

Highly Volatile POPs in Urban Air across Asia and Africa: Dominance of Volatile Methylsiloxanes

3 Yuwei Xiao^{1,11}, Shizhen Zhao^{*1,2}, Weiru Wang^{1,11}, Kwadwo Ansong Asante³, Ahsan
4 Habib⁴, Chui Wei Bong^{5,6}, Jabir Hussain Syed⁷, Simion Bartolol⁸, Roland Weber⁹, Kevin
5 C. Jones¹⁰, Jun Li^{1,2}, Moses Njeru⁸, Gan Zhang^{1,2*}

6

⁷ ⁸ ¹ State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

9 ² Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and
10 Control and Guangdong Provincial Key Laboratory of Environmental Protection and
11 Resources Utilization, Guangzhou 510640, China

12 ³ CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana

13 ⁴ Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh

14 ⁵Laboratory of Microbial Ecology, Institute of Biological Sciences, University of Malaya,
15 50603, Kuala Lumpur, Malaysia

16 ⁶Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603,
17 Malaysia

18 ⁷ Department of Meteorology, COMSATS University Islamabad, Tarlai Kalan Park Road,
19 45550, Islamabad, Pakistan

20 ⁸ Institute of Nuclear Science and Technology, University of Nairobi, Nairobi 30197,
21 Kenya

²² ⁹ POPs Environmental Consulting, 73527 Schwäbisch Gmünd, Germany

²³ ¹⁰ Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

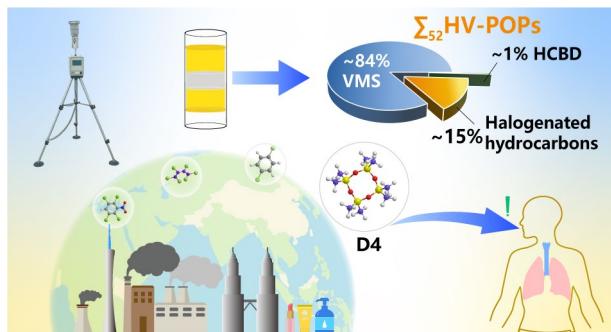
²⁴ ¹¹ University of Chinese Academy of Sciences, Beijing 100049, China

25 *Corresponding author:

26 Shizhen Zhao; Gan Zhang

27 Email: zhaoshizhen@gig.ac.cn; zhanggan@gig.ac.cn

28 **Abstract**


29 Highly volatile persistent organic pollutants (HV-POPs) are characterized by high
30 volatility, environmental persistence, bioaccumulative potential, toxicity, and ability
31 to long-range transport, posing environmental and health concerns. However,
32 research on HV-POPs remains limited, particularly in rapidly urbanizing regions,
33 constraining understanding of their sources, environmental fate and risks. This study
34 investigated 52 HV-POPs, including Stockholm Convention-listed POPs like
35 hexachlorobutadiene (HCBD) and hexa-/penta-chlorobenzene (HCB/PeCB), and non-
36 listed HV-POPs such as volatile methylsiloxanes (VMS) and chlorinated nitrobenzenes
37 (CNBs), using active air samplers in six major cities across Asia and Africa. The median
38 total concentrations of HV-POPs were highest in Guangzhou (351 ng/m³), followed by
39 Kuala Lumpur (167 ng/m³), Accra (82.4 ng/m³), Dhaka (73.3 ng/m³), Nairobi (44.9
40 ng/m³), and Islamabad (33.5 ng/m³). VMS dominated at all sites, accounting for 84 ±
41 18% of total HV-POPs, up to 2–5 orders of magnitude higher than other compounds.
42 Source analysis showed VMS emissions in Guangzhou were mainly from industrial
43 activities, while in the other cities from usage of personal care products. Inhalation
44 risk assessments indicated negligible non-carcinogenic and carcinogenic risks at all
45 sites. This study provides the first multi-regional HV-POP dataset in urban air,
46 supporting chemical risk assessment efforts and broader international regulatory
47 initiatives.

48 **Keywords**

49 Highly volatile Persistent Organic Pollutants (HV-POPs), Volatile Methylsiloxanes (VMS),
50 Hexachlorobutadiene, Urban Atmosphere, Risk Assessment, Active Air Sampling, Asia,
51 Africa

52 **Synopsis**

53 Global monitoring of highly volatile persistent organic pollutants (HV-POPs) in urban
54 atmosphere revealed the dominance of volatile methylsiloxanes (VMS).

