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Abstract

Highly volatile persistent organic pollutants (HV-POPs) are characterized by high
volatility, environmental persistence, bioaccumulative potential, toxicity, and ability
to long-range transport, posing environmental and health concerns. However,
research on HV-POPs remains limited, particularly in rapidly urbanizing regions,
constraining understanding of their sources, environmental fate and risks. This study
investigated 52 HV-POPs, including Stockholm Convention-listed POPs like
hexachlorobutadiene (HCBD) and hexa-/penta-chlorobenzene (HCB/PeCB), and non-
listed HV-POPs such as volatile methylsiloxanes (VMS) and chlorinated nitrobenzenes
(CNBs), using active air samplers in six major cities across Asia and Africa. The median
total concentrations of HV-POPs were highest in Guangzhou (351 ng/m3), followed by
Kuala Lumpur (167 ng/m?3), Accra (82.4 ng/m3), Dhaka (73.3 ng/m3), Nairobi (44.9
ng/m3), and Islamabad (33.5 ng/m3). VMS dominated at all sites, accounting for 84 +
18% of total HV-POPs, up to 2-5 orders of magnitude higher than other compounds.
Source analysis showed VMS emissions in Guangzhou were mainly from industrial
activities, while in the other cities from usage of personal care products. Inhalation
risk assessments indicated negligible non-carcinogenic and carcinogenic risks at all
sites. This study provides the first multi-regional HV-POP dataset in urban air,
supporting chemical risk assessment efforts and broader international regulatory

initiatives.

Keywords

Highly volatile Persistent Organic Pollutants (HV-POPs), Volatile Methylsiloxanes (VMS),
Hexachlorobutadiene, Urban Atmosphere, Risk Assessment, Active Air Sampling, Asia,

Africa
Synopsis

Global monitoring of highly volatile persistent organic pollutants (HV-POPs) in urban

atmosphere revealed the dominance of volatile methylsiloxanes (VMS).
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Introduction

Persistent organic pollutants (POPs) have attracted global attention due to their
persistence, toxicity, bioaccumulative potential, and ability to undergo long-range
transport.! Among them, highly volatile POPs (HV-POPs) are POP-like chemicals with
high vapor pressures and environmental stability that remain poorly characterized.?
Representative HV-POPs include both regulated and non-regulated, such as
hexachlorobutadiene (HCBD), hexachlorocyclohexanes (a-, 8-, and y-HCH), volatile
methylsiloxanes (VMSs), halogenated hydrocarbons (HHCs), and chlorinated
nitrobenzenes (CNBs).The high volatility of HV-POPs facilitates frequent air—surface
exchange and widespread atmospheric occurrence, such that some of them have been
detected in air,® water,* and soil,> and even in remote regions such as the poles, ©
where they may persist and accumulate in biota.” These properties and behaviors
underscore the global environmental significance of HV-POPs, and present major

challenges for accurate monitoring and comprehensive risk assessment.

HCBD, listed under the Stockholm Convention in 2015, is nephrotoxic, highly
persistent (atmospheric half-life up to 14 months) and bioaccumulative.®> ® ° Despite
production bans, it continues releasing unintentionally from organochlorine industry
and thermal processes,’® with atmospheric concentrations in proximity to emission
sources often exceeding occupational exposure limits.!! It has been widely detected

12-14 water, ' soils,® sewage sludge,* and even polar regions.® & 16 VMSs, widely-

in air,
used in personal care products (PCPs) and industrial applications, are high-production-
volume chemicals!’-*? with annual global output exceeding 7 million tonnes?® and are
currently under regulatory evaluation in the European Union.? 22 The major VMS
congeners, octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5),
and dodecamethylcyclohexasiloxane (D6) show considerable high environmental
persistence (air: 6-21 days; water, soil and sediment: 3-3000 days) and notable
bioaccumulation potential (vPvB).2> Their high volatility leads to widespread
atmospheric occurrence,'® 2426 gnd elevated exposure has been linked to hepatic,

endocrine, and neurotoxic effects.?” 282 HHCs and CNBs, used in dye, pesticide, and

chemical manufacturing, pose environmental and health concerns due to their
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persistence and neurotoxicity.?” 3% 31 CNBs are particularly long-lived; for example,

tetrachloronitrobenzene has an atmospheric half-life of up to 6.1 years.3?

Globally, there has been an apparent monitoring data gap of many HV-POPs in the
atmosphere, largely owing to limitations in sampling and analytical techniques. In
particular, the use of the widely-used polyurethane foam (PUF) as a sampling
absorbent may lead to underestimations of the concentrations of HV-POPs, due to
breakthrough effects, especially in warm climates or highly contaminated sites. 33
Data gaps are especially pronounced in developing countries, where industrialization
often occurs rapidly but with less concerns on chemical pollution and environmental
quality. Here, we conducted active air sampling using PUF/XAD/PUF cartridge in six
megacities across Asia and Africa during 2022-2023, aiming to: (1) characterize the
concentrations, composition, and spatial distribution of 52 HV-POPs in urban
atmosphere, including Stockholm Convention-listed POPs (e.g., HCBD, HCHs and
pentachlorobenzene (PeCB)) and non-listed POPs (e.g., VMS, HHCs, and CNBs); (2)
identify key emission sources and influencing factors of HV-POPs in these urban areas;
and (3) assess their potential inhalation health risks. This study provides a global cross-
sectional dataset on HV-POPs in urban air, addressing key monitoring gaps under the
Stockholm Convention’s Global Monitoring Plan (GMP) and supporting evidence-

based global chemical management.

Materials and Methods

Sampling Campaign

During 2022-2023, active air sampling campaigns were conducted in six megacities
across Asia and Africa: Guangzhou (China), Accra (Ghana), Dhaka (Bangladesh), Kuala
Lumpur (Malaysia), Islamabad (Pakistan), and Nairobi (Kenya). All six countries are
participants in the United Nations Environment Programme-Global Environment
Facility (UNEP-GEF) Global Monitoring Plan (GMP) projects and are signatories to the
Stockholm Convention. Sampling was conducted at urban sites characterized by
intense, mixed-source atmospheric pollution, representing diverse urban air pollution

scenarios. Detailed site descriptions are available in Table S1.
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The four Asian megacities represent a range of urban pollution sources and climatic
conditions. Guangzhou is a manufacturing hub with high industrial emissions under a
subtropical monsoon climate.3* Dhaka, one of the world’s most densely populated
cities, is affected by both local emissions and regional pollutant transport.3 Kuala
Lumpur is influenced by motor vehicle exhaust and seasonal biomass burning,3¢ while
Islamabad is impacted by domestic heating and agricultural combustion.?’ In contrast,
the two African cities are dominated by emissions from e-waste activities. Accra is a
known hotspot for informal e-waste and solid waste burning as well as emissions from
vehicle exhaust,3® and Nairobi, a high-altitude city, is affected by open burning and

unregulated waste recycling in informal settlements.?®

In this study, we deployed high-volume active air samplers (100 L/min, TH-150H,
Tianhong Instruments, Wuhan, China) equipped with Whatman quartz fiber filters
(QFFs; 203 x 254 mm; GE Healthcare Bio-Sciences, Pittsburgh, PA) to collect particle-
phase compounds and PUF/XAD/PUF sandwich cartridges to collect gas-phase
compounds. The cartridge consisted of two polyurethane foam plugs (PUFs; 65 mm
diameter, 35 mm height, 0.03 g/cm? density) and approximately 10 g polystyrene
adsorbent resin (XAD). Although particle-phase samples were collected, this study
focuses exclusively on the analysis of gas-phase HV-POPs. A total of 78 air samples
were collected, including 29 from Guangzhou, 9 from Dhaka and 10 each from the
remaining four cities. Before sampling, PUF plugs and XAD resin were precleaned with
acetone and dichloromethane. Detailed sampling protocol and sampling volume
calibration, site information, and training materials are provided in Text S1, Table S2

and Figure S1.
Sample Pretreatment and Analysis

The sample pretreatment and analytical methods employed in this study were
adapted and optimized from previously established protocols by our research group
in earlier work.3% %% Detailed procedures are described in Text S2. Each PUF/XAD/PUF
sandwich was spiked with !3C-labeled hexachlorobutadiene (*3C-HCBD), 1,4-
dichlorobenzene-[D4], 3C-labeled decamethylcyclopentasiloxane (}3C-D5), and 3C-
labeled hexachlorobenzene (*3C-HCB) as recovery surrogates, and extracted for 24 h

in a Soxhlet apparatus using dichloromethane (DCM)/acetone (ACE) (1:1, v/v). The
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extracts were concentrated via rotary evaporation, purified by using a multilayer
neutral silica gel column, and further concentrated under gentle nitrogen blowdown.
Hexamethylbenzene was added as an internal standard before instrumental analysis.
Samples were analyzed using an Agilent 7890B gas chromatograph coupled with a
7000A triple-quadrupole mass spectrometer (GC—MS/MS) equipped with a DB-5MS Ul
column (60 m x 0.25 mm x 0.25 um) operating in a multiple reaction monitoring
(MRM) mode. Information on the 52 target compounds, including physicochemical
properties, is detailed in Table S3. The instrumental analysis, precursor/product ions

and retention times are provided in Text S3 and Figure S2.
Quality Assurance and Quality Control

Quality assurance and quality control (QA/QC) measures included the analysis of field
blanks, procedural blanks, and surrogate spiked recoveries. Detailed QA/QC protocols
are provided in Text S4. Only four cVMSs were detected in field blanks, while no target
analytes were found in procedural blanks. The method detection limit (MDLs) and the
instrument detection limit (IDLs) for all analytes ranged from 0.02-631 pg/m3 and
0.00-0.92 ng, respectively (Table S5). The average recoveries for 3C-HCBD, 1,4-
dichlorobenzene-[D4], 13C-D5, and '3C-HCB were 74 + 19%, 79 + 20%, 65 + 17%, and
72 + 20%, respectively. All reported concentration data were corrected based on
surrogate recoveries and blank subtraction. A breakthrough test indicated that losses
to the bottom PUF were minimal, with an average rate of 5% + 6%, confirming the
effectiveness of the cartridge in capturing gas-phase HV-POPs (Table S6).*! To strictly
control VMS contamination, we have implemented several measures, with details in
Text S4. To better evaluate the stability of the experimental results, duplicate analyses
of three representative samples under identical conditions showed high consistency
(slope=1.1, r?=0.98), as shown in Figure S3. Solvent blank spiking, matrix spike
recoveries for both PUF and XAD phases, and routine procedural blanks further

validated the reliability of the method.
Health Risk Assessment

Inhalation dose, carcinogenic and non-carcinogenic risks for each sampling city were
calculated using pollutant concentrations obtained from this study and country-

specific exposure parameters.*>>° Details of the calculation methods and selected
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exposure parameters for each country are provided in Text S5 and Table S19.The
average daily inhalation dose (ADDinn) was calculated as:

_CAxIRxETxEFxED

ADDjp= BW % AT (1)

where ADDinh represents the daily inhalation dose (mg/(kg-d)); CA is the concentration
of target compound (mg/m?3); IR is the inhalation rate (m3/h); ET is the daily exposure
time (h/day), EF is the exposure frequency (days/year); ED is the sum of the exposure
durations for all events (years); BW is the body weight (kg) and AT is the averaging
time for exposure (days), calculated as ED multiplied by 365 days.

Carcinogenic risk (Risk) through inhalation is calculated as:

Risk=EC;,,, x IUR )

EC,,»=(CA x ET x EF x ED)/AT (3)

where ECinn is the inhalation exposure concentration (mg/m3) and IUR is the inhalation
unit risk (ug/m?3)2.
Non-carcinogenic risks were evaluated using the hazard quotient (HQinn) and hazard

index (HI), calculated as:

ECinh
HQ, = 4
Qi Rfc x 1000 ug/mg @)
HI=SHQ,,, (5)

where HQinn represents the non-carcinogenic hazard quotient, Rfc is the reference
concentration (mg/m3), and Hl is the hazard index. Other parameters are the same as

above.
Statistical Analysis

All data analyses were performed using R software (version 4.1.0). To assess the
normality of data while considering the small sample size (N=79), we examined both
original and log-transformed concentration data across different sampling sites using

the Shapiro-Wilk test.>! As not all data conformed to a normal distribution, we



205
206
207
208
209
210

211

212

213
214
215
216
217
218
219
220
221
222
223
224

225
226
227
228
229
230
231
232
233
234

employed non-parametric tests (Kruskal-Wallis test) to evaluate significant
differences between groups. All samples were assumed to be independent in our
analysis. Spearman’s correlation was used to explore relationships between variables.
A p-value < 0.05 was considered statistically significant. Further details on data
distribution characteristics, sample independence assessment, and Spearman’s

correlation analysis are provided in Text S6.

Results and Discussion

General Profile of HV-POPs

The gaseous and particulate phase concentrations of 52 HV-POPs measured in 78
urban air samples from six cities are summarized in Table S7 and Table S8. Total
concentrations ranged from 1.52 x 10% to 1.17 x 10° pg/m? (gas phase: 1.30 x 10%-1.17
x 10° pg/m3 (Figure 1), particle phase: 746-1.80 x 10* pg/m?3). The gaseous phase
accounted for 96 * 4% of the total concentration, indicating that HV-POPs were
overwhelmingly present in the gas phase; therefore, only gaseous concentrations are
further discussed. Median gaseous concentrations were highest in Guangzhou (3.51 x
10° pg/m?3, 1.65 x 10°-1.17 x 10° pg/m?3), followed by Kuala Lumpur (1.67 x 10°> pg/m3,
1.28 x 10°-2.57 x 10° pg/m3), Accra (8.24 x 10% pg/m3, 2.54 x 10%-4.44 x 10° pg/m3),
Dhaka (7.33 x 10% pg/m?3, 1.30 x 10*-1.39 x 10° pg/m3), Nairobi (4.49 x 10* pg/m3, 3.25
x 10%-2.61 x 10° pg/m?3), and Islamabad (3.35 x 10* pg/m?3, 2.47 x 10*-1.15 x 10° pg/m3),

indicating significant regional variability.

Based on structural characteristics, the 52 HV-POPs were categorized into five groups:
HCBD, >23HHCs, >7VMS, >17CNBs, and Y4HCHs. To avoid misclassification, HCBD was
considered separately from >23HHCs because it is listed as a restricted POP under the
Stockholm Convention, whereas the other halogenated hydrocarbons remain
unregulated. The median concentration of HCBD was 187 pg/m?3 (33.7-1.57 x 10*
pg/m3), while the concentrations of other HV-POPs were ranked as follows: $7VMS
(1.26 x 10° pg/m3, 1.07 x 10*-1.16 x 10° pg/m3) > $23HHCs (9.20 x 103 pg/m3, 1.29 x
103-6.79 x 10% pg/m3) > 517CNBs (147 pg/m?3, 40.6-657 pg/m3) > S4HCHSs (10.4 pg/m3,
0.747-107 pg/m?3). 57VMS accounted for 84 + 18% of the total HV-POPs concentrations,

and together with >23HHCs, they contributed approximately 99 + 1%, highlighting their
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239 Figure 1. (A) Composition and gaseous concentration (pg/m?3) of total HV-POPs in 78 urban
240 air samples. (B) Spatial profiles of HV-POPs (37VMS, 23HHCs, HCBD, Y1,CNBs and 4HCHs) at
241 six sampling sites across Asia and Africa. The figure (B) was modified on the base map of
242 China sourced form “MAP WORLD"” (https://www.tianditu.gov.cn/).

243  Comparison of HV-POPs and other air pollutants in Guangzhou

244  To better understand the importance of HV-POPs relative to other POPs, we compared
245  HV-POPs concentrations with other air pollutants’ data from the same sampling site
246  in Guangzhou (Figure 2 and Text 57).3%52 HV-POPs were higher than all other analyzed
247  POPs, accounting for approximately 50% of the total measured compounds. Other
248 notable POP groups, in descending order of median concentration, included short-
249  chain chlorinated paraffins (SCCPs: 168 ng/m3, 39.3-589 ng/m?3), medium-chain
250 chlorinated paraffins (MCCPs: 109 ng/m3, 2.65-497 ng/m3), polycyclic aromatic
251  hydrocarbons (PAHs: 23.6 ng/m3, 12.0-50.4 ng/m3) and organophosphate flame
252  retardants (OPFRs: 1.64 ng/m3, 0.638-14.4 ng/m3). In contrast, legacy POPs, such as
253  polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs),
254  organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs) and novel
255  brominated flame retardants (NBFRs) showed much lower concentrations (3.13 x 10
256 3 ng/m3-1.32 ng/m3), predominantly at the pg/m?3 to ng/m3 level. Notably, the mean
257  HV-POPs concentration was more than twice that of SCCPs and MCCPs, highlighting

258 their dominance in urban air.
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Figure 2. Comparison of the concentrations (ng/m?3) of various pollutants in the gas phase at
the same sampling site in Guangzhou. Pollutants include: 201 polychlorinated biphenyls
(PCBs), 75 polychlorinated naphthalenes (PCNs), 27 organochlorine pesticides (OCPs), 8

polybrominated diphenyl ethers (PBDEs), 6 novel brominated flame retardants (NBFRs), 11

organophosphate flame retardants (OPFRs), 16 polycyclic aromatic hydrocarbons (PAHs),
short-chain chlorinated paraffins (SCCPs), medium-chain chlorinated paraffins (MCCPs), and
52 HV-POPs.

Stockholm Convention-listed HV-POPs

Hexachlorobutadiene

Figure 3 shows the concentrations of HCBD across cities (p < 0.05), with median
concentrations as follows: Guangzhou (3,540 pg/m?3, 2,590-15,700 pg/m?3) > Dhaka
(192 pg/m3, 33.7-231 pg/m3) > Islamabad (184 pg/m?3,105-236 pg/m?3) > Kuala Lumpur
(124 pg/m?3, 88.06-198 pg/m3) > Nairobi (120 pg/m3, 79.9-146 pg/m3) > Accra (112
pg/m3, 55.5-171 pg/m?3). HCBD concentrations in Guangzhou were approximately 30-
40 times higher than those in other cities, suggesting significant unintentional
emissions from local sources. Current sources of HCBD in the atmosphere include its
production as a commercial chemical and unintentional emissions from industrial
activities such as chemical production, metal smelting, waste incineration and
landfills.>> >* Among the studied countries, only China has enforced a complete ban
(production, use, and trade) on HCBD since 2023, while other countries have yet not

announced specific regulatory measures or policies.” This suggests that unintentional
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emissions are likely the dominant atmospheric source of HCBD in China, posing

significant challenges for effective control under current regulations.

Moreover, chlorinated chemical manufacturing remains the primary unintentional
HCBD source.” High concentrations of HCBD have been detected near chlor-alkali
production facilities. For example, in 2015, HCBD concentrations of 1170 pg/m? and
5530 pg/m?3 were measured near a tetrachloroethylene production facility in China.>®
Similarly, in 2018, concentrations of 0.21 pug/m?3 were detected near a chlor-alkali plant
in Catalonia, Spain.* Guangzhou is one of China’s seven major petrochemical
industrial bases, with 698 petrochemical enterprises producing approximately
240,000 tons of chemical reagents and 930,000 tons of coatings annually (as of
2022).>7 Consequently, intensive petrochemical industries likely contribute to the
elevated HCBD concentrations found in the air samples. Furthermore, the ratio
between maximum to minimum HCBD concentrations in each city ranged from 1.8 to

6.9, indicating relatively low variability across the cities.

A comparison of HCBD concentrations obtained in this study with other active and
passive air sampling (PAS) studies is presented in Table S13. Atmospheric HCBD
concentrations in all six cities exceeded those reported from the Arctic,® where active
sampling using PUFs was conducted (<0.37-21 pg/m3), indicating that urban areas
exhibit significantly elevated HCBD levels relative to remote areas far from industrial
emissions. In contrast, HCBD concentrations in Guangzhou in this study were
significantly lower than those previously reported in other Chinese cities (<0.05-9.55

ug/m?3),13 likely due to the differences in sampling and analytical methods.

Previous studies on atmospheric HCBD primarily employed active sampling methods
such as Summa canister, Tenax-TA adsorbent tubes, and activated charcoal (Table
$13).12 16,58 Symma canisters, however, are susceptible to storage conditions, pre-
cleaning procedures, and internal gas concentrations, resulting in relatively high
detection limit (typically ~2 pg/m3),>° considerably higher than the detection limit
achieved with PUF/XAD/PUF cartridges in this study (17.9 pg/m3). Thus, the sampling
method used here offers improved sensitivity and accuracy for quantifying trace-level

HCBD concentrations.
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Figure 3. Box plot of HCBD concentrations (pg/m?3) in urban air across six cities.

Hexachlorobenzene and Pentachlorobenzene

Concentrations of hexachlorobenzene (HCB) and pentachlorobenzene (PeCB)
measured via active air sampling and passive air sampling are summarized in Tables
S14 and S15. Among the six cities, median concentrations of PeCB were highest in
Dhaka (99.2 pg/m3, 37.7-442 pg/m3), followed by Guangzhou (90.4 pg/m3, 29.1-216
pg/m3), Kuala Lumpur (54.8 pg/m?3, 36.0-123 pg/m?3), Nairobi (43.8 pg/m3, 22.5-56.4
pg/m3), Accra (36.5 pg/m3, 14.1-83.5 pg/m3), and Islamabad (31.7 pg/m3, 17.7-44.8
pg/m3) (p < 0.05). These concentrations are broadly consistent with global active
sampling datasets, where typical urban PeCB concentrations range 20 to 80 pg/m?3,
similar to levels reported in Beijing (75.8 *+ 66.5 pg/m3), Yantai (39.8 + 29.5 pg/m3),
and Kuwait (24.6 + 24.1 pg/m?3).%0 61 For passive air sampling, urban and agricultural
sites in the Latin American and Caribbean Group (GRULAC) region exhibited higher
PeCB levels (39 to 146 pg/m3).%2 PeCB concentrations in Ghana appear to show an
upward trend, as earlier studies reported lower concentrations, including 15 pg/m? at

a background site, 9 pg/m?3 at an urban site, and 10 pg/m? at a suburban site.3®

The median concentrations of HCB among the six cities were ranked as follows:
Guangzhou (121 pg/m?3, 34.6-268 pg/m3) > Kuala Lumpur (85.6 pg/m?3, 54.0-141
pg/m3) > Dhaka (62.7 pg/m3, 30.1-259 pg/m3) > Islamabad (42.4 pg/m3, 31.1-63.4
pg/m3) > Nairobi (41.5 pg/m3, 30.6-53.2 pg/m?3) > Accra (38.1 pg/m3, 17.0-107 pg/m?3)
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(p < 0.05). In Guangzhou, HCB concentrations was 2-3 times higher than levels
measured at the same sampling site in 2018 (8.65-132 pg/m?3).3* Globally, HCB
concentrations in the Asian and African cities (17.0-268 pg/m?3) were slightly higher
than those in Europe (15.8-74.7 pg/m3).83

PeCB and HCB were detected in all samples and showed a significant positive
correlation (r = 0.709-1, p < 0.01), suggesting potential shared industrial sources or
emission pathways. Similarly, Spearman’s correlation analysis (Table S10) revealed a
strong correlation between HCBD and ten other chlorinated benzenes, excluding HCB,
in Guangzhou (r = 0.471-0.780, p < 0.01). These findings support the hypothesis that
HCBD and chlorinated benzenes (CBs) likely originate from similar industrial activities,
particularly as unintentional byproducts of chemical production. However, regulatory
frameworks for HCBD vary across regions, which may influence emission profiles and

control measures.

Regional correlations between HCBD and HCB (Figure 4) provide additional insights
into potential emission sources. HCBD has never been intentionally produced in China,
but is known to be generated as a byproduct of industrial processes, particularly the
production of trichloroethylene and perchloroethylene, making it a useful indicator of
unintentional emissions.>>While all the studied countries have banned the use of HCB,
regulatory measures for HCBD remain inconsistent, contributing to regional
differences in its occurrence and distribution. However, existing bans do not
necessarily eliminate emissions. While the production and use of HCB have ceased in
past decades, it is crucial not to ignore its unintentional release as a byproduct of
incomplete combustion or chlorinated chemical manufacturing process.®* Moreover,
a comprehensive evaluation of existing bans necessitates considering their
enforcement mechanisms, the impact of legacy contamination, and potential gaps in
emission inventories or trade monitoring. Although comprehensive national emission
estimates are not yet available for all studied compounds, integrating governmental
or independently derived emission data into future work will be of high value. Given
these complexities, exploring the relationship between HCBD and HCB may provide
valuable insights into the potential sources. Significant positive Spearman correlations
between HCBD and HCB were observed in Kuala Lumpur (r = 0.806, p < 0.01) and

Islamabad (r = 0.636, p < 0.05), suggesting shared sources or similar environmental
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behaviors in these cities. In contrast, no significant correlation was observed in
Guangzhou, possibly due to more complex industrial inputs or seasonal variability
related to monsoonal influence in the Pearl River Delta region. Weaker correlations
were also observed in Accra, Dhaka, and Nairobi, where incomplete HCBD bans remain
in effect, and more diverse source contributions may lead to varied atmospheric
distributions. These findings highlight HCBD's potential as a marker of unintentional
emissions, especially in regions with diverse industrial sources and inconsistent

regulatory controls.
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Figure 4. Correlations between HCBD and HCB concentrations in six cities: (A) Guangzhou,
(B) Accra, (C) Dhaka, (D) Kuala Lumpur, (E) Islamabad, and (F) Nairobi.

Hexachlorocyclohexanes

Additional data on hexachlorocyclohexane (HCHs) measured by active and passive air
sampling were presented in Table S16.The detection rates of the four HCH isomers in
all samples ranged from 68 to 95%. Total HCH concentrations (34HCHs) were ranged
from 0.747 to 107 pg/m?3 with a median concentration of 10.4 pg/m?3, following the
order: Kuala Lumpur (32.8 pg/m?3, 24.7-42.5 pg/m3) > Guangzhou (19.2 pg/m3, 1.94-
107 pg/m?3) > Islamabad (12.0 pg/m3, 8.89-16.9 pg/m3) > Dhaka (9.88 pg/m?, 5.09-24.3
pg/m3) > Accra (6.98 pg/m3, 2.42-10.3 pg/m3) > Nairobi (4.32 pg/m3, 0.747-7.38
pg/m3) (p < 0.05). In Nairobi, the y-HCH concentration in the urban atmosphere was

found to be nearly 67 times lower than that measured in an industrial area in 2017.3°
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Moreover, 6-HCH concentrations reported in this study are at a moderate level
compared to rural area in Ghana, whereas a-HCH, 8-HCH, and y-HCH concentrations
were significantly lower than those recorded in background and suburban area of

Ghana in 2008.38

a-HCH was the dominant isomer (56 + 21%) in Guangzhou, whereas y-HCH
predominated in Kuala Lumpur (72 + 14%), Accra (47 + 19%), Dhaka (51 + 10%), and
Nairobi (55 * 24%). In Islamabad, the proportions of a-HCH, 8-HCH, and y-HCH were
approximately equal. Variations in HCH isomer composition reflect source differences,
which can be evaluated using the a-/y-HCH ratio, a commonly used diagnostic
indicator for source identification. A ratio of a-/y-HCH closer to 1 typically indicates
the recent or ongoing use of lindane. In contrast, a higher ratio—often exceeding 7—
can suggest the influence of long-range atmospheric transport (LRAT), since a-HCH is
more volatile and has greater LRAT capacity,®® while y-HCH degrades faster in the
atmosphere and can photochemically convert to a-HCH.®¢ The a-/y-HCH ratio in five
cities ranged from 0.1 to 2, indicating the potential ongoing use of lindane, while the
much higher ratio observed in Guangzhou (1.0-22) indicates a stronger influence of
LRAT. Compared to monitoring data from the same sampling site in Guangzhou in
2018 (51 +20 pg/m?3, a-/y-HCH ratio: 0.3-3.5),%” $4HCHs concentrations have declined,
with a notable increase in the a-/y-HCH ratio. This provides further evidence that,
following the ban on HCHs, atmospheric HCH inputs in Guangzhou are now primarily

driven by long-range transport.
Non-listed HV-POPs
Volatile Methylsiloxanes

In this study, >7VMS refers to three linear volatile methylsiloxanes (IVMS: L3, L4, L5)
and four cyclic volatile methylsiloxanes (cVMS: D3, D4, D5, D6). All seven VMS
compounds were detected in 99% samples, indicating their ubiquitous presence in the
urban atmosphere. 5;VMS concentrations ranged from 10.7 to 1,160 ng/m?3, with a
median of 126 ng/m?3 (Figure 5), cyclic VMS dominated, accounting for over 98% of
>7VMS concentration on average. In comparison, >3IVMS concentrations ranged from
0.241 to 8.95 ng/m3 (median:1.13 ng/m3), with L4 as the dominant congener (60%),
followed by L5 (30%). Among all cities, Guangzhou had the highest >;VMS
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concentration (341 ng/m3, 145-1160 ng/m3), which was 2 to 9 times higher than other
cities (p < 0.05).

D5 was the dominant congener in Kuala Lumpur (51%), Dhaka (46%), and Islamabad
(41%), while D6 predominated in Accra (38%). Nairobi showed a more balanced
composition, with similar proportion of D4, D5 and D6. Uniquely, D4 was the dominant
congener in Guangzhou (70%), significantly higher than that in other cities. This
pattern contrasts sharply with previous studies conducted in Chicago, New York, and
southern Saitama, Japan, where D5 was consistently dominated (>50%).%%7° Moreover,
the average D5/D4 ratio in Guangzhou was 0.33, while the average ratios for other
five cities were all greater than 1.2. Given that all sampling sites were urban sites, and
D5 has a shorter half-live than D4, these inter-city differences in VMS composition
reflect variations in emission sources. Major urban sources of VMS include silicone
polymer manufacturing and the use of personal care products (PCPs) like shampoos,
moisturizers, and body washes.?® 7! D5 is the dominant congener used in PCPs,
accounting for approximately 25% of its total global production.”® 73 In contrast, less
than 5% of D4 production is used in PCPs.”® However, elevated concentrations and
proportions of D4 have been detected in air samples near siloxane manufacturing
facilities,”* indicating its substantial use or production in industrial processes. These
findings imply that a D4-dominated VMS profile may be characteristic of areas

influenced by industrial sources, rather than consumer product use.

China is the world’s largest producer of silicon and the second-largest cosmetic
consumer market, with an annual organosilicon output reaching 6 million tons by
2022.74 7> Guangzhou is a major hub for silicone manufacturing, contributing 55% of
China’s total cosmetics production.”® Within a 10.5 km radius of the sampling site in
Guangzhou, there is a cosmetics industrial cluster with 1,288 manufacturing
enterprises.”” Therefore, the dominance of D4 in Guangzhou strongly suggests that
local industrial production activities, rather than PCP usage, are the primary VMS
source. In contrast, D5 dominated in Kuala Lumpur and Dhaka, consistent with
previous studies,'® ®° indicating PCPs usage is the main source. Spearman correlation
analysis among VMS congeners in Guangzhou (r = 0.483-0.870, p < 0.01) (Table S9)

further supports this, indicating similar industrial sources and atmospheric behaviors.
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Table S12 summarizes VMS concentrations reported in previous studies using both
active and passive air sampling. Compared with other regions, VMS levels in
Guangzhou were relatively high, second only to those reported in New York, where
S4cVMS ranged from 18.8 to 2,010 ng/m3.7° Additionally, when compared with the
SIP-PAS sampling data (2017) from urban sites in the Global Atmospheric Passive
Sampling (GAPS) network, Guangzhou’s VMS concentrations were in the upper
concentration observed in the GAPS dataset.?* 2> When compared with studies using
active air samplers equipped with PUF/XAD/PUF cartridges, >7VMS concentrations at
a semi-urban site in Toronto (122 + 71.0 ng/m3) were comparable to those in Accra
and Kuala Lumpur in this study.”® By contrast, atmospheric VMS concentrations
measured near point sources (e.g., siloxane production facilities, oil refineries,
wastewater treatment plants) can be 1-6 orders of magnitude higher than those
reported at all urban sites in this study,’? 798! further highlighting Guangzhou’s
elevated VMS levels, likely driven by the high density of silicone-related industries and

strong industrial emissions.
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Figure 5. Atmospheric concentrations (ng/m?3) (A) and compositions (B) of $;VMS in six cities.

Halogenated hydrocarbons

In this study, 23 halogenated hydrocarbons (HHCs) were grouped as $23HHCs,
including 11  chlorinated  benzenes  (>11CBs), three  chlorotoluenes,
dichloronaphthalene, hexachlorocyclopentadiene, hexachloroethane,
bromobenzene, pentabromobenzene, 1-bromo-2-nitrobenzene, 1,3,5-
tribromobenzene, and two bromochlorobenzenes. Dhaka had the highest >,3HHCs

median concentration (32.0 ng/m?3, 2.18-67.9 ng/m?3), followed by Nairobi (22.0 ng/m3,
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11.6-26.7 ng/m?3), Kuala Lumpur (16.7 ng/m3, 9.84-28.4 ng/m3), Accra (6.22 ng/m3,
4.51-14.6 ng/m3), Guangzhou (6.60 ng/m?3, 1.29-19.1 ng/m3), and Islamabad (3.23
ng/m3, 1.61-4.76 ng/m3) (p < 0.05). Among these compounds, 511CBs accounted for
34-99% of the total $23HHCs, with concentrations ranging from 0.9 to 66.6 ng/m?3
(median: 5.08 ng/m?3) across six cities. Relatively high median concentrations of $11CBs
were found in Dhaka (31.4 ng/m3, 1.92-66.6 ng/m?3), Nairobi (21.3 ng/m3, 10.8-25.9
ng/m3) and Kuala Lumpur (16.3 ng/m3, 9.49-27.9 ng/m3).

