [63].
The San Francisco dataset [64] consists of a pair of SAR images
of size 256 x 256 x 1(1) pixels, acquired by ERS-2.

B. Implementation Details

The proposed MaCon was implemented based on the Pytorch
with a single NVIDIA GeForce RTX 3090 (24-GB RAM). We
adopted the Transformer architecture with silent attention for
all the CL encoder, MR encoder and decoder.

For the MR subnetwork, we set the crop size to 200 x 200 in
learning. We used the convolutional layer with kernel and stride
size of 8 X 8 and 4 x 4 in learning, and that of 8 x 8 and 2 x 2
in inference, to tokenize the multimodal data to the embeddings.
The ViT-Small [65] was set as the encoder with 384 embedding
dimensions; the decoder comprises 8 Transformer blocks with
16 heads and 512 embedding dimensions and contains a linear
predictor additionally. The random mask and dropout ratio were
set to 0.5 and 0.1, respectively. During learning, the number of
input tokens in the MR subnetwork was 2401.

For the CL subnetwork, we set the layers of the Transformer
block to 8 with 6 heads and 384 embeddings, the similarity
threshold & to 0.9, mini-batch M, to 256, dropout ratio to 0.1,
temperature 7 to 0.5, class probability p to 0.1, 3 linear layers in
MLP with hidden embeddings to 2048, bottleneck embeddings
Ey, to 256, and output embeddings E, to 384.

Moreover, the optimization algorithm based on adaptive
estimates of low-order moments with decoupled weight decay



TABLE III
REPORTED PERFORMANCE COMPARISON WITH RECENTLY PUBLISHED SOTA METHODS ON THE MULTIMODAL DATASETS. NOTABLY, * MEANS WE RAN THEIR
CODE AND TRIED OUR BEST TO TUNE HYPERPARAMETERS TO ACHIEVE OPTIMAL; * SIGNIFIES SUPERVISED METHOD

OSCD-S281 F1 KC Shuguang F1 KC Sardinia F1 KC Toulouse F1 KC Sutter F1 KC
MaCon (ours) 0.217 0.175|{MaCon (ours) 0.815 0.806MaCon (ours) 0.736 0.717|MaCon (ours) 0.559 0.503|MaCon (ours) 0.531 0.507
FC-EF™ [19] 0.171 IRGMcS [28] 0.804 0.794|FD-MCD [74] 0.732 0.714|HGIR-MRF [38] 0.549 0.501[IRGMcS [28] 0.512 0.490
SSCD* [39] 0.202 0.165||HGIR-MREF [38] 0.790 0.779|ALSC-P [75] 0.713|AGSCC [17] 0.540 0.490|HGIR-MRF [38] 0.511 0.489
HGIR-MRF* [38]  0.186 0.141|PSGM [76] 0.744|NACCL [77] 0.700 CAAE [78] 0.520 0.451|SSCD [39] 0.510 0.460
NPSG* [66] 0.165 0.112NPSG [66] 0.729|PSGM [76] 0.682[IRGMcS [28]  0.481 0.421|SCCN [34] 0.500 0.454
M3CD-EMAP* [67] 0.163 0.111[X-Net [31] 0.731 0.696]|AGSCC [17] 0.680 0.658|FPMS [35] 0.296 ALSC-P [75] 0.420
ACE-Net* [31] 0.142 0.091 |[ACE-Net [31] 0.726 0.689|CAAE [78]  0.628 0.598|NACCL [77] 0.290 ACE-Net [31]  0.459 0.415