57

58

59 **Introduction**

60 Persistent organic pollutants (POPs) have attracted global attention due to their
61 persistence, toxicity, bioaccumulative potential, and ability to undergo long-range
62 transport.¹ Among them, highly volatile POPs (HV-POPs) are POP-like chemicals with
63 high vapor pressures and environmental stability that remain poorly characterized.²
64 Representative HV-POPs include both regulated and non-regulated, such as
65 hexachlorobutadiene (HCBD), hexachlorocyclohexanes (α -, β -, and γ -HCH), volatile
66 methylsiloxanes (VMSs), halogenated hydrocarbons (HHCs), and chlorinated
67 nitrobenzenes (CNBs). The high volatility of HV-POPs facilitates frequent air–surface
68 exchange and widespread atmospheric occurrence, such that some of them have been
69 detected in air,³ water,⁴ and soil,⁵ and even in remote regions such as the poles,^{3, 6}
70 where they may persist and accumulate in biota.⁷ These properties and behaviors
71 underscore the global environmental significance of HV-POPs, and present major
72 challenges for accurate monitoring and comprehensive risk assessment.

73 HCBD, listed under the Stockholm Convention in 2015, is nephrotoxic, highly
74 persistent (atmospheric half-life up to 14 months) and bioaccumulative.^{3, 8, 9} Despite
75 production bans, it continues releasing unintentionally from organochlorine industry
76 and thermal processes,¹⁰ with atmospheric concentrations in proximity to emission
77 sources often exceeding occupational exposure limits.¹¹ It has been widely detected
78 in air,¹²⁻¹⁴ water,¹⁵ soils,⁸ sewage sludge,⁴ and even polar regions.^{3, 6, 16} VMSs, widely-
79 used in personal care products (PCPs) and industrial applications, are high-production-
80 volume chemicals¹⁷⁻¹⁹ with annual global output exceeding 7 million tonnes²⁰ and are
81 currently under regulatory evaluation in the European Union.^{21, 22} The major VMS
82 congeners, octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5),
83 and dodecamethylcyclohexasiloxane (D6) show considerable high environmental
84 persistence (air: 6-21 days; water, soil and sediment: 3-3000 days) and notable
85 bioaccumulation potential (vPvB).²³ Their high volatility leads to widespread
86 atmospheric occurrence,^{19, 24-26} and elevated exposure has been linked to hepatic,
87 endocrine, and neurotoxic effects.^{27, 28} HHCs and CNBs, used in dye, pesticide, and
88 chemical manufacturing, pose environmental and health concerns due to their

89 persistence and neurotoxicity.^{29, 30, 31} CNBs are particularly long-lived; for example,
90 tetrachloronitrobenzene has an atmospheric half-life of up to 6.1 years.³²

91 Globally, there has been an apparent monitoring data gap of many HV-POPs in the
92 atmosphere, largely owing to limitations in sampling and analytical techniques. In
93 particular, the use of the widely-used polyurethane foam (PUF) as a sampling
94 absorbent may lead to underestimations of the concentrations of HV-POPs, due to
95 breakthrough effects, especially in warm climates or highly contaminated sites.^{3, 33}

96 Data gaps are especially pronounced in developing countries, where industrialization
97 often occurs rapidly but with less concerns on chemical pollution and environmental
98 quality. Here, we conducted active air sampling using PUF/XAD/PUF cartridge in six
99 megacities across Asia and Africa during 2022–2023, aiming to: (1) characterize the
100 concentrations, composition, and spatial distribution of 52 HV-POPs in urban
101 atmosphere, including Stockholm Convention-listed POPs (e.g., HCBD, HCHs and
102 pentachlorobenzene (PeCB)) and non-listed POPs (e.g., VMS, HHCs, and CNBs); (2)
103 identify key emission sources and influencing factors of HV-POPs in these urban areas;
104 and (3) assess their potential inhalation health risks. This study provides a global cross-
105 sectional dataset on HV-POPs in urban air, addressing key monitoring gaps under the
106 Stockholm Convention’s Global Monitoring Plan (GMP) and supporting evidence-
107 based global chemical management.