1,4-Dichlorobenzene (1,4-DCB) was the dominant congener among Y23HHCs,
contributing 67 + 28% to the total, with concentrations ranging from 0.616 to 61.9
ng/m3 (median:4.17 ng/m3). The textile industry is a major component of Bangladesh’s
economy, accounting for about 82% of the country’s total export earnings as of
2018.82 CBs are extensively used as solvents and auxiliaries in the textile and dyeing
industries.®3 The elevated levels of $11CBs and 1,4-DCB concentrations in Dhaka are
likely attributable to its role as one of the world’s largest garment production hubs,
which hosts a highly concentrated textile industry that makes extensive use of dyes
and auxiliary chemicals. Moreover, Spearman correlation analysis (Table S11) showed
significant positive correlations among the 11 CBs across all cities (r = 0.384-1, p <

0.05), suggesting that these CBs may have similar sources.
Chlorinated Nitrobenzenes

Concentrations of 17 chlorinated nitrobenzenes (517CNBs), including isomers
containing one to four chlorine atoms, were measured (Figure 6), ranging from 40.6
to 657 pg/m3 (median:147 pg/m?3). The highest median concentration was observed
in Kuala Lumpur (528 pg/m3, 364-657 pg/m3), followed by Dhaka (252 pg/m?3, 129-430
pg/m3) and Accra (190 pg/m3, 57.1-540 pg/m3) (p < 0.05). Lower concentrations were
observed in Nairobi (127 pg/m?3, 45.6-257 pg/m3), Islamabad (123 pg/m?3, 48.0-270
pg/m3), and Guangzhou (117 pg/m?3, 40.6-283 pg/m3). The elevated CNB levels in Kuala
Lumpur are likely associated with emissions from its chemical, pharmaceutical,
electronics, and petrochemical industries, which release chlorinated byproducts
during manufacturing.?® In Dhaka, extensive use of dyes and auxiliaries in the textile
industry, along with high population density and traffic emissions, likely contribute to

its elevated CNBs concentrations.3> 84
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Moreover, nitrobenzenes substituted with one to three chlorine atoms were widely
detected in all samples (detection frequency: 41-100%), whereas 2,3,4,5-
tetrachloronitrobenzene was detected in only 3% of the samples. In all cities, the
composition of >17CNBs was dominated by mono-, di-, and trichlorinated
nitrobenzenes, indicating their prevalence in the urban atmosphere.
Dichloronitrobenzenes were the dominant congeners (51 + 22%), followed by
monochloronitrobenzenes (27 * 16%), trichloronitrobenzenes (20 * 12%), and
tetrachloronitrobenzenes (2 + 5%). Chlorinated nitrobenzenes primarily originate
from anthropogenic activities, serving as intermediates in the production of dyes,
pesticides, pharmaceuticals, and other organic chemical products, with negligible
contributions from natural sources.®* 8> Lower-chlorinated CNBs are more likely to
form than their higher-chlorinated counterparts, due to the nature of unintentional
emissions, which are largely driven by radical reactions in industrial or combustion
processes. This pattern aligns with the findings of this study, where lower chlorinated
nitrobenzenes were more prevalent in the air, whereas highly chlorinated derivatives
were far less abundant, reflecting differences in their formation dynamics and
emission characteristics. Such patterns are analogous to those of atmospheric PCB
distributions, where lighter congeners (e.g., PCB-11) are mainly associated with

unintentional emissions than heavier ones (e.g., PCB-138/153).8%
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Figure 6. Averaged gaseous concentrations of chloronitrobenzene isomers categorized by
degree of chlorination across six cities (pg/m?). Green bars represent seven
monochloronitrobenzenes, pink bars represent five dichloronitrobenzenes, brown bars
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represent three trichloronitrobenzenes, and dark gray bars represent two
tetrachloronitrobenzenes.

Influencing factors

To identify meteorological and socioeconomic factors influencing gaseous
concentrations of HV-POPs, we conducted Spearman’s correlation analysis between
chemical concentrations and environmental and socioeconomic variables. Although
Spearman’s correlation doesn’t account for collinearity among variables, it was
selected for its robustness to non-normality and small sample sizes, providing initial
insight into potential influencing factors. Relevant data were obtained from The World
Bank (https://data.worldbank.org.cn/) and the Guangzhou Statistical Bureau
(https://tjj.gz.gov.cn/datav/admin/home/www _nj/).>” Full results are presented in
Table S17 and S18. In Guangzhou, gaseous concentrations of several target
compounds exhibited significant correlations with ambient temperature. Specifically,
HCB, four HCH isomers, as well as D4 and D6, showed positive correlations with
temperature (r = 0.374-0.759, p < 0.05), which is consistent with nationwide
observations that higher temperatures enhance pollutant volatilization from local
sources.?” In contrast, HCBD and most halogenated hydrocarbons displayed strong
negative correlations with temperature (r = -0.384— -0.780, p < 0.05), likely due to
enhanced atmospheric degradation or increased dispersion under warmer conditions,
resulting in lower atmospheric concentrations. In the other five cities, fewer
significant correlations were observed (<5 compounds), which may reflect weaker
temperature-driven processes or variations in local environmental conditions. Across
all six cities, relative humidity and wind speed exhibited weak or non-significant
correlations with chemical concentrations (<6 compounds), suggesting that these

meteorological factors have limited influence on the distribution of HV-POPs.

Correlation results between HV-POPs concentrations and socioeconomic indicators,
including per capita GDP, total population, and national merchandise trade volume,
are summarized in Table S18. A significant positive correlation was found between
>7VMS and both total population (r = 0.545, p < 0.05) and merchandise trade volume
(r = 0.784, p < 0.05), suggesting that VMS concentrations are associated with PCP

usage and trade-related economic activity. Moreover, >23HHCs and Y17CNBs showed
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strong positive correlations with per capita GDP (r = 0.604-0.658, p < 0.01), suggesting
industrial activities and consumer behavior associated with higher income levels may

contribute to increased emissions of these pollutants.
Chemical Risk Assessment

Daily inhalation dose (ADDinn) of HV-POPs for adults (18-60 years old) in outdoor
environments was estimated using country-specific exposure parameters, including
inhalation rate, exposure time, exposure durations, and body weight. The average
ADDinn of total HV-POPs across all cities followed the order: Guangzhou (2 x 10*
pg/(kg-d)) > Kuala Lumpur (8 x 103 pg/(kg-d)) > Accra (6 x 10° pg/(kg-d)) > Dhaka (4 x
10° pg/(kg-d)) > Nairobi (3 x 103 pg/(kg-d)) > Islamabad (2 x 103 pg/(kg-d)), with
detailed results in Table S21. Guangzhou had the highest ADDinn for both >7VMS and
HCBD, with values 1 to 2 orders of magnitude higher than other cities. According to
the Scientific Committee on Consumer Safety of the European Commission, the
maximum total daily exposure to D4 and D5 across all cities were 4 x 10* and 1 x 10*
pg/(kg-d), respectively. These exposure levels are far below the chronic reference dose
(cRfD) of 1.5 x 108 pg/(kg-d),® suggesting that, despite the abundance of D4 and D5 in
the environment, current respiratory exposure levels are unlikely to pose significant
health risk. While not intended to quantify total personal exposure, this assessment
provides a preliminary perspective on ambient VMS levels and their potential

regulatory implications.

Non-carcinogenic risk results are presented in Table S22. The total hazard index (Hls)
for non-carcinogenic risks across cities ranged from 9 x 1077 to 7 x 107, indicating
negligible non-carcinogenic risks, as the HIs for 1,4-DCB, 1,2,4-TCB, HCCPD,
hexachloroethane, bromobenzene, and D5 were all below 0.01, further supporting
that inhalation exposure to these compounds at current concentrations poses

minimal non-carcinogenic health concerns.

Carcinogenic risk assessments were conducted for five compounds with available
inhalation unit risk (IUR) values, including HCB, HCBD, a-HCH, 8-HCH and y-HCH (Table
S23). Total carcinogenic risks across all cities were below 1078, ranging from 2 x 10~°
to 1 x 1077. Guangzhou exhibited the highest total carcinogenic risk (1 x 1077), mainly
contributed by HCBD (55%) and HCB (29%), while Accra showed the lowest total
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carcinogenic risk (2 x 107). In contrast, the remaining five cities exhibited carcinogenic
risks primarily driven by HCB, indicating that inhalation exposure to these HV-POPs
currently poses negligible carcinogenic risk. Compared with air samples collected from
the same site in Guangzhou in 2020, the estimated carcinogenic risks for HCB, a-HCH,
and B-HCH have decreased from potential levels (0.07x 10°-2.11 x 10®) to negligible
risks (6 x 10'11-3 x 10°8), reflecting the effectiveness of HCHs ban in China.®’” Notably,
only 10 compounds (representing 19% of the target analytes) had available IUR values
for quantitative risk assessment. As such, the cumulative health risks from HV-POPs
may be underestimated, particularly given that the majority of measured compounds
lack toxicity reference values. Additionally, the risk assessment was based on annual
mean concentrations, which may not capture short-term peak exposures near

emission sources.
Limitations and Environmental Implications

Despite increasing attention of HV-POPs, major challenges remain in fully
understanding their environmental behavior, exposure pathways, and health
risks.89 These challenges include the absence of dedicated and harmonized
analytical protocols across laboratories,®® which limits comparability across the
results of scattered case studies, and the lack of long-term and seasonally resolved
monitoring data, particularly in developing regions.’™ °2 In this study, short and
inconsistent sampling durations across sites may forfeit information on potential
seasonal variability and introduced uncertainty in spatial comparisons. The current
absence of reliable source profiles from relevant industrial emissions, as well as lack
of information on HV-POPs in products, also hinders a sound source diagnostic and

apportionment of HV-POPs in the atmosphere.

VMS, a representative class of HV-POPs, exemplify these knowledge gaps. Their
potential health impacts remain difficult to quantify due to the lack of inhalation
unit risk (IUR) data. It was suggested that oxidation products of VMS (e.g., silanols
and formates) may enhance secondary organic aerosol (SOA) formation from
personal care product emissions.’® SOA can elevate fine particle mass and oxidative
potential, exacerbating air pollution and posing health risks such as

cardiorespiratory diseases.’* * However, model-based evaluations indicate that
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the contribution of siloxanes to ambient SOA is relatively small,?® 7 and field-based
evidence supporting this pathway remains limited. Noteworthily, there might be
distinct regional variation in VMS congener profiles in various PCP formulations on

the global market, this will add more uncertainty to source diagnostics.

The observed elevated VMS concentrations in urban air underscore their
environmental relevance as a major component of HV-POPs. The widespread
presence highlights the necessity of including VMS in atmospheric chemicals
monitoring programs, and calls for regulatory awareness and assessment. For HCBD,
the high gas-phase concentrations align with its expected partitioning behavior, and
brings forth the limitations of particle-phase-only sampling strategies.® These
results emphasize the need for gas-phase-inclusive methods, such as the use of XAD
sorbent, to avoid underestimation of exposure and to improve the accuracy of

health risk assessment.

The detection of CNBs across multiple cities provides the first regional evidence of
their occurrence in ambient air. The frequent detection of low-chlorinated
congeners, combined with the limited availability of toxicological data, suggests the
need for further investigation into their potential health effects. Given their
persistence and volatility,3> CNBs may represent an overlooked component of
inhalation exposure in urban environments, particularly in regions where industrial

or combustion-related activities are widespread.

HV-POPs are prevalent in the gas phase due to their high volatility, however, their
partitioning into particles or other environmental media under cold, humid, or highly
polluted environments may not be absent in a comprehensive and careful risk
assessment. Addressing these broader knowledge gaps surrounding HV-POPs requires
coordinated efforts to develop standardized sampling and analytical protocols, and to
implement long-term monitoring.’® 9 Our active sampling dataset, across Asia and
Africa, provides direct observational evidence for the evaluation of HV-POPs under the
global chemicals management framework, which faces growing pressure to prioritize

chemicals posing the greatest global risks.?
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Supporting Information

Detailed sampling information, instrumental method, detection limits, HV-POPs

concentration summaries, comparison with literature, and additional results.
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