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Abstract
Confidence distributions are a frequentist alternative to the Bayesian posterior distribution. These confidence
distributions have received more attention in the recent past because of their simplicity. In rare diseases,
oncology, or in pediatric drug development, single-arm trials or platform trials consisting of a series of
single-arm trials are increasingly being used, both to establish proof-of-concept and to provide pivotal
evidence for a marketing application. Often, these single-arm trials are designed as two-stage designs, or
they include sequential or continuous monitoring approaches. They are analyzed using standard frequentist,
Bayesian, or other methods. In this paper, we describe how to define analysis strategies based on confidence
distributions for such single-arm trials or for platform trials that consist of a series of single arm trials. We
focus on binary endpoints and show how to define the corresponding decision rules for final and interim
analyses, and how to derive their operating characteristics exactly, e.g., without simulation. Our approach
uses predictive probabilities rather than conditional probabilities (as with stochastic curtailment) to define
the interim decision rules. It can be applied to platform, basket, and umbrella trials that consist of a series of
single arm trials, but also to stand-alone single arm trials.
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1 INTRODUCTION

Master protocol trials such as umbrella, platform and basket trials, are becoming more popular for rare diseases1,2,3 because they
offer an increase in efficiency that may outweigh the methodological, logistical, operational, and regulatory issues associated
with them4,5. Meyer et al.3 conducted a comprehensive literature review and found that 29 out of the 50 master protocols
included in their review (covering the period from 1999 to 2019) were designed as a collection of single-arm studies, and that 26
out of these 50 trials were using a binary endpoint.

In rare diseases or in pediatric drug development, single-arm trials are increasingly being used6,7,8 as pivotal evidence in
an application for marketing authorization. The European Medicines Agency (EMA) published a reflection paper9 on using
single-arm trials as pivotal evidence for this purpose, stating that “the considerations in this reflection paper extend to trials that
contain more than one arm, but do not randomise to a control for a formal comparison”. They continue to say that “an example
for such a trial would be a particular kind of platform trial where several investigational treatment arms are included but which
are not formally compared, and which can be viewed as a series of single-arm trials”.

Often, these single-arm trials are designed as two-stage designs or include sequential or continuous monitoring10,11 to allow
early stopping for futility and/or efficacy. Frequentist approaches to analyze such trials include standard hypothesis tests for
binary endpoints, stochastic curtailment approaches11, and others. Bayesian approaches12 use the posterior distribution to define
a dual success criterion that combines evidence of superiority against a historical control rate, and evidence that the response
rate exceeds a certain threshold13,14,15.
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The EU Patient-Centric Clinical Trial Platform (EU-PEARL) project16,17, which was a partnership between the public and
private sectors under the umbrella of the Innovative Medicines Initiative (IMI) of the EU Commission, proposed a framework for
the future conduct of platform trials and developed master protocols in four diseases, including neurofibromatosis. The two
master protocols that have been developed for neurofibromatosis type 1 (NF1) and type 2 (NF2)18 as part of the EU-PEARL
project can be regarded as examples for platform-basket trial which are a series of single-arm trials, with a binary endpoint, with
the option to use on the the single-arm trials for pivotal evidence, and with the option to include an interim analysis.

Confidence distributions are a frequentist alternative to Bayesian posterior distributions. Although confidence distributions are
a relatively old concept and were already mentioned by Cox in 195819, they are not well known and have not been used much
until recently. Xie and Singh20 provided a precise definition of confidence distributions along with an overview of potential
applications. We also refer readers to a paper by Marschner21 for a more recent review, and to the book by Schweder and Hjort22

for a more comprehensive and technical introduction.
Confidence distributions summarize the knowledge and uncertainty about an unknown model parameter in the form of a

probability distribution on the parameter space, just like a posterior distribution, without assuming that the parameter of interest
is a random variable. They are often simple to derive either from pivots or from a bootstrap distribution, are closely linked to
p-value functions, and one can obtain confidence intervals for any level from them20. Confidence distributions do not require a
prior distribution, yet they allow one to define similar success criteria as with posterior distributions.

Our work was motivated by the two platform-basket trials in neurofibramatosis (NF) that have been developed as part of the
EU-PEARL project16,17. These two platform trials can be seen as a collection of single-arm proof-of-concept or single-arm
phase I or phase II studies18, and their primary endpoint is binary. For each of these single-arm studies, an interim analysis may
be included depending on the sponsor’s request. Unlike the two review papers by Xie and Singh20 and Marschner21 we present
an application of confidence distributions to a specific situation.

In this paper, we provide statistical analysis strategies based on confidence distributions for single-arm proof-of-concept (PoC)
or single-arm phase I or phase II studies, and for master protocol trials that are a series of single-arm studies. We focus on a
binary endpoint here, but extensions of the concept to continuous or other endpoints are possible. We also focus on interim
analyses rules which allow for early stopping because of projected lack of success at the final analysis, but similar rules for
declaring futility or success at interim analyses based on confidence distributions could be defined as well. Obviously, these
would require adjustment of the type I error in case of early stopping for success.

This paper is organized as follows. We provide more details about the motivating example of platform-basket trials in NF
in Section 2, and introduce the corresponding decision rules and success criteria in Section 3. We explain how to derive the
operating characteristics for these decision rules without simulation in Section 4. Section 5 concludes the main part of our paper.
All technical statistical derivations are deferred to the supplementary material (Section A). The software for calculations and
visualizations used in this paper can be found at GitHub23, which includes plain R code, link to a shiny app, and an MS Excel
spreadsheet.

2 MOTIVATING EXAMPLE: TWO PLATFORM-BASKET TRIALS FOR NEUROFIBRO-
MATOSIS

Neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2) related Schwannomatosis, and non-NF2 related Schwanno-
matosis (SWN) are rare genetic disorders with an increased risk of developing nerve sheath tumors. These tumors are mostly
benign, but can transform into malignant tumors. There are many manifestations of these three subtypes of neurofibromatosis,
which vary considerably, and require different ways to measure response24,25,26. Inclusion and exclusion criteria differ between
the manifestations, and possibly also between interventions (such as age restrictions, concomitant medications that should be
excluded, etc.).

In such rare diseases with high variability between manifestations and different subtypes, it can be time consuming and difficult
to perform separate clinical trials27, and master protocol trials may be an alternative. As part of the EU-PEARL partnership16,
two platform-basket trials were designed, one covering four manifestations of NF1, and the other covering five manifestations of
NF2 and SWN. Both the NF1 and the NF2/SWN platform trials are designed to include multiple interventions, and these may be
added at different points in time by different sponsors. Some interventions may be tested against several manifestations of NF1
or NF2/SWN, and others may only be tested against one manifestation. Comparisons between interventions are not planned.
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The primary endpoint for all manifestations is always a binary endpoint (response/non-response). However, the definition
of this binary endpoint differs between manifestations (but not across interventions when tested in the same manifestation).
For many of the manifestations, the endpoint is defined based on tumor growth data obtained from MRI, applying criteria as
REiNS28,29, RAPNO30, or criteria similar to the RECIST 1.1 criteria31. In some manifestations, improvement of pain or visual
acuity is part of the responder definition. For some manifestations, the endpoint is observed as early as after 3 months, for others
only after 12 months.

Therefore, the platform-basket trial may be regarded as a collection of single-arm studies, with each combination of an
intervention and a manifestation being a separate subtrial. Each subtrial is analyzed separately. The primary objective of each
subtrial is to demonstrate proof-of-concept (PoC), e.g., that the intervention shows activity against the manifestation in which it
is being tested. There is also an option to run such a subtrial with a more confirmative objective in mind. Since this would usually
require a larger sample size, the EU-PEARL platform-basket trial design also allows for interim analyses to stop a subtrial early
for projected lack of success, to avoid treating patients with a potentially futile intervention.

For a more detailed description and justification of the platform-basket trial design, we refer to the paper by Dhaenens et al.18.
The rationale for selecting the manifestations for the NF1 trial has been described in Dhaenens et al.26. The two master protocols
are published online16, together with a detailed technical report on the analysis and the corresponding operating characteristics32.

3 DECISION RULES FOR A SINGLE-ARM STUDY BASED ON CONFIDENCE DISTRI-
BUTIONS

In this section, we introduce the decision rules for a single-arm proof-of-concept study and for a single-arm study that is intended
to provide pivotal evidence for registration (registrational objective). These decision rules correspond to the dual-criterion design
introduced by others14,15 for proof-of-concept and phase II studies. They combine statistical significance with clinical relevance,
and “have (been) applied in many phase II designs”15. We refer to Roychoudhury et al. 202015 for a more extensive introduction
and discussion of these designs.

The primary endpoint is assumed to be a binary endpoint, as discussed in Section 2. Different to Roychoudhury et al. 202015,
the decision rules in this paper will be based on a confidence distribution for the unknown response rate, rather than on a
Bayesian posterior distribution.

3.1 Decision Rules for the Final Analysis

In the case of a single-arm subtrial with a binary endpoint, a confidence distribution is a data-driven distribution on the interval
extending from 0% response (ineffective intervention) to 100% response. It is often described by its confidence density (see
Figure 1), which is centered around the observed response rate. The width of the confidence density is a function of the observed
variance and the sample size. We use an asymptotic approximation based on an asymptotic pivot20 here.

In order to define these decision rules precisely, we need some notation. Let Y = (Y1, . . . , YN)T be a column vector of N
independent and identically distributed binary random variables, where Yν = 1 (Yν = 0) indicates response (non-response)
with regard to the primary endpoint for the ν -th subject within a subtrial. The Yν follow Bernoulli distributions with response
probability p, and their sum Y· =

∑N
ν=1 Yν follows a binomial Bin(N, p) distribution with parameters N and p.

A confidence distribution for the unknown model parameter p ∈ [0, 1] is a data-driven distribution on the corresponding
parameter space [0, 1]. To be precise, a function H = H(p | Y) of the data and the parameter p is a confidence distribution if the
following two conditions apply:

1. H(· | Y) is a continuous distribution function on [0, 1] for each possible outcome Y.
2. The random variable H(p | Y) is uniformly distributed on [0, 1] if p is the true underlying response rate.

If either one or both of these conditions holds asymptotically, then one speaks of an asymptotic confidence distribution.
The function H(· | Y) is the distribution function of the confidence distribution. We often use the corresponding density (called

confidence density) to represent the confidence distribution, as shown in Figure 1.
A confidence distribution summarizes the knowledge on the unknown parameter obtained from the data. Confidence intervals,

estimators, or p-values for hypothesis tests can be derived from such a confidence distribution20.
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In the model considered here, we can derive an asymptotic confidence distribution

HN(p | Y·) := Φ

(
p – p̂N(Y·)
σ̂N(Y·)

)
(1)

from the asymptotic pivot p̂N (Y·)–p
σ̂N (Y·)

. This is a common approach to constructing confidence distributions20. The function Φ in (1)
refers to the distribution function of a standard normal distribution, so that HN(· | Y·) corresponds to a normal distribution with
mean equal to the observed response rate

p̂N = p̂N(Y·) = Y · =
1
N

N∑
ν=1

Yν , (2)

and with variance

σ̂2
N = σ̂2

N(Y·) = max

{
Y ·

(
1 – Y ·

)
N

,
1

4N2

(
1 – 1

4N2

)
N

}
. (3)

Note that the variance defined in (3) is always positive, even when Y · = 0 or Y · = 1. It equals the usual variance estimator for p̂N

for all other possible values of Y ·.
HN(p | Y·) as defined in (1) is an asymptotic confidence distribution, because both of the conditions needed to define a

confidence distribution apply asymptotically. For example, the central limit theorem implies that p̂N (Y·)–p
σ̂N (Y·)

is asymptotically
distributed as a standard normal distribution if p is the true parameter. Therefore, HN(p | Y·) is asymptotically distributed as a
uniform distribution on [0, 1] if p is the true parameter, so that the second condition applies asymptotically.

With this, we can now define the decision rule for the final analysis, which corresponds to the dual-criterion design15

For each subtrial, a desired response rate p1, and an ineffective response rate response rate p0 need to be set, with p0 ≤ p1.
Proof-of-concept or success is declared during the final analysis if

HN(p0 | Y·) < α and HN(p1 | Y·) < β (4)

is true for some pre-specified α and β satisfying 0 < α < 0.5 ≤ 1 – β < 1. Similarly, one can define a decision rule to declare
futility at the final analysis if

HN(p0 | Y·) > γ (5)

is true for some pre-specified γ satisfying 0.5 ≤ γ < 1.
The first condition in (4) corresponds to a standard hypothesis test for H0 : p ≤ p0 versus H1 : p > p0 with significance

level equal to α. It is fulfilled if and only if H0 is rejected using the asymptotic test statistic p̂N (Y·)–p0
σ̂N (Y·)

. The second condition in (4)
corresponds to a condition on clinical relevance via the observed response rate. For example, with β = 0.5, the second condition
is equivalent to the observed response rate p̂N(Y·) being strictly greater than the desired response rate p1.

These decision rules are illustrated graphically in Figure 1. The first condition in (4) corresponds to the red area under the
confidence density being smaller than α, and the second condition in (4) corresponds to the blue area being larger than 1 – β.
The condition in (5) corresponds to the red area under the confidence density being larger than γ.

The red area corresponds to the probability that the confidence distribution assigns to the range of ineffective response rates
(ranging from 0 to p0 = 15% in the example presented in Figure 1), and the blue area under the confidence density curve
corresponds to the probability that the confidence distribution assigns to the range of response rates above the desired response
rate (ranging from p1 = 20% to 100% in Figure 1). In the two platform-basket trials described in Section 2, the choice of these
parameters may vary across the different subtrials.

Reasonable choices for α, β and γ could be α = 0.2, β = 0.5, and γ = 0.5 in a subtrial with the objective to demonstrate
proof-of-concept. For a subtrial with a registrational objective, smaller values such as α = 0.05 or α = 0.025 may be a better
choice, because the decision rule (4) corresponds to a hypothesis test at significance level α for H0 : p ≤ p0 versus H1 : p > p0

with the additional condition that the observed response rate needs to exceed p1.
In a recent paper33 on the treatment of BRAF-aberrant or neurofibromatosis type 1-associated low-grade glioma, response

rates below 0.1 were regarded as ineffective, and response rates above 0.3 were regarded as effective. The paper reported the
outcome of a cohort of N = 25 patients with NF1-related low-grade glioma, with Y· = 10 of these patients being responders.
The decision rule (4) declares proof-of-concept or success when applied to these data, with p0 = 0.1, p1 = 0.3, α = 0.1 (the
significance level that Fangusaro et al.33 used in their analysis), and β = 0.5.
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F I G U R E 1 Graphical representation of the decision rule.
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We prove in Section A.1 of the supplementary material that the decision rule (4) is equivalent to Y· ≥ cN , with cN being
defined to be the smallest integer such that

p̂N(y) > max
{

p0 – σ̂N(y)Φ–1(α) , p1 – σ̂N(y)Φ–1(β)
}

(6)

is true for all y ≥ cN . Note that cN = cN(p0, p1,α,β) is a function of the parameters p0, p1, α, and β.
Similarly, the decision rule (5) is equivalent to Y· ≤ dN , with dN = dN(p0, p1, γ) being defined as the largest integer such that

p̂N(y) < p0 – σ̂N(y)Φ–1(γ) for all y ≤ dN . (7)

This is also proven in Section A.1.

3.2 Decision Rules for Interim Analyses

Many different types of interim decision rules can be defined. These different options include stopping rules to declare success
or failure at the interim analysis as well as stopping rules to decide whether to continue the enrollment to the subtrial, or whether
to stop it (without declaring success or failure at the interim). Here we describe the latter case, which is part of the proposed
analysis for the EU-PEARL master protocol32.

If the primary objective of the single-arm subtrial is to declare proof-of-concept at the final analysis, the sample size may be
very small, and an interim analysis may not make sense, whatever the criterion. In such a case we suggest monitoring the number
of responders, and to declare proof-of-concept as soon as the observed number of responders equals the number of responders
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cN (as defined in (6)) that is needed to declare proof-of-concept at the final analysis. Whether or not to stop the subtrial at this
point in time depends upon the context: if there are other subtrials with other promising interventions ongoing as part of the
master protocol trial, early stopping of a successful subtrial may be useful to save resources and enable learning about the other
interventions. However, if no other subtrial is ongoing for the same manifestation, early stopping of a successful intervention
may not be useful and prevent patients from having an active treatment option.

If the primary objective of the single-arm subtrial is to use the data for regulatory purposes, for example to get the marketing
authorization for an additional indication in a rare disease for the intervention of interest, the overall sample size N of the subtrial
will still be larger. In this case, we propose to include an interim analysis after n < N subjects, and to stop the subtrial if the
likelihood to be successful at the final analysis, given the data at the interim analysis, is too small. This approach would prevent
the sponsor from running a larger trial in a rare disease with no or little chance to be successful, and it would also allow to
allocate future patients to more promising interventions. Since there is no intention to declare success early and to stop the trial
after the interim analysis, there is no need to adjust the type I error here.

In order to precisely define such a decision rule, and to quantify the “likelihood to be successful at the final analysis given
the data at the interim analysis”, we need more notation. Let Y[1·] =

∑n
ν=1 Yν be the sum of the first n observations, which is

distributed according to a binomial distribution Bin(n, p) with parameters n and p, and Y[2·] =
∑N

ν=n+1 Yν be the sum of the
second N – n observations, distributed according to a binomial distribution Bin(N – n, p) with parameters N – n and p. Both of
these distributions depend on the same unknown parameter p. At the interim analysis, the unknown parameter p can be estimated
by p̂n(Y[1·]) = Y[1·]

n . We also use p̂n(y) = y
n for 0 ≤ y ≤ n, b(y | n, p) :=

(n
y

)
py(1 – p)n–y to denote the binomial probabilities, and

B(· | n, p) to denote the cumulative distribution function of a binomial distribution with parameters p and n.
With this, we can define a distribution

PredN,n,Y[1·] :=
n∑

y=0

b(y | n, p̂n(Y[1·])Bin(N – n, p̂n(y)) , (8)

which is a mixture of binomial distributions with parameters N – n and p̂n(y), and with weights b(y | n, p̂n(Y[1·]) from a
Bin(n, p̂n(Y[1·]) distribution. The corresponding density function is

g(z | N, n, Y[1·]) =
n∑

y=0

b(y | n, p̂(Y[1·]) b(z | N – n, p̂(y)) (9)

for z ∈ {0, . . . , N – n}, and we will use G(· | N, n, Y[1·]) to denote the corresponding cumulative distribution function. This
distribution will be used to predict the number of responders Y[2·] among the second N – n observations.

Given that Y[2·] is a binomial Bin(N – n, p) random variable, we could have used the binomial Bin(N – n, p̂n(Y[1·]) with
estimated parameter to predict the number of responders Y[2·]. In Section A.2 of the supplementary material, we discuss that
the mixture distribution (8) is a better choice for this purpose, because it usually provides a better approximation to the true
Bin(N – n, p) as compared to Bin(N – n, p̂n(Y[1·]).

We now use the mixture distribution (8) to quantify the likelihood to be successful during the final analysis given the data at
the interim analysis. The subtrial will continue after the interim analysis if this likelihood exceeds a predefined threshold δ, e.g., if

ProbN,n,Y[1·] {1 ≤ y ≤ N – n : HN(p0 | y + Y[1·]) < α and HN(p1 | y + Y[1·]) < β} > δ , (10)

for some 0 < δ < 1, and it will be stopped if the condition above is not met. This decision rule can be expressed equivalently as

1 – G(cN – Y[1·] – 1 | N, n, Y[1·]) > δ , (11)

see Section A.4 of the supplementary material. Since stopping does not occur to declare success early, no multiplicity adjustment
of the significance level is needed.

Our approach to define interim decision criteria is conceptually similar to stochastic curtailment34. In stochastic curtailment, a
conditional distribution with pre-specified parameter p0 is used to evaluate the likelihood to meet a criterion at the end of the
trial. In the situation with a binary endpoint, this conditional distribution is a binomial distribution. In Section 4.2 we show that
stochastic curtailment with a fixed parameter can be less efficient than using the predictive distribution. Even when using the
conditional distribution with an estimated parameter value, a mixture distribution like the predictive distribution G(· | N, n, Y[1·])
is usually a better choice to evaluate the probability in (10) or (11), as shown in Section A.2 of the supplementary material.
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Similar approaches have been used and discussed by various authors35,36,37,38. Unlike our approach, these authors use the
Bayesian posterior predictive distribution instead of a frequentist predictive distribution. These approaches lead to similar results
as ours when using a non-informative prior, as discussed in Section A.3.

We would like to point out that stopping the trial at the interim analysis because condition (10) (or equivalently (11)) is not
met does not mean to declare futility at the interim analysis. If one wanted to stop early to declare futility, one would need to use
a condition like (5) at the interim analysis. Using conditions (10) or (11) simply means to stop early because the data available
render it unlikely to declare success at the end. The corresponding decision to stop or to continue depends upon the quality of
the intervention (i.e., the true response rate) and on the decision criteria (i.e., the p0, p1, α, and β). For example, consider two
subtrials using the same intervention and the same sample size for final and interim analysis. Assume further that both subtrials
use the same decision criteria, except that the parameter p1 for the first subtrial is smaller than the corresponding parameter for
the second subtrial. In this case, the predictive probability to be successful at the end will tend to be larger in the first subtrial.
One could even find more extreme examples, where the intervention in the second subtrial has a better true response probability
as compared to the intervention in the first subtrial, but where the predictive probability to declare success at the end is larger for
the first subtrial. This could happen if there is a much stricter success criterion required for the second subtrial.

4 OPERATING CHARACTERISTICS FOR THE DECISION RULES

We now examine the operating characteristics of the decision rules defined in Section 3 for both the final and the interim analyses.
We do this for sample sizes that correspond to a single-arm proof-of-concept study or a single-arm phase I or phase II study, and
we show how sample size calculations can be done. The operating characteristics are all calculated exactly, without simulation.
The results in this Section immediately extend to master-protocol studies that are a series of single-arm trials.

4.1 Operating Characteristics for the Final Analysis

In this section we present the operating characteristics for the decision rules defined in (4) and (5) assuming that there is no
interim analysis that could lead to stopping the subtrial early. The operating characteristics represent the probability that the
conditions in (4) and (5) will be met as a function of the true response rate of the intervention.

Figure 2 displays the operating characteristics for these decision rules for a sample size of N = 25, an ineffective response rate
p0 = 0.1, a desired response rate p1 = 0.3, α = 0.05, and β = γ = 0.5.

The solid green curve corresponds to the decision rule (4) and shows the probability of declaring proof-of-concept after
N = 25 subjects have completed the trial as a function of the unknown response rate of the intervention. This function equals

p –→
N∑

y=cN

b(y | N, p) = 1 – B(cN – 1 | N, p) , (12)

with cN defined as in (6), see Section A.1 of the supplementary material.
The blue curve corresponds to the decision rule (5) and shows the probability of declaring futility after N = 25 subjects as a

function of the response rate. This function equals

p –→
dN∑
y=0

b(y | N, p) = B(dN | N, p) , (13)

with dN defined as in (11), see Section A.1 of the supplementary material. As one would expect, this probability is large for
ineffective interventions, and very small for desired ones.

The yellow curve shows the probability of no decision (i.e., one can neither declare proof-of-concept nor futility) as a function
of the response rate. It is equal to one minus the other two probabilities. The distinction between declaring futility and no
decision is that in the former case, there is sufficient evidence that the intervention does not work, whereas in the latter case there
is not enough information to declare either futility or success.

The dotted green curve ("probability to reject H0") is the power function of a hypothesis test for H0 : p0 ≤ α versus
H1 : p0 > α, and serves as a reference here. The hypothesis test corresponds to the first of the two conditions in decision rule (4).



8 HEIMANN ET AL.

F I G U R E 2 Operating characteristics for p0 = 0.1, p1 = 0.3, N = 25, α = 0.05, and β = γ = 0.5.
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Therefore, this curve is always larger than or equal to the solid green curve, and their difference quantifies the loss in power
caused by the second condition in (4).

We show in Figure A1 that the operating characteristics of a Bayesian decision rule that replaces the confidence distribution
HN in (4) by a corresponding Bayesian posterior distribution is identical or very similar to that in Figure 2, when using a
non-informative prior. Details are described in Section A.3 of the supplementary material.

In the scenario displayed in Figure 2, the probability of declaring proof-of-concept is close to zero for an ineffective
intervention with underlying response rate smaller than p0 = 0.1 . However, for efficacious interventions with response rates
larger than p1 = 0.3, the probability to declare proof-of-concept is larger than 50%, and larger than 80% if the intervention has a
response rate equal to or greater than 0.4. Note that the observed response rates in the trial were above 0.4 for both strata that
were reported by Fangusaro et al.33

By construction of the decision rule, the probability of declaring proof-of-concept cannot exceed 1 – β, if the response rate
of the intervention was exactly at the boundary of the efficacious space. Similarly, the probability of declaring futility if the
response rate is exactly at the boundary of the ineffective space cannot exceed γ. In the example in Figure 2, the corresponding
probabilities almost achieve these limits.

Note that the probability of no decision is quite high for response rates near the boundary. For example, the probability of no
decision exceeds 30% for an intervention with response rate p = 0.35. This can be improved by increasing the sample size. In the
upper right panel of Figure 3 we show the operating characteristics of the decision rule with N = 100 (while all other parameters
are as in Figure 2). Now the curves are much steeper, and the probability of no decision has decreased to approximately 17% for
an intervention with response rate p = 0.35.

The two left panels in Figure 3 show that the probability of declaring proof-of-concept decreases considerably if one changes
α or p0. In both cases, the probability of declaring proof-of-concept based on N = 25 subjects has decreased from above 80% to
below 50% even if the intervention has a response rate equal to p = 0.4, if we decrease α (from 0.05 to 0.001) or increase p0

(from 0.1 to 0.25), keeping all other parameters the same as in Figure 2. If such scenarios were of interest, an increase in sample
size would be needed. The bottom right panel shows that the probability of declaring proof-of-concept is again well above 80%,
if p0 = 0.25, when the sample size is increased to N = 100.

Note that the dotted and the solid green curve coincide in three of the four panels of Figure 3. This is because the second
condition in (4) has no impact on the decision in these scenarios, and hence does not cause a power loss. This is the case for very
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F I G U R E 3 Operating characteristics for the same scenario as Figure 2 (p0 = 0.1, p1 = 0.3, N = 25, α = 0.05, and
β = γ = 0.5) with small variations indicated in the respective panels in red.
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small values of α or when the difference p1 – p0 between the desired and the ineffective response rates is very small. On the
other hand, the power loss is considerable for large sample sizes, as shown in the upper right panel of this figure. The second
condition prevents one from overpowering a study and from having a significant result when the intervention’s response rate is
actually small. The second condition ensures that one can only declare success when a clinical relevant effect (an effect larger
than p1) is observed in the study. The probability to declare success is approximately 0.5 if the true response rate is equal to p1,
regardless of sample size.

Figure 4 displays the probability of declaring proof-of-concept (blue curve).

N –→
N∑

y=cN

b(y | N, p∗) = 1 – B(cN – 1 | N, p∗) (14)

as a function of sample size N for a selected parameter value p∗ > p1, see Section A.1 of the supplementary material. Linear
interpolation is applied between the discrete points (N, 1 – B(cN – 1 | N, p∗)) for better readability. This function is not
monotonically increasing, due to the discrete nature of the binary response endpoint. This type of figure or function can be used
to find a sample size N∗ which meets the condition

∑N∗
y=cN∗

b(y | N∗, p∗) ≥ ϵ.
In Figure 4, we show a sample size calculation for a phase II study with a hypothetical new intervention. Given that Fangusaro

et al.33 reported a response rate larger than 0.4 for selumetinib, we use a stricter definition for an efficacious intervention, and
we selected p1 = 0.4 (instead of 0.3) as the desired response rate. Similarly, we selected p0 = 0.3 (instead of 0.1) as the upper
limit of the range of ineffective response rates. The parameters α = 0.05 and β = γ = 0.5 were as before. The probability of
declaring proof-of-concept at the final analysis is calculated in Figure 4 assuming that the true response rate of the hypothetical
new intervention is p∗ = 0.45.

With this choice we want to have a chance of ϵ = 80% or more to declare proof of concept at the final analysis. One could
consider N∗, the smallest sample size that achieves this, or N∗, the smallest sample size that achieves this for all N ≥ N∗. From
Figure 4 one can see that N∗ = 62 and N∗ = 86.

The power as a function of sample size is non-monotonic in sample size. This phenomenon has already been described
elsewhere39. Because of this non-monotonicity, some care should be taken when selecting the appropriate sample size for a
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F I G U R E 4 Probability of success as a function of sample size for p0 = 0.3, p1 = 0.4, p∗ = 0.45, α = 0.05, β = 0.5, and ϵ = 0.8.
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subtrial. One should not blindly select N∗ or N∗, but one needs to carefully assess whether there are better choices that may only
require a small increase or even allow for a small decrease in sample size. However, one also needs to keep in mind that missing
values may occur, and that the sample size at the end of the subtrial may not be the same as what was planned.

4.2 Operating Characteristics in the Case of Interim Analyses

We start with the operating characteristics for a phase I or phase II study with an interim analysis to stop early because of
projected lack of success after n < N patients. The decision decision rule that has been defined in (10) is used.

In Figure 5 we present the operating characteristics of this interim decision rule for the scenario discussed at the end of the
previous section. The total sample size for the study is N = 62, and the interim sample size is n = 25. The ineffective response
rate is p0 = 0.3, and the desired response rate is p1 = 0.4. The parameters α = 0.05, β = 0.5, and δ = 0.5 were used to obtain
these operating characteristics. These numbers were selected as a reflection of the data reported by Fangusaro et al.33, see also
the second last paragraph of the previous section.

The blue curve shows the probability of continuing after n = 25 subjects have been observed as a function of the true
underlying response rate of the investigational intervention. It can be calculated according to

p –→
n∑

y=0

b(y | n, p)1{y | 1 – G(cN – y – 1 | N, n, y) > δ} (15)

because of the equivalence of (10) and (11), see Section A.4 of the supplementary material. The indicator function 1{A} equals
1 if the condition A is met, and 0 otherwise.

The dotted yellow curve in Figure 5 shows the probability of continuing when using stochastic curtailment to define analogous
rules to (10) or (11). We show in Section A.6 of the supplementary material how to define this curve, and we will demonstrate
that the yellow curve equals

p –→
n∑

y=0

b(y | n, p)1{y | 1 – B(cN – y – 1 | N – n, p0) > δ} . (16)
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F I G U R E 5 Operating characteristics for p0 = 0.3, p1 = 0.4, N = 62, n = 25, α = 0.05, β = 0.5, and δ = 0.5.
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The red curve shows the probability of declaring success during the final analysis with N = 62 subjects in the subtrial when
there was an interim analysis after n = 25 subjects. It can be calculated according to

p –→
n∑

y=0

b(y | n, p)(1 – B(cN – y – 1 | N – n, p))1{y | 1 – G(cN – y – 1 | N, n, y) > δ} , (17)

see Section A.5 of the supplementary material. The dotted green curve shows the probability of declaring success during the
final analysis based on N = 62 subjects, when no interim analysis was done. This curve serves as a reference to quantify the loss
of power imposed by an interim analysis.

In the scenario presented in Figure 5, the loss of power introduced by the interim analysis (e.g., the difference between the
dotted green and the red curve) is moderate. One can also see that the approach based on stochastic curtailment is much more
conservative than the predictive probability approach. This is illustrated by the difference between the blue and the dotted yellow
curve.