108 **Materials and Methods**

109 **Sampling Campaign**

110 During 2022-2023, active air sampling campaigns were conducted in six megacities
111 across Asia and Africa: Guangzhou (China), Accra (Ghana), Dhaka (Bangladesh), Kuala
112 Lumpur (Malaysia), Islamabad (Pakistan), and Nairobi (Kenya). All six countries are
113 participants in the United Nations Environment Programme-Global Environment
114 Facility (UNEP-GEF) Global Monitoring Plan (GMP) projects and are signatories to the
115 Stockholm Convention. Sampling was conducted at urban sites characterized by
116 intense, mixed-source atmospheric pollution, representing diverse urban air pollution
117 scenarios. Detailed site descriptions are available in [Table S1](#).

118 The four Asian megacities represent a range of urban pollution sources and climatic
119 conditions. Guangzhou is a manufacturing hub with high industrial emissions under a
120 subtropical monsoon climate.³⁴ Dhaka, one of the world's most densely populated
121 cities, is affected by both local emissions and regional pollutant transport.³⁵ Kuala
122 Lumpur is influenced by motor vehicle exhaust and seasonal biomass burning,³⁶ while
123 Islamabad is impacted by domestic heating and agricultural combustion.³⁷ In contrast,
124 the two African cities are dominated by emissions from e-waste activities. Accra is a
125 known hotspot for informal e-waste and solid waste burning as well as emissions from
126 vehicle exhaust,³⁸ and Nairobi, a high-altitude city, is affected by open burning and
127 unregulated waste recycling in informal settlements.³⁹

128 In this study, we deployed high-volume active air samplers (100 L/min, TH-150H,
129 Tianhong Instruments, Wuhan, China) equipped with Whatman quartz fiber filters
130 (QFFs; 203 × 254 mm; GE Healthcare Bio-Sciences, Pittsburgh, PA) to collect particle-
131 phase compounds and PUF/XAD/PUF sandwich cartridges to collect gas-phase
132 compounds. The cartridge consisted of two polyurethane foam plugs (PUFs; 65 mm
133 diameter, 35 mm height, 0.03 g/cm³ density) and approximately 10 g polystyrene
134 adsorbent resin (XAD). Although particle-phase samples were collected, this study
135 focuses exclusively on the analysis of gas-phase HV-POPs. A total of 78 air samples
136 were collected, including 29 from Guangzhou, 9 from Dhaka and 10 each from the
137 remaining four cities. Before sampling, PUF plugs and XAD resin were precleaned with
138 acetone and dichloromethane. Detailed sampling protocol and sampling volume
139 calibration, site information, and training materials are provided in [Text S1](#), [Table S2](#)
140 and [Figure S1](#).

141 **Sample Pretreatment and Analysis**

142 The sample pretreatment and analytical methods employed in this study were
143 adapted and optimized from previously established protocols by our research group
144 in earlier work.^{34, 40} Detailed procedures are described in [Text S2](#). Each PUF/XAD/PUF
145 sandwich was spiked with ¹³C-labeled hexachlorobutadiene (¹³C-HCBD), 1,4-
146 dichlorobenzene-[D4], ¹³C-labeled decamethylcyclopentasiloxane (¹³C-D5), and ¹³C-
147 labeled hexachlorobenzene (¹³C-HCB) as recovery surrogates, and extracted for 24 h
148 in a Soxhlet apparatus using dichloromethane (DCM)/acetone (ACE) (1:1, v/v). The

149 extracts were concentrated via rotary evaporation, purified by using a multilayer
150 neutral silica gel column, and further concentrated under gentle nitrogen blowdown.
151 Hexamethylbenzene was added as an internal standard before instrumental analysis.
152 Samples were analyzed using an Agilent 7890B gas chromatograph coupled with a
153 7000A triple-quadrupole mass spectrometer (GC–MS/MS) equipped with a DB-5MS UI
154 column (60 m × 0.25 mm × 0.25 μm) operating in a multiple reaction monitoring
155 (MRM) mode. Information on the 52 target compounds, including physicochemical
156 properties, is detailed in [Table S3](#). The instrumental analysis, precursor/product ions
157 and retention times are provided in [Text S3](#) and [Figure S2](#).

