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Abstract
Platform and basket trials are increasingly used for rare diseases because they offer an increase in efficiency
that may outweigh the methodological, logistical, operational and regulatory issues associated with them.
In rare diseases or in pediatric drug development, single-arm trials or platform trials consisting of a series
of single-arm trials are increasingly being used, both to establish proof-of-concept and to provide pivotal
evidence for a marketing application. Often, these single-arm trials are designed as two-stage designs, or
they include sequential or continuous monitoring approaches. They are analyzed either using standard
frequentist methods, Bayesian approaches, or other approaches. In this paper, we examine a master protocol
that consists of a series of single-arm trials. Each of these single arm trials may either have the objective of
establishing proof-of-concept, or it may have the objective of providing pivotal evidence for a marketing
authorization. Regardless of the objective, each single arm trial may or may not include one or more interim
looks. In this paper, we describe how to define analysis strategies for such single-arm trials that are based on
confidence distributions, a frequentist alternative to the Bayesian posterior distribution. We show how to
define the corresponding analysis strategies for final and interim analyses and how to derive their operating
characteristics exactly, e.g., without simulations. Our approach uses predictive probabilities rather than
conditional probabilities (as with stochastic curtailment) to define interim decision rules.
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1 INTRODUCTION

Platform and basket trials are increasingly used for rare diseases1,2 because they offer an increase in efficiency that may outweigh
the methodological, logistical, operational, and regulatory issues associated with them3,4. The EU Patient-Centric Clinical Trial
Platform (EU-PEARL) project5,6, which was a partnership between the public and private sectors under the umbrella of the
Innovative Medicines Initiative (IMI) of the EU Commission, proposed a framework for the future conduct of platform trials and
developed master protocols in four diseases, including neurofibromatosis.

In rare diseases or in pediatric drug development, single-arm trials are increasingly being used7,8,9 as pivotal evidence in an
application for marketing authorization. The European Medicines Agency (EMA) published a reflection paper10 on using single
arm trials as pivotal evidence for this purpose, which explicitly extends to "platform trials which can be viewed as a series of
single arm trials". The two master protocols that have been developed for neurofibromatosis type 1 (NF1) and type 2 (NF2) as
part of the EU PEARL project can be regarded as examples for such a platform trial11.

Often, these single-arm trials are designed as two-stage designs or include sequential or continuous monitoring12,13 to allow
early stopping for futility and/or efficacy. Frequentist approaches to analyze such trials include standard hypothesis tests for
binary data, stochastic curtailment approaches13, and others. Bayesian approaches14 use the posterior distribution to define a
dual success criterion that combines evidence of superiority against a control or historical control rate, and evidence that the
response parameter or rate exceeds a certain threshold15,16.
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Confidence distributions are a frequentist alternative to Bayesian posterior distributions. Although confidence distributions are
a relatively old concept and were already mentioned by Cox in 195817, they are not well known and have not been used much
until recently. Xie and Singh18 provided a precise definition of confidence distributions along with an overview of potential
applications. We also refer readers to a paper by Marschner19 for a more recent review, and to the book by Schweder and Hjort20

for a more comprehensive and technical introduction.
Confidence distributions summarize the knowledge and uncertainty about an unknown model parameter such as the treatment

effect in the form of a probability distribution on the parameter space, just like a posterior distribution, without assuming that the
parameter of interest is a random variable. They are often simple to derive either from pivots or from a bootstrap distribution, are
closely linked to p-value functions, and one can obtain confidence intervals for any level from them18. Confidence distributions
do not require a prior distribution, yet they allow one to define similar success criteria as with posterior distributions.

In this paper, we present statistical analysis strategies based on confidence distributions for single-arm proof-of-concept (PoC)
or single-arm phase I/II studies with a binary endpoint. Our methods include the criteria for declaring success or futility at
interim analyses as well as at the final analysis, which are all based on confidence distributions.

Our work was motivated by two platform-basket trials in neurofibramatosis (NF) that have been developed as part of the
EU-PEARL project5,6. These two platform trials can be seen as a collection of single-arm proof-of-concept or single-arm
phase I/II studies11, and their primary endpoint is binary. For each of these single-arm studies, an interim analysis may be
included depending on the sponsor’s request. Unlike the two review papers by Xie and Singh18 and Marschner19 we focus on
the application of confidence distributions to a specific situation.

This paper is organized as follows. We provide more details about the motivating example of platform-basket trials in NF
in Section 2, and introduce the corresponding decision rules and success criteria in Section 3. We explain how to derive the
operating characteristics for these decision rules without simulations in Section 4. Section 5 concludes the main part of our
paper. All technical statistical derivations are deferred to the supplementary material (Section A). The software for calculations
and visualizations used in this paper can be found at GitHub21, which includes plain R code, link to a shiny app, and an MS
Excel spreadsheet.

2 MOTIVATING EXAMPLE: TWO PLATFORM-BASKET TRIALS FOR NEUROFIBRO-
MATOSIS

Neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2) related Schwannomatosis, and non-NF2 related Schwanno-
matosis (SWN) are rare genetic disorders with an increased risk of developing nerve sheath tumors. These tumors are mostly
benign, but can transform into malignant tumors. There are many manifestations of these three subtypes of neurofibromatosis,
which vary considerably, and require different ways to measure response22,23,24. Inclusion and exclusion criteria differ between
the manifestations, and possibly also between interventions (such as age restrictions, concomitant medications that should be
excluded, etc.).

In such rare diseases with high variability between manifestations and different subtypes, it can be time consuming and
difficult to perform classical clinical trials25, and platform trials may be an alternative. As part of the EU-PEARL partnership5,
two platform-basket trials were designed, one covering four manifestations of NF1, and the other covering five manifestations of
NF2 and SWN. Both the NF1 and the NF2/SWN platform trials are designed to include multiple interventions, and these may be
added at different points in time by different sponsors. Some interventions may be tested against several manifestations of NF1
or NF2/SWN, and others may only be tested against one manifestation. Comparisons between interventions are not planned.