In Figure 5 we have used δ = 0.5. This means that one continues the subtrial after n = 25 patients, if the chance of success at
the end is predicted to be larger than 50%. At a first glance, this seems to be a very low threshold to overcome, and one may
want to increase δ. However, this will lead to a considerable loss in power during the final analysis, as demonstrated in the
bottom left panel of Figure 6 where δ = 0.8 and all other parameters are as in Figure 5. Decreasing δ further may also lead to
undesirable results. The top left panel in Figure 6 shows the situation for δ = 0.2. The power loss is now almost gone, but the
probability of continuing after the interim analysis is very high, even for low response rates (e.g., for the ineffective response
rate p0 the probability to continue is almost 0.4). This contradicts the purpose of the interim analysis, which should stop further
recruitment if an intervention is ineffective. When selecting δ = 0.5 as in Figure 5, there is a good balance between power loss
and probability of continuing (which is 0.2 for p0).

The right panels of Figure 6 show what happens when the interim sample size is varied. If the interim sample size is reduced to
n = 10, with all other parameters equal to Figure 5, the power loss increases, and the probability of continuing for low response
rates increases. Hence, one should not perform an interim analysis too early. For larger interim sample sizes (as n = 45 in the
bottom right panel), the power loss is almost gone, and the probability of stopping at the interim analysis is very close to the
probability of declaring success at the end of the subtrial. This is not surprising, as more than two thirds of the subjects would
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F I G U R E 6 Operating characteristics for the same scenario as Figure 5 (p0 = 0.3, p1 = 0.4, N = 62, n = 25, α = 0.05,
β = 0.5, and δ = 0.5) with small variations indicated in the respective panels in red.
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have been observed in this scenario. However, for ineffective interventions one wants to stop the subtrial early, and waiting with
an interim until two thirds of the subjects have been observed is counter-intuitive.

One can also see that the stochastic curtailment approach performs better if the sample size for the interim is large, or if δ is
small. However, its performance is terrible for small interim sample sizes and for large values of δ.

5 DISCUSSION

In this paper we presented statistical analysis strategies for single-arm Proof-of-Concept (PoC) or single-arm phase I or phase II
studies with a binary endpoint. These analysis strategies can also be used in master protocols that are a series of single-arm
subtrials. Our work was motivated by the EU-PEARL master protocols, which can be understood as a series of single-arm
subtrials. Similar approaches can be defined for randomized controlled trials with a binary endpoint, or to corresponding master
protocols that include a control.

The analysis strategies presented here are based on confidence distributions, a frequentist analogue of Bayesian posterior
distributions. Using a distribution to summarize the data from a clinical study allows one to define decision criteria which are
used in Bayesian statistics, such as (4) or (5). Such criteria are often being used for proof-of-concept studies in the pharmaceutical
industry15. In such proof-of-concept studies, hypothesis tests that control the type I error at the usual α = 0.05 or α = 0.025
level are usually infeasible due to the large sample sizes required. More generally, “scientific conclusions and business or policy
decisions should not be based only on whether a p-value passes a specific threshold”40. Specifically in proof-of-concept or phase
II studies, decision makers would like to see a certain treatment effect before moving to the next phase, so that a decision rule
like (4) is often convenient14,15.

Often, Bayesian posterior distributions are used to define such decision rules, and these require prior distributions to be
specified. However, there is usually little prior information when designing a proof-of-concept study, so that non-informative
priors would have to be used. Confidence distributions do not require the experimenter to define a prior distribution, and
their operating characteristics are identical or very similar to those of the Bayesian procedures when using non-informative
priors. Moreover, their operating characteristics can often be calculated directly, as in the binary case, so that one does not
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need simulation to obtain them. Therefore, confidence distributions represent a simple alternative to using Bayesian posterior
distributions.

Uncontrolled single-arm studies are used in many rare diseases and in pediatric drug development, either because there is no
adequate control treatment, or because a placebo controlled study is considered not ethical. The master protocol that motivated
this work is such an example. The different manifestations of neurofibromatosis are rare diseases with childhood onset, and
without an established standard of care. A standard development program is not feasible in such situations.

For phase I or phase II studies, interim analyses that allow one to stop a study early for futility or projected lack of success at
the final analysis are a useful tool to prevent patients from being treated with an ineffective intervention, and to save costs. These
questions are particularly important in the context of the platform trials that motivated this work, because patients are rare and
stopping one subtrial early may allow us to test a more promising intervention more quickly.

In this paper we have discussed how to combine decision rules that are based on confidence distributions with predictive
distributions to define interim decision rules. We have shown that these rules have satisfactory performance, and that the power
loss can be small as compared to a situation when no interim analysis is performed. This depends on the settings, and one needs
to carefully tune the parameters of the decision rule when planning such studies. We have also shown that using predictive
distributions is a more efficient approach than using stochastic curtailment. The predictive probability approach can also be used
to define adaptive randomization schemes in platform trials. We will discuss this in more detail in a separate paper.

The type of interim decision we consider here is different from what is usually done in interim analyses, where early stopping
is either for futility or for success (the latter requiring type I error adjustment). Here we suggest to stop for lack of projected
success, which is different from a decision to stop for futility. Stopping for futility means that the interim data indicate that the
intervention does not work, while stopping for lack of projected success means that the study is unlikely to reach its objective
(even though the interim data could indicate that the intervention works very well).

Given that the overall sample size N for a subtrial (even when the objective is to provide pivotal evidence) is likely to be rather
small in a rare disease, even when the objective is to use the data as pivotal evidence, a corresponding interim sample size n
would be even smaller. A more traditional interim analysis based on a decision rule like (4) and designed to declare success early
will not have a lot of power in such a situation.

We have focused on decision rules that were motivated by the platform trials in neurofibromatosis. But our approach can be
expanded into many different types of interim decision rules, including stopping early to declare success, or to declare futility.
Our approach can also be used for sequential decision making.

One can also use the predictive probabilities defined in (10) to define adaptive randomization rules if there is more than one
investigational intervention (i.e., more than one single-arm subtrial) open for enrollment in parallel for a given manifestation. For
example, if there are S subtrials recruiting, with ns subjects being available in subtrial s, one can randomly allocate the subject
n1 + · · · + nS + 1 to one of these subtrials using an allocation probability which is informed by the predictive probabilities πs(ns)
(with πs(ns) being the predictive probability for the s-th subtrial after ns subjects as defined in (10)). These ideas will be further
discussed in a separate paper41.