158 **Quality Assurance and Quality Control**

159 Quality assurance and quality control (QA/QC) measures included the analysis of field
160 blanks, procedural blanks, and surrogate spiked recoveries. Detailed QA/QC protocols
161 are provided in [Text S4](#). Only four cVMSs were detected in field blanks, while no target
162 analytes were found in procedural blanks. The method detection limit (MDLs) and the
163 instrument detection limit (IDLs) for all analytes ranged from 0.02–631 pg/m³ and
164 0.00–0.92 ng, respectively ([Table S5](#)). The average recoveries for ¹³C-HCBD, 1,4-
165 dichlorobenzene-[D4], ¹³C-D5, and ¹³C-HCB were 74 ± 19%, 79 ± 20%, 65 ± 17%, and
166 72 ± 20%, respectively. All reported concentration data were corrected based on
167 surrogate recoveries and blank subtraction. A breakthrough test indicated that losses
168 to the bottom PUF were minimal, with an average rate of 5% ± 6%, confirming the
169 effectiveness of the cartridge in capturing gas-phase HV-POPs ([Table S6](#)).⁴¹ To strictly
170 control VMS contamination, we have implemented several measures, with details in
171 [Text S4](#). To better evaluate the stability of the experimental results, duplicate analyses
172 of three representative samples under identical conditions showed high consistency
173 (slope=1.1, r²=0.98), as shown in [Figure S3](#). Solvent blank spiking, matrix spike
174 recoveries for both PUF and XAD phases, and routine procedural blanks further
175 validated the reliability of the method.

176 **Health Risk Assessment**

177 Inhalation dose, carcinogenic and non-carcinogenic risks for each sampling city were
178 calculated using pollutant concentrations obtained from this study and country-
179 specific exposure parameters.⁴²⁻⁵⁰ Details of the calculation methods and selected

180 exposure parameters for each country are provided in [Text S5](#) and [Table S19](#). The
181 average daily inhalation dose (ADD_{inh}) was calculated as:

182

$$\text{ADD}_{\text{inh}} = \frac{\text{CA} \times \text{IR} \times \text{ET} \times \text{EF} \times \text{ED}}{\text{BW} \times \text{AT}} \quad (1)$$

183 where ADD_{inh} represents the daily inhalation dose (mg/(kg·d)); CA is the concentration
184 of target compound (mg/m³); IR is the inhalation rate (m³/h); ET is the daily exposure
185 time (h/day), EF is the exposure frequency (days/year); ED is the sum of the exposure
186 durations for all events (years); BW is the body weight (kg) and AT is the averaging
187 time for exposure (days), calculated as ED multiplied by 365 days.

188 Carcinogenic risk (Risk) through inhalation is calculated as:

189

$$\text{Risk} = \text{EC}_{\text{inh}} \times \text{IUR} \quad (2)$$

190

$$\text{EC}_{\text{inh}} = (\text{CA} \times \text{ET} \times \text{EF} \times \text{ED}) / \text{AT} \quad (3)$$

191 where EC_{inh} is the inhalation exposure concentration (mg/m³) and IUR is the inhalation
192 unit risk (μg/m³)⁻¹.

193 Non-carcinogenic risks were evaluated using the hazard quotient (HQ_{inh}) and hazard
194 index (HI), calculated as:

195

$$\text{HQ}_{\text{inh}} = \frac{\text{EC}_{\text{inh}}}{\text{Rfc} \times 1000 \text{ } \mu\text{g/mg}} \quad (4)$$

196

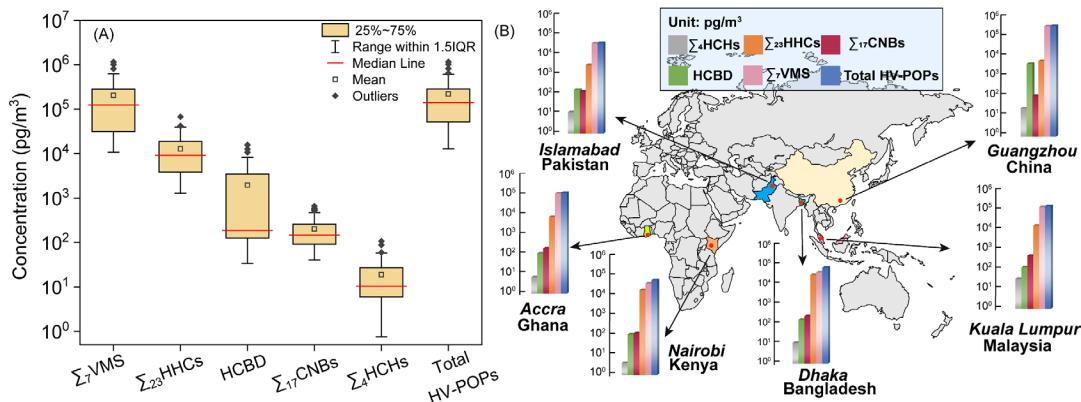
$$\text{HI} = \sum \text{HQ}_{\text{inh}} \quad (5)$$

197 where HQ_{inh} represents the non-carcinogenic hazard quotient, Rfc is the reference
198 concentration (mg/m³), and HI is the hazard index. Other parameters are the same as
199 above.