TABLE IV
PERFORMANCE COMPARISON ON THE MONOMODAL DATASETS. © SIGNIFIES SUPERVISED METHOD
Montpellier F1 KC 7Y3 F1 KC San Francisco F1 KC
MaCon (ours) 0.553 0.520 MacCon (ours) 0.571 0.523 MacCon (ours) 0.905 0.897
FDCNN" [63] 0.440 0.390 FDCNN' [63] 0.548 0.500 FDCNN" [63] 0.882 0.873
FCD-GN [68] 0.544 0.503 FCD-GN [68] 0.566 0.519 LR-CNN [64] 0.893 0.883
DSFA [69] 0.427 0.371 DSFA [69] 0.543 0.487 PCAKM [71] 0.878 0.870
RCVA [70] 0.435 0.378 RCVA [70] 0.539 0.485 SSN-Siam-diff [8] 0.869 0.859
ISFA [69] 0.388 0.327 ISFA [69] 0.506 0.421 FC-Siam-conc [72] 0.761 0.743
SSN-Siam-diff [8] 0.486 0.445 SSN-Siam-diff [8] 0.471 0.385 Ms-CapsNet" [73] 0.903 0.894

(AdamW) was employed to train MaCon with the decayed
learning rate set from 5e-3 to le-5 and weight decay from 0.04
to 0.4 in the cosine schedulers; the mixed-precision computing
technique was adopted to decrease memory cost during learning.
In inference, the difference map was generated by mean

b-o

squared L, distance, i.e., E "Rl}0 -R,

z , and Otsu was applied

as the segmentation algorithm to obtain the binary change map.
Otsu is one of the most widely used segmentation methods for
automatic thresholding, and its criterion is to maximize the
inter-class variance between classes.

C. Comparison Methods and Evaluation Metrics

1) Comparison methods on the multimodal datasets: To
demonstrate the superiority of the MaCon for unsupervised
multimodal change detection, we compared eight recently
proposed methods with MaCon since they are representative
and their code is open-source, including SSCD [39], HGIR-
MRF [38], NPSG [66], M3CD-EMAP [67],ACE-Net [31], X-
Net [31], M3CD [14] and FPMS [35]. For these methods, we
ran their code to test and tried our best to tune hyperparameters
to achieve optimal.

Note that on the OSCD-S2S1 dataset, we chose the best
metric for all the compared methods on each image pair after
repeatedly adjusting their hyperparameters. In contrast, the
MaCon directly adopted the mean metric on all 10 image pairs
with the same hyperparameters to evaluate its adaptive ability
on different images more objectively. We also compared the
reported metrics from their original papers to reflect the SOTA
accuracy achieved on each dataset, including many methods
without open-source code.

2) Comparison methods on the monomodal datasets: We
compared the MaCon with advanced monomodal CD methods.
Specifically, the FCD-GN [68], DSFA [69], RCVA [70], ISFA
[69], FDCNN [63] and SSN-Siam-diff [8] were compared on
the optical datasets of Montpellier and ZY3. Similarly, the
PCAKM [71], FC-Siam-conc [72], LR-CNN [64], FDCNN
[63], SSN-Siam-diff [8] and Ms-CapsNet [73] were compared
on the SAR dataset of San Francisco. For these methods, if

reported metrics existed for tested datasets in the associated
papers, we adopted them directly; if not, we ran the code and
tried our best to adjust the hyperparameters to train them
optimally.

Notably, we did not compare the MaCon with the same
methods that were compared on the multimodal datasets,
because traditional methods for MCD are usually not tested on
monomodal datasets, and the metrics are generally worse than
those customized for monomodal datasets.

3) Evaluation Metrics: In the experiments, two
comprehensive quality metrics, F1 score (F1) and Cohen’s
Kappa coefficient (KC), were used to evaluate the performance
of all methods quantitatively. A larger value signals better
performance for all of these metrics

Fl— 2x Prex Rec
o en
KC="—2
1- PE
where the subitems are defined as
P
re=——o——,
TP+ FP
TP
“TIPiEN’
,(22)
_ TP+TN
TP+TN +FP+FN’
PE - (TP+ FN)(TP + FP)+ (TN + FP)(TN + FN)
(TP+TN + FN + FP)’

where TP is the true positive, denoting the number of pixels
correctly classified as changed; TN is true negative, which
means the number of pixels correctly classified as unchanged;
FP is false positive, which denotes means the number of pixels
misclassified as changed; FN is false negative, representing the
number of pixels misclassified as unchanged; OA denotes
overall accuracy; PE means expected agreement between the
ground reference and predictions given the class distributions.
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TABLE V
ABLATION PERFORMANCE ON THE MULTIMODAL DATASETS. THE MEANING OF THE ABBREVIATIONS ON THE HEAD ROW ARE THE FOLLOWING. DA: DATA

AUGMENTATION; MR-CL: THE STAGED SERIES COMBINATION OF MR AND CL;

OS: OPTIMAL SAMPLING; SA: SILENT ATTENTION; CYCL: CYCLE LOSS; EMA:

EXPONENTIAL MOVING AVERAGE; PE: POSITIONAL EMBEDDING; MF: MORPHOLOGICAL FILTERING

MR CL DA MR-CL OS SA CycLL ema PE MF OSCD-S2S1 Shuguang Sardinia Toulouse Sutter Params FLOPs Memory
N N 0.122 0.378 0.410 0319 0328 96M 253G 122GB
N 0.163 0.561 0.502 0422 0374 41M 157G 3.5GB
NN 0.186 0.703 0.624 0.471 0425 134M 405G 14.6GB
NN N 0.161 0.589 0.607 0429 0417 134M 405G 14.6GB
NN A v 0.207 0.763 0.704 0.535 0491 134M 406G 14.6GB
NN N 0.198 0.726 0.676 0.507 0463 134M 405G 14.6GB
NN NN 0.214 0.791 0.714 0.537 0518 134M 406G 14.6GB
NN S \ 0.217 0.815 0.736 0559 0531 134M 407G 14.6GB
NN R Y 0.202 0.711 0.623 0.504 0472 134M 656G 25.7GB
NN NN \ 0.107 0.290 0.309 0233  0.198 134M 406G 143GB
NN NN \ 0.203 0.731 0.692 0.525 0485 134M 406G 14.6GB
NN NN 0.208 0.762 0.718 0.536 0503 134M 406G 14.6GB
NN N W \ 0.191 0.660 0.647 0474 0462 134M 406G 14.6GB
eference MaCon SSN-Siam-diff TABLE VI
COMPLEXITY AND ACCURACY (F1) COMPARISON
(A) ON THE MULTIMODAL DATASETS

Method Params FLOPs Memory Shuguang  Sutter

MaCon (ours) 134M 407G 14.6 GB 0.815 0.531

” SSCD 57M 389G  6.9GB 0.713 0.511

ACE-Net 45M 684G 4.7GB 0.690 0.465

. X-Net 37M 553G 3.4GB 0.735 0.426

(B) ON THE MONOMODAL DATASETS

Method Params FLOPs Memory Montpellier 7ZY3

MaCon(ours) 67M 203G 75GB 0.553 0.571

DSFA 43M 89G  4.0GB 0.427 0.543

FDCNN 146M 284G 6.4GB 0.440 0.548

Flg 7. Rendered change maps obtained by MaCon and representative
comparison methods on the monomodal datasets. From top to bottom, they
correspond to the Montpellier, ZY3 and San Francisco datasets, respectively.

D. Results

1) On multimodal datasets: The visualized CD results on the
multimodal datasets are shown in Fig. 6, and the statistical
metrics are listed in Table II. From Fig. 6, we can see that the
proposed MaCon is the best at suppressing spurious changes,
detecting small change elements and determining the boundary
between the changed and unchanged classes. In Table II, the
proposed MaCon method outperforms all the other benchmark
methods on the multimodal datasets, with preponderant leading
in metrics. These findings indicate that the MaCon framework
achieves great accuracy on different multimodal datasets.

To evaluate the accuracy of the proposed method in detail,
we also compared the reported metrics in the original papers
with recently published SOTA methods on each multimodal
dataset, as listed in Table III. These methods cover the three
classes of approaches mentioned in Section I.

Note that, as mentioned before, almost no unsupervised
methods have been tested on the OSCD-S2S1 dataset.
Therefore, we include the results of the comparison methods
above and compare them with the reported metrics of the
supervised FC-EF methods. It can be seen that our MaCon

framework outperforms the SOTA methods on all datasets.
Noteworthy, the MaCon even significantly surpasses the
supervised method of FC-EF. These results demonstrate that
MaCon framework has excellent accuracy for MCD.

2) On monomodal datasets: The visualized CD results on
monomodal datasets are shown in Fig. 7, and the statistical
metrics are listed in Table IV. We can see that the proposed
framework outperforms all the other comparison methods on
the monomodal datasets. Notably, the MaCon exceeds the
supervised methods of FDCNN and Ms-CapsNet.

The results on multimodal and monomodal datasets indicate
that the proposed framework can extract the common
representations in essential between different modalities, so it
has remarkable performance and generalization for both
multimodal and monomodal CD. This also implies that the
proposed framework promises to provide a unified model for
the field of CD.

E. Ablation Study

To further quantitatively explore the contribution of the main
modules in MaCon on MCD, we conducted sufficient ablations.
The complexity involved was calculated based on data sizes of
200 x 200 x 3. The results are shown in Table V, from which
we can obtain the following insights.

TABLE VII
COMPARISON OF COMPUTATIONAL TIME (IN SECONDS) ON FOUR MULTIMODAL DATASETS
Datasets Image size MacCon (ours) SSCD HGIR-MRF NPSG ACE-Net X-Net FPMS
Learning Inference Learning Inference
Lasvegas 824x716 168.2 52 261.5 53 141.9 351.4 872.8 699.4 20.3
Shuguang 593x921 168.5 4.8 266.4 4.9 129.1 295.6 745.2 646.1 18.8
Montpellier 426x451 160.7 1.6 260.3 1.7 148.3 119.7 494.5 412.7 12.6
Sardinia 300x412 159.3 1.1 256.7 1.1 128.4 67.2 319.3 282.6 8.2
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Fig. 8. Sensitivity of (a) similarity threshold %, and (b) mask ratio .

1) Only a single MR or CL network does not work well,
especially only MR, because the learning objective of MR is not
intuitively consistent with the task of CD. However, we find
that the MR subnetwork holds the property of accelerating
representation distilling. Specifically, only a single CL network
or the staged series combination of MR and CL requires more
training epochs to achieve the best performance.

2) The effect of the staged series combination of MR and CL
is not as accurate as the parallel coupling.

3) Quantitative evaluation confirms again that both optimal
sampling and silent attention have a significant positive
correlation with the performance of MCD.

4) Without flipping augmentation, the accuracy does not drop
by much. That is because random masking with shuffling in
MacCon is equivalent to a strong enhancement.

5) The coupling of MR with CL is complex, and the output
of the first reconstruction is not good enough to provide high-
quality input for the second learning, so the performance is
unsatisfactory after adding cycle loss [17]. Moreover, the
computational cost and training difficulty surge, and anomalies
such as gradient vanishing and loss NaN are apt to occur.

6) The ema strategy is highly unsuitable for updating
parameters on branches with different modalities. Because the
distinctions in multimodal data are considerable, the ema
induces the inability to learn how to extract representations in
another modality effectively, and the parameters of another
modality are probably even misled far away from its truth.

F. Computational Cost

Another aspect to be analyzed is the computational cost of
the proposed framework. We compared the complexity and
accuracy of MaCon and open-source deep learning-based
methods on both multimodal and unimodal datasets. The results
are presented in Table VI. Additionally, we tested the practical
runtime of MaCon and six compared methods on the Lasvegas,
Shuguang, Montpellier and Sardinia multimodal datasets. The
results are reported in Table VII. Note that the source codes for
these methods were implemented in different programming
environments: FPMS in C++, HGIR-MRF and NPSG in
MATLAB, and others are deep learning-based methods,
implemented in Python.

Although MaCon has more parameters and requires
additional memory, it achieves the highest accuracy with
acceptable computational complexity compared to the other
methods. Because MaCon adopts several parallel computation
strategies and large batch size in inference, its runtime is the
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Fig. 9. Representative cropping w1nd0w on the Lasvegas case (top) and
Shuguang dataset (bottom).

MR encoder attention 7; MR encoder attention 73

Fig. 10. Visualization of attentions and representations output by the MR
encoders on the Lasvegas case (top) and Shuguang dataset (bottom).
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Fig. 11. The distributions between representations output by the MR encoders
and original images on the (a) Lasvegas case and (b) Shuguang dataset.

shortest among all the deep learning-based methods. ACE-Net
and X-Net rely heavily on prior computation and, as a result,
have large FLOPs and long runtime.
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Difference of encoder CL head representation 7' CL head representation 7, Difference of head

Fig. 12. Visualization of the attentions, representations and difference image output by the CL encoders, and that of the representatlons and difference image output
by the CL heads. The first and second rows are the Lasvegas case and Shuguang dataset, respectively.

CL head repr T, CL head repr T Difference Rendered change map

Fig. 13. Comparison of with and without optimal sampling. The first and
second rows use optimal sampling and vanilla sampling on the Lasvegas case,
respectively; the third and fourth rows use optimal sampling and vanilla
sampling on the Shuguang dataset, respectively.

G. Sensitivity of Hyperparameters

1) Similarity threshold k: The impact of the similarity
threshold & on performance is shown in Fig. 8 (a). We find that
the accuracy is greatest when k is 0.85 or 0.9; specifically, when
k is 0.85 in the OSCD-S2S1 and Sutter datasets, and £ is 0.9 in
the other datasets, to achieve the best performance. This is
because the OSCD-S2S1 and Sutter datasets possess a
considerably complex LC distribution, so they need more strict
sampling constraints to help discriminate the discrepancy.

2) Mask ratio p: The impact of mask ratio § on performance
is shown in Fig. 8 (b). It can be seen that the accuracy ascends
with £ until S reaches 0.5 on all datasets; when the mask ratio
is larger than 0.5, the accuracy still increases until S reaches
approximately 0.8 on the OSCD-S2S1 dataset, but the accuracy
decreases generally on the other datasets. To avoid the high cost
of parameter adjustment and improve the versatility of the
proposed framework, we uniformly used the results of f at 0.5
on all datasets.

MR encoder attention 7, MR encoder attention 7, CL encoder attention T CL encoder attention T,

Fig. 14. Comparison of with and without silent attention. The first and second
rows use silent and vanilla attention on the Lasvegas case, respectively; the
third and fourth rows use silent and vanilla attention on the Shuguang dataset,
respectively.

V. DISCUSSION

To understand thoroughly how MaCon works and the role of
each key module in the entire framework, we analyzed the
mechanisms of MR and CL subnetworks, optimal sampling,
and silent attention from the perspectives of interpretability. To
exhibit the details clearly, we use representative cropping
windows during the learning phase on the Lasvegas case in the
OSCD-S2S1 dataset and the Shuguang dataset for illustration.
The cropped dual temporal images and binary ground reference
of the Lasvegas and Shuguang are shown in Fig. 9.

A. Common representation extraction in the MR branch

First, we visualized the attentions and representations output
by the MR encoders, and compared the distributions between
the representations and original images to investigate the role
of the MR subnetwork. The visualization of attentions and
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Fig. 15. Loss curves during learning on the Lasvegas case and Shuguang
dataset.

representations on the Lasvegas and Shuguang datasets are
shown in Fig. 10.

We can see that the dual temporal attentions do not
apparently focus on local or specific objects; the representations
abstract and generalize the surface object information and are
more similar than the original images.

Additionally, the distributions of the representations output
by the MR encoders and original images are shown in the Fig.
11. Since the range of representations output by the MR
encoders is quite different from that of the original images, we
normalized them to the range of 0 to 1. We find that the
distributions of the MR representations are more similar and
closer than those of the original images. To quantify this effect,
we estimated the root mean square distance d, and the relative
root mean square distance 7. On the Lasvegas case, the d, of
the original images and MR representations are 0.286 and 0.067,
and their 74 are 0.808 and 0.121, respectively. On the Shuguang
dataset, the d, of the original images and MR representations
are 0.336 and 0.137, and their r; are 0.681 and 0.298,
respectively. These findings demonstrate that the MR encoders
can distill the common representations from multimodal data
and shrink their domain bias.

B. Discrepancy representation extraction in the CL branch

We studied the role of the CL subnetwork. We visualized the
attentions, representations and difference image output by the
CL encoders, as well as the representations and difference
image output by the CL heads (Fig. 12). Examining all the
attentions and representations in Fig. 12 (especially lasvegas),
we obtained the following insights.

The attentions and the representations output by CL encoders
pay more attention to local information and high-level
semantics; object-level and edge features are prominent. This
differs from the MR subnetwork, which pays more attention to
global information and low-level details. Certain specific land
classes relevant to changes (such as buildings, cultivated land,
and bare land) and changed regional information are
emphasized within the representations. Distinctions among
changed objects are conspicuously highlighted in the difference
image, particularly when generated by the CL heads. Evidently,
these intermediate outputs play a pivotal role in enhancing the
detection of changed information.
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C. Effectiveness of optimal sampling

We compared the visualizations and MCD results with or
without optimal sampling to evaluate the effectiveness of
optimal sampling. The comparisons are shown in Fig. 13, and
we can get the following findings.

1) After using the optimal sampling strategy, the generated
representations have fewer misclassifications for the
foreground and background, higher quality for object
segmentation and consistency, and more prominent edge
information; 2) the difference image not only highlights the
changed objects but also significantly suppresses the unchanged
ones; 3) for the Lasvegas case, the F1 with and without optimal
sampling are 0.872 and 0.818, respectively, and for the
Shuguang dataset, the F1 with and without optimal sampling
are 0.530 and 0.453, respectively. These findings manifest that
optimal sampling is of great gain for the task of MCD.

D. Effectiveness of silent attention

We tested the effectiveness of silent attention in the MR
encoders and CL encoders, as shown in Fig. 14. We find that
silent attention focuses on high-correlation objects but
suppresses low-correlation ones, thereby expanding the
contrast in output representations and making it easier to
distinguish changed objects, compared to vanilla attention.

Additionally, we find that silent attention has more minor
fluctuations during learning and overcomes the problem of
collapse that appeared in vanilla attention on the Lasvegas case,
as shown in Fig. 15. These results reveal that silent attention is
preferable and more robust than vanilla attention.

VI. CONCLUSION

In this paper, we proposed a novel MaCon framework for
unsupervised multimodal change detection. This framework
ingeniously integrates the two self-supervised learning
paradigms of MR and CL, harnessing their respective strengths
synergistically. The MR subnetwork pays more attention to
global information and low-level details, distilling common
representations, while the CL subnetwork emphasizes local
information and high-level semantics, extracting discrepancy
representations. Additionally, we introduced an optimal
sampling strategy to select more reasonable samples, thereby
guiding the model to generate more distinguishable disparity.
Moreover, we developed silent attention, a plug-and-play
module that addresses the inability of traditional attention to
assign negligible scores to irrelevant tokens. This advancement
improves the differentiation in output representations.

Experimental evaluation indicated that the MaCon
framework possesses strong generality on both multimodal and
monomodal datasets; it outperforms existing SOTA methods
and even exceeds the capabilities of certain supervised
approaches. Interpretability experiments were conducted to
understand the workings of the MaCon framework.

This study focused on two-dimensional multimodal Earth
observation images, a domain with extremely wide application
potential. Nevertheless, the need for change detection extends
beyond Earth observation to include diverse applications such
as high-definition maps, street view maintenance and medical
imaging diagnostics. Investigating the applicability of the



MaCon framework to other fields and additional modalities
presents an exciting avenue for future research.
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