All the ideas in this paper focused on master protocols that are a series of single-arm subtrials, or on single-arm trials, and on
a binary endpoint. This focus was implied by the EU-PEARL master protocols, which were our starting point. However, the
approach can easily be extended to trials with a control, or to master protocols which include a control when there is a binary
endpoint. Conceptually, the approach can also be applied to other types of endpoints (continuous, time-to-event, etc.) because
confidence distributions can always be defined20. Depending on complexity, exact calculations may not be possible any more,
and the operating characteristics may have to be determined via simulation.
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APPENDIX

A TECHNICAL DERIVATIONS AND PROOFS

In this section we provide technical derivations and proofs for Sections 3 and 4.

A.1 Proof of (6) and (7)

The two conditions that define the decision rule (4) can be expressed equivalently as

HN(p0 | Y·) < α ⇔ p̂N(Y·) > p0 – σ̂N(Y·)Φ–1(α) , (A1)

and
HN(p1 | Y·) < β ⇔ p̂N(Y·) > p1 – σ̂N(Y·)Φ–1(β) . (A2)

Consider the inequality z > p0 –
√

z(1 – z)Φ
–1(α)√

N
as a function of z ∈ [0, 1]. The function z –→ z is continuous and increasing

from 0 to 1. The function p0 –
√

z(1 – z)Φ
–1(α)√

N
is continuous and concave (because Φ–1(α) is negative) and equal to p0 for z = 0

or z = 1. Therefore, the two functions must intersect, and there is exactly one value 0 < z0 < 1 where these functions intersect.
Actually, the solution must be in the interval 1

2N < z0 < 1 – 1
2N unless p0 < 1

2N . With the same reasoning, there must be such
a value z1 for the second function p1 –

√
z(1 – z)Φ

–1(β)√
N

(which is actually a horizontal line when β = 0.5). The corresponding
inequalities in conditions (A1) and (A2) can be viewed as discrete approximations of this continuous problem, which have jumps
in 1

N , 2
N , 3

N , . . . , 1 and are constant otherwise. The modification to bound σ̂N(Y·) away from zero does not disturb this argument,
since this modification only applies on the intervals [0, 1

2N ] and [1 – 1
2N , 1].

This shows that cN = cN(p0, p1,α,β), defined in (6) as the smallest integer such that

p̂N(y) > max
{

p0 – σ̂N(y)Φ–1(α) , p1 – σ̂N(y)Φ–1(β)
}

, (A3)

exists, and that (4) it is equivalent to Y· ≥ cN , which was to be shown. Statements (12) and (14) are a direct consequence of this.
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A straightforward calculation shows that the decision rule (5) can be expressed equivalently as

Φ(
p0 – p̂N(Y·)
σ̂N(Y·)

) > γ ⇔ p̂N(Y·) < p0 – σ̂N(Y·)Φ–1(γ) . (A4)

One can show with the same type of reasoning as above that this rule is equivalent to Y· ≤ dN , with dN being defined as the
largest integer such that

p̂N(y) < p0 – σ̂N(y)Φ–1(γ) for all y ≤ dN

in (7). Statement (13) is a direct consequence of this.

A.2 Predictive Distributions

In the next paragraphs we will provide an explanation why the predictive distribution G(· | N, n, Y[1·]) with density (9), i.e.,

g(z | N, n, Y[1·]) =
n∑

y=0

b(y | n, p̂(Y[1·]) b(z | N – n, p̂(y)) , (A5)

is likely to be a better choice to approximate Bin(N – n, p than Bin(N – n, p̂n(Y[1·]).
Assume that there are two random variables Y1 and Y2 with distributions P1,ϑ and P2,ϑ that depend on the same unknown

parameter ϑ, and that there are corresponding densities p1(y1,ϑ) and p2(y2,ϑ). Assume further that the first random variable has
been observed, and that one wants to predict the outcome of the second one, for example as part of an interim analysis. The
corresponding predictive distribution should make adequate use of the observed data Y1 by estimating ϑ.

An obvious candidate for a predictive distribution for Y2 is the distribution with density

p2(y2, ϑ̂(Y1)) , (A6)

where the unknown parameter is replaced by an estimate ϑ̂(Y1) that is based on the observed data. However, it has been shown42

that this is not a good choice, and that the distribution with density

p̃2(y2 | ϑ) =
∫

p2(y2, ϑ̂(y1))P1,ϑ(dy1) (A7)

is closer to the true distribution P2,ϑ as compared to the predictive distribution (A6). In the context of prediction, closeness
between two distributions P and Q is usually measured by the Kullback-Leibler divergence42

KL(P, Q) =
∫

(log(q(x)) – log(p(x))) q(x)dx , (A8)

where p and q are the densities of P and Q, respectively.
Now, the predictive distribution (A7) is of no practical use, because it depends on the unknown parameter ϑ, but it motivates

p̃2(y2 | ϑ̂(Y1)) =
∫

p2(y2, ϑ̂(y1))P1,ϑ̂(Y1)(dy1) (A9)

as an alternative to (A6). Note that in this formula, ϑ̂(Y1) is the observed estimate based on the first sample Y1, and ϑ̂(y1) is a
possible value of the estimate had y1 been observed.

In the situation with binomial data Y[1·] =
∑n

ν=1 Yν ∼ Bin(n, p) and Y[2·] =
∑N

ν=n+1 Yν ∼ Bin(N – n, p), the predictive
distribution (A9) corresponds to the predictive distribution G(· | N, n, Y[1·]) with density (9), and the predictive distribution (A9)
corresponds to a binomial Bin(N – n, Y[1·]

n ) distribution.

A.3 Posterior Predictive Distributions

A Bayesian analogue to the decision rule (4) would be to replace the confidence distribution HN(p | Y·) by a posterior distribution.
When using a beta prior p ∼ Beta(a, b) with parameters a > 0 and b > 0, the posterior distribution (when having observed Y·
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responders out of N subjects) is again a beta distribution with parameters Y· + a and N – Y· + b. We use Bβ(· | Y· + a, N – Y· + b)
for the corresponding cumulative distribution function, which is continuous.

The Bayesian posterior predictive distribution for the number of responders Y[2·] among the second N – n observations, after
having observed Y[1·] responders among the first n subjects, is a beta-binomial distribution BetaBin(N – n, Y[1·] + a, n – Y[1·] + b)
distribution with parameters N – n, Y[1·] + a, and n – Y[1·] + b. We use Bβb(· | N – n, Y[1·] + a, n – Y[1·] + b) to denote the
corresponding cumulative distribution function, which has discrete support equal to the integers between 0 and N – n, and
bβb(· | N – n, Y[1·] + a, n – Y[1·] + b) to denote the corresponding density function.

With this notation, the Bayesian decision rule for the final analysis can be expressed as

Bβ(p0 | Y· + a, N – Y· + b) < α and Bβ(p1 | Y· + a, N – Y· + b) < β . (A10)

Let’s use
BN := {0 ≤ y ≤ N : Bβ(p0 | y + a, N – y + b) < α and Bβ(p1 | y + a, N – y + b) < β} (A11)

to denote the subset of {0, 1, . . . , N} that fulfills condition (A10). This subset equals BN = {bN , bN + 1, . . . , N}, where bN is the
smallest integer such that

Bβ(p0 | bN + a, N – bN + b) < α and Bβ(p1 | bN + a, N – bN + b) < β (A12)

holds. Such an integer bN exists because the relationship

Bβ(p | y + a, N – y + b) = Bβ(p | y + 1 + a, N – y – 1 + b) +
py+a(1 – p)N–y–1+b

(y + a)B(y + a, N – y + b)
> Bβ(p | y + 1 + a, N – y – 1 + b)

is true for all p43, 8.17.19.
With this, the operating characteristic of the Bayesian decision rule for the final analysis can be expressed as

p –→
N∑

y=bN

b(y | N, p) = 1 – B(bN – 1 | N, p) , (A13)

where b(y | N, p) is the density of a binomial distribution, and B(y | N, p) the corresponding cumulative distribution function.
The Bayesian interim decision rule can be expressed as

1 – Bβb(bN – Y[1·] – 1 | N – n, Y[1·] + a, n – Y[1·] + b) > δ , (A14)

and the corresponding operating characteristic is

p –→
n∑

y=0

b(y | n, p) 1{y : 1 – Bβb(bN – y – 1 | N – n, y + a, n – y + b) > δ} . (A15)

In Figure A1 the operating characteristics of the Bayesian approach are compared with the frequentist approach. The solid
green line is the probability of success at the final analysis (N = 62) for the frequentist procedure. The dotted yellow line is
the operating characteristic of the corresponding Bayesian procedure. Similarly, the solid blue line describes the probability
of continuing after the interim (n = 25) under the frequentist approach, and the dashed light blue line is the corresponding
probability for the Bayesian procedure. The frequentist probabilities do not depend on a and b, which are the parameters of the
prior distribution.

One can see in Figure A1 that for a = 4 and b = 4, there is no difference between the approaches. In fact, the curves are
identical because the critical values are equal (bN = cN) in this particular example, and this is actually true for all parameters
0 < a = b ≤ 4.3, which include the well-known uninformative priors of Bayes (a = b = 1), Jeffrey (a = b = 0.5) and Haldane
(a = b → 0). Moreover, based on a limited computational study (not reported here) we conjecture that the curves are always
identical for any choices of a and b where a

a+b = p1, in this example, as it seems that the second condition (involving p1 and β) is
the dominating one when evaluating (A12). For other small values of a and b there are slight differences, sometimes favoring the
Bayesian approach, sometimes the frequentist approach. These differences vanish when the parameters approach zero, i.e. when
the prior becomes weaker, and are more pronounced when the parameters increase, i.e. when the prior becomes stronger.

https://dlmf.nist.gov/8.17
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F I G U R E A1 Operating characteristics for frequentist (solid lines) and Bayesian (dashed or dotted lines) approach, for
interim (blue and light blue lines) and final analyses (green and yellow lines), with p0 = 0.3, p1 = 0.4, α = 0.05, β = δ = 0.5,
N = 62, n = 25, and different values of a and b.
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A.4 Equivalence of (10) and (11)

In this section we want to prove the equivalence of (10) and (11), i.e., the equivalence of

ProbN,n,Y[1·] {1 ≤ y ≤ N – n : HN(p0 | y + Y[1·]) < α and HN(p1 | y + Y[1·]) < β} > δ

and
1 – G(cN – Y[1·] – 1 | N, n, Y[1·]) > δ ,

where GN is the distribution with density (A5), see also (9).
From the definiton of cN (see (A3) or (6)) we conclude that

HN(p0 | y + Y[1·]) < α and HN(p1 | y + Y[1·]) < β (A16)

is equivalent to
y ≥ cN – Y[1·] (A17)

for all integers 1 ≤ y ≤ N – n. Since ProbN,n,Y[1·] {cN – Y[1·], . . . , N – n} equals 1 – ProbN,n,Y[1·] {1, . . . , cN – Y[1·] – 1} we conclude
that (11) is equivalent to (10).

A.5 Proof of (15) and (17)

Given the equivalence of (10) and (11), one can continue after an interim analysis with y responders out of n subjects if
1 – G(cN – y – 1 | N, n, y) > δ, which immediately implies

p –→
n∑

y=0

b(y | n, p)1{y | 1 – G(cN – y – 1 | N, n, y) > δ} ,
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i.e., (15). In order to continue after an interim analysis with y responders out of n subjects and to be successful at the end, one
needs to observe z responders out of the following N – n subjects such that y + z ≥ cN , see (6). The corresponding probability is
1 – B(cN – y – 1 | N – n, p), which proves

p –→
n∑

y=0

b(y | n, p)(1 – B(cN – y – 1 | N – n, p))1{y | 1 – G(cN – y – 1 | N, n, y) > δ} ,

i.e., (17).

A.6 Stochastic Curtailment

Stochastic curtailment was introduced by Lan et al.34 as a conservative rule to stop early for success. Applying these ideas to our
situation means to replace the predictive distribution in decision rule (10) by a conditional probability. The resulting decision
rule would be

Probp0 {HN(p0 | Y[1·] + Y[2·]) < α and HN(p1 | Y[1·] + Y[2·]) < β | Y[1·]} > δ , (A18)

which is equivalent to

ProbN–n,p0 {1 ≤ y ≤ N – n : HN(p0 | y + Y[1·]) < α and HN(p1 | y + Y[1·]) < β} > δ . (A19)

The probability ProbN–n,p0 in (A19) is the binomial Bin(N – n, p0) probability.
Note particularly the choice of parameter p0. The probability in (A18) and (A19) is evaluated under the assumption that the

intervention is ineffective, which is a very conservative assumption when defining a decision rule to continue the trial because
the results look promising.

As in Section A.4 one can now show that the condition in (A19) can be evaluated as 1 – B(cN – Y[1·] – 1 | N – n, p0(Y[1·])),
which proves

p –→
n∑

y=0

b(y | n, p)1{y | 1 – B(cN – y – 1 | N – n, p0) > δ} ,

i.e., (16).
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