The primary endpoint for all manifestations is always a binary endpoint (response/non-response). However, the definition
of this binary endpoint differs between manifestations (but not across interventions when tested in the same manifestation).
For many of the manifestations, the endpoint is defined based on tumor growth data obtained from MRI, applying criteria as
REiNS26,27, RAPNO28, or criteria similar to the RECIST 1.1 criteria29. In some manifestations, improvement of pain or visual
acuity is part of the responder definition. For some manifestations, the endpoint is observed as early as after 3 months, for others
only after 12 months.

Therefore, the platform-basket trial may be regarded as a collection of single-arm studies, with each combination of an
intervention and a manifestation being a separate subtrial. Each subtrial is analyzed separately. The primary objective of each
subtrial is to demonstrate proof-of-concept (PoC), e.g., that the drug shows activity against the manifestation in which it is being
tested. However, given that this is a rare disease, there is also an option to run such a subtrial with a more confirmative objective
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and a larger sample size. The platform-basket trial design also allows for interim analyses, for example to stop early for projected
lack of success.

For a more detailed description and justification of the platform-basket trial design, we refer to the paper by Dhaenens et al.11.
The rationale for selecting the manifestations for the NF1 trial has been described in Dhaenens et al.24. The two master protocols
are published online5, together with a detailed technical report on the analysis and the corresponding operating characteristics30.

3 DECISION RULES FOR A SINGLE-ARM STUDY BASED ON CONFIDENCE DISTRI-
BUTIONS

In this section, we introduce the decision rules for a single-arm proof-of-concept study and for a single-arm study that is intended
to provide pivotal evidence for registration (registrational objective). The primary endpoint is assumed to be a binary endpoint,
as discussed in Section 2, and the decision rules will be based on a confidence distribution for the unknown response rate.

3.1 Decision Rules for the Final Analysis

In the case of a single-arm subtrial with a binary endpoint, a confidence distribution is a data-driven distribution on the interval
extending from 0% response (ineffective drug) to 100% response. It is often described by its confidence density (see Figure 1),
which is centered around the observed response rate. The width of the confidence density is a function of the observed variance
and the sample size. We use an asymptotic approximation based on an asymptotic pivot18 here.

In order to define these decision rules precisely, we need some notation. Let Y = (Y1, . . . , YN)T be a column vector of N
independent and identically distributed binary random variables, where Yν = 1(0) indicates response (non-response) with regard
to the primary endpoint for the ν -th subject within an investigational arm or subtrial. The Yν follow Bernoulli distributions with
success probability p, and their sum Y· =

∑N
ν=1 Yν follows a binomial Bin(N, p) distribution with parameters N and p.

A confidence distribution for the unknown model parameter p ∈ [0, 1] is a data-driven distribution on the corresponding
parameter space [0, 1]. To be precise, a function H = H(p|Y) of the data and the parameter p is a confidence distribution if the
following two conditions apply:

1. H(·|Y) is a continuous distribution function on [0, 1] for each possible outcome Y.
2. The random variable H(p|Y) is uniformly distributed on [0, 1] if p is the true underlying response rate.

If (one of) these conditions holds asymptotically, then one speaks of an asymptotic confidence distribution.
The function H(·|Y) is the distribution function of the confidence distribution. We often use the corresponding density (called

"confidence density") to represent the confidence distribution, as shown in Figure 1.
A confidence distribution summarizes the knowledge on the unknown parameter obtained from the data. Confidence intervals,

estimators, or p-values for hypothesis tests can be derived from such a confidence distribution18.
In the model considered here, we can derive an asymptotic confidence distribution

HN(p|Y·) := Φ

(
p – p̂N(Y·)
σ̂N(Y·)

)
(1)

from the asymptotic pivot p̂N (Y·)–p
σ̂N (Y·)

. This is a common approach to constructing confidence distributions18. The function Φ in (1)
refers to the distribution function of a standard normal distribution, so that HN(·|Y·) corresponds to a normal distribution with
mean equal to the observed response rate

p̂N = p̂N(Y·) = Ȳ· =
1
N

N∑
ν=1

Yν , (2)

and with variance

σ̂2
N = σ̂2

N(Y·) = max

{
Ȳ·(1 – Ȳ·)

N
,

1
4N2 (1 – 1

4N2 )
N

}
. (3)

Note that the variance defined in (3) is always positive, even when Ȳ· = 0 or Ȳ· = 1. It equals the usual variance estimator for p̂N

for all other possible outcomes.
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With this, we can now define the decision rule for the final analysis. For each subtrial, a desired response rate p1, and an
undesired response rate response rate p0 will be determined, with p0 < p1. Proof-of-concept or success is declared during the
final analysis if

HN(p0|Y·) < α and HN(p1|Y·) < β (4)

applies for some 0 < α < 0.5 ≤ 1 – β < 1. Similarly, one can define a decision rule to declare futility at the final analysis if

HN(p0|Y·) > γ (5)

applies for some 0.5 ≤ γ < 1.
The first condition in (4) corresponds to a hypothesis test for H0 : p ≤ p0 versus H1 : p > p0 with type I error equal to α. It

is fulfilled if and only if H0 is rejected using the asymptotic test statistic p̂N (Y·)–p0
σ̂N (Y·)

. The second condition in (4) corresponds to a
condition on the observed effect size. For example, with β = 0.5, the second condition is equivalent to the observed response
rate p̂N(Y·) being larger than the desired response rate p1.