200 **Statistical Analysis**

201 All data analyses were performed using R software (version 4.1.0). To assess the
202 normality of data while considering the small sample size (N=79), we examined both
203 original and log-transformed concentration data across different sampling sites using
204 the Shapiro-Wilk test.⁵¹ As not all data conformed to a normal distribution, we

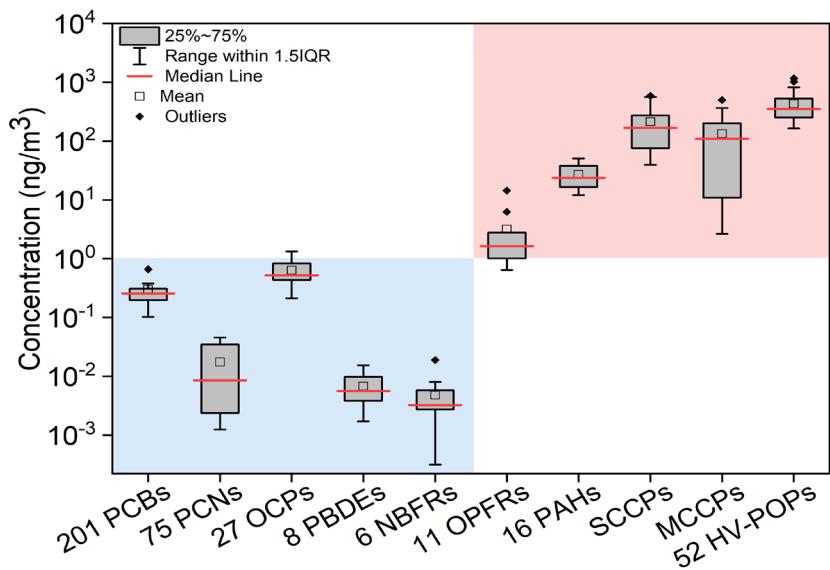
205 employed non-parametric tests (Kruskal-Wallis test) to evaluate significant
206 differences between groups. All samples were assumed to be independent in our
207 analysis. Spearman's correlation was used to explore relationships between variables.
208 A *p*-value < 0.05 was considered statistically significant. Further details on data
209 distribution characteristics, sample independence assessment, and Spearman's
210 correlation analysis are provided in [Text S6](#).


211 **Results and Discussion**

212 **General Profile of HV-POPs**

213 The gaseous and particulate phase concentrations of 52 HV-POPs measured in 78
214 urban air samples from six cities are summarized in Table S7 and Table S8. Total
215 concentrations ranged from 1.52×10^4 to 1.17×10^6 pg/m³ (gas phase: 1.30×10^4 - 1.17
216 $\times 10^6$ pg/m³ ([Figure 1](#)), particle phase: 746 - 1.80×10^4 pg/m³). The gaseous phase
217 accounted for $96 \pm 4\%$ of the total concentration, indicating that HV-POPs were
218 overwhelmingly present in the gas phase; therefore, only gaseous concentrations are
219 further discussed. Median gaseous concentrations were highest in Guangzhou ($3.51 \times$
220 pg/m³, 1.65×10^5 - 1.17×10^6 pg/m³), followed by Kuala Lumpur (1.67×10^5 pg/m³,
221 1.28×10^5 - 2.57×10^5 pg/m³), Accra (8.24×10^4 pg/m³, 2.54×10^4 - 4.44×10^5 pg/m³),
222 Dhaka (7.33×10^4 pg/m³, 1.30×10^4 - 1.39×10^5 pg/m³), Nairobi (4.49×10^4 pg/m³, 3.25
223 $\times 10^4$ - 2.61×10^5 pg/m³), and Islamabad (3.35×10^4 pg/m³, 2.47×10^4 - 1.15×10^5 pg/m³),
224 indicating significant regional variability.

225 Based on structural characteristics, the 52 HV-POPs were categorