

1 Beyond Single-Tokenomics: How Farcaster's Pluralistic 2 Incentives Reshape Social Networking 3

4 ANONYMOUS AUTHOR(S)
5

6 This paper presents the first empirical analysis of how diverse token-based reward mechanisms impact
7 platform dynamics and user behaviors. For this, we gather a unique, large-scale dataset from Farcaster.
8 This blockchain-based, decentralized social network incorporates multiple incentive mechanisms spanning
9 platform-native rewards, third-party token programs, and peer-to-peer tipping. Our dataset captures token
10 transactions and social interactions from 574,829 wallet-linked users, representing 64.25% of the platform's user
11 base. Our socioeconomic analysis reveals how implementation choices (e.g. eligibility criteria, redistribution
12 mechanism) shape varying inclusion rates (7.6%-70% new participants) and wealth concentration patterns (Gini
13 coefficients 0.72-0.94). While tipping exhibits echo chamber tendencies (67%), substantial cross-community
14 transactions (48%) among non-following pairs suggest potential for broader value exchange. Our causal
15 analysis further uncovers several critical trade-offs: (1) while most tokens boost content creation, they often
16 fail to enhance—sometimes undermining—content quality; (2) token rewards increase follower acquisition
17 but show neutral or negative effects on outbound following, suggesting potential asymmetric network
18 growth; (3) repeated algorithmic rewards demonstrate strong cumulative effects that may encourage strategic
19 optimization over authentic engagement. Our findings advance understanding of cryptocurrency integration
in social platforms and highlight challenges in aligning economic incentives with authentic social value.

20 21 1 Introduction

22 The emergence of Decentralized Online Social Networks (DOSNs) marks a shift in social networking,
23 emphasizing user autonomy, data sovereignty, and censorship resistance [6, 61]. Despite this, most
24 DOSNs have struggled to incentivize high-quality content, large-scale user uptake, and sustained
25 engagement [93, 112]. Most notably, their emphasis on user sovereignty has limited the adoption of
26 commonly used monetization models [15, 69, 94, 112], often resulting in insufficient funding being
27 available to compete with larger players.

28 Consequently, some have attempted to integrate cryptocurrency-based token incentives to
29 encourage participation by both content creators and infrastructure operators [23, 66, 101, 119, 120].
30 This, however, comes with key challenges, most notably the reliance on a single, platform-issued
31 token incentive mechanism. For instance, Steemit [101], a token-based DOSN launched in 2016,
32 utilizes its self-issued token for content interaction incentives. However, the failure of such a token
33 renders the rewards worthless. Furthermore, research has revealed that Steemit's single designated
34 token incentive mechanism is susceptible to token price fluctuations [9], and has suffered from
35 gaming and farming (i.e. strategic interactions between colluding users designed to exploit reward
36 systems), [67] and bot-driven adversarial manipulation [22]. This led to reward concentration
37 among a small group of colluding users, increasing centralization and economic inequality while
38 losing its effectiveness in promoting social engagement [53].

39 In response to this, a new DOSN called Farcaster was publicly launched in 2023 to support multiple
40 incentive mechanisms [38]. Functionally similar to X (Twitter), Farcaster stands out from current
41 DOSNs in two key aspects. First, Farcaster supports “*modular*” wallet binding – unlike platforms
42 constrained by primary account-bound blockchain addresses [14, 66, 101, 119], Farcaster enables
43 users to link any external Ethereum-compatible addresses [77], functioning as on-chain transaction
44 wallets, alongside their user accounts (termed Farcaster Identifiers (FIDs)) [31], providing greater
45 economic flexibility and autonomy. Second, Farcaster is the first to implement a “*pluralistic*” token
46 incentive ecosystem. We refer to it as pluralistic because, unlike existing DOSNs, Farcaster does not
47 have an officially issued token or a centrally designated incentive mechanism. Instead, Farcaster
48 allows any token or incentive mechanism to coexist within the ecosystem, regardless of the token
49

50 used (medium of reward) or the eligibility criteria designed. This opens up incentive design to
 51 users, third-party developers, or the platform's administrators themselves.

52 Thus, Farcaster enables users and developers to easily create and distribute their own tokens,
 53 creating an entirely decentralized reward ecosystem rather than a fixed incentive paradigm managed
 54 centrally. Such tokens can be used for any purpose deemed appropriate, including tipping content
 55 creators and operators who manage the infrastructure. Moreover, third-party developers can create
 56 custom applications (*mini-apps*) with algorithmic token reward distribution mechanisms [36],
 57 supporting a more community-driven incentive paradigm. We believe this presents a unique use
 58 case for studying the feasibility of a system where multiple tokens and diverse incentive mechanisms
 59 coexist to incentivize positive user behavior within social networks.

60 To understand its broader implications, this paper empirically examines how Farcaster's pluralistic
 61 incentive paradigm shapes platform dynamics and user behaviors. We gather both on-chain
 62 token transactions and off-chain social interactions relevant to Farcaster. As of April 27, 2025, our
 63 dataset covers 574,829 (64.25% of the user base) users who have at least one Ethereum-compatible
 64 wallet bound to their FIDs, with 5,878 unique tokens traded between users (far surpassing other
 65 DOSNs) [47, 62, 73]. Exploiting this data, we study the impact of multiple incentive mechanisms
 66 within the ecosystem. Specifically, we explore the following three research questions:

67 **RQ1:** How widespread and diverse is the token economy within Farcaster's ecosystem, specifically
 68 regarding: (1) the temporal dynamics of people binding their external cryptocurrency wallets
 69 to their Farcaster accounts, (2) how prevalent the various available tokens are, and (3) how these
 70 tokens serve different social functions through their incentive mechanisms?

71 **RQ2:** What socioeconomic risks are inherent in Farcaster's incentive system, specifically con-
 72 cerning: (1) disparities in new user participation rates across different token rewards, (2) inequity
 73 in reward distribution inequality, alongside (3) echo chamber effects in tipping?

74 **RQ3:** What causal relationships exist between token incentives and subsequent social activities,
 75 and how do these dynamics vary across: (1) different token categories (volatile tokens vs. stablecoins),
 76 (2) distinct incentive mechanisms (user-to-user tipping vs. algorithmic rewards)?

77 To the best of our knowledge, we are the first to empirically study Farcaster's pluralistic incentive
 78 ecosystem. Our contributions are as follows:

- 79 • We reveal how specific eligibility criteria designs (e.g. nomination-based vs. behavioral
 80 scoring) and reward distribution structure (e.g. bot-driven tipping, redistribution mechanism)
 81 significantly impact both user inclusion (70% vs 7.6% new participants) and income equality
 82 (Gini coefficients 0.72-0.94) (see Sections 5.1 and 5.2).
- 83 • We demonstrate that, while user-to-user tipping represents the most flexible incentive
 84 mechanism, it is predominantly unidirectional (with less than 10% of users acting as both tip
 85 receivers and senders) (see Section 5.1). Additionally, 52-75% of tips occur across community
 86 boundaries, and 32.42% between non-following pairs. This suggests that token incentives can
 87 facilitate value exchange beyond established social community structures (see Section 5.3).
- 88 • We reveal trade-offs in incentivised social activities: while algorithmic rewards leveraging
 89 volatile tokens as the medium effectively increase content quantity, they show limited or
 90 negative effects on content quality (see Section 6.3).
- 91 • We uncover that repeated algorithmic rewards correlate with asymmetric social network
 92 growth (increased follower acquisition but decreased outbound following) and strategic
 93 engagement optimization (prioritizing immediate reactions over share-worthy content
 94 creation), highlighting risks in token-incentivized social platforms (see Section 6.3).

95 These findings advance both the theoretical understanding of token-based incentive design and
 96 provide practical guidance for implementing sustainable reward mechanisms in social platforms.
 97

99 2 A Primer on Farcaster

100 We begin by outlining the core design of *Farcaster*. Below, we provide brief descriptions of: (1) social
 101 interactions; and (2) token transactions. For full technical details, we refer readers to the official
 102 documentation [38].

103 **Social Interactions.** Upon registration, Farcaster users receive an on-chain identifier (an Ethereum
 104 *custody address*) anchored on the Optimism Layer-2 chain¹ [87] and managed through Farcaster’s
 105 smart contracts [33]. Users must pay an annual storage fee [39] to rent network storage capacity
 106 during registration.² Users maintain exclusive control over their account’s private key. To facilitate
 107 network interaction, each address is associated with both a unique numeric identifier (FID) and a
 108 human-readable username (Farcaster User Name (Fname), e.g., @vitalik).

109 The off-chain social interactions—referred to using Farcaster-specific terminology as “casts” (posts
 110 and replies), “reactions” (likes and re-posts), and “links” (follow actions)—are exchanged through a
 111 peer-to-peer (P2P) network of independently operated servers called *hubs* [35]. Each Hub maintains
 112 a complete copy of the interaction data and synchronizes with peers using the GossipSub[55] and
 113 Diff Sync protocol [45].³ The system demonstrates robust fault tolerance: network functionality
 114 remains intact as long as a single Hub remains operational [30].

115 All social interactions (e.g. casts, links, and reactions) require a digital signature using the private
 116 key corresponding to the custody address. These signed actions are broadcast across the network,
 117 where participants (*i.e.* hubs, clients, and third-party applications) verify message authenticity
 118 by checking the digital signature against the on-chain registered public key for that FID. This
 119 hybrid (*i.e.* on-chain/off-chain) architecture preserves user ownership and interoperability while
 120 circumventing the scalability and cost constraints inherent in fully on-chain systems [1, 23, 101].

121 **Token Transactions.** Custody addresses linked to FIDs are primarily intended for account man-
 122 agement (e.g. signing social actions) rather than token transactions [38]. Farcaster enables users to
 123 bind *external* Ethereum-compatible addresses to their FID as transaction wallets [31], allowing for
 124 trading, rewarding, or payment activities. We refer to this flexibility as a *modular* wallet architecture.
 125 This architecture facilitates broader token interoperability and economic autonomy. By isolating
 126 user accounts from token transactions, it also enhances security and reduces risks associated with
 127 private key exposure (e.g. phishing/scam attacks [105]).

128 Note, since February 22, 2025, Farcaster has implemented a phased roll-out of official Ethereum-
 129 compatible wallets. This provides users with both optionally bound and officially issued Farcaster
 130 transaction wallets, along with the flexibility to designate any wallet as their primary wallet [31].

131 Note, while Farcaster allows users to bind both Ethereum [29] and Solana wallets [100] to their
 132 FIDs, Ethereum addresses significantly outnumber Solana addresses (794, 386 vs. 186, 434 as of May
 133 2025). Moreover, Farcaster only introduced Solana Wallet Standard integration for Mini-apps on
 134 May 21, 2025 [43], beyond our study period. Farcaster users can exchange tokens across over 50
 135 Ethereum-compatible L1 and L2 chains (e.g. Base, Optimism, Polygon, and BSC). However, we find
 136 that: (1) all top-ten tokens by daily transaction volume originate from Base chain deployments [73];
 137 (2) Base chain transactions constitute nearly 90% of total activity among Farcaster users [91];
 138 and (3) Farcaster’s native reward mechanism exclusively employs Base chain USDC for weekly
 139 distributions to qualified users and builders [37]. We thus focus our analysis on Base chain alone.

140 ¹A Layer-2 (L2) is a scaling solution atop a Layer-1 (L1) blockchain (e.g. Ethereum), enabling faster and cheaper transactions
 141 while inheriting its security.

142 ²Farcaster’s storage fee has been reduced three times since launching in October 2023, from \$7 to the current \$2 [28]

143 ³Note, Farcaster is transitioning to a new P2P coordination layer called *Snapchain*. Built upon GossipSub, Snapchain replaces
 144 full replication with a partitioned model, where each hub stores only a subset of data based on user FIDs [40].

148 All subsequent references to “wallet addresses” in this paper denote Ethereum-compatible wallet
 149 addresses, distinct from both custody addresses and Solana-compatible wallets.

150
 151 **3 Data Collection Methodology**

152 Farcaster’s hybrid data architecture necessitates both on-chain and off-chain data collection: (1) *Of-
 153 f-chain Data*: we gather a complete snapshot of Farcaster’s Hub data as of April 27, 2025, including
 154 all user profiles (*i.e.* FIDs, user names, FID-bound wallet addresses) and social interactions (*i.e.*
 155 followings, posting, liking, replying, and re-posting.) with their creation timestamps. (2) *On-chain
 156 Data*: We use Alchemy APIs⁴ to collect Farcaster’s token transaction data from the Base chain (an
 157 Ethereum Layer-2 network [11]) and construct transaction graphs between users’ wallet addresses.

158
 159 **3.1 Off-chain Data (User Profiles and Social Interactions)**

160 Following Farcaster’s official documentation [34] and code-base [44], we deploy two Hub server
 161 instances (one in Asia and one in Europe) to synchronize the off-chain data.

162 **FID Registration and Wallet Binding Records.** As of April 27, 2025, our dataset encompasses
 163 1,059,655 registered FIDs, with 894,678 valid FIDs.⁵ Note that when analyzing the timestamp data
 164 from the hub, we discovered that all FID registered before November 7, 2023 were aggregated
 165 to November 7, 2023. Therefore, in our analyses requiring FID registration timestamps, we set
 166 November 7, 2023 as the starting point.

167 While associations between Farcaster-issued wallets and FIDs are recorded both in the *KeyRegistry*
 168 smart contract’s transaction logs [33] and Hub data, users’ optionally bound external wallets are
 169 recorded solely in the Hubs and not on-chain [31]. However, Hubs periodically purge old data [44],
 170 resulting in the loss of information about wallets that were previously associated with an FID but
 171 were later unbound. To recover a complete list of external wallets bound to each FID, we query
 172 Neynar’s API [84]. Since this API only provides mappings of historical bound wallets and FIDs,
 173 without any binding and unbinding timestamps, we must rely on the incomplete wallet records in
 174 Hubs with timestamps for data analyses where binding time is necessary.

175 For wallets recorded in hubs, we discover that 574,829 (64.25%) of FIDs have at least one transac-
 176 tion wallet, whether optionally bound or officially issued, totaling 794,386 Ethereum-compatible
 177 wallets. After retrieving the complete historical bound wallets, we identify a total of 1,282,783
 178 external wallets bound to 606,827 (64.5%) FIDs. We find that 488,397 (38%) wallets were unbound
 179 before June 2025 after their initial binding.

180 **Social Interactions.** The social interaction data provided by our Hub contains 159,539,953 unique
 181 following relationships, 164,984,116 casts (comprising 36,646,412 posts (22.21%) and 128,337,704
 182 replies (77.79%)), and 299,079,720 reactions (consisting of 252,771,162 likes (84.52%) and 46,308,558
 183 reposts (15.48%)). For clarity and consistency with conventional terminology in the literature [106],
 184 we use standard terms such as “follow”, “post”, “reply”, “like”, and “repost” to denote these social
 185 interactions throughout the remainder of this paper.

186
 187 **3.2 On-chain Data (Token Transactions)**

188 Recall, we identified that Farcaster’s token transactions predominantly happen on Base chain (see
 189 Section 2). Therefore, we extract all token transfer records on Base involving Farcaster users’ wallets.
 190 To do so, we use the Alchemy API [3] to retrieve historical transfer data for all 1,282,783 wallet
 191 addresses, as of April 27, 2025. Additionally, to capture transactions involving smart contracts and
 192 other non-user wallet interactions, we include transactions where at least one party (either sender

193
 194 ⁴<https://www.alchemy.com/>

195 ⁵We exclude invalid users by identifying FIDs without historical storage units.

197 or recipient) is a user wallet. We collect a total of 87,687,791 transaction records, encompassing
 198 5,878 distinct tokens (1.34% of all 440,274 tokens that have appeared in all user wallets but may not
 199 necessarily have been traded between users) transferred between users' Ethereum wallets.

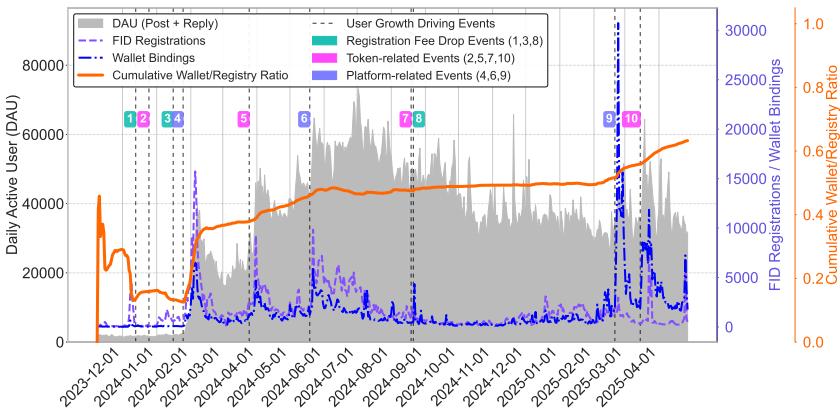
200 201 3.3 Ethical Considerations

202 Our dataset includes publicly available casts and on-chain transactions. To address privacy concerns,
 203 we strictly follow established ethical standards [25], collect only public data, and operate Hubs
 204 non-intrusively at our own expense and following the guidelines of the Farcaster creators [35].
 205 Notably, wallet addresses offer stronger pseudonymity than social identifiers like FIDs or Fnames,
 206 making it harder to link transaction histories to personal identities. This study was reviewed and
 207 received a waiver from the authors' institutional ethics committee.

208 209 4 Token Economy Scale and Token Incentive Diversity.

210 We answer **RQ1** by exploring the scale and diversity of the Farcaster token economy. First, we
 211 assess the role tokenomics play in Farcaster's growth and user activity. We then identify the most
 212 popular and impactful tokens. Finally, we analyze the incentive mechanisms that use these tokens.

213 214 4.1 Token-related Initiatives Driving Wallet Bindings.



230 Fig. 1. Daily engagement metrics and user growth on Farcaster.

231 232 Figure 1 presents daily user activity, platform growth, and user involvement in tokenomics. The
 233 platform experienced a steady activity growth, reaching a maximum of 73,180 daily active users
 234 (DAU) on July 2, 2024. Since then, the DAU stabilized at $\approx 42k$.

235 236 The new FID registrations and wallet binding show highly bursty behaviour. Registration/binding
 237 spikes occur during token-related events or new platform feature introductions. This includes
 238 DEGEN airdrops⁶ announcement [21, 110] (at ② and ⑤) or launch of new tokens that went viral
 239 (MOXIE [82] at ⑦ and DRB [88] at ⑩). At ④, Farcaster launched its token-focused mini-apps [36],
 240 while at ⑨, the platform introduced its official crypto wallet [31]. The only token-unrelated event
 241 with a significant impact occurred at ⑥, when Farcaster raised \$150M in funding [75], following
 242 an advertisement campaign (Farcaster Conference 2024) [32].

243 244 ⁶Airdrop is the free distribution of cryptocurrency tokens to eligible wallets, often to promote token adoption or reward
 245 early users.

246 This suggests that tokenomics is an important factor driving the Farcaster userbase. The platform
 247 decreased its registration fees multiple times from \$7 to \$5 in December 2023 (1), to \$3 in January
 248 2024 (3), and to \$2 in August 2024 (8) [28]. Surprisingly, those reductions did not significantly
 249 impact the new user registrations. The exact amount of the fees seems irrelevant for the new users
 250 who are mostly attracted by new features or the possibility of obtaining valuable tokens. This is
 251 further confirmed by the high rate of users who bound a token wallet to their account. The ratio is
 252 steadily increasing since late January 2024, reaching 64.25% in April 2025. We provide an expanded
 253 correlation analysis between platform growth and real-world events in Appendix A.

254 4.2 Prevalent Token Detection.

255 While flexible wallet binding to user accounts enhances economic autonomy and interoperability,
 256 one trade-off is that it simultaneously floods user wallets with numerous tokens unrelated to
 257 the Farcaster ecosystem. This introduces significant noise into our Farcaster incentive analysis.
 258 Therefore, we next examine the tokens circulating within the Farcaster ecosystem to discover
 259 methods for filtering this noise and identifying prevalent tokens that are genuinely relevant and
 260 impactful to the Farcaster social network.

261 We identify 440,274 distinct tokens held in FID-linked wallets. Yet, most exhibit limited activity:
 262 99% (435,871) tokens have fewer than 390 holders (by FIDs) and fewer than 1,065 transactions, while
 263 the remaining 1% (4,403) tokens account for 93.35% of all holders and 94.58% of all transactions
 264 (detailed in Appendix B). Furthermore, many tokens are widely distributed by just a small number
 265 of wallets, indicating a spam-like behaviour without community adoption [105]. This is common
 266 when token creators airdrop tokens to expand their popularity [4, 74, 109]. 60% (258,138) of tokens
 267 were never sent by a single FID-bound wallet, and >99% of tokens (434,094) involve fewer than 191
 268 unique FID senders.

269 These findings suggest that most tokens are passively received with limited social utility. We
 270 therefore strive to focus on sending activity to identify the platform's most socially engaged tokens.
 271 For brevity, we summarize the process of selecting these tokens below, and provide a detailed
 272 description and justification in Appendix C: (1) We filter the tokens with inter-FID transfers
 273 (*i.e.* transacted between at least one pair of Farcaster users); (2) we apply normalized Shannon
 274 entropy [70] to temporal transaction frequencies to filter out tokens with bursty, short-lived activity;
 275 (3) we retain tokens above the 99th percentile in unique FID senders (>254)⁷, filtering out those
 276 primarily distributed via airdrops rather than active social engagement. (4) based on the transaction
 277 graph, we calculate the clustering coefficients [98] and select 0.3-0.6 as criteria [108] to verify
 278 community-driven usage patterns.

279 Following this four-step process, we identify four prevalent tokens (DEGEN, MOXIE, HIGHER,
 280 and TN100X) issued by third-party developers as social rewards [21, 54, 56, 82]. We additionally
 281 include USDC, a stablecoin incorporated into Farcaster's official reward mechanisms [37, 109]. It is
 282 also used for user-to-user tipping as part of the platform's official design [12]. For our subsequent
 283 investigation, we use these five tokens as the primary subjects of study.

284 Table 1 presents the primary transaction metrics and filtering criteria assessment for these five
 285 tokens. Notably, USDC only fails to meet the clustering coefficient criterion, with a value of 0.23
 286 slightly below the lower threshold of 0.3, while satisfying all other three criteria. This indicates that
 287 USDC exhibits a relatively looser community structure compared to the four social reward tokens,
 288 which may be attributed to its additional use case as a stablecoin in payment scenarios rather than
 289 social interactions. Furthermore, it is worth noting that DEGEN's holder count ($\approx 153k$) ranks

290
 291
 292 ⁷Note that this threshold of 254 unique FID senders is derived from the 99th percentile of inter-FID transfers and therefore
 293 differs slightly from the 191, which is the 99th percentile for overall transfers.

295 Table 1. Prevalent tokens meeting the filtering criteria, sorted by overall transaction count (frequency).
296

297 Token	298 Holders	299 Total Txns	300 Inter-FID Txns	301 FID Sender	302 Clustering Coeff.	303 Token Age (wks)	304 Entropy (Norm)
300 DEGEN	301 152,908	302 3,337,952	303 173,772	304 27,723	305 $\in [0.3, 0.6]$	306 ≥ 26	307 ≥ 0.9
308 MOXIE	309 43,742	310 1,810,849	311 138,728	312 9,002	313 0.58	314 44	315 0.92
316 HIGHER	317 32,692	318 320,749	319 51,596	320 1,153	321 0.41	322 65	323 0.90
324 TN100X	325 16,409	326 193,678	327 9,996	328 1,838	329 0.36	330 69	331 0.92
<i>332 USDC is included, meeting all but the clustering coefficient criterion.</i>							
333 USDC	334 216,050	335 8,768,648	336 473,801	337 29,464	338 0.23	339 86	340 0.93

341 second only to USDC ($\approx 216k$), surpassing the other three social tokens by an order of magnitude.
342 Similarly, the number of FID senders for DEGEN approaches that of USDC (27,723 vs 29,464). These
343 metrics demonstrate that DEGEN, being the earliest launched among the four social reward tokens,
344 along with USDC (13 weeks older than DEGEN), has achieved the strongest network effects and
345 highest community recognition among all tokens in the Farcaster ecosystem.

346 4.3 Categorizing Incentive Mechanisms.

347 Finally, we investigate the incentive mechanisms that use these five tokens. We analyse the official
348 documentation [21, 82, 90], transaction history, and the smart contracts used for token distribution
349 (detailed in Appendix D). We then classify the incentive mechanisms into two main categories—
350 tipping and algorithmic rewards, with algorithmic rewards further subdivided into third-party and
351 official-led initiatives.

352 **353 *Inter-FID Tipping.*** In this mechanism, users directly send each other tokens using direct transfers.
354 (1) direct blockchain transfers to the wallet address displayed on a recipient’s profile; or (2) intermediary
355 mini-apps (e.g. @paybot [90]) that enable socially-driven interactions (similar to the donate
356 function in YouTube).⁸ All 5 prevalent tokens are used in this mechanism.

357 **358 *Third-party Algorithmic Rewards.*** Farcaster enables any third party to launch tokens with
359 bespoke distribution rules. These tokens are typically distributed via dedicated smart contracts
360 designed to enhance user engagement. Such contracts often incorporate staking-based mechanisms⁹
361 to mitigate undesired behaviors, including reward farming¹⁰ and sell-off pressure¹¹. We observe
362 DEGEN¹² [21] and MOXIE¹³ [82] being distributed through this mechanism.

363 **364 *Official Algorithmic Rewards.*** We distinguish the *official* algorithmic reward mechanism, imple-
365 mented by Farcaster’s administration through the USDC stablecoin [37].¹⁴ The mechanism provides
366 weekly rewards to top-performing users based on engagement metrics.¹⁵

367 ⁸YouTube’s fan funding feature: <https://www.youtube.com/intl/en/creators/fanfunding/>

368 ⁹Locking tokens in smart contracts for a set period to qualify for rewards or receive benefits like boosted scores.

369 ¹⁰A small group of users engages in circular reward-giving amongst themselves to exploit token reserves.

370 ¹¹Upon receiving token rewards, users immediately exchange them for more established cryptocurrencies (e.g. BTC, ETH).

371 ¹²DEGEN uses a nomination-based system where users reply to posts with messages like “100 \$DEGEN” to nominate others.

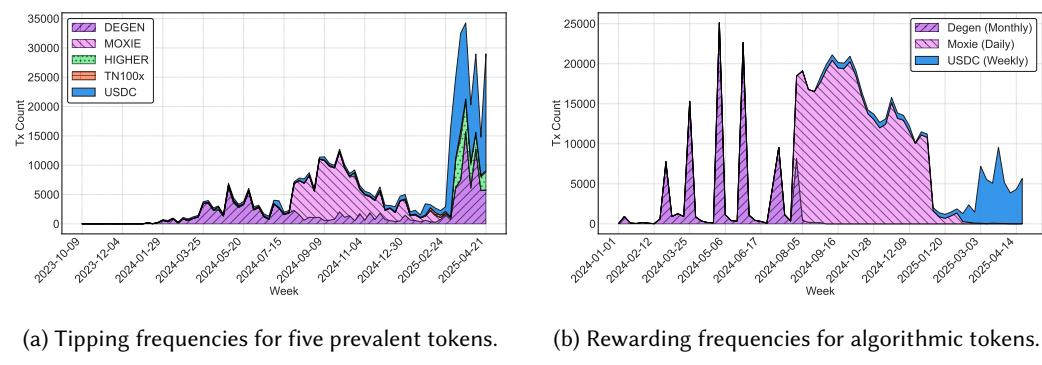
372 These are collected monthly to determine token rewards for post creators, resulting in the spike pattern shown in Figure 2b.

373 ¹³MOXIE’s algorithm linearly weights posting, replying, and token staking in its reward function, making it more prone to
374 metric gaming [81, 82].

375 ¹⁴Farcaster uses a black-box algorithm to mitigate farming and gaming behaviors, as noted by the co-founder: <https://farcaster.xyz/v/0x0e31071c>

376 ¹⁵These rewards follow a tiered structure, ranging from \$1 to \$300, allocated to qualified users across different ranking tiers.

Mechanism Comparison. We first analyze user coverage and temporal transaction dynamics for the above three reward mechanisms. Collectively, these mechanisms reach a total of 103,666 unique recipients, accounting for 11.59% of all FIDs. More specifically, this figure corresponds to 17.56% of active users, defined as individuals who have posted at least once. This indicates a relatively high adoption rate given the diversity and scale of the user base, suggesting these incentive mechanisms play a substantial role in overall system usage. Interestingly, Inter-FID Tipping and Third-party Algorithmic Reward mechanisms reach 6.01% and 6.43% of all FIDs, respectively, surpassing the Official Algorithmic Reward mechanism (3.15%). This suggests that community-driven incentive mechanisms may be more effective in engaging users than centralized, protocol-driven rewards.



(a) Tipping frequencies for five prevalent tokens. (b) Rewarding frequencies for algorithmic tokens.

Fig. 2. Stacked area charts of weekly aggregated transaction frequencies by token across mechanisms.

We next examine the individual tokens underpinning these mechanisms. Figure 2a depicts the transaction frequencies of Inter-FID Tipping across five major tokens (as referenced in Section 4.2), while Figure 2b illustrates the transaction frequencies for both third-party and official algorithmic reward mechanisms (note that only three out of five major tokens (DEGEN, MOXIE and USDC) are distributed within the algorithmic mechanism).

From the figures, we find that algorithmic rewards exhibit temporal patterns distinct from those of tippings. The frequencies of algorithmic rewards demonstrate pronounced episodic spikes, each corresponding to the initiation and duration of reward projects. By contrast, tipping frequencies display a more consistent and sustained temporal profile, closely tracking the fluctuations in daily active user (DAU) (as shown in Figure 1). This contrast underscores the project-driven nature of algorithmic rewards versus the organic, user-driven dynamics of tipping.

5 Socioeconomic Risks in Farcaster's Incentives

Previous studies have shown that financial rewards, despite their potential to boost engagement, can inadvertently encourage negative behaviors, *e.g.* farming, whereby users collaborate to mass-produce content and artificially amplify engagement to accumulate rewards [9, 53, 67]. Following RQ2, we investigate whether Farcaster's incentive mechanism exhibits similar socioeconomic risks. Particularly, we focus on three example behaviors: new user participation, potential reward concentration, and echo chamber formation across incentive mechanisms.

5.1 New User Participation Rates

To evaluate whether incentive mechanisms encourage broader participation (inclusivity) for newcomers or create barriers to entry (thereby offering more reward opportunities to incumbent

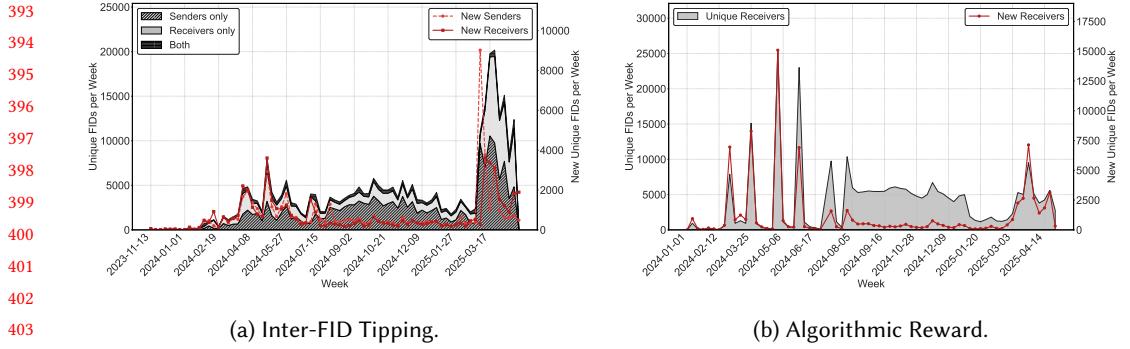


Fig. 3. Temporal dynamics of new user participation in (a) tipping and (b) algorithmic rewarding mechanisms.

recipients), we analyze the temporal patterns of user inclusion. This inclusion is measured by the rate of weekly new reward receivers to weekly total receivers.

Data and Methodology. We perform a temporal analysis by calculating the weekly counts of unique senders and receivers (by FIDs) for each type of reward, including eight token-mechanism pairs defined in Section 4.3. We also identify users who act as both senders and receivers within the same week. Additionally, we track the weekly influx of new receivers and senders, defined as those receiving or sending the specific reward for the first time that week. This longitudinal analysis reveals new user participation patterns across different incentive mechanisms.

Results. Figure 3 shows the weekly count of FIDs by their types. The stacked area charts display the number of unique senders (diagonal), receivers (solid), and users acting as both (horizontal), with overlaid lines representing weekly new receivers (solid red) and new senders (dashed red).

For *Inter-FID Tipping* (see Figure 3a), the total sender and receiver counts fluctuate synchronously. An anomaly occurred during the significant tipping surge following the Farcaster wallet launch in late February 2025: the weekly new sender count spiked sharply (reaching 9,023 for the week of March 3 2025), far exceeding new receivers (which remained low at 270, similar to pre-launch levels). The following week, new senders dropped to 3,772 while new receivers rose to 3,611, and both metrics quickly resynchronized. Further breakdown (see Figure 10 in Appendix E) reveals this spike was mainly driven by USDC tipping. We conjecture this is due to official campaigns encouraging users to send USDC to activate wallet features or qualify for airdrops [109].

It is also worth noting that each week, only a small fraction (*Mean* = 9.76%, *SD* = 5.83%, *median* = 8.84%) of users engage in both sending and receiving. This indicates that most tipping flows are unidirectional instead of reciprocal.

For *Algorithmic Rewards* (see Figure 3b), recall that the three tokens (DEGEN, MOXIE, and USDC) were distributed in distinct time windows (as shown in Figure 2b), allowing the aggregated data to still reveal clear trends. Before August 2024, DEGEN's algorithmic rewards followed a monthly claim pattern (as mentioned in Section 4.3). For DEGEN, both weekly total receivers and weekly new receivers increased in the first four months (Jan-April 2024). The peak of new user participation rate (59.24%) was reached in late April (total 25,475; new 15,091), after which both weekly total and new receivers declined – with new receivers dropping more rapidly. By late May, new receivers accounted for only 30% of total receivers (23,005 vs. 6,908), and by June and July, this dropped to \approx 16%, after which DEGEN algorithmic rewards ceased.

During the subsequent MOXIE reward period (about 30 weeks from Aug 2024 to Jan 2025), the weekly gap between total receivers (mean 4,293) and new receivers (mean 328) was much

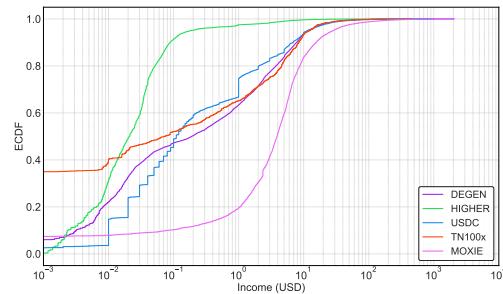
wider: new receivers account for only 7.6%, indicating far less inclusion in MOXIE algorithmic reward project, with more reward opportunities offered to incumbent receivers. This stands in sharp contrast to DEGEN, suggesting the user-driven nomination-based reward design of DEGEN was more inclusive than MOXIE’s behavioral scoring approach (detailed in Section 4.3). Finally, the official USDC algorithmic reward (from Feb 2025 to present) also exhibited acceptable inclusivity: new receivers accounted for 48.45% of total receivers on average (2,477 vs. 5,112), with both metrics (weekly total and new receivers) moving in parallel. This suggests that each token is used in quite distinct manners, with different degrees of inclusivity for attracting new users. This arguably highlights the benefits of the pluralistic approach taken by Farcaster.

5.2 Income Inequality and Wealth Concentration

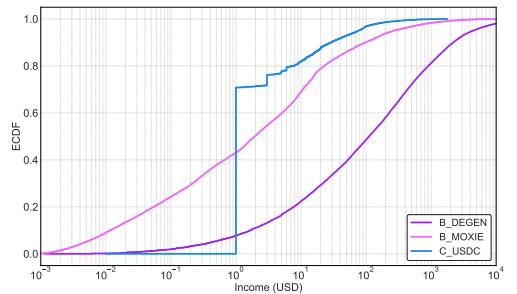
Previous research has shown that single-token incentive mechanisms can lead to income inequality and wealth concentration (Gini coefficient > 0.9) across decentralized networks [67, 79, 120]. This motivates us to assess whether Farcaster’s pluralistic token incentive ecosystem (where user-to-user tipping and developer-led algorithmic rewards coexist) also faces the same challenges, resulting in wealth concentration.

Table 2. Income distribution and inequality metrics across three incentive mechanisms in Farcaster

Metric	Inter-FID Tipping Reward					3rd-Party Algo. Reward		Off. Algo. Reward
	Degen	Higher	USDC	Moxie	Tn100x	Degen	Moxie	USDC
Gini Coeff.	0.8304	0.9382	0.8631	0.7246	0.8277	0.8433	0.9248	0.8598
Total	99,141.39	4,132.93	94,788.73	86,136.68	5,543.84	49,612,724.35	1,657,380.21	517,831.34
Max	2,061.85	616.44	999.99	2,040.63	457.78	492,133.29	15,542.65	1,772.83
Min	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Mean	3.13	0.29	2.73	9.97	3.11	1,050.81	77.32	15.49
Median	0.19	0.02	0.11	3.89	0.07	111.03	1.95	1.00



(a) Inter-FID tipping



(b) Algorithmic rewarding

Fig. 4. Income distribution (USD) across incentive mechanisms.

Data and Methodology. To measure wealth concentration, for tokens other than USDC (a stablecoin), we first collect daily average price data for DEGEN, MOXIE, HIGHER and TN100X. We estimate each user’s income by multiplying the received token amount by the average daily USD price on the day of receipt. This provides a practical approximation, as users may exchange their

tokens at any time. Finally, we measure the concentration of each token's value (in USD) per account.

Results. Table 2 summarizes key statistics for all major incentive mechanisms and Figure 4 shows the Empirical Cumulative Distribution Function (ECDF) of user income (in USD) for each mechanism. It reveals that despite Farcaster's pluralistic approach (designed to potentially mitigate income inequality by offering more reward-receiving opportunities to a broader user base), significant wealth concentration persists across all token-mechanism pairs. The consistently high Gini coefficients (0.72-0.94 in Table 2) suggest that both tipping and algorithmic rewards may recreate the centralization issues observed in earlier token-based social platforms like Steemit (Gini coefficient ≈ 0.99) [53]. For *Inter-FID Tipping*, income from the HIGHER token exhibits a right-skewed distribution (more low-income users), with a Gini coefficient of 0.94. This high degree of inequality is further underscored by the fact that 98% of users received less than \$1, and 80% received less than \$0.05. This imbalance is consistent with HIGHER possessing the lowest number of unique senders and the most skewed sender-to-receiver ratio (1:12.5) among all tipping tokens examined (Table 8). Critically, we notice that 92.4% of HIGHER tipping transactions originate from only two bot accounts. These bots reward trivial amounts of HIGHER to users during specific interactions, such as content replies or lottery drawings. Consequently, the distribution of HIGHER is heavily concentrated among low-value recipients and is primarily driven by automated bot activity rather than organic peer-to-peer engagement.

For *Algorithmic Rewards*, the distribution patterns reflect a more structured approach than tipping. USDC, for example, uses a tiered reward scheme based on weekly behavioral rankings Section 4.3, distributing between \$1 to \$300. Notably, 75% of users receive the minimum reward of \$1. While both USDC and MOXIE rely on similar behavioral scoring algorithms (detailed in Section 4.3), their metric selection and openness differ significantly. MOXIE's algorithm explicitly weights posting, replying, and token staking, making it more susceptible to metric gaming and the rich-get-richer phenomenon [81, 82]. In contrast, USDC's scoring algorithm remains opaque but predominantly includes social behavior signals, without any wealth status metrics, making it more resistant to gaming while ensuring more opportunity to baseline rewards for a broader user base [37]. This aligns with research showing that modest, guaranteed incentives can outperform larger, uncertain rewards in driving participation [58].

Consequently, MOXIE's algorithmic rewards show more pronounced income inequality (Gini: 0.92) contrasted with USDC (Gini: 0.86). This is likely due to MOXIE's transparent scoring system that allows strategic users to optimize their behavior for maximum rewards, as well as its token-stake boosting scores, resulting in the rich-get-richer effect. This extreme concentration in MOXIE algorithmic rewards echoes its poor inclusivity metrics observed in Section 5.1, as new users face barriers to participation while rich incumbent monopolize the reward opportunities.

That said, MOXIE also presents an interesting case where its redistribution mechanism effectively mitigates initial wealth concentration. While its algorithmic rewards show high inequality (Gini: 0.92) in initial distribution, its unique follower-followee redistribution mechanism [82]—where a portion of rewards (designated by the followee, e.g. 20%) received by followees automatically flows to followers in the form of inter-FID tipping—contributes to more balanced secondary distribution for MOXIE tipping (Gini: 0.72). This suggests that carefully designed redistribution rules *can* help address wealth concentration issues even when primary reward allocation is highly skewed.

5.3 Echo Chamber Effect in Tipping

While inter-FID tipping mechanisms facilitate value exchange and content monetization, they may inadvertently amplify echo chamber effects within social networks. This might drive users

540 to create smaller social communities, driven by trends in reward-giving. Thus, in the context of
 541 tipping behavior, we define an *echo chamber* as a closed loop of economic value circulation where
 542 tipping flows predominantly remain within tight-knit communities rather than across diverse user
 543 groups [24]. Such economic echo chambers could potentially lead to the concentration of tipping
 544 flows among a small subset of users, reducing exposure to diverse social content and limiting the
 545 platform’s ability to sustain a broad and inclusive incentive model.

546 **Data and Methodology.** To investigate potential echo chamber effects, we begin by examining
 547 the temporal dynamics between following and tipping relationships (Table 3). Specifically, we
 548 compare the timestamp of the first tip between pairs of users with the timestamp of their follow
 549 relationship (if any). We classify tipping interactions into three categories based on the timing of
 550 follow relationships: (1) Followed before first tip, (2) Followed after first tip, and (3) Never followed,
 551 *i.e.* tipping between users who never established a follow relationship, accounting for 55.61%,
 552 11.97%, and 32.42% of all tips, respectively. This distribution motivates a further analysis of whether
 553 tipping interactions, especially those without underlying social relationships (*i.e.* Never Followed),
 554 tend to occur within existing echo chambers or bridge across them.

555 To explore this, we construct the Farcaster social graph based on follow relationships, resulting in
 556 a directed network with 883,712 nodes and 159 million edges—we refer to this as “Follow network”
 557 (see Table 10 in Appendix E for more details). We then incorporate the tipping relationships between
 558 pairs of users onto this network as additional edges to form the combined “Follow + Tip” network.
 559 The tipping relationships correspond to 55,847 edges.¹⁶ To assess whether tipping rewards circulate
 560 within or across echo chambers, we identify communities within the follow network—*i.e.* groups of
 561 users with dense follow relationships each serving as a potential echo chamber.

562 We use two community detection approaches: *NetworKit*’s Louvain modularity optimization [83]
 563 and *Infomap*’s information flow-based partitioning [85]. Due to the inherent randomness in Net-
 564 worKit’s implementation, metrics subject to variation are reported as either means or ranges from
 565 three independent runs. Finally, we map tipping relationships (tip edges) onto the community
 566 structure to evaluate whether economic rewards tend to remain within follower communities or
 567 flow across them. Since tipping edges are overlaid on top of the follow network, we also assess
 568 whether they substantially alter the underlying community structure. To quantify the extent to
 569 which community structures persist across different network configurations (*i.e.* Follow vs. Fol-
 570 low+Tip), we use two standard metrics: Normalized Mutual Information (NMI) and Adjusted Mutual
 571 Information (AMI).¹⁷

572 **Results.** Using Louvain (Infomap) detection, we find that 52% (75%) of tips cross community
 573 boundaries while the remaining 48% (25%) stay within communities. We show full results for the
 574 relationship between tipping behavior and communities in Table 11 in Appendix E.

575 The stronger inter-community tipping observed under Infomap reflects its finer-grained commu-
 576 nity resolution. Infomap produces hierarchical clusters at multiple levels, *i.e.* Levels 0, 1, 2, and 3.
 577 We focus on Level 1 for our analysis, because it strikes a balance between overly coarse groupings
 578 (*e.g.* a single dominant community at Level 0) and overly fragmented structures at finer levels.
 579 At this level, the largest community detected by Infomap contains 330,867 users, compared to
 580 approximately 462,230 in Louvain.

581
 582
 583
 584 ¹⁶To ensure robust analysis, we exclude the lottery tipping bot (FID: 987581, Fname: Warpslot) to focus on organic content-
 585 driven tipping interactions.

586
 587 ¹⁷NMI measures the similarity between two clusterings but may overstate agreement by not accounting for chance overlap.
 588 AMI corrects for this by adjusting for the expected similarity under random labelings to yield a more conservative measure
 589 of structural alignment.

589 Table 3. Tipping and following relationship

590 Louvain			
591 Following Status	#	%	592 Inter-comm. Ratio
593 Never Followed	55,847	32.42%	[45.06%, 51.48%]
594 Followed Before First Tip	95,790	55.61%	[22.24%, 26.13%]
595 Followed After First Tip	20,621	11.97%	[22.47%, 25.26%]

596 Infomap			
597 Following Status	#	%	598 Inter-comm. Ratio
599 Never Followed	–	–	74.68%
Followed Before First Tip	–	–	56.10%
Followed After First Tip	–	–	59.66%

599 Table 4. Network overlap metrics

600 Louvain			
601 Network Pair	NMI	602 AMI	603 Max Overlap
Follow vs. Combined	0.73	0.73	0.925
Follow vs. Tip	0.33	0.26	0.380
Tip vs. Combined	0.31	0.24	0.694

604 Infomap			
605 Network Pair	NMI	606 AMI	607 Max Overlap
Follow vs. Combined	0.91	0.91	0.928
Follow vs. Tip	0.19	0.13	0.519
Tip vs. Combined	0.21	0.15	0.227

608 We observe a clear difference in tipping behavior based on the underlying follow relationship
 609 between users. As shown in Table 3, tipping between users who never followed each other is
 610 substantially more likely to cross community boundaries: 45–51% under Louvain and 74.68% under
 611 Infomap. In contrast, tips between users with an existing follow relationship are more likely to
 612 remain within the same community—only 22–26% cross-community under Louvain and 56.1%
 613 under Infomap.

614 These differences in community-level tipping behavior are consistent with structural differences
 615 in how communities are formed under each network. As shown in Table 4, Louvain and Infomap
 616 produce highly similar communities when applied to the follow and combined graphs (NMI =
 617 0.73 and 0.91, respectively), suggesting that tipping edges have limited impact on the overall
 618 community structure. This is also shown by the similar network metrics between Follow-only and
 619 Follow+Tip networks (Table 10 in the Appendix E.). However, both algorithms yield substantially
 620 lower overlap between follow and tip networks (e.g. AMI = 0.26 for Louvain, 0.13 for Infomap),
 621 indicating that tipping relationships form a distinct layer of interaction. Thus, while follow links
 622 defines stable community boundaries, tipping behaviors can cross these boundaries, particularly
 623 under finer-grained community partitions.

624 6 Effectiveness of Token Incentives on Social Activities

625 Building upon our findings from Section 4 (RQ1) regarding the prevalence and diversity of token
 626 adoption, and Section 5 (RQ2) concerning socioeconomic risks, we finally investigate whether
 627 token incentives effectively encourage subsequent social engagement (RQ3), as this is the ultimate
 628 goal of the incentive design.

629 Given the criticism faced by previous platforms (e.g. Steemit) for coordinated low-quality content
 630 farming [9, 67], we specifically focus on whether Farcaster's pluralistic token incentive ecosystem
 631 fosters greater user engagement. To answer this, we investigate the causal impact of Farcaster's to-
 632 ken incentives on social behavior through two complementary approaches [5, 10]: binary treatment
 633 analysis and continuous treatment analysis.

634 6.1 Binary Treatment: Recipients vs. Non-Recipients.

635 **Overview.** We begin by using the binary treatment (e.g. receipt of a token reward) to compare reward
 636 recipients versus non-recipients, to measure the social impact of token rewards. Our analysis spans
 637 November 7, 2023, to April 27, 2025, examining five tokens (DEGEN, MOXIE, HIGHER, TN100X,
 638 USDC) across the three incentive mechanisms described in Section 4.2: user-to-user tipping, third-
 639 party rewards, and Farcaster's official algorithmic rewards. This generates eight token-mechanism

638 pairs (as shown in Section 4.3), whose effects we analyze on nine social activities: posting, and
 639 bidirectional interactions in replying, liking, re-posting, and following.¹⁸

640 We implement Propensity Score Matching (PSM) and Difference-in-Differences (DID) analysis
 641 using a temporal alignment approach: each user's first reward reception or wallet binding timestamp
 642 is designated as $T=0$, with a four-week observation window before and after. We can then compare
 643 activity levels before vs. after. This window size aligns with established practices in previous
 644 causal inference studies and provides sufficient time to observe behavior changes while minimizing
 645 confounding temporal effects [10]. We next explain how we implement PSM and DID.

646 **Propensity Score Matching (PSM)** To compare the impact of receiving rewards, we employ PSM to
 647 construct comparable treatment and control groups by matching users with similar pre-treatment
 648 characteristics. We validate matching quality by examining standardized mean differences (SMD)
 649 of covariates (*i.e.* observed pre-treatment characteristics that may influence treatment or outcome)
 650 between matched groups. SMD is calculated as the difference in means between treatment and
 651 control groups divided by the pooled standard deviation, with values below 0.1 indicating successful
 652 matching in relevant studies [7].¹⁹ Our matching incorporates comprehensive covariates, covering
 653 social activity metrics (account age when receiving the token reward, weekly aggregated posting
 654 frequency, bidirectional following, replying, liking, and re-posting frequencies) and token reward
 655 features (weekly aggregated reception frequencies across all token-mechanism pairs).

656 Our primary specification includes all available covariates in the PSM to ensure optimal matching
 657 between control and treatment groups. Diagnostic assessments demonstrate successful matching
 658 outcomes, with most covariates achieving $SMD < 0.1$ (see Figures 11 and 12) and matched pair
 659 sizes representing approximately 50% of their corresponding populations across different token-
 660 mechanism pairings (see Table 5). Our Average Treatment Effect on the Treated (ATT) and DID
 661 regression models below incorporate time fixed effects but exclude user fixed effects, as PSM already
 662 ensures group comparability.

663 **Difference-in-Differences (DID)**. Beyond the PSM, to strengthen causal identification and account
 664 for time-varying confounders, we implement a DID analysis with parallel trend validation. The
 665 parallel trends assumption, which is fundamental to DID, requires that treatment and control
 666 groups exhibit similar outcome trajectories during the pre-treatment period [65].

667 Our validation approach divides the event timeline into pre-treatment ($T-4$ to $T-1$) and post-
 668 treatment ($T+1$ to $T+4$) windows, where the number following T denotes the number of weeks
 669 relative to the treatment day ($T+0$). For each pre-treatment window, we estimate differential
 670 coefficients between treatment and control groups. These coefficients measure the additional
 671 differences in outcome variables (such as posting frequencies) between treatment and control
 672 groups at each time window t .

673 In a valid parallel trend test, pre-treatment coefficients should be statistically insignificant (p -
 674 value > 0.05) [96]. We additionally adopt a 25% tolerance criterion: the parallel trends assumption
 675 is considered to hold if statistically significant pre-treatment differences appear in no more than
 676 one quarter of the pre-intervention windows. This allowance accounts for behavioral adjustments
 677 in anticipation of reward eligibility—such as increased engagement aimed at maximizing reward
 678 probability—while preserving the integrity of the identification strategy. This approach aligns with
 679 context-aware thresholds discussed in prior methodological work [96].

680 **Covariate Adjustment.** Due to high inter-correlations among social behaviors [80, 106], unadjusted
 681 analyses risk inflating treatment effects ATT by confounding concurrent activities (*e.g.* an increase

682
 683 ¹⁸We include wallet binding as a baseline binary treatment to assess how participation in the token economy affects user
 684 behavior (see Table 5).

685 ¹⁹In the literature, higher SMD thresholds (0.25) are also proposed [8].

687 in posting may naturally correlate with a rise in likes and replies). Our initial result exhibits this,
 688 showing broad positive impacts of token incentives on most social activities.

689 To mitigate this, we use a covariate-adjusted method that controls for both pre- and post-
 690 treatment social and token reward features, such as controlling for all other reward receptions and
 691 social activities when analyzing DEGEN tipping's effect on posting. Therefore, we further employ a
 692 covariate-adjusted method that accounts for both pre- and post-treatment social and token reward
 693 features as potential confounders. For example, when analyzing the impact of DEGEN tipping
 694 on posting behavior, we control for all other token rewards and social activities (both pre- and
 695 post-treatment) as confounders. This comprehensive approach reveals that the estimated effects of
 696 token rewards (*i.e.* net effects ATT) often become smaller—and sometimes reverse direction. These
 697 findings suggest a substantial correlation among social behaviors. Therefore, with the covariate-
 698 adjusted model accounting for additional social activity as confounding factors, net effects ATT
 699 more accurately reflect the independent impact of token rewards on specific behaviors, rather
 700 than capturing spillover effects through correlated activities. This net effect approach provides
 701 deeper mechanistic insights, enabling us to identify which token rewards drive low-quality content
 702 farming versus high-quality engagement.

703 6.2 Continuous Treatment: Reward Reception Frequency.

704 To quantify the intensity effect of each additional reward on social behaviors beyond binary
 705 treatment, we analyze how reward frequency affects behavioral changes through Ordinary Least
 706 Squares (OLS) regression:

$$707 \Delta Y_i = \alpha + \beta \cdot \log(RF_i) + \gamma \cdot C_i + \epsilon_i \quad (1)$$

708 where i indexes users, ΔY_i represents the change in social behavior metrics (calculated as post-
 709 treatment minus pre-treatment social activity frequencies), $\log(RF_i)$ is the log-transformed frequency
 710 of a certain type of token reward received, and C_i includes all available pre-treatment
 711 covariates (*e.g.* posts and replies). For instance, when analyzing DEGEN tipping's impact, ΔY_i
 712 measures the change in weekly posting frequency, while RF_i counts the frequency of DEGEN tips
 713 received.²⁰ Using this methodology, we analyze users who have received at least one instance of
 714 the relevant token reward, focusing on 4-week windows before and after alignment points.

715 6.3 Results and Findings

716 Table 5 presents the results of our binary treatment causal analysis. We use colored symbols to
 717 denote significant effects that pass the parallel trends test (including tolerance cases): green $+$ for
 718 positive effects and red $-$ for negative effects, with the number of symbols indicating significance
 719 levels (*e.g.* $+$: $p < 0.05$, $++$: $p < 0.01$, $+++$: $p < 0.001$). Non-significant effects are marked with
 720 “N”. In Table 5, among the 81 treatment-outcome pairs (9 social activities \times 9 treatments), we denote
 721 6 cases (7.41%) passing with tolerance as “C”, 12 failing cases (14.81%) as “F”, and leave complete
 722 passes unmarked (63 cases, 77.78%).

723 Moreover, both effects must be in the same direction (either both positive or both negative). The
 724 results are summarized in Table 6, where the regression coefficients satisfying these criteria are
 725 highlighted with color (green for positive effects, red for negative effects). A more detailed result
 726 table, including R^2 and standard errors (SE), is provided in Table 12 in Appendix F.

727 Our causal analyses reveal several key patterns in how different token incentive mechanisms
 728 shape user behavior on Farcaster. These findings span three main dimensions: the quantity-quality
 729 trade-off in content engagement, the dynamics of social network growth, and the intensity effects

730 731 732 733 734 735 ²⁰Due to the complexity of comparing the amount of USD value across different tokens, we only measure and compare the
 token reward frequencies.

736 Table 5. Causal effect summary of binary treatments on social features across two alignment approaches
737

738 739 740 Action	738 739 740 Wallet		738 739 740 Inter-FID Tipping				738 739 740 Algo. Rewards		
	738 739 740 Binding	738 739 740 DEGEN	738 739 740 HIGHER	738 739 740 MOXIE	738 739 740 TN100X	738 739 740 USDC	738 739 740 DEGEN	738 739 740 MOXIE	738 739 740 USDC
741 post	<i>F, + + +</i>	<i>+</i>	<i>C, + + +</i>	<i>+</i>	<i>N</i>	<i>N</i>	<i>C, + + +</i>	<i>F, + + +</i>	<i>N</i>
742 reply_out	<i>N</i>	<i>+</i>	<i>—</i>	<i>+</i>	<i>N</i>	<i>N</i>	<i>N</i>	<i>N</i>	<i>N</i>
743 reply_in	<i>N</i>	<i>N</i>	<i>N</i>	<i>N</i>	<i>+++</i>	<i>N</i>	<i>+++</i>	<i>+++</i>	<i>N</i>
744 like_out	<i>F, N</i>	<i>N</i>	<i>N</i>	<i>—</i>	<i>N</i>	<i>—</i>	<i>+++</i>	<i>—</i>	<i>+++</i>
745 like_in	<i>N</i>	<i>+++</i>	<i>N</i>	<i>N</i>	<i>C, —</i>	<i>N</i>	<i>N</i>	<i>F, N</i>	<i>+</i>
746 repost_out	<i>C, + + +</i>	<i>—</i>	<i>N</i>	<i>N</i>	<i>N</i>	<i>—</i>	<i>N</i>	<i>N</i>	<i>—</i>
747 repost_in	<i>N</i>	<i>N</i>	<i>N</i>	<i>N</i>	<i>N</i>	<i>N</i>	<i>—</i>	<i>—</i>	<i>—</i>
748 follow_out	<i>F, + + +</i>	<i>F, — — —</i>	<i>F, — — —</i>	<i>C, —</i>	<i>F, — — —</i>	<i>—</i>	<i>F, + + +</i>	<i>F, + + +</i>	<i>F, — — —</i>
749 follow_in	<i>+++</i>	<i>C, + + +</i>	<i>N</i>	<i>—</i>	<i>N</i>	<i>+++</i>	<i>+++</i>	<i>F, N</i>	<i>+++</i>
750 population_size	574829	40836	15849	5252	3459	15872	47748	21505	28181
751 matched_pairs	48799	16817	7795	2643	2257	7119	15100	12260	7217

751 **Symbols:**752 + & -: Positive & negative causal effects (measured by ATT significance levels ($p < 0.05, p < 0.01, p < 0.001$));

753 + & -: Positive & negative causal effects with parallel trend pre-test passed (including deviation tolerance);

754 N: Average Treatment Effect on the Treated (ATT) not significant in post-treatment period;

755 C: Deviation exists in parallel trend pre-test (only 1 week deviation);

756 F: Parallel pre-test fails (more than 1 week deviation).

757 Table 6. Regression summary of continuous treatment intensity with social activities.
758

759 760 Action	759 760 Inter-FID Tipping					759 760 Algo. Rewards		
	759 760 DEGEN	759 760 TN100X	759 760 HIGHER	759 760 MOXIE	759 760 USDC	759 760 DEGEN	759 760 MOXIE	759 760 USDC
761 post	1.5703***	5.0001	1.9701***	-0.0517	-0.0805	12.7407***	15.2254***	8.2309***
762 reply_out	-4.4867	8.6610	-3.8922	10.6198	-0.3703	9.4023	59.2029***	-19.1090***
763 reply_in	1.7207	-35.1615	-2.4438	10.4600	-10.2936**	-4.8940	57.1112***	5.1841
764 like_out	-1.4999	6.4651	1.4243	-4.1602	7.5337**	-9.7807	22.8327***	32.0449***
765 like_in	-1.2148	25.2958	17.9290***	-27.5476***	0.5102	-77.0576***	7.7791**	73.9531***
766 repost_out	0.4519	7.1819	2.4716*	-0.9295	-0.0732	-5.6276	-0.1039	-9.1389***
767 repost_in	1.7003	-5.8862	-5.2017***	5.6276**	8.7852*	5.0918	-6.2899***	-30.2670***
768 follow_out	0.2749	-0.9579	0.0211	14.5753***	0.6082	0.9927	20.3066***	-54.1936***
769 follow_in	-12.4111	-57.8221	-19.9274***	9.9655***	15.6006	196.8301***	6.3755**	242.8866***
770 population_size	40836	3459	15849	5252	15872	47748	21505	28181
771 sample_size	38532	3438	13854	5041	13879	47748	21482	27484

772 **Symbols:** *** $p < 0.001$, ** $p < 0.05$, * $p < 0.01$. Significant coefficients with corresponding significant causal
773 effects are bolded and colored775 of repeated token rewards. Through these analyses, we uncover both intended and inadvertent
776 consequences of token-based incentive mechanisms.777 **Trade-off between Engagement Quantity and Quality.** Our binary treatment analysis employing
778 PSM and DID reveals that the initial reception of token incentives generally increases content
779 engagement quantity (posts and replies) while showing insufficient effectiveness in improving
780 quality (likes and re-posts).781 To illustrate these findings, we present DID visualizations (Figure 5) for cases that both pass the
782 parallel trends test and show significant positive ATT results (detailed in Section 6.1). We focus
783

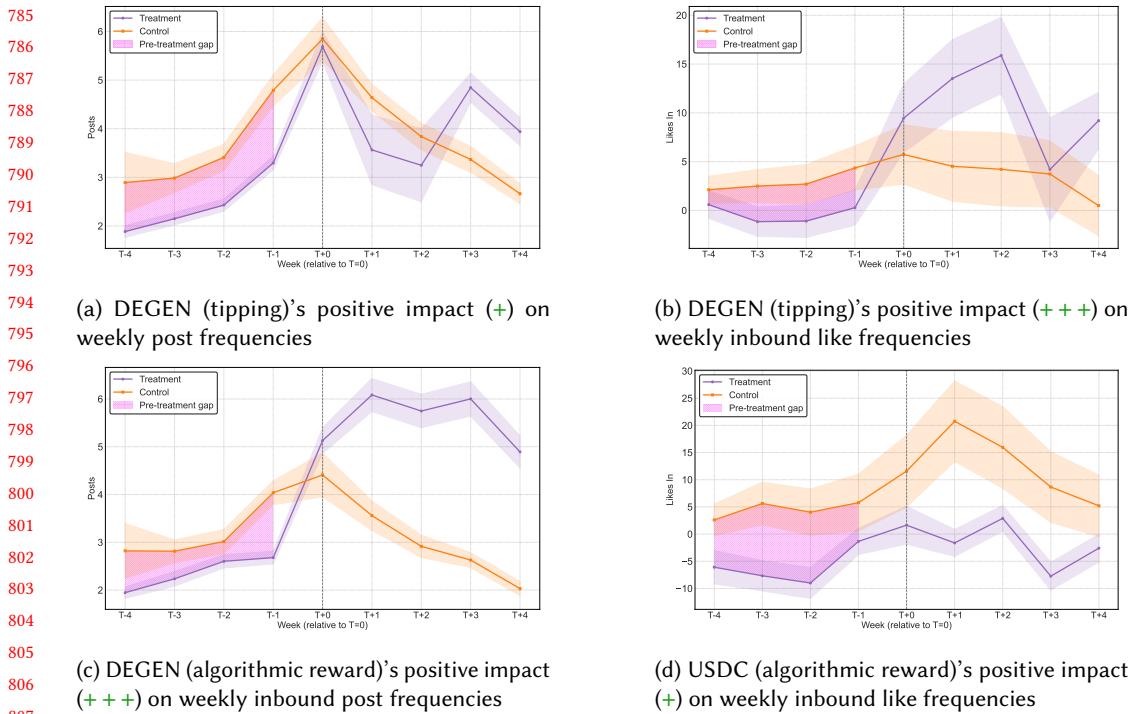


Fig. 5. Difference-in-Differences (DID) visualizations.

834 and USDC algorithmic rewards (Figure 5d (+, $p < 0.05$)) significantly increase recipients' received
 835 likes. This may be attributed to DEGEN and USDC's network effects as the most-traded reward
 836 token in Farcaster (discussed in Section 4.2). However, these effects do not generalize to other
 837 tipping or third-party algorithmic tokens. Moreover, no tipping tokens show significant effects
 838 on re-post gains, while algorithmic reward tokens even show negative effects (see Table 5). This
 839 suggests token incentives not only fail to promote high-quality and share-worthy content, but may
 840 even have counter-productive effects, potentially echoing previous literature's findings on financial
 841 rewards' crowd-out effects on quality content due to strategic farming behaviors prioritizing
 842 quantity over quality [50, 72, 92, 116].²¹

843 **Effects on Follower Growth.** Beyond content interactions, we next examine follower growth.
 844 Wallet binding, the pre-requisite token economy participation behavior, serving as a baseline binary
 845 treatment, shows significant positive effects on follower growth (+++, $p < 0.001$), indicating users
 846 participating in Farcaster's token economy gain more followers than non-participants. This effect
 847 extends to both DEGEN and USDC across tipping and algorithmic mechanisms, reinforcing their
 848 unique network effect and social recognition status. However, all token rewards, including wallet
 849 binding, show neutral or negative effects on follow-out behavior, suggesting token economy partic-
 850 ipants are more likely to focus on self-promotion than expanding social connections, potentially
 851 exacerbating echo chamber effects.

852 **Token Incentive Intensity Effects.** Our continuous treatment analysis employing OLS regression
 853 provides insights into the cumulative effects of token rewards. Comparing causal analysis results
 854 (Table 5) with significant and directionally consistent OLS regression coefficients, we highlight
 855 significant intensity effects in Table 6 – examining whether higher reward frequency correlates
 856 with stronger social behavior impacts. The tipping mechanisms show minimal intensity effects,
 857 with only DEGEN and HIGHER showing slight positive effects on posting (coefficients: DEGEN
 858 1.57, HIGHER 1.97, indicating less than 2 additional weekly posts per reward).

859 In contrast, algorithmic rewards demonstrate substantial intensity effects across most social
 860 behaviors. DEGEN and USDC algorithmic rewards show particularly strong follower growth effects
 861 (≈ 197 and 243 additional weekly followers per reward respectively), while MOXIE shows no
 862 such effect. DEGEN and MOXIE algorithmic rewards show significant positive intensity effects
 863 on content quantity (≈ 13 additional weekly posts per DEGEN reward, ≈ 57 additional replies per
 864 MOXIE reward) but no effects on quality metrics.

865 USDC algorithmic rewards demonstrate a more nuanced impact pattern: while showing strong
 866 positive intensity effects on like-based interactions ($\approx +32$ likes given and $\approx +74$ received per
 867 reward), they simultaneously exhibit significant negative effects on content sharing (≈ -9 reposts
 868 given and ≈ -30 received). Combined with the neutral effects on posting frequency, this pattern
 869 suggests that Farcaster's official USDC algorithmic rewards may shift user behavior toward pro-
 870 ducing content that attracts quick, surface-level engagement (likes) rather than content worthy
 871 of redistribution (re-posts). This behavioral shift aligns with previous research on monetary in-
 872 centives in social platforms [57, 64, 92, 113, 116], where extrinsic rewards can potentially alter
 873 content creation motivations from intrinsic quality pursuit to reward optimization. The divergence
 874 between like-based and repost-based engagement particularly highlights how token incentives
 875 might inadvertently promote content optimized for immediate reaction rather than lasting value
 876 that users want to preserve and share with their networks.

877
 878
 879 ²¹These malicious behaviors have been reported by the co-founder of Farcaster (<https://farcaster.xyz/v/0x0e31071c>) and
 880 both DEGEN and MOXIE developers (<https://x.com/degentokenbase/status/1802985205021466790>, <https://farcaster.xyz/dwr.eth/0x8bfde087>)

883 7 Related Work

884 The study of how incentives influence user behaviors and network dynamics on social platforms
885 is a well-established area, situated at the intersection of behavioral economics and online so-
886 cial networks [71, 78, 99]. Prior research frameworks have examined how social and financial
887 incentives shape user participation and network evolution [2, 60], utilizing controlled field ex-
888 periments [102], laboratory simulations [51, 63], observational data analyses [9, 71], and quasi-
889 experimental approaches [13, 115]. Measurement metrics include engagement indicators (likes,
890 re-posts, replies) [26, 49, 106], content quality (accuracy, complexity, informativeness) [17, 89], and
891 network-level effects such as clustering and propagation [16, 95, 118]. Within this context, our
892 study leverages observational data from Farcaster, employing PSM and DID as quasi-experimental
893 approaches to examine the influence of token incentives on social engagement indicators, using
894 likes and re-posts as proxies for content quality.

895 Studies of traditional centralized social platforms demonstrate that monetary incentives reliably
896 increase the quantity of social engagement behaviors, particularly under performance-contingent
897 schemes [17, 51, 63, 111, 114, 115], though effects on content quality and novelty are mixed [57,
898 64, 92, 113, 116]. Moderating factors such as demographics, user characteristics, social status, and
899 platform context critically shape incentive effectiveness [5, 52], while combined monetary and
900 social incentives often yield superior outcomes [78, 89, 97]. Temporal analyses reveal strong short-
901 term engagement boosts but potential long-term habituation effects (*i.e.* frequent users develop
902 reduced sensitivity to social rewards over time, while occasional users remain highly responsive [5]),
903 crowding-out effects (*i.e.* monetary incentives reduce intrinsic motivation, negatively impacting
904 content quality) [50, 72, 92, 116], and inequality amplification [24]. These findings underscore the
905 complexity of incentive design and user heterogeneity in digital environments.

906 In blockchain-based decentralized social platforms, Steemit [101] remains the most studied [9,
907 22, 53, 67, 79]. Steemit's proprietary blockchain and platform-mandated token mechanism enabled
908 early advances in decentralized incentive design, eliminating transaction fees and facilitating high-
909 throughput reward distribution. However, these design choices unintentionally introduced critical
910 vulnerabilities, including susceptibility to farming and collusion [9], bot misuses [22], centralization
911 of rewards, and exacerbation of economic stratification [53, 67, 79]. Research by Li et al. [67] and Ba
912 et al. [9] indicates that successful users adapt their content strategies to maximize rewards, often
913 focusing on content promotion rather than creation. This finding raises questions about whether
914 financial incentives optimize for platform goals or user gaming. Ba et al. [9] further reveal strong
915 correlations between cryptocurrency prices and user activity levels on Steemit: when token values
916 increase, posting activity and user engagement spike correspondingly.

917 These prior works have focused on examining single mechanisms. However, studies suggest
918 that the most effective incentive systems should combine multiple types of rewards rather than
919 relying on single mechanisms [78, 89, 97]. Thus, our work differs from the above in that we move
920 beyond single-incentive vulnerabilities. Instead, our research offers the first empirical analysis
921 of Farcaster's *pluralistic* incentive ecosystem—integrating multiple tokens and diverse reward
922 mechanisms through modular wallet binding and third-party reward projects [31, 36, 38]. Notably,
923 we find that despite individual mechanisms retaining some prior identified shortcomings, their
924 coexistence and complementarity show the potential to mitigate platform-wide risks.

926 8 Conclusion

927 We have presented the first large-scale empirical analysis of Farcaster's pluralistic token incentive
928 ecosystem, examining how diverse reward mechanisms shape user behavior and social network
929 structure. Through the analysis of 574,829 wallet-linked users (64.25% of the user base), we have
930

revealed several critical insights about token-based incentives in decentralized social networks. Our analysis demonstrates that while token incentives effectively drive platform growth and user participation, their differences in eligibility criteria, reward distribution structure and token types significantly impact socioeconomic outcomes.

While *user-to-user tipping* represents the most flexible and common incentive mechanism, it is predominantly unidirectional (with less than 10% of users acting as both tip receivers and senders) (see Section 5.1). Additionally, 52–75% of tips occur across community boundaries, and 32.42% between non-following pairs. This suggests that token incentives can facilitate value exchange beyond established social community structures (see Section 5.3).

Examining *algorithmic reward* mechanisms, we observe notable differences in inclusivity (Section 5.1). DEGEN, which relies on user-driven nominations, reaches up to 70% new participant rates. In contrast, MOXIE relies on an open source behavioral scoring algorithm and includes only 7.6% of new participants. This contrast suggests that transparent scoring systems are more susceptible to exploitation, reducing entry opportunities for new users.

However, wealth concentration persists across mechanisms (Gini coefficients: 0.72–0.94) (see Section 5.2). Compared to user-to-user tipping, algorithmic rewards demonstrate greater inequality, primarily due to: (1) the token staking model (e.g. Moxie and Degen), which amplifies incumbent advantages (Section 4.3); and (2) increased vulnerability to strategic farming and gaming. Notably, MOXIE’s innovative follower-follower redistribution mechanism alleviates initial concentration effects, suggesting that well-designed secondary distributions can help address wealth inequality.

Furthermore, our causal analysis (see Section 6) uncovers fundamental trade-offs in promoting social activity via token incentives: while most rewards effectively boost content creation quantity (posts and replies), they often fail to enhance—and sometimes undermine—content quality measured by likes and re-posts. These findings suggest that while token incentives can drive engagement, their current implementations inadvertently encourage superficial participation over meaningful social interaction.

To conclude, our analysis reveals that despite the persistent limitations of individual tokens or mechanisms, their combined presence and mutual reinforcement can effectively mitigate platform-wide vulnerabilities. Our findings advance understanding of token-based incentive design and provide practical guidance for implementing reward mechanisms in social platforms. In the future, we plan to develop and evaluate new hybrid mechanisms, leveraging effective engagement quality indicators that better balance engagement quantity with quality. We also aim to explore how reward redistribution can sustain incentives while promoting authentic social value creation.

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981 References

982 [1] memo.cash blog. <https://memo.cash/blog/introducing-memo>. Accessed: 2025-04-14.

983 [2] ACUFF, S. F., MACKILLOP, J., AND MURPHY, J. G. Applying behavioral economic theory to problematic internet use:
984 An initial investigation. *Psychology of Addictive Behaviors* 32, 7 (2018), 846.

985 [3] ALCHEMY. Alchemy's api for token transfer history. <https://www.alchemy.com/docs/reference/transfers-api-quickstart>.

986 [4] ALLEN, D. W., BERG, C., AND LANE, A. M. Why airdrop cryptocurrency tokens? *Journal of Business Research* 163
987 (2023), 113945.

988 [5] ANDERSON, I. A., AND WOOD, W. Social motivations' limited influence on habitual behavior: Tests from social media
989 engagement. *Motivation Science* 9, 2 (2023), 107.

990 [6] ANJUM, N., KARAMSHUK, D., SHIKH-BAHAEI, M., AND SASTRY, N. Survey on peer-assisted content delivery networks.
991 *Comput. Netw.* 116, C (Apr. 2017), 79–95.

992 [7] AUSTIN, P. C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in
993 propensity-score matched samples. *Statistics in medicine* 28, 25 (2009), 3083–3107.

994 [8] AUSTIN, P. C. An introduction to propensity score methods for reducing the effects of confounding in observational
995 studies. *Multivariate behavioral research* 46, 3 (2011), 399–424.

996 [9] BA, C. T., ZIGNANI, M., AND GAITO, S. The role of cryptocurrency in the dynamics of blockchain-based social networks:
997 The case of steemit. *PLoS one* 17, 6 (2022), e0267612.

998 [10] BALDUF, L., SOKOTO, S., BARONCHELLI, A., CASTRO, I., KRÓL, M., TYSON, G., PAVLOU, G., SCHEUERMANN, B., AND
999 ASCIGIL, O. Bootstrapping social networks: Lessons from bluesky starter packs. In *Proceedings of the International
AAAI Conference on Web and Social Media* (2025), vol. 19, pp. 178–192.

1000 [11] BASE. Base chain documentation. <https://docs.base.org/>.

1001 [12] BITGET. Farcaster launches "tips" feature, supporting one-click sending of usdc rewards. <https://www.bitget.com/news/detail/12560604678174>, 2025. Accessed: 2025-07-29.

1002 [13] BURTCI, G., HONG, Y., BAPNA, R., AND GRISKEVICIUS, V. What are social incentives worth? a randomized field
1003 experiment in user content generation.

1004 [14] C. J. Memo.cash official documentation. <https://jasonc.me/blog/what-is-memo>.

1005 [15] CAI, S. Innovation of media business models in the digital economy era. *SHS Web of Conferences* (2024).

1006 [16] CENTOLA, D. The spread of behavior in an online social network experiment. *science* 329, 5996 (2010), 1194–1197.

1007 [17] CEYLAN, G., ANDERSON, I. A., AND WOOD, W. Sharing of misinformation is habitual, not just lazy or biased. *Proceedings
1008 of the National Academy of Sciences* 120, 4 (2023), e2216614120.

1009 [18] CLANKER. Clanker official document. <https://clanker.gitbook.io/clanker-documentation/users/deploying-a-token>.

1010 [19] CLANKER. The official website of clanker. <https://www.clanker.world/>.

1011 [20] COINGECKO. Farcaster token list. <https://www.coingecko.com/en/categories/farcaster-ecosystem>.

1012 [21] DEGEN. Degen tokenomics document. <https://www.degen.tips/>.

1013 [22] DELKHOSH, F., GOPAL, R. D., PATTERSON, R. A., AND YARAGHI, N. Impact of bot involvement in an incentivized
1014 blockchain-based online social media platform. *Journal of Management Information Systems* 40, 3 (2023), 778–806.

1015 [23] DESO. Deso official documentation. <https://docs.deso.org/>.

1016 [24] DiMAGGIO, P., AND GARIP, F. Network effects and social inequality. *Annual review of sociology* 38, 1 (2012), 93–118.

1017 [25] DITTRICH, D., AND KENNEALLY, E. The Menlo Report: Ethical Principles Guiding Information and Communication
1018 Technology Research. Tech. rep., U.S. Department of Homeland Security, August 2012.

1019 [26] DONIKERS, T., AND ZIEGLER, J. Understanding online polarization through human-agent interaction in a synthetic
1020 llm-based social network. In *International Conference on Web and Social Media* (2025).

1021 [27] DUNE. Data dashboard: Comparing clanker with other token launchpads. https://dune.com/clanker_protection_team/clanker-vs-others.

1022 [28] DUNE. Farcaster storage fee changes. https://dune.com/data/farcaster_optimism.storageregistry_evt_setprice.

1023 [29] ETHEREUM. The ethereum address format and why it matters when using metamask. <https://ethereum.org/en/whitepaper/>.

1024 [30] FARCASTER. Discussion on hub costs and rewards. <https://hackmd.io/@farcasterxyz/ry0QL4M4o#Hub-Costs>.

1025 [31] FARCASTER. External wallet connection. <https://docs.farcaster.xyz/developers/guides/writing/verify-address>.

1026 [32] FARCASTER. Farcaster conference 2024. <https://farcon.xyz/2024.html>.

1027 [33] FARCASTER. Farcaster contract addresses for identity registration and management. <https://github.com/farcasterxyz/contracts>.

1028 [34] FARCASTER. Farcaster hub installation configuration. <https://docs.farcaster.xyz/hubble/install>.

1029 [35] FARCASTER. Farcaster hub setup tutorial. <https://docs.farcaster.xyz/hubble/tutorials>.

1030 [36] FARCASTER. Farcaster mini-app documentation. <https://miniapps.farcaster.xyz/>.

1030 [37] FARCASTER. Farcaster offical usdc reward. <https://warpcast.notion.site/Warpcast-Rewards-15f6a6c0c10180339fcdee6c9a18c338>.

1031 [38] FARCASTER. Farcaster official document. <https://docs.farcaster.xyz/>.

1032 [39] FARCASTER. Farcaster storage registry contract. <https://optimistic.etherscan.io/address/0x00000000fcce7f938e7ae6d3c335bd6a1a7c593d>.

1033 [40] FARCASTER. Snapchain official document. <https://docs.farcaster.xyz/hubble/migrating>.

1034 [41] FARCASTER. Token index. <https://www.farcaster.in/>.

1035 [42] FARCASTER. Token links. <https://warpcast.notion.site/Token-Links-17e6a6c0c10180a68c4dce055b64d12b>.

1036 [43] FARCASTER. What's new: May 21, 2025 (0.0.49) introduced wallet standard integration for solana wallets. <https:////miniapps.farcaster.xyz/docs/sdk/changelog#may-21-2025-0049>.

1037 [44] FARCASTER. Farcaster official documentation - hub monorepo. <https://github.com/farcasterxyz/hub-monorepo>, 2023.

1038 [45] FARCASTER. Diff-sync description. <https://docs.farcaster.xyz/learn/architecture/hubs>, 2024.

1039 [46] FATHER. Farther official website. <https://farther.social/>.

1040 [47] FILARM. Dune dashboard: Comparison of lens and farcaster. <https://dune.com/filarm/lens-vs-farcaster>.

1041 [48] FOLKLORE. The degen archives. https://folklore.mirror.xyz/q9fjoEXpgDH8YGm_EaN3y8jhJfc_kRz7kBW-4IEya7A.

1042 [49] FURINI, M. X as a passive sensor to identify opinion leaders: A novel method for balancing visibility and community engagement. *Sensors (Basel, Switzerland)* 24 (2024).

1043 [50] GARNEFELD, I., ISEKE, A., AND KREBS, A. Explicit incentives in online communities: boon or bane? *International Journal of Electronic Commerce* 17, 1 (2012), 11–38.

1044 [51] GLOBIG, L. K., HOLTZ, N., AND SHAROT, T. Changing the incentive structure of social media platforms to halt the spread of misinformation. *Elife* 12 (2023), e85767.

1045 [52] GRUZD, A., SAIPHOO, A., AND MAI, P. The lure of decentralized social media: Extending the utaut model for understanding users' adoption of blockchain-based social media. *Plos one* 19, 8 (2024), e0308458.

1046 [53] GUIDI, B., MICHIENZI, A., AND RICCI, L. Assessment of wealth distribution in blockchain online social media. *IEEE Transactions on Computational Social Systems* 11, 1 (2024), 671–682.

1047 [54] HAM.FUN. Tn100x tokenomics. <https://docs.ham.fun/docs/tokenomics/>.

1048 [55] HEATH, A., ET AL. Gossipsub: Attack-resilient message propagation in the filecoin and ethereum networks. *arXiv preprint arXiv:2007.02754* (2020).

1049 [56] HIGHER. Higher official greenpaper. <https://www.aimhigher.net/greenpaper>.

1050 [57] HUANG, L.-C. The effect of incentives on facilitating user engagement with succulent retailers' social media pages. *Horticulturae* 9, 8 (2023), 849.

1051 [58] ICHIMIYA, M., MULLER-TABANERA, H., CANTRELL, J., BINGENHEIMER, J. B., GERARD, R., HAIR, E. C., DONATI, D., RAO, N., AND EVANS, W. D. Evaluation of response to incentive recruitment strategies in a social media-based survey. *Digital health* 9 (2023), 20552076231178430.

1052 [59] ITSMECHASEB. The dawn of ai autonomy: How two ai agents created a \$70m cryptocurrency. <https://x.com/itsmechaseb/status/1857511608810901941?s=46&t=ywALKtyM5ZCyt-zigN5Big>.

1053 [60] JACKSON, M. O. An overview of social networks and economic applications. *Handbook of social economics* 1 (2011), 511–585.

1054 [61] JEONG, U., NG, L. H. X., CARLEY, K. M., AND LIU, H. Navigating decentralized online social networks: An overview of technical and societal challenges in architectural choices. *arXiv preprint arXiv:2504.00071* (2025).

1055 [62] JHACKWORTH. Zora data dashboard. <https://dune.com/jhackworth/zora-network>.

1056 [63] KAPOOR, H., REZAEI, S., GURJAR, S., TAGAT, A., GEORGE, D., BUDHWAR, Y., AND PUTHILLAM, A. Does incentivization promote sharing “true” content online? *Harvard Kennedy School Misinformation Review* (2023).

1057 [64] KHERN-AM NUAI, W., KANNAN, K., AND GHASEMKHANI, H. Extrinsic versus intrinsic rewards for contributing reviews in an online platform. *Information Systems Research* 29, 4 (2018), 871–892.

1058 [65] LECHNER, M., ET AL. The estimation of causal effects by difference-in-difference methods. *Foundations and Trends® in Econometrics* 4, 3 (2011), 165–224.

1059 [66] LENS. Lens official documentation. <https://lens.xyz/docs/chain/overview>.

1060 [67] LI, C., AND PALANISAMY, B. Incentivized blockchain-based social media platforms: A case study of steemit. In *Proceedings of the 10th ACM conference on web science* (2019), pp. 145–154.

1061 [68] LIANG, J., LI, L., AND ZENG, D. Evolutionary dynamics of cryptocurrency transaction networks: an empirical study. *Plos One* 13 (2018), e0202202.

1062 [69] LIANG, M. The end of social media? how data attraction model in the algorithmic media reshapes the attention economy. *Media, Culture & Society* 44, 6 (2022), 1110–1131.

1063 [70] LIN, J. Divergence measures based on the shannon entropy. *IEEE Transactions on Information theory* 37, 1 (2002), 145–151.

1079 [71] LINDSTRÖM, B., BELLANDER, M., SCHULTNER, D. T., CHANG, A., TOBLER, P. N., AND AMODIO, D. M. A computational
1080 reward learning account of social media engagement. *Nature communications* 12, 1 (2021), 1311.

1081 [72] LIU, Y., AND FENG, J. Can monetary incentives increase ugc contribution? the motivation and competition crowding
1082 out.

1083 [73] LUC. Dune dashboard of farcaster token. <https://www.dune.com/0xluC/farconomy>.

1084 [74] MAKRIDIS, C. A., FRÖWIS, M., SRIDHAR, K., AND BÖHME, R. The rise of decentralized cryptocurrency exchanges:
1085 Evaluating the role of airdrops and governance tokens. *Journal of Corporate Finance* 79 (2023), 102358.

1086 [75] MANOYLOV, M. Paradigm leads \$150 million raise for web3 social media platform farcaster. <https://www.theblock.co/post/295700/paradigm-150-million-raise-web3-social-platform-farcaster>.

1087 [76] MARDAN, M., AND KHOSRAVPOUR, I. Dynamic evolution analysis of cryptocurrency market: a network science study.
1088 *Journal of Interdisciplinary Economics* (2024).

1089 [77] METAMASK. Ethereum whitepaper. <https://support.metamask.io/start/learn/the-ethereum-address-format-and-why-it-matters-when-using-metamask/>.

1090 [78] MICHELI, L., STALLEN, M., AND SANFEY, A. G. The effect of centralized financial and social incentives on cooperative
1091 behavior and its underlying neural mechanisms. *Brain sciences* 11, 3 (2021), 317.

1092 [79] MICHENZI, A., GUIDI, B., AND RICCI, L. A wealth-driven analysis of user engagement in blockchain online social
1093 media. In *2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other
Affiliated Events (PerCom Workshops)* (2024), IEEE, pp. 637–642.

1094 [80] MILLI, S., PIERSON, E., AND GARG, N. Choosing the right weights: Balancing value, strategy, and noise in recommender
1095 systems. *ArXiv abs/2305.17428* (2023).

1096 [81] MOXIE. Farscores, farboost, and cast scores. <https://github.com/Airstack-xyz/docs/blob/main/social-capital-value-and-social-capital-scores.md>.

1097 [82] MOXIE. Moxie official website. <https://www.moxie.xyz/>.

1098 [83] NETWORKKIT. Community detection with networkkit. <https://networkkit.github.io/dev-docs/notebooks/Community.html>.

1099 [84] NEYNAR. Dune dashboard: Farcaster official dashboard. <https://dune.com/neynarxyz/farcaster>.

1100 [85] ONLINE, I. Network community detection using the map equation framework. <https://www.mapequation.org/infomap/>.

1101 [86] OPENRANK. Openrank scoring system for farcaster users. <https://docs.openrank.com/integrations/farcaster>.

1102 [87] OPTIMISM. Optimism official documentation. <https://docs.optimism.io/>.

1103 [88] OURNETWORK. Coverage on clanker, farcaster, lens, kaito, world, layer3 and basenames. https://www.ournetwork.xyz/p/on-320-onchain-culture?utm_campaign=ournetwork.

1104 [89] PARIDAR, M., AMERI, M., AND HONKA, E. More, faster, and better? effects of rewards on incentivizing the creation of
1105 user-generated content. *Effects of Rewards on Incentivizing the Creation of User-Generated Content* (December 31, 2023)
(2023).

1106 [90] PAYCASTER. Paybot documentation. <https://paycaster.co/>.

1107 [91] PIXELHACK. Dune dashboard of farcaster users transactions by chain. <https://dune.com/queries/3027146/5036846>.

1108 [92] QIAO, D., LEE, S.-Y., WHINSTON, A., AND WEI, Q. Incentive provision and pro-social behaviors.

1109 [93] RAMAN, A., JOGLEKAR, S., CRISTOFARO, E. D., SASTRY, N., AND TYSON, G. Challenges in the decentralised web: The
1110 mastodon case. In *Proceedings of the internet measurement conference* (2019), pp. 217–229.

1111 [94] RAMAN, A., JOGLEKAR, S., CRISTOFARO, E. D., SASTRY, N., AND TYSON, G. Challenges in the decentralised web: The
1112 mastodon case. In *Proceedings of the Internet Measurement Conference* (New York, NY, USA, 2019), IMC ’19, Association
1113 for Computing Machinery, p. 217–229.

1114 [95] RAND, D. G., ARBESMAN, S., AND CHRISTAKIS, N. A. Dynamic social networks promote cooperation in experiments
1115 with humans. *Proceedings of the National Academy of Sciences* 108, 48 (2011), 19193–19198.

1116 [96] ROTH, J., SANT’ANNA, P. H. C., BILINSKI, A. M., AND POE, J. What’s trending in difference-in-differences? a synthesis
1117 of the recent econometrics literature. *Journal of Econometrics* (2022).

1118 [97] SCEKIC, O., TRUONG, H.-L., AND DUSTDAR, S. Incentives and rewarding in social computing. *Communications of the
1119 ACM* 56, 6 (2013), 72–82.

1120 [98] SCIENCEDIRECT. Clustering coefficient. <https://www.sciencedirect.com/topics/computer-science/clustering-coefficient>, n.d. Accessed: 2025-07-29.

1121 [99] SINGH, V. K., JAIN, R., AND KANKANHALLI, M. Mechanism design for incentivizing social media contributions. In
1122 *Social media modeling and computing*. Springer, 2011, pp. 121–143.

1123 [100] SOLANA. Evm vs. svm: Smart contracts. <https://solana.com/developers/evm-to-svm/smart-contracts>.

1124 [101] STEEMIT. Steemit official documentation. <https://steemit.com/guide/@steemitblog/steemit-a-guide-for-newcomers>.

1125 [102] SUN, T., VISWANATHAN, S., HUANG, N., AND ZHELEVA, E. Designing promotional incentive to embrace social sharing:
1126 Evidence from field and online experiments. *Forthcoming at MIS Quarterly* (2018).

1128 [103] TAO, B., DAI, H., WU, J., HO, I. W., ZHENG, Z., AND CHEANG, C. F. Complex network analysis of the bitcoin transaction
1129 network.

1130 [104] TECHFLOW. Vitalik and jesse are buying one after another, what is the background of the anon in the base ecosystem?
<https://en.theblockbeats.news/news/55854>.

1131 [105] TORRES, C. F., STEICHEN, M., ET AL. The art of the scam: Demystifying honeypots in ethereum smart contracts. In
1132 *28th USENIX Security Symposium (USENIX Security 19)* (2019), pp. 1591–1607.

1133 [106] TRUNFIO, M., AND ROSSI, S. Conceptualising and measuring social media engagement: A systematic literature review.
1134 *Italian Journal of Marketing* 2021, 3 (2021), 267–292.

1135 [107] UNISWAP. The decentralized exchange application. <https://app.uniswap.org/>.

1136 [108] VASILIAUSKAITE, V., AND ROSAS, F. E. Understanding complexity via network theory: a gentle introduction. *arXiv: Physics and Society* (2020).

1137 [109] VICTOR. 3 ways to earn on farcaster: Usdc, frames, and airdrops. <https://www.altcoinbuzz.io/bitcoin-and-crypto-guide/3-ways-to-earn-on-farcaster-usdc-frames-and-airdrops/>, 2025. Accessed: 2025-07-29.

1138 [110] VLADIMIR. What is degen? the history of the top memecoin on base. <https://zerion.io/blog/the-true-history-of-degen/>.

1139 [111] WANG, C., TAN, X., AND SHI, F. Recognition of opinion leaders in blockchain-based social networks by structural
1140 information and content contribution. *PeerJ Computer Science* 9 (2023), e1549.

1141 [112] WEI, Y., AND TYSON, G. Exploring the nostr ecosystem: A study of decentralization and resilience. *ArXiv abs/2402.05709*
1142 (2024).

1143 [113] YAN, Z., KUANG, L., HUANG, H., AND YANG, H. Do financial incentives induce more online participatory behaviors?

1144 [114] YU, Y., KHERN-AM NUAI, W., AND PINSONNEAULT, A. The impact of performance-contingent monetary incentives on
1145 user-generated content contribution.

1146 [115] YU, Y., KHERN-AM NUAI, W., AND PINSONNEAULT, A. When paying for reviews pays off: The case of performance-
1147 contingent monetary rewards. *MIS Quarterly* 46, 1 (2022).

1148 [116] ZHANG, D., JIANG, H., QIANG, M., ZHANG, K., AND QIU, L. Time to stop? an empirical investigation on the consequences
1149 of canceling monetary incentives on a digital platform. *Information Systems Research* 36, 2 (2025), 781–801.

1150 [117] ZHANG, J., AND SHI, J. Asymptotic normality for plug-in estimators of generalized shannon's entropy. *Entropy* 24
(2022), 683.

1151 [118] ZHENG, R., OSPINA-FORERO, L., AND CHEN, Y.-w. Implications of social network structures on socially influenced
1152 decision-making. *Decision* 51, 1 (2024), 85–103.

1153 [119] ZORA. Zora official documentation. <https://zerion.io/blog/guide-to-the-zora-ecosystem/>.

1154 [120] ZUO, W., RAMAN, A., MONDRAGÓN, R. J., AND TYSON, G. Set in stone: Analysis of an immutable web3 social media
1155 platform. In *Proceedings of the ACM Web Conference 2023* (New York, NY, USA, 2023), WWW '23, Association for
Computing Machinery, p. 1865–1874.

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

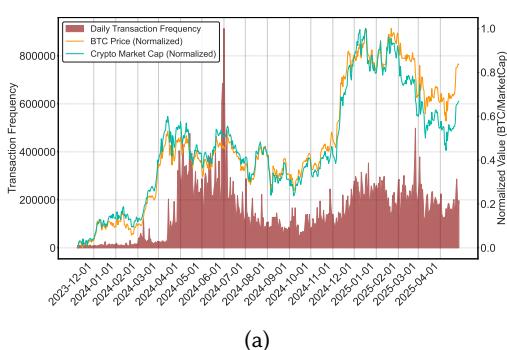
1174

1175

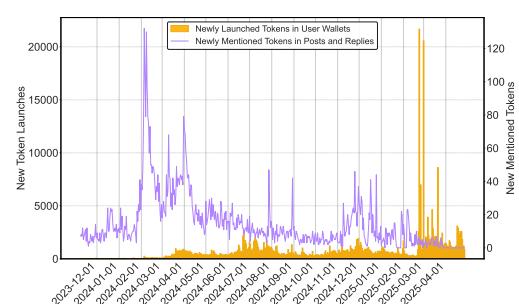
1176

1177 **A Data and Methodology**1178 **A.1 Statistics for Farcaster Users and Transactions**1180 **Table 7. Fid-Wallet Mapping Data Statistics**

1181 Description	1183 Value
1184 Count of registered FIDs	1,040,076
1185 Count of FIDs that have at least one Ethereum wallet	489,824
1186 Count of unique Ethereum wallets that are bound to FIDs	662,006
1187 Count of unique FIDs involved in all transactions	376,898
1188 Count of unique FID-linked wallets involved in all transactions	468,747
1189 Count of transactions observed in all transactions	87,687,791
1190 Count of unique tokens observed in all transactions	440,274
1191 Count of unique tokens observed in inter-FID transactions	5,878

1192 **A.2 Token-related Events Driving User Wallet Binding.**

(a)



(b)

1206 Fig. 6. (a) Daily transaction frequency of Farcaster user wallets in relation to Bitcoin price movements and 1207 aggregate cryptocurrency market capitalization. (b) Daily count of newly mentioned token names in posts 1208 and comments, coupled with the number of newly launched on-chain tokens appearing in user wallets. 1209

1211 To better understand how token activities drive token economy participation, this section plots 1212 the wallet binding dynamics along with influential token-related events in greater detail.

1213 We observe a notable delay effect between the onset of growth and peak binding activities. After 1214 experimenting with various smoothing techniques including Exponential Moving Average (EMA) 1215 and different moving average windows (3-day, 5-day, 7-day, and 10-day), we find that the 7-day 1216 moving average most effectively captures well-distributed top 10 surges that align with visual 1217 inspection of the data.

1218 Figure 7 presents the 7-day moving average percentage change for wallet bindings. We then 1219 annotate major spikes in activity with key events identified in the Farcaster ecosystem. Key event 1220 identification follows our mixed-methods approach: We do this by reviewing news from The Block 1221 Beats²² and posts from Farcaster's hub dataset, combined with quantitative examination of token 1222 trading frequencies among newly bound wallets around surge dates.1223
1224 ²²The Block Beats: www.theblockbeats.info.

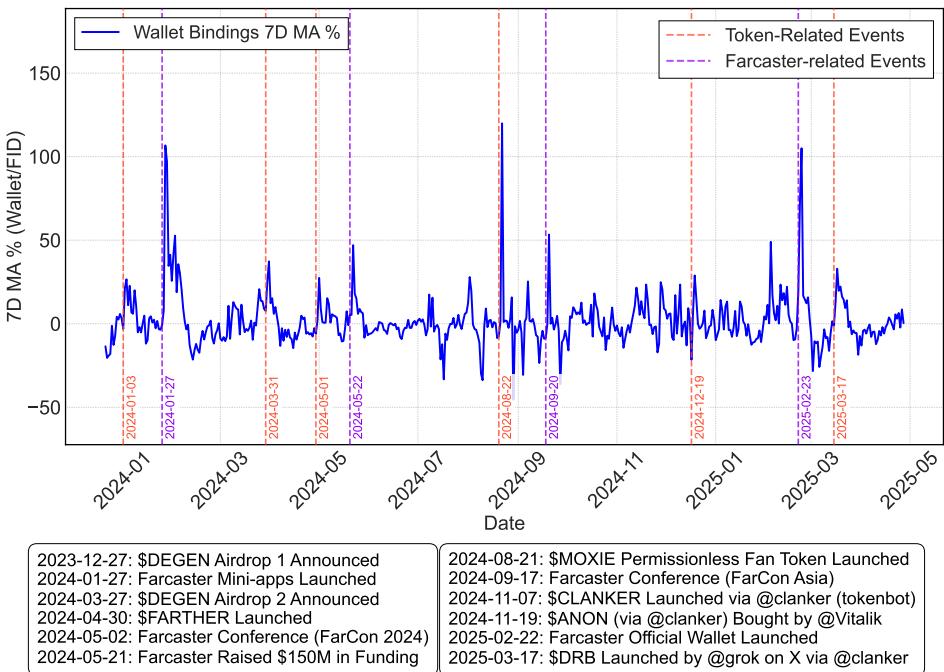


Fig. 7. Top 10 surges in 7-day moving average percentage change of daily wallet bindings (highlighted by color-coded dashed lines), annotated with platform milestones and token campaigns.

Through this, we identify key wallet-binding-driving events covering two categories: platform-led events and social-token-driven events (further classified into reward-token and meme-coin²³ events). We next introduce each category of event and discuss the corresponding surges in wallet binding activity.

A.3 Platform-led Events.

Four surges in wallet bindings closely align with core Farcaster milestones: the Mini-apps launch (106.74% surge, 2024-01-27), the \$150M funding announcement (47.06%, 2024-05-21), the Farcaster Conference (FarCon) Asia (53.39%, 2024-09-17), and the official Farcaster wallet launch (105.02%, 2025-02-22). Notably, these platform-driven events account for the 2nd to 5th largest surges among the top 10 observed, with the Mini-apps launch ranking 2nd, the official wallet launch 3rd, and the funding announcement and FarCon Asia ranking 4th and 5th, respectively. This pattern demonstrates that user growth on Farcaster is driven by feature releases and platform milestones, rather than by entry barriers (e.g. registration fee reductions).

A.4 Reward-Token Events

In addition to platform-led milestones, token airdrop²⁴ announcements—such as DEGEN (26.62% surge, 2023-12-27; 37.34% 2024-03-27), \$FARTHER (27.42% 2024-04-30), and MOXIE (119.93%

²³ Meme-coins are tokens typically created as jokes or for entertainment purposes, often inspired by internet memes or popular culture, with their value largely driven by community sentiment and social media trends.

²⁴Airdrop refers to the free distribution of cryptocurrency tokens or coins to eligible wallet addresses, often as a marketing strategy to increase protocol adoption and reward early users.

1275 2024-08-21)—represent a distinct category of events that also drive wallet binding surges. These
 1276 initiatives incentivize user engagement through mechanisms that allocate daily token allowances
 1277 based on social interactions and third-party reputation scores (e.g. OpenRank scores [86]), without
 1278 requiring direct financial expenditure from users. The distributed rewards are funded by project
 1279 treasuries locked in smart contracts [21, 46, 82], encouraging both new and existing users to link
 1280 wallets.

1281 A particularly noteworthy development occurred on August 21, 2024, when MOXIE introduced a
 1282 permissionless mechanism for users to issue and auction their own profile-tokenized *Fan Tokens*—a
 1283 model closely aligned with Lens Protocol [66] and Zora [119]. These fan tokens can be freely
 1284 traded, and holders are eligible to receive approximately 20% of the fan token issuer's daily MOXIE
 1285 engagement rewards. Although this announcement led to the largest observed surge in wallet
 1286 bindings ($\approx 120\%$), the underlying tokenomics and redistribution dynamics are beyond the scope of
 1287 this work; in Section 4, we focus on incentive mechanisms for the initial allocation of tokens based
 1288 on user engagement.

1289 **A.5 Meme-Coin Events.**

1290 While reward tokens inherently contain speculative elements [48, 110], their primary design is
 1291 to foster social engagement. In contrast, the launch of *@clanker*—an AI-powered token issuance
 1292 bot (FID = 874542)—on November 9, 2024, marked a significant shift by enabling an automated
 1293 pipeline for meme-coin creation [18]. Users can deploy new meme-coins simply by posting with
 1294 the desired token name and description while mentioning *@clanker*. The bot then deploys the
 1295 meme-coin on the Base chain, establishes initial liquidity pools,²⁵ and facilitates instant trading
 1296 via the Clanker platform [19] or decentralized exchanges such as Uniswap [107]. By June 5, 2025,
 1297 Clanker had enabled the creation of 280,678 meme-coins, with 28,224 (about 10%) of these tokens
 1298 observed in the on-chain transaction records of Farcaster users' wallets, attracting considerable
 1299 attention for its rapid wealth effects and fee revenue model [27, 59].

1300 Several key meme-coins issued via Clanker token produced pronounced spikes in wallet binding:
 1301 (1) the launch of CLANKER (11.54%, 2024-11-09), the first eponymous meme-coin by *@clanker*
 1302 followed by Ethereum founder Vitalik Buterin's [29] purchase of ANON token (a token representing
 1303 anonymous internet culture) on November 19, 2024, jointly driving a 28.9% surge by December 19,
 1304 2024 [104]; (2) the launch of \$DRB by *@grok* (X's AI Agent account) on March 17, 2025, resulting
 1305 in a 37.34%, which exemplifies AI-to-AI token interaction and triggered widespread discussion
 1306 of the Farcaster ecosystem across X (Twitter) [88]. These events, amplified by social momentum
 1307 and celebrity engagement, underscore the intricate relationship between platform growth and
 1308 token-based speculation.

1309 The above demonstrates that platform innovation and token-driven incentives are critical for
 1310 driving deeper user engagement.

1311 **B Skewed Token Distribution and Prevalent Token Detection**

1312 In our analysis of FID-linked wallets, we aim to identify tokens that demonstrate sustained and
 1313 widespread activity within the Farcaster ecosystem, rather than those irrelevant to Farcaster or
 1314 exhibiting merely temporary bursts of activity (e.g. due to spam, speculation, or airdrops).

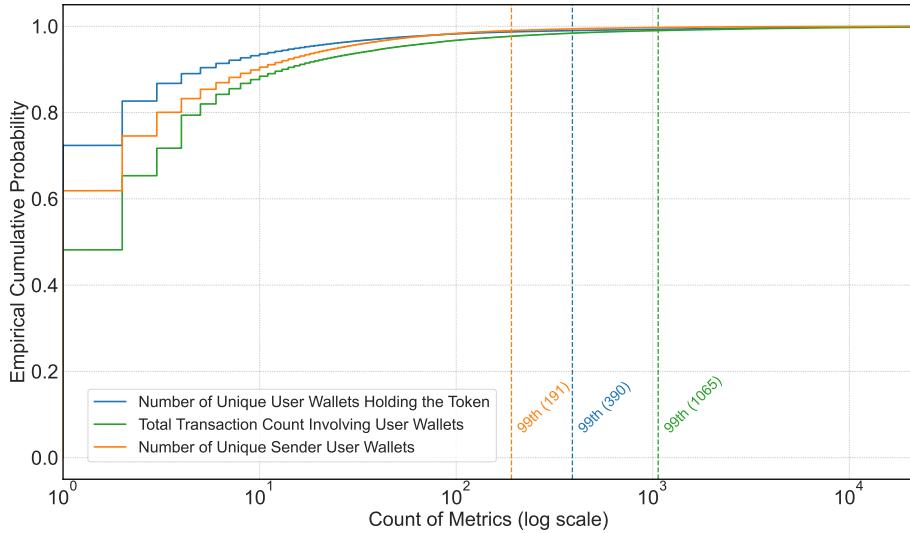
1315 Among all FID-linked wallets in our dataset, we observe 440,274 distinct tokens. This substantial
 1316 diversity stems from the interoperability between users' external wallets and the broader Ethereum
 1317 ecosystem, resulting in the presence of many tokens that may have little to no direct connection to

1318
 1319
 1320
 1321 ²⁵When Clanker launches a new meme-coin, it automatically creates a trading pair between ETH and the meme-coin as a
 1322 liquidity pool, enabling users to trade the token.

1324 the Farcaster ecosystem. Therefore, in this section, we first examine the overall distribution of
 1325 these tokens, which guides us in developing a systematic approach to identify prevalent tokens that
 1326 maintain consistent usage patterns and meaningful relevance to social interactions on Farcaster.

1328 B.1 Trading Metric.

1329 In traditional markets, trading activity is measured via trading volume (e.g. 1,000 Tesla shares) or dollar
 1330 volume (total value at $\approx \$300/\text{share}$). Cryptocurrency markets similarly use token-denominated
 1331 and fiat-equivalent volumes. However, both metrics pose challenges for cross-token analysis
 1332 in blockchain systems. Token volumes cannot be meaningfully aggregated due to vast quantity
 1333 differences across cryptocurrencies (e.g. 0.00001 BTC vs 10,000 DOGE, both $\approx \$1$ equivalent).
 1334 Fiat-equivalent aggregation is complicated by high token price volatility and limited price data
 1335 availability for illiquid tokens. We therefore focus on transaction frequency—the count of distinct
 1336 transaction events per token.



1357 Fig. 8. ECDF of token metrics in Farcaster: transaction frequency, holder count (full population: 440,274
 1358 tokens), and FID-sender count (subset: 177,733 tokens).

1360 We inspect three metrics: trading frequency, number of holders, and number of users as token
 1361 sender (i.e. the wallet actively sending out the token is linked to an FID)—for all 440,274 tokens that
 1362 have appeared in Farcaster users’ Ethereum wallets. Figure 8 illustrates the ECDF for these three
 1363 metrics. The overall distribution exhibits high skewness, with a small subset of tokens dominating
 1364 these indicators.

1366 B.2 Transaction Frequency and Holder Count.

1367 Based on a total token population of 440,274, our analysis reveals that 99% of tokens have no more
 1368 than 390 holders ($\text{mean} \approx 63.46$, $\text{median} = 1$) and 1,065 transactions ($\text{mean} \approx 207.86$, $\text{median} = 2$)—
 1369 notably low figures when compared to the potential market of 489,824 FID-linked wallets in
 1370 Farcaster. The concentration of activity in a small number of tokens suggests that most tokens in
 1371 users’ wallets are not actively used for social interactions. Further, the low median values (1 holder,
 1372

1373 2 transactions) suggest that many tokens might be "dead" or projects that never gained meaningful
 1374 adoption.

1375 **B.3 FID as Token Sender.**

1377 Furthermore, this skewness is particularly pronounced for FID senders. Recall, an FID sender means
 1378 the wallet is linked to an FID. Within the total population of 440,274 tokens, only 177,733 tokens
 1379 (40.37%) exhibit at least one FID-sender interaction. This indicates that approximately 60% of all
 1380 tokens have never been actively sent by any Farcaster user, suggesting they are only passively
 1381 received by users and have never been employed in any use cases such as tipping other users
 1382 and interacting with exchanges or smart contracts. Furthermore, among these 177,733 tokens
 1383 with at least one FID-sender activity, 99% have no more than 191 unique senders ($mean \approx 24.57$,
 1384 $median = 1$), revealing a highly concentrated distribution of active engagement.

1385 This observation reveals critical insights into token circulation patterns: Due to the transparent
 1386 and non-rejectable nature of blockchain transactions, users frequently become passive token
 1387 recipients through promotional airdrops or potential phishing attempts. Consequently, active
 1388 token sending behavior, particularly from FID-linked wallets, serves as a more reliable indicator of
 1389 genuine user engagement and token utility. This becomes especially significant when considering
 1390 the scale: among 489,824 FID-linked wallets, 99% of inter-user traded tokens engage fewer than
 1391 191 active senders (merely 0.039% of total FID-linked wallets), highlighting a striking disparity
 1392 between trivial and influential token circulation in the ecosystem. This distribution pattern indicates
 1393 that despite the presence of over 440K tokens in Farcaster users' Ethereum wallets, only a small
 1394 subset demonstrates meaningful interaction initiated by Farcaster users, as evidenced by the highly
 1395 skewed FID-sender distribution. This observation motivates us to introduce a systematic approach
 1396 to automatically identify and analyze prevalent tokens in the next section.

1397 **C Prevalent Token Detection.**

1399 In the exploratory analysis of token metrics, we observe that commonly used indicators such as
 1400 rankings of trading volumes, transaction frequencies, and holder counts may provide insufficient
 1401 or potentially misleading signals regarding a token's genuine influence. Indeed, malicious actors
 1402 could artificially manipulate these metrics through strategic token distributions targeting user
 1403 wallet addresses, thereby fabricating an illusion of market popularity [105]. This phenomenon
 1404 poses significant challenges for token valuation that rely on these surface-level metrics. Therefore,
 1405 we propose a lightweight systematic method to differentiate between genuinely prevalent tokens
 1406 and those potentially manipulated with artificially inflated indicators.

1407 We formalize our detection approach as a four-step algorithm, structured in the following
 1408 subsections.

1409 **C.1 Step 1: Inter-FID Transactions (5,878 tokens remained after screening).**

1411 We begin with user-to-user (inter-FID) transactions—by extracting all transactions where both
 1412 sender and receiver wallets are explicitly linked to registered FID accounts on Farcaster. It is
 1413 important to note that Farcaster allows users to link their existing Ethereum-compatible wallets
 1414 to their accounts. Consequently, these wallets contain transaction records that extend beyond
 1415 the Farcaster ecosystem, with inter-user transactions representing only a subset of total wallet
 1416 activity. This initial filtering identifies tokens with at least one transaction between Farcaster
 1417 users, excluding tokens solely traded with external smart contracts, exchanges, or wallets lacking
 1418 Farcaster social context.

1419 After restricting transactions where both recipient and sender wallets are linked to an FIDs,
 1420 we identified a subset of 5,878 tokens, constituting 1.34% of the total 440,274 tokens, accounting

1422 for 3,354,378 transfers, representing 3.63% of the complete dataset containing 92,287,905 token
 1423 transactions. This reveals a power-law distribution of token ecosystems, where a small fraction of
 1424 tokens (1.34%) achieve meaningful social circulation, while the vast majority of tokens (98.66%)
 1425 lack user-to-user activity and primarily operate in non-social contexts such as smart contract
 1426 interactions and exchange swaps.

1427 **C.2 Step 2: Shannon Entropy (104 tokens remained after screening).**

1428 To address the ephemeral nature of most tokens, which typically show activity only in their initial
 1429 weeks, we employ *Shannon entropy* to analyze weekly transaction distributions [70, 117].

1430 **Shannon Entropy** We compute Shannon entropy over the weekly transaction frequency distribution
 1431 for each token. Specifically:

1432 • **Input Data:** For each token, we construct a probability vector $\mathbf{p} = (p_1, \dots, p_T)$ where:

$$1433 \quad p_t = \frac{n_t}{\sum_{i=1}^T n_i} \quad (2)$$

1434 with n_t being the transaction count in week t , and T the token's lifespan in weeks.

1435 • **Entropy Calculation:**

$$1436 \quad H(\mathbf{p}) = - \sum_{t=1}^T p_t \log_2 p_t \quad (\text{bits}) \quad (3)$$

1437 • **Normalization:**

$$1438 \quad H_{\text{norm}} = \frac{H(\mathbf{p})}{H_{\text{max}}}, \quad \text{where} \quad H_{\text{max}} = \log_2 T \quad (4)$$

1439 Key properties:

1440 • $H_{\text{norm}} \in [0, 1]$ with:
 1441 – 1: Perfectly uniform distribution
 1442 – 0: Single-week concentration
 1443 • Threshold $H_{\text{norm}} \geq 0.9$ selects tokens with:

$$1444 \quad \frac{H(\mathbf{p})}{\log_2 T} \geq 0.9 \quad (5)$$

1445 We compute normalized Shannon entropy over each token's weekly transaction frequency,
 1446 retaining tokens with $H_{\text{norm}} = H(\mathbf{p})/\log_2 T \geq 0.9$. This yields 793 tokens exhibiting both temporal
 1447 uniformity and sustained vitality.

1448 Nevertheless, a substantial subset of 559 tokens (70.5% of the total 793 tokens), each with a
 1449 lifespan not exceeding 5 weeks, exhibits high normalized entropy values (mean ≈ 0.967), despite
 1450 their consistently low raw entropy (all values < 1.6 , aligning with the mean raw entropy across the
 1451 entire 793-token sample). To address this short-period bias, we add a minimum 26-week (half-year)
 1452 lifespan requirement, yielding 104 tokens.

1453 The choice of a 26-week minimum existence requirement is not arbitrary. We observe that among
 1454 969 tokens with raw entropy values above 3 (99.78th percentile, N=440,274), only 19 (1.96%, n=976)
 1455 have existed for less than 26 weeks (compared to a mean existence of just ≈ 1.67 weeks across all
 1456 440K tokens). This threshold thus ensures both adequate sample size ($\approx 1,000$ tokens) and effectively
 1457 excludes sampling insufficiency issues with newer tokens, giving appropriate weight to tokens with
 1458 longer trading histories. In real-world applications, these calculations can be performed weekly to
 1459 dynamically include tokens previously excluded by the 26-week requirement.

1471 C.3 Step 3: FIDs as Token Senders (9 tokens remained after screening).

1472 The 104 tokens identified in the previous steps exhibit a right-skewed distribution in their number
 1473 of unique FID-linked senders. Here, an FID-linked sender is defined as a wallet address explicitly
 1474 associated with a registered FID, ranging from 1 to 29,464 (mean \approx 897). The number of FID-linked
 1475 wallet senders serves as a crucial metric for evaluating token prevalence, as it more substantially
 1476 reflects genuine social interactions rather than passive reception. This metric's significance stems
 1477 from its ability to distinguish between tokens with meaningful user engagement and those with
 1478 merely superficial circulation. Consequently, we employ the number of FID-linked wallet senders
 1479 within each token's inter-FID-transactions as our final filtering criterion. Using the 99th percentile
 1480 threshold (254 FID-senders), we finally identify nine tokens—four reward tokens and five blockchain
 1481 network tokens—detailed in Table 1.

1482 This process yields nine tokens. Notably, DEGEN and MOXIE correspond to significant user
 1483 growth events (recall that we have discussed the top 10 events in Figure 7). TN100X and HIGHER,
 1484 two other reward tokens launched in February and March 2024 respectively, did not trigger top 10
 1485 wallet binding surges. However, these tokens were identified through our screening process for
 1486 long-term token popularity. Conversely, \$FARTHER, which appeared in the Top 10 events, was not
 1487 selected by our screening criteria. Through analysis of community content and documentation [46],
 1488 we discover that the \$FARTHER reward program was terminated by developers in August 2024
 1489 due to excessive user farming²⁶ and sell-offs²⁷. This finding suggests that while reward tokens may
 1490 generate temporary enthusiasm and transaction bursts, only a select few achieve sustained user
 1491 adoption and utilization. The remaining five are native tokens and stablecoins commonly used on
 1492 blockchain main-net (Ethereum) and scaling layers (L2s and L3s): USDC, USDT, USDbC, WETH,
 1493 and L3. These tokens were also identified by our screening methodology due to their broader
 1494 market acceptance and high utilization rates.

1496 C.4 Step 4: Clustering Coefficient (4 tokens remained after screening).

1497 We next calculate the average clustering coefficient for the transaction graph of each token. We
 1498 do this for each transaction graph's largest connected component. *Average Clustering Coefficient*
 1499 (ACC) effectively captures community network patterns and this metric has also been used in
 1500 cryptocurrency analysis for identifying artificial transaction patterns [68, 76, 103]. We then select
 1501 all tokens that have a clustering coefficient between 0.3 and 0.6. We choose this because previous
 1502 studies present that real-world community has a clustering coefficient around 0.45 [108]. This
 1503 leaves four remaining tokens that are considered prevalent.

1504 **Summary.** Our methodology, based on social relationships (inter-FID transaction and FID sender),
 1505 network spatial distribution (clustering), and transaction temporal distribution (entropy), successfully
 1506 identifies 9 prevalent tokens within Farcaster, including 4 with strong social attributes. This
 1507 approach is useful for identifying genuinely influential and commonly used tokens especially for
 1508 permissionless ecosystems like Farcaster, where the ability to bind external wallets and support all
 1509 Ethereum-compatible tokens necessitates robust filtering mechanisms to distinguish viable tokens
 1510 from low-signal noise. This selection also aligns perfectly with our ground truth observations of the
 1511 influential tokens that drive user growth in Section 4.1, validating our approach. Moreover, given
 1512 the extreme sparsity of positive samples (*i.e.* few viable tokens among all tokens present in user
 1513 wallets) and the fact that each filtering stage employs thresholds tailored to specific scenarios, our

1515 ²⁶User farming refers to the behavior where small groups of users or bots engage in circular reward-giving among themselves
 1516 to exploit the project's token reserves

1517 ²⁷Sell-offs occur when users, upon receiving token rewards, immediately exchange them in the open market for more
 1518 established cryptocurrencies (*e.g.* USDC, ETH, or BTC) instead of utilizing them within the ecosystem for services or tipping.

1520 three-dimensional framework demonstrates superior operational practicality, performance, and con-
 1521 textual explainability compared to machine learning-based approaches. These advantages make it
 1522 particularly suitable for real-world applications like platform built-in token linking algorithms [42]
 1523 or index website ranking systems [20, 41].

1524 **D Token Incentive Distributions**

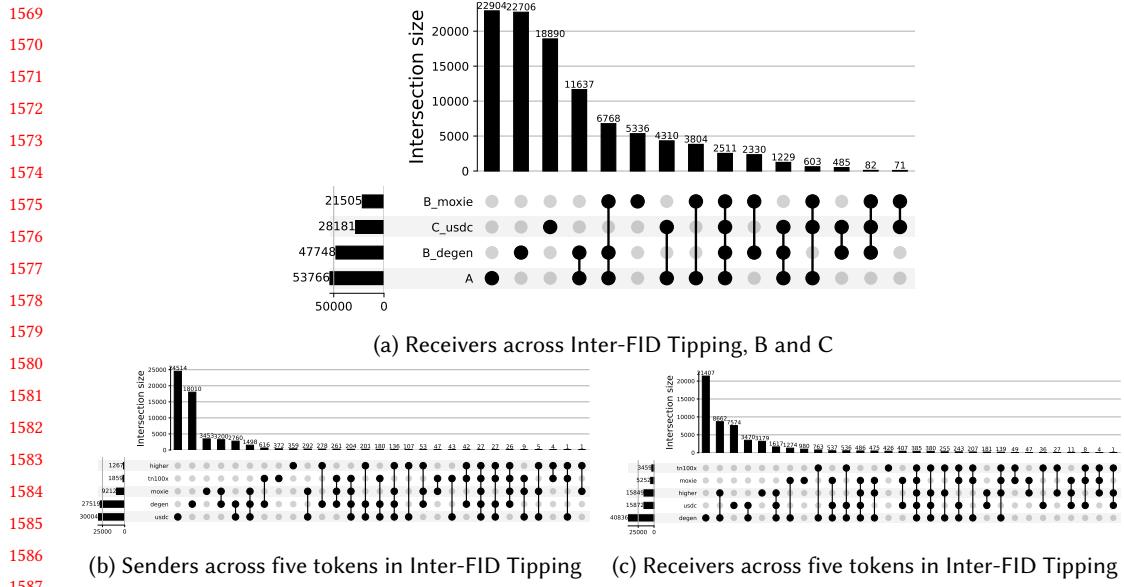
1525 **D.1 Methodology for Tracing Reward Sources**

1527 To identify Inter-FID Tipping, we implement a triple-filtering process: eliminating self-transfers
 1528 within the same FID, transfers between different wallets bound to the same FID, and transfers
 1529 between FIDs that have historically shared wallet bindings—indicating affiliated entities.

1530 To identify third-party system-based rewarding, we filter transactions originating from token
 1531 issuers’ official wallets to FID-mapped wallets. Similarly, the Official USDC Rewarding involves
 1532 transfers from Farcaster’s official wallet cluster and dedicated smart contracts to FID-mapped
 1533 wallets.

1534
 1535 Table 8. Token activity metrics across three incentive mechanisms in Farcaster
 1536

1537 1538 Metric	1539 Inter-FID Tipping Reward					3rd-Party Algo. Reward		Off. Algo. Reward
	Degen	Higher	USDC	Moxie	Tn100x	Degen	Moxie	USDC
1540 Unique Sender Count	27,519	1,267	30,004	9,212	1,859	—	—	—
1541 Unique Receiver Count	40,836	15,849	15,872	5,252	3,459	47,748	21,505	28,181
Total Transaction Count	196,555	58,449	596,213	139,516	11,026	101,232	354,952	81,812



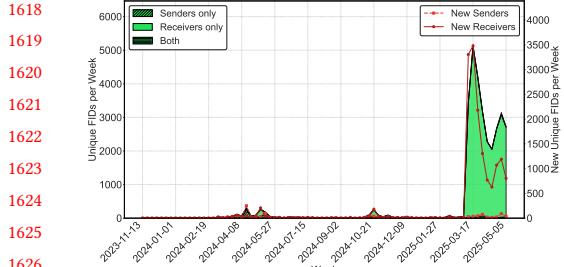
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

Fig. 9. Upset plots showing the intersections of reward participants across different incentive mechanisms and tokens. (a) illustrates the overlap of receivers among Mechanisms A, B, and C; (b) shows the overlap of senders across the five tokens within Inter-FID Tipping; (c) displays the overlap of receivers across the five tokens within Inter-FID Tipping. These plots highlight the extent to which participants engage with multiple mechanisms or tokens.

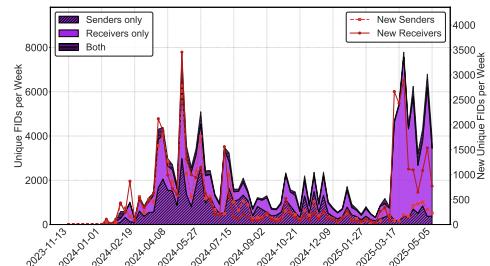
E Socioeconomic Risks of Token Incentives

Table 9. Weekly user tipping statistics surrounding the Farcaster wallet launch

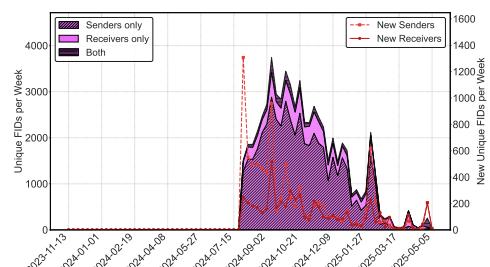
Metric	Pre-launch Mean	Pre-launch Median	Post-launch Mean	Post-launch Median
Unique Senders	1,823	1,779	7,960	8,014
Unique Receivers	1,220	1,117	6,849	7,198
New Senders	528	407	2,480	1,001
New Receivers	513	334	1,975	1,687



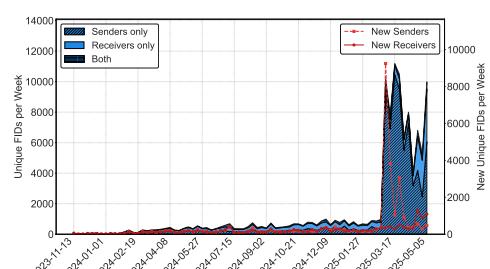
(a) HIGHER (Inter-FID Tipping)



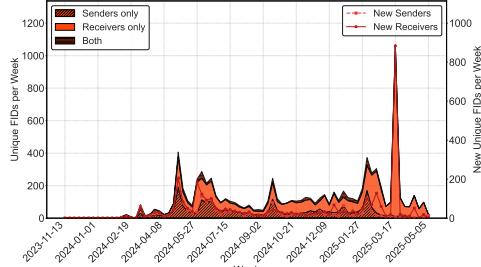
(c) DEGEN (Inter-FID Tipping)



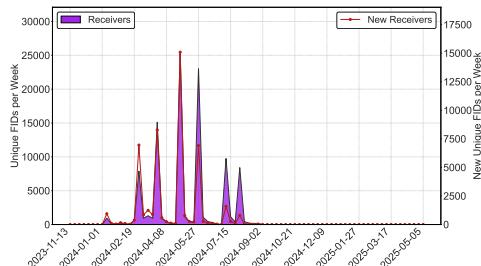
(e) MOXIE (Inter-FID Tipping)



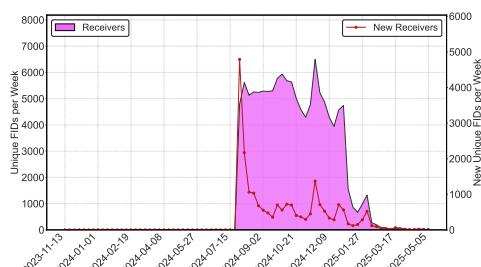
(g) USDC (Inter-FID Tipping)



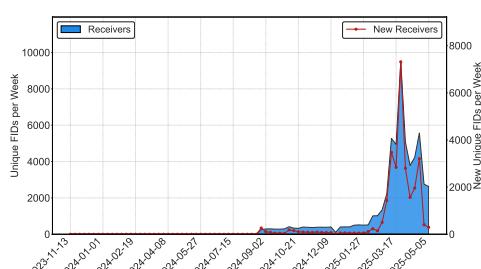
(b) TN100X (Inter-FID Tipping)



(d) DEGEN (Third-party Algorithmic Reward)



(f) MOXIE (Third-party Algorithmic Reward)



(h) USDC (Official Algorithmic Reward)

Fig. 10. Stacked area charts with overlaid lines. For each token-mechanism pair, the shaded areas represent the weekly number of unique participants—either senders (diagonal pattern), receivers (solid fill), or both (horizontal pattern). The solid line indicates the number of new receivers appearing each week, while the dashed line indicates the number of new senders appearing each week. This visualization captures both the cumulative engagement and the dynamics of new participant inflow over time.

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
Table 10. Network statistics comparison

Metric	Follow-only	Follow + Tip
Nodes	883,712	883,906
Edges	159,539,953	159,595,800
# Communities	[332, 359]	[334, 372]
Largest SCC	172	[173, 174]
Total SCCs	173	[174, 175]
Avg. Deg.	361.06	361.11
Max Deg.	564,120	564,989
Modularity	[0.54389, 0.54580]	[0.53196, 0.54625]

1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
Table 11. Community detection (follow-only network)

Metric	Louvain	Infomap			
		Level 0	Level 1	Level 2	Level 3
Communities	[332, 359]	187	8,301	330,165	5,122
Largest Comm.	≈ 462,230	880,428	330,867	23,127	2,766
Median Comm.	4	4	3	1	2
Tip Edge Distribution:					
Intra-Comm.	≈ 48%	99.37%	24.92%	3.84%	0.26%
Inter-Comm.	≈ 52%	0.63%	75.08%	96.16%	99.74%

F Effectiveness of Token Incentives on Social Activities

1716

1717

1718

1719

1720

1721

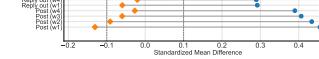
1722

1723

1724

1725

1726

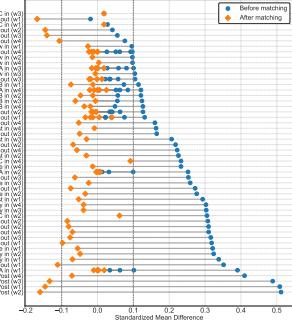


(a) Degen (InterFID Tipping)

1727

1728

(b) DEGEN (Third-party Algorithmic Reward)



(c) HIGHER (InterFID Tipping)

1729

1730

1731

1732

1733

1734

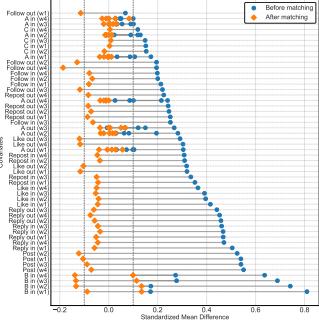
1735

1736

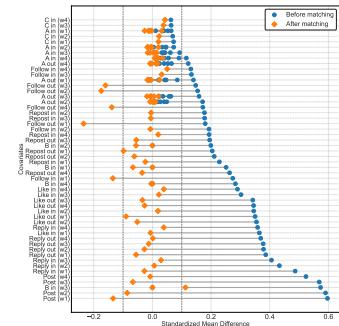
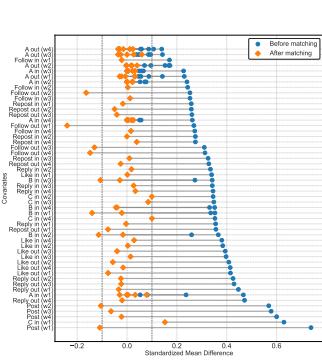
1737

1738

1739



(d) MOXIE (InterFID Tipping)



(e) MOXIE (Third-party Algorithmic Reward)

(f) TN100X (InterFID Tipping)

1740

1741

(g) USDC (InterFID Tipping)

(h) USDC (Official Algorithmic Reward)

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

Fig. 11. Balance tables for propensity score matching (PSM) analysis across token incentive mechanisms (T=0: reward reception date). While most covariates achieve balance ($SMD < 0.1$), notable imbalances are observed in outbound follows. SMD denotes standardized mean difference.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

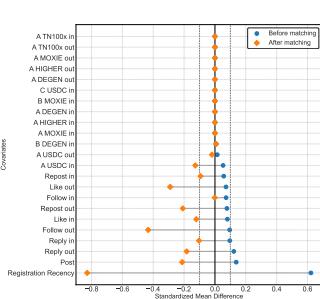
1809

1810

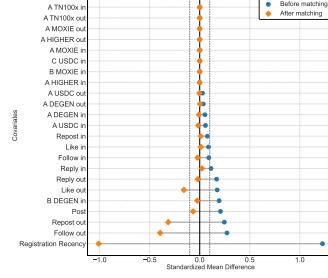
1811

1812

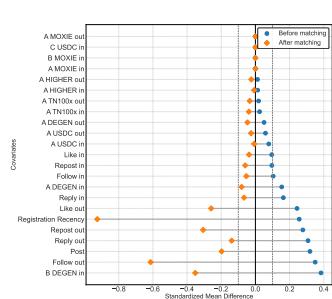
1813



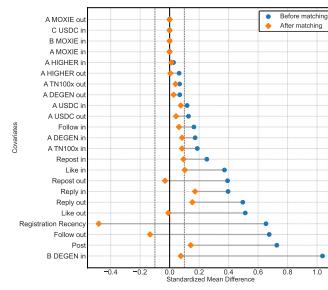
(a) Degen (InterFID Tipping)



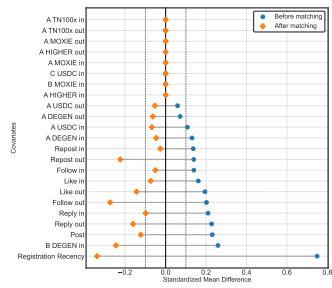
(b) Degen (Third-party Algorithmic Reward)



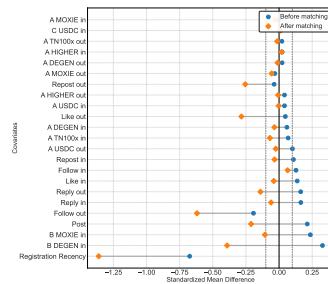
(c) Higher (InterFID Tipping)



(d) MOXIE (InterFID Tipping)



(e) MOXIE (Third-party Algorithmic Reward)



(f) TN100X (InterFID Tipping)

(g) USDC (Official Algorithmic Reward)

Fig. 12. Balance tables for propensity score matching (PSM) analysis across token incentive mechanisms (T=0: token/reward launch date). While most covariates achieve balance ($SMD < 0.1$), notable imbalances are observed in: (1) three outbound social interactions (likes/reposts/follows), (2) one inbound token reward (Third-party Algorithmic Reward Degen), and (3) user registration timing. SMD denotes standardized mean difference.

1814 Table 12. Regression analysis of continuous treatment intensity with social features.
1815

Temporal Alignment: First Reward Reception Date as T=0								
Action	Inter-FID Tipping					Algorithmic Reward		
	DEGEN	TN100X	HIGHER	MOXIE	USDC	DEGEN	MOXIE	USDC
post	1.5703*** (0.60) [0.16]	5.0001 (3.08) [0.32]	1.9701*** (0.65) [0.28]	-0.0517 (0.92) [0.04]	-0.0805 (0.43) [0.01]	12.7407*** (2.93) [0.22]	15.2254*** (0.74) [0.12]	8.2309*** (1.20) [0.18]
reply_out	-4.4867 (3.50) [0.56]	8.6610 (30.62) [0.64]	-3.8922 (3.07) [0.54]	10.6198 (2.57) [0.42]	-0.3703 (2.75) [0.08]	9.4023 (17.01) [0.69]	59.2029*** (4.39) [0.27]	-19.1090*** (5.25) [0.52]
reply_in	1.7207 (3.31) [0.78]	-35.1615 (29.81) [0.87]	-2.4438 (2.75) [0.83]	10.4600 (3.87) [0.59]	-10.2936** (3.57) [0.24]	-4.8940 (12.67) [0.80]	57.1112*** (3.24) [0.56]	5.1841 (5.53) [0.74]
like_out	-1.4999 (4.81) [0.50]	6.4651 (32.23) [0.50]	1.4243 (4.24) [0.66]	-4.1602 (3.73) [0.26]	7.5337** (3.54) [0.09]	-9.7807 (33.93) [0.57]	22.8327*** (3.02) [0.42]	32.0449*** (6.20) [0.60]
like_in	-1.2148 (5.34) [0.80]	25.2958 (23.53) [0.96]	17.9290*** (3.89) [0.91]	-27.5476*** (6.55) [0.74]	0.5102 (3.98) [0.09]	-77.0576*** (24.70) [0.75]	7.7791** (3.50) [0.70]	73.9531*** (6.19) [0.90]
repost_out	0.4519 (1.52) [0.44]	7.1819 (7.93) [0.43]	2.4716* (1.36) [0.56]	-0.9295 (1.28) [0.23]	-0.0732 (1.08) [0.05]	-5.6276 (10.63) [0.45]	-0.1039 (0.70) [0.34]	-9.1389*** (2.27) [0.46]
repost_in	1.7003 (2.00) [0.76]	-5.8862 (8.61) [0.94]	-5.2017*** (1.47) [0.80]	5.6276** (2.05) [0.25]	8.7852* (2.18) [0.06]	5.0918 (8.19) [0.64]	-6.2899*** (1.16) [0.57]	-30.2670*** (2.19) [0.81]
follow_out	0.2749 (3.29) [0.14]	-0.9579 (12.09) [0.17]	0.0211 (1.77) [0.10]	14.5753*** (2.98) [0.45]	0.6082 (1.46) [0.04]	0.9927 (15.90) [0.16]	20.3066*** (2.40) [0.45]	-54.1936*** (3.17) [0.15]
follow_in	-12.4111 (8.22) [0.21]	-57.8221 (45.63) [0.56]	-19.9274*** (6.43) [0.46]	9.9655*** (2.68) [0.40]	15.6006 (5.43) [0.06]	196.8301*** (34.16) [0.10]	6.3755** (3.21) [0.47]	242.8866*** (5.15) [0.56]
pop_size	40836	3459	15849	5252	15872	47748	21505	28181
sample_size	38532	3438	13854	5041	13879	47748	21482	27484

1837 **Symbols:** *** $p < 0.001$, ** $p < 0.05$, * $p < 0.01$. **Coefficients** deemed statistically significant are presented in bold.
1838 Furthermore, coefficients associated with statistically significant causal effects are highlighted in both bold and
1839 color. Standard errors (SE) are reported within parentheses (), and the coefficient of determination R^2 is enclosed
1840 in square brackets [].

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862