These decision rules are illustrated graphically in Figure 1. The first condition in (4) corresponds to the red area under the
confidence density being smaller than α, and the second condition in (4) corresponds to the blue area being larger than 1 – β.
The condition in (5) corresponds to the red area under the confidence density being larger than γ.

F I G U R E 1 Graphical representation of the decision rule.

Response Rate (%)
0%                          15% 20%                                                                  50%         

Confidence Distribution & Decision Rule

area should be large (50%), 

indicating confidence that 

the drug is efficacious

area should be small to reduce

the risk of progressing non-

efficacious drugs

The confidence distribution is derived from the study 

data: it is centered around the observed response 

rate.

The desired response rate 

(p1=20% in this example) is the 

lower bound of a range of 

response rates that are of medical 

interest and aligned with the 

target product profile of the drug.

The ineffective response rate (p0=15% in this 

example) is the upper bound of the range of 

response rates that are neither of medical nor

of commercial interest.

The red area corresponds to the probability that the confidence distribution assigns to the range of ineffective response rates
(ranging from 0 to p0 = 15% in the example presented in Figure 1), and the blue area under the confidence density curve
corresponds to the probability that the confidence distribution assigns to the range of response rates above the desired response



Final and Interim Analyses for Platform Trials Consisting of Single Arm Studies Using Confidence Distributions 5

rate (ranging from p1 = 20% to 100% in Figure 1). In the two platform-basket trials described in Section 2, the choice of these
parameters may vary across the different subtrials.

Reasonable choices for α, β and γ could be α = 0.2, β = 0.5, and γ = 0.5 in a subtrial with the objective to demonstrate
proof-of-concept. For a subtrial with a registrational objective, smaller values as α = 0.05 or α = 0.025 may be a better choice,
because the decision rule (4) corresponds to a hypothesis test at level α for H0 : p ≤ p0 versus H1 : p > p0 with the additional
condition that the observed response rate needs to exceed p1.

In a recent paper31 on the treatment of BRAF-aberrant or neurofibromatosis type 1-associated low-grade glioma, response
rates below 0.1 were regarded as ineffective, and response rates above 0.3 were regarded as effective. The paper reported the
outcome of a cohort of N = 25 patients with NF1-related low-grade glioma, with Y· = 10 of these patients being responders. The
decision rule 4 declares proof-of-concept or success when applied to these data, with p0 = 0.1, p1 = 0.3, α = 0.1 (the type I error
that Fangusaro et al.31 used in their analysis), and β = 0.5.

We prove in Section A.1 of the supplementary material that the decision rule (4) is equivalent to Y· ≥ cN , with cN being
defined to be the smallest integer such that

p̂N(y) > max
{

p0 – σ̂N(y)Φ–1(α) , p1 – σ̂N(y)Φ–1(β)
}

(6)

applies for all y ≥ cN . Note that cN = cN(p0, p1,α,β) is a function of the parameters p0, p1, α, and β.
Similarly, the decision rule (5) is equivalent to Y· ≤ dN , with dN = dN(p0, p1, γ) being defined as the largest integer such that

p̂N(y) < p0 – σ̂N(y)Φ–1(γ) for all y ≤ dN . (7)

3.2 Decision Rules for Interim Analyses

Many different types of interim decision rules can be defined. These different options include stopping rules to declare success
or failure at the interim analysis as well as stopping rules to decide whether to continue the subtrial or not (without declaring
success or failure at the interim).

If the primary objective of the single-arm subtrial is to declare proof-of-concept at the final analysis, the sample size is usually
small, and an interim analysis may not make sense. For this case we suggest monitoring the number of responders, and to declare
proof-of-concept as soon as the observed number of responders equals the number of responders cN (as defined in (6)) that is
needed to declare proof-of-concept at the final analysis. Whether or not to stop the subtrial at this point in time depends upon the
context: if there are other subtrials with other promising compounds ongoing as part of the platform-basket trial, early stopping
of a successful subtrial may be useful to save resources and enable learning about the other compounds. However, if no other
subtrial is ongoing for the same manifestation, early stopping of a successful compound may not be useful and prevent patients
from having an active treatment option.

If the primary objective of the single-arm subtrial is to use the data for regulatory purposes, for example to get the marketing
authorization for an additional indication in a rare disease for the compound of interest, the sample size of the subtrial will be
larger. In this case. we propose to include an interim analysis after n < N subjects, and to stop the subtrial if the likelihood to be
successful at the final analysis, given the data at the interim analysis, is too small. This approach would prevent the sponsor from
running a larger trial in a rare disease with no or little chance to be successful, and it would also allow to allocate future patients
to more promising compounds.

In order to precisely define such a decision rule, and to quantify the "likelihood to be successful at the final analysis given
the data at the interim analysis", we need more notation. Let Y[1·] =

∑n
ν=1 Yν be the sum of the first n observations, which is

distributed according to a binomial distribution Bin(n, p) with parameters n and p, and Y[2·] =
∑N

ν=n+1 Yν be the sum of the
second N – n observations, distributed according to a binomial distribution Bin(N – n, p) with parameters N – n and p. Both of
these distributions depend on the same unknown parameter p. At the interim analysis, the unknown parameter p can be estimated
by p̂n(Y[1·]) = Y[1·]

n . We also use p̂n(y) = y
n for 0 ≤ y ≤ n, b(y|N, p) :=

(N
y

)
py(1 – p)N–y to denote the binomial probabilities, and

B(·|N, p) to denote the cumulative distribution function of a binomial distribution with parameters p and N.
With this, we can define a distribution

ProbN,n,Y[1·] :=
n∑

y=0

b(y|n, p̂n(Y[1·])Bin(N – n, p̂n(y)) , (8)
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which is a mixture of binomial distributions with parameters N–n and p̂n(y), and with weights b(y|n, p̂n(Y[1·]) from a Bin(n, p̂n(Y[1·])
distribution. The corresponding density function is

g(z|N, n, Y[1·]) =
n∑

y=0

b(y | n, p̂(Y[1·]) b(z | N – n, p̂(y)) (9)

for z ∈ {0, . . . , N – n}, and we will use G(· | N, n, Y[1·]) to denote the corresponding cumulative distribution function. This
distribution will be used to predict the number of responders Y[2·] among the the second N – n observations.

Given that Y[2·] is a binomial Bin(N –n, p) random variable, we could have used the binomial Bin(N –n, p̂n(Y[1·]) with estimated
parameter to predict the number of responders Y[2·]. In Section A.2 of the supplementary material, we discuss that the mixture
distribution (8) is a better choice for this purpose, because it usually provides a better approximation to the true Bin(N – n, p) as
compared to Bin(N – n, p̂n(Y[1·]).

We now use the mixture distribution (8) to quantify the "likelihood to be successful during the final analysis given the data at
the interim analysis". The subtrial will continue after the interim analysis if this likelihood exceeds a predefined threshold δ, e.g.,
if

ProbN,n,Y[1·] {1 ≤ y ≤ N – n : HN(p0|y + Y[1·]) < α and HN(p1 | y + Y[1·]) < β} > δ , (10)

for some 0 < δ < 1, and it will be stopped if the condition above is not met. This decision rule can be expressed equivalently as

1 – G(cN – Y[1·] – 1 | N, n, Y[1·]) > δ , (11)

see Section A.4 of the supplementary material. Since stopping occurs for futility here (e.g., if the chances to declare success at
the end are too small given the existing data), no adjustment of the type I error is needed.

We have chosen to use (8) as a predictive distribution. Similar approaches have been used and discussed by various
authors32,33,34,35. Unlike these approaches, which use the Bayesian posterior predictive distribution, we have chosen to use a
frequentist predictive distribution. Alternative frequentist approaches are based on stochastic curtailment36: rather than using
the predictive probability G(·|N, n, Y[1·]) to evaluate the probability in (10) or (11), a binomial distribution with pre-specified
parameter p0 is used. But stochastic curtailment is usually less efficient than using the predictive distribution. We will discuss
this in Section A.2 of the supplementary material.

3.3 Adaptive Randomization Rules

If there is more than one investigational intervention arm running in parallel for any given manifestation, one can use the
predictive probabilities

π(n) := ProbN,n,Y[1·] {1 ≤ y ≤ N – n : HN(p0|y + Y[1·]) < α and HN(p1 | y + Y[1·]) < β} (12)

to define adaptive randomization rules. For example, if there are S arms that are recruiting in parallel, with πs(ns) being the
predictive probability for the s-th arm as defined in (12) after ns subjects, then one could allocate a new patient to arm s using the
allocation rate

λs =
πs(ns)∑S

κ=1 πκ(nκ)
(13)

(with πs(0) := 1), or, alternatively

λs =
πτs(ns)

s∑S
κ=1 π

τs(nκ)
κ

(14)

(where 0 ≤ τs(ns) ≤ 1 is a monotonically increasing function for n = 1, ..., Ns, Ns being the overall sample size in arm s). This
will be discussed and explored in a separate paper.
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4 OPERATING CHARACTERISTICS FOR THE DECISION RULES

We now examine the operating characteristics of the decision rules defined in Section 3 for both the final and the interim analyses.
We do this for sample sizes that correspond to a single-arm proof-of-concept study or a single-arm phase I/II study, and we show
how sample size calculations can be done. The operating characteristics are all calculated exactly, without simulations.

4.1 Operating Characteristics for the Final Analysis

In this section we present the operating characteristics for the decision rules defined in (4) and (5) assuming that there is no
interim analysis that could lead to stopping the subtrial early. The operating characteristics represent the probability that the
conditions in (4) and (5) will be met as a function of the true response rate of the drug.

Figure 2 displays the operating characteristics for these decision rules for a sample size of N = 25, an undesirable response
rate p0 = 0.1, a desirable response rate p1 = 0.3, α = 0.05, and β = γ = 0.5.

F I G U R E 2 Operating characteristics for p0 = 0.1, p1 = 0.3, N = 25, α = 0.05, and β = γ = 0.5.
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The solid green curve corresponds to the decision rule (4) and shows the probability of declaring proof-of-concept after
N = 25 subjects have completed the trial as a function of the unknown response rate of the drug. This function equals

p –→
N∑

y=cN

b(y|N, p) = 1 – B(cN – 1|N, p) , (15)

with cN defined as in (6), see Section A.1 of the supplementary material.
The blue curve corresponds to the decision rule (5) and shows the probability of declaring futility after N = 25 subjects as a

function of the response rate. This function equals

p –→
dN∑
y=0

b(y|N, p) = B(dN |N, p) , (16)
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with dN defined as in (11), see Section A.1 of the supplementary material. As one would expect, this probability is large for
non-efficacious drugs, and very small for efficacious ones.

The yellow curve shows the probability of no decision (i.e., one can neither declare proof-of-concept nor futility) as a function
of the response rate. It is equal to one minus the other two probabilities.

The dotted green curve is the power function of a hypothesis test for H0 : p0 ≤ α versus H1 : p0 > α, and serves as a
reference here. This curve is always larger than or equal to the solid green curve, and their difference quantifies the loss in power
caused by the second condition in (4).

We show in Figure A1 that the operating characteristics of a Bayesian decision rule that replaces the confidence distribution
HN in (4) by a corresponding Bayesian posterior distribution is identical or very similar to that in Figure 2, when using a
non-informative prior. Details are described in Section A.3 of the supplementary material.

F I G U R E 3 Operating characteristics for the same scenario as Figure 2, with small variations.
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In the scenario displayed in Figure 2, the probability of declaring proof-of-concept is close to zero for a non-efficacious drug
with underlying response rate smaller than p0 = 0.1 . However, for efficacious drugs with response rates larger than p1 = 0.3, the
probability to declare proof-of-concept is larger than 50%, and larger than 80% if the drug has a response rate equal to or greater
than 0.4. Note that the observed response rates in the trial were above 0.4 for both strata that were reported by Fangusaro et al.31

By construction of the decision rule, the probability of declaring proof-of-concept cannot exceed 1 – β, if the response rate of
the drug was exactly at the boundary of the efficacious space. Similarly, the probability of declaring futility if the response rate is
exactly at the boundary of the non-efficacious space cannot exceed γ. In the example in Figure 2, the corresponding probabilities
almost achieve these limits.

Note that the probability of no decision is quite high for response rates near the boundary. For example, the probability of no
decision exceeds 30% for a drug with response rate p = 0.35. This can be improved by increasing the sample size. In the upper
right panel of Figure 3 we show the operating characteristics of the decision rule with N = 100 (while all other parameters are as
in Figure 2). Now the curves are much steeper, and the probability of no decision has decreased to approximately 17% for a drug
with response rate p = 0.35.

The two left panels in Figure 3 show that the probability of declaring proof-of-concept decreases considerably if one changes
α or p0. In both cases, the probability of declaring proof-of-concept based on N = 25 subjects has decreased from above 80% to
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below 50% even if the drug has a response rate equal to p = 0.4, if we decrease α (from 0.05 to 0.001) or increase p0 (from 0.1
to 0.25), keeping all other parameters the same as in Figure 2. If such scenarios were of interest, an increase in sample size
would be needed. The bottom right panel shows that the probability of declaring proof-of-concept is again well above 80%, if
p0 = 0.25, when the sample size is increased to N = 100.

Note that the dotted and the solid green curve coincide in three of the four panels of Figure 3. This is because the second
condition in (4) has no impact on the decision in these scenarios, and hence does not cause a power loss. This is the case for very
small values of α or when the difference p1 – p0 between the desired and the undesired response rates is very small. On the other
hand, the power loss is considerable for large sample sizes, as shown in the upper right panel of this figure. The second condition
prevents one from overpowering a study and from having a significant result when the drug effect is actually small.

Figure 4 displays the probability of declaring proof-of-concept (blue curve).

N –→
N∑

y=cN

b(y|N, p∗) = 1 – B(cN – 1|N, p∗) (17)

as a function of sample size N for a selected parameter value p∗ > p1, see Section A.1 of the supplementary material. Linear
interpolation is applied between the discrete points (N, 1–B(cN –1|N, p∗)) for better readability. This function is not monotonically
increasing, due to the discrete nature of the binary response endpoint. This type of figure or function can be used to find a sample
size N∗ which meets the condition

∑N∗
y=cN∗

b(y|N∗, p∗) ≥ ϵ.

F I G U R E 4 Probability of success as a function of sample size for p0 = 0.3, p1 = 0.4, p∗ = 0.45, α = 0.05, β = 0.5, and ϵ = 0.8.
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In Figure 4, we show a sample size calculation for a phase II study with a hypothetical new drug. Given that Fangusaro et
al.31 reported a response rate larger than 0.4 for selumetinib, we use a stricter definition for an efficacious drug, and we selected
p1 = 0.4 (instead of 0.3) as the desired response rate. Similarly, we selected p0 = 0.3 (instead of 0.1)as the upper limit of the
range of undesired response rates. The parameters α = 0.05 and β = γ = 0.5 were as before. The probability of declaring
proof-of-concept at the final analysis is calculated in Figure 4 assuming that the true response rate of the hypothetical new
compound is p∗ = 0.45.

With this choice we want to have a chance of ϵ = 80% or more to declare proof of concept at the final analysis. One could
consider N∗, the smallest sample size that achieves this, or N∗, the smallest sample size that achieves this for all N ≥ N∗. From
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Figure 4 one can see that N∗ = 62 and N∗ = 86. Because of the non-monotonicity, some care should be taken when selecting
the appropriate sample size for an investigational arm. One should not blindly select N∗ or N∗, but one needs to carefully
assess whether there are better choices that may only require a small increase or even allow for a small decrease in sample size.
However, one also needs to keep in mind that missing values may occur, and that the sample size at the end of the subtrial may
not be the same as what was planned.

4.2 Operating Characteristics in the Case of Interim Analyses

We start with the operating characteristics for a phase I/II study with an interim analysis to stop early because of projected lack
of success after n < N patients. The decision decision rule that has been defined in (10) is used.

In Figure 5 we present the operating characteristics of this interim decision rule for the scenario discussed at the end of the
previous section. The total sample size for the study is N = 62, and the interim sample size is n = 25. The undesirable response
rate is p0 = 0.3, and the desirable response rate is p1 = 0.4. The parameters α = 0.05, β = 0.5, and δ = 0.5 were used to obtain
these operating characteristics. These numbers were selected as a reflection of the data reported by Fangusaro et al.31, see also
the second last paragraph of the previous section.

F I G U R E 5 Operating characteristics for p0 = 0.3, p1 = 0.4, N = 62, n = 25, α = 0.05, β = 0.5, and δ = 0.5.
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The blue curve shows the probability of continuing after n = 25 subjects have been observed as a function of the true
underlying response rate of the investigational drug. It can be calculated according to

p –→
n∑

y=0

b(y | n, p)1{y|1 – G(cN – y – 1 | N, n, y) > δ} (18)

because of the equivalence of (10) and (11), see Section A.4 of the supplementary material. The indicator function 1{A} equals 1
if the condition A is met, and 0 otherwise.

The dotted yellow curve in Figure 5 shows the probability of continuing when using stochastic curtailment to define analogous
rules to (10) or (11). We show in Section A.6 of the supplementary material how to define this curve, and we will demonstrate
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that the yellow curve equals

p –→
n∑

y=0

b(y | n, p)1{y|1 – B(cN – y – 1 | N – n, p̂n(y)) > δ} . (19)

The red curve shows the probability of declaring success during the final analysis with N = 62 subjects in the subtrial when
there was an interim analysis after n = 25 subjects. It can be calculated according to

p –→
n∑

y=0

b(y | n, p)(1 – B(cN – y – 1 | N – n, p))1{y | 1 – G(cN – y – 1|N, n, y) > δ} , (20)

see Section A.5 of the supplementary material. The dotted green curve shows the probability of declaring success during the
final analysis based on N = 62 subjects, when no interim analysis was done. This curve serves as a reference to quantify the loss
of power imposed by an interim analysis.

In the scenario presented in Figure 5, the loss of power introduced by the interim analysis (e.g., the difference between the
dotted green and the red curve) is moderate. One can also see that the approach based on stochastic curtailment is much more
conservative than the predictive probability approach. This is illustrated by the difference between the blue and the dotted yellow
curve.

In Figure 5 we have used δ = 0.5. This means that one continues the subtrial after n = 25 subjects, if the chance of success at
the end is predicted to be larger than 50%. At a first glance, this seems to be a very low threshold to overcome, and one may want
to increase δ. However, this will lead to a considerable loss in power during the final analysis, as demonstrated in the bottom left
panel of Figure 6 where δ = 0.8 and all other parameters are as in Figure 5. Decreasing δ further may also lead to undesirable
results. The top left panel in Figure 6 shows the situation for δ = 0.2. The power loss is now almost gone, but the probability
of continuing after the interim analysis is very high, even for low response rates (e.g., for the undesirable response rate p0 the
probability to continue is almost 0.4). This contradicts the purpose of the interim analysis, which should stop further recruitment
if a drug is non-efficacious. When selecting δ = 0.5 as in Figure 5, there is a good balance between power loss and probability of
continuing (which is 0.2 for p0).

F I G U R E 6 Operating characteristics for the same scenario as Figure 5, with small variations.
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The right panels of Figure 6 show what happens when the interim sample size is varied. If the interim sample size is reduced to
n = 10, with all other parameters equal to Figure 5, the power loss increases, and the probability of continuing for low response
rates increases. Hence, one should not perform an interim analysis too early. For larger interim sample sizes (as n = 45 in the
bottom right panel), the power loss is almost gone, and the probability of stopping at the interim analysis is very close to the
probability of declaring success at the end of the subtrial. This is not surprising, as more than two thirds of the subjects would
have been observed in this scenario. However, for non-efficacious drugs one wants to stop the subtrial early, and waiting with an
interim until two thirds of the subjects have been observed is counter-intuitive.

One can also see that the stochastic curtailment approach performs better if the sample size for the interim is large, or if δ is
small. However, its performance is terrible for small interim sample sizes and for large values of δ.

5 DISCUSSION

In this paper we presented statistical analysis strategies for single-arm Proof-of-Concept (PoC) or single-arm phase I/II studies
with a binary endpoint. These analysis strategies were based on confidence distributions, a frequentist analogue of Bayesian
posterior distributions. Using a distribution to summarize the data from a clinical study allows one to define decision criteria as
(4) or (5), which are often being used for proof-of-concept studies in the pharmaceutical industry. In such proof-of-concept
studies, hypothesis tests that control the type I error at the usual α = 0.05 or α = 0.025 level are usually infeasible due to the
large sample sizes required. At the same time, decision makers would like to see a certain treatment effect before moving to the
next phase, so that a decision rule like (4) is often convenient.

Sometimes Bayesian posterior distributions are used to define such decision rules, and these require prior distributions to
be specified. Often, there is little prior information when designing a proof-of-concept study, so that non-informative priors
would have to be used. Confidence distributions do not require the experimenter to define a prior distribution, and their operating
characteristics are identical or very similar to those of the Bayesian procedures when using non-informative priors. Moreover,
their operating characteristics can often be calculated directly, as in the binary case, so that one does not need simulations to
obtain them. Therefore, confidence distributions represent a simple alternative to using Bayesian posterior distributions.

Uncontrolled single-arm studies are used in many rare diseases and in pediatric drug development, either because there is no
adequate control treatment, or because a placebo controlled study is considered not ethical. The investigation that motivated this
work is such an example. The different manifestations of neurofibromatosis are rare diseases with childhood onset, and without
an established standard of care. A standard development program is not feasible in such situations.

For phase I/II studies, interim analyses that allow one to stop a study early for futility or projected lack of success at the final
analysis are a useful tool to prevent patients from being treated with a non-efficacious drug, and to save costs. These questions
are particularly important in the context of the platform trials that motivated this work, because patients are rare and stopping
one arm early may allow us to test a more promising arm more quickly.

In this paper we have discussed how to combine decision rules that are based on confidence distributions with predictive
distributions to define interim decision rules. We have shown that these rules have satisfactory performance, and that the power
loss can be small as compared to a situation when no interim analysis is performed. This depends on the settings, and one needs
to carefully tune the parameters of the decision rule when planning such studies. We have also shown that using predictive
distributions is a more efficient approach than using stochastic curtailment. The predictive probability approach can also be used
to define adaptive randomization schemes in platform trials. We will discuss this in more detail in a separate paper.

We have focused on decision rules that were motivated by the platform trials in neurofibromatosis. But our approach can be
expanded into many different types of interim decision rules, including stopping early to declare success, or to declare futility.
Our approach can also be used for sequential decision making.

All the ideas that were discussed in this paper for single-arm PoC or phase I/II subtrials with binary endpoints can be extended
to two-arm controlled subtrials and to other types of endpoints.
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APPENDIX

A TECHNICAL DERIVATIONS AND PROOFS

In this section we provide technical derivations and proofs for Sections 3 and 4.

A.1 Proof of (6) and (7)

The two conditions that define the decision rule (4) can be expressed equivalently as

HN(p0|Y·) < α ⇔ p̂N(Y·) > p0 – σ̂N(Y·)Φ–1(α) , (A1)

and
HN(p1|Y·) < β ⇔ p̂N(Y·) > p1 – σ̂N(Y·)Φ–1(β) . (A2)

Consider the inequality z > p0 –
√

z(1 – z)Φ
–1(α)√

N
as a function of z ∈ [0, 1]. The function z –→ z is continuous and increasing

from 0 to 1. The function on the right is continuous and concave (because Φ–1(α) is negative) and equal to p0 for z = 0 or
z = 1. Therefore, the two functions must intersect, and there is exactly one value 0 < z0 < 1 where these functions intersect.
Actually, the solution must be in the interval 1

2N < z0 < 1 – 1
2N unless p0 < 1

2N . With the same reasoning, there must be such
a value z1 for the second function p1 –

√
z(1 – z)Φ

–1(β)√
N

(which is actually a horizontal line when β = 0.5). The corresponding
inequalities in conditions (A1) and (A2) can be viewed as discrete approximations of this continuous problem, which have jumps
in 1

N , 2
N , 3

N , . . . , 1 and are constant otherwise. The modification to bound σ̂N(Y·) away from zero does not disturb this argument,
since this modification only applies on the intervals [0, 1

2N ] and [1 – 1
2N , 1].

This shows that cN = cN(p0, p1,α,β), as defined in (6), exists, and that (4) it is equivalent to Y· ≥ cN , which was to be shown.
Statements (15) and (17) are a direct consequence of this.

A straightforward calculation shows that the decision rule (5) can be expressed equivalently as

Φ(
p0 – p̂N(Y·)
σ̂N(Y·)

) > γ ⇔ p̂N(Y·) < p0 – σ̂N(Y·)Φ–1(γ) . (A3)

One can show with the same type of reasoning as above that this rule is equivalent to Y· ≤ dN for dN defined in (7). Statements
(16) is a direct consequence of this.

http://dx.doi.org/10.1177/1740774515626362
http://dx.doi.org/10.1177/1740774515626362
http://dx.doi.org/10.1080/07474948208836014
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A.2 Predictive Distributions

In the next paragraphs we will provide an explanation why the predictive distribution G(·|N, n, Y[1·]) with density (9) is likely to
be a better choice than Bin(N – n, p̂n(Y[1·]).

Assume that there are two random variables Y1 and Y2 with distributions P1,ϑ and P2,ϑ that depend on the same unknown
parameter ϑ, and that there are corresponding densities p1(y1,ϑ and p2(y2,ϑ. Assume further that the first random variable has
been observed, and that one wants to predict the outcome of the second one, for example as part of an interim analysis. The
corresponding predictive distribution should make adequate use of the observed data Y1 by estimating ϑ.

An obvious candidate for a predictive distribution for Y2 is the distribution with density

p2(y2, ϑ̂(Y1) , (A4)

where the unknown parameter is replaced by an estimate ϑ̂(Y1) that is based on the observed data. However, it has been shown37

that this is not a good choice, and that the distribution with density

p̃2(y2|ϑ) =
∫

p2(y2, ϑ̂(y1)P1,ϑ(dy1) (A5)

is closer to the true distribution P2,ϑ as compared to the predictive distribution (A4). In the context of prediction, closeness
between two distributions P and Q is usually measured by the Kullback-Leibler divergence37

KL(P, Q) =
∫

(log(q(x)) – log(p(x))) q(x)dx , (A6)

where p and q are the densities of P and Q, respectively.
Now, the predictive distribution (A5) is of no practical use, because it depends on the unknown parameter ϑ, but it motivates

p̂2(y2|ϑ̂(Y1)) =
∫

p2(y2, ϑ̂(y1)P1,ϑ̂(Y1)(dy1) (A7)

as an alternative to (A4). Note that in this formula, ϑ̂(Y1) is the observed estimate based on the first sample Y1, and ϑ̂(y1) is a
possible value of the estimate had y1 been observed.

In the situation with binomial data Y[1·] =
∑n

ν=1 Yν ∼ Bin(n, p) and Y[2·] =
∑N

ν=n+1 Yν ∼ Bin(N – n, p), the predictive
distribution (A7) corresponds to the predictive distribution G(·|N, n, Y[1·]) with density (9), and the predictive distribution (A7)
corresponds to a binomial Bin(N – n, Y[1·]

n ) distribution.

A.3 Posterior Predictive Distributions

A Bayesian analogue to the decision rule (4) would be to replace the confidence distribution HN(p | Y·) by a posterior distribution.
When using a beta prior p ∼ Beta(a, b) with parameters a > 0 and b > 0, the posterior distribution (when having observed Y·
responders out of N subjects) is again a beta distribution with parameters Y· + a and N – Y· + b. We use Bβ(· | Y· + a, N – Y· + b)
for the corresponding cumulative distribution function, which is continuous.

The Bayesian posterior predictive distribution for the number of responders Y[2·] among the second N – n observations, after
having observed Y[1·] responders among the first n subjects, is a beta-binomial distribution BetaBin(N – n, Y[1·] + a, n – Y[1·] + b)
distribution with parameters N – n, Y[1·] + a, and n – Y[1·] + b. We use Bβb(· | N – n, Y[1·] + a, n – Y[1·] + b) to denote the
corresponding cumulative distribution function, which has discrete support equal to the integers between 0 and N – n, and
bβb(· | N – n, Y[1·] + a, n – Y[1·] + b) to denote the corresponding density function.

With this notation, the Bayesian decision rule for the final analysis can be expressed as

Bβ(p0 | Y· + a, N – Y· + b) < α and Bβ(p1 | Y· + a, N – Y· + b) < β . (A8)

Let’s use
BN := {0 ≤ y ≤ N : Bβ(p0 | y + a, N – y + b) < α and Bβ(p1 | y + a, N – y + b) < β} (A9)
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to denote the subset of {0, 1, . . . , N} that fulfills condition (A8). This subset equals BN = {bN , bN + 1, . . . , N}, where bN is the
smallest integer such that

Bβ(p0 | bN + a, N – bN + b) < α and Bβ(p1 | bN + a, N – bN + b) < β (A10)

holds. Such an integer bN exists because the relationship

Bβ(p | y + a, N – y + b) = Bβ(p | y + 1 + a, N – y – 1 + b) +
py+a(1 – p)N–y–1+b

(y + a)B(y + a, N – y + b)
> Bβ(p | y + 1 + a, N – y – 1 + b)

applies for all p38, 8.17.19.
With this, the operating characteristic of the Bayesian decision rule for the final analysis can be expressed as

p –→
N∑

y=bN

b(y | N, p) = 1 – B(bN – 1 | N, p) , (A11)

where b(y | N, p) is the density of a binomial distribution, and B(y | N, p) the corresponding cumulative distribution function.
The Bayesian interim decision rule can be expressed as

1 – Bβb(bN – Y[1·] – 1 | N – n, Y[1·] + a, n – Y[1·] + b) > δ , (A12)

and the corresponding operating characteristic is

p –→
n∑

y=0

b(y | n, p) 1{y : 1 – Bβb(bN – y – 1 | N – n, y + a, n – y + b) > δ} . (A13)

In Figure A1 the operating characteristics of the Bayesian approach are compared with the frequentist approach. The solid
green line is the probability of success at the final analysis (N = 62) for the frequentist procedure. The dotted yellow line is
the operating characteristic of the corresponding Bayesian procedure. Similarly, the solid blue line describes the probability
of continuing after the interim (n = 25) under the frequentist approach, and the dashed light blue line is the corresponding
probability for the Bayesian procedure. The frequentist probabilities do not depend on a and b, which are the parameters of the
prior distribution.

One can see in Figure A1 that for a = 4 and b = 4, there is no difference between the approaches. In fact, the curves are
identical because the critical values are equal (bN = cN) in this particular example, and this is actually true for all parameters
0 < a = b ≤ 4.3, which include the well-known uninformative priors of Bayes (a = b = 1), Jeffrey (a = b = 0.5) and Haldane
(a = b → 0). Moreover, based on a limited computational study (not reported here) we conjecture that the curves are always
identical for any choices of a and b where a

a+b = p1, in this example, as it seems that the second condition (involving p1 and β) is
the dominating one when evaluating (A10). For other small values of a and b there are slight differences, sometimes favoring the
Bayesian approach, sometimes the frequentist approach. These differences vanish when the parameters approach zero, i.e. when
the prior becomes weaker, and are more pronounced when the parameters increase, i.e. when the prior becomes stronger.

A.4 Equivalencpredicte of (10) and (11)

From (6) we conclude that
HN(p0|y + Y[1·]) < α and HN(p1 | y + Y[1·]) < β (A14)

is equivalent to
y ≥ cN – Y[1·] (A15)

for all integers 1 ≤ y ≤ N – n. Since ProbN,n,Y[1·] {cN – Y[1·], . . . , N – n} equals 1 – ProbN,n,Y[1·] {1, . . . , cN – Y[1·] – 1} we conclude
that (11) is equivalent to (10).

https://dlmf.nist.gov/8.17
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F I G U R E A1 Operating characteristics for frequentist (solid lines) and Bayesian (dashed or dotted lines) approach, for
interim (blue and light blue lines) and final analyses (green and yellow lines), with p0 = 0.3, p1 = 0.4, α = 0.05, β = δ = 0.5,
N = 62, n = 25, and different values of a and b.
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A.5 Proof of (18) and (20)

Given the equivalence of (10) and (11), one can continue after an interim analysis with y responders out of n subjects if
1 – G(cN – y – 1|N, n, y) > δ, which immediately implies (18). In order to continue after an interim analysis with y responders out
of n subjects and to be successful at the end, one needs to observe z responders out of the following N – n subjects such that
y + z ≥ cN , see (6). The corresponding probability is (1 – B(cN – y – 1 | N – n, p)), which proves (20).

A.6 Stochastic Curtailment

Stochastic curtailment was introduced by Lan et al.36 as a conservative rule to stop early for success. Applying these ideas to our
situation means to replace the predictive distribution in decision rule (10) by a conditional probability. The resulting decision
rule would be

Probp0 {HN(p0|Y[1·] + Y[2·]) < α and HN(p1 | Y[1·] + Y[2·]) < β | Y[1·]} > δ , (A16)

which is equivalent to

ProbN–n,p0 {1 ≤ y ≤ N – n : HN(p0|y + Y[1·]) < α and HN(p1 | y + Y[1·]) < β} > δ . (A17)

The probability ProbN–n,p0 in (A17) is the binomial Bin(N – n, p0) probability.
Note particularly the choice of parameter p0. The probability in (A16) and (A17) is evaluated under the assumption that the

drug is non-efficacious, which is a very conservative assumption when defining a decision rule to continue the trial because the
results look promising.

As in Section A.4 one can now show that the condition in (A17) can be evaluated as 1 – B(cN – Y[1·] – 1 | N – n, p̂n(Y[1·]), which
proves (19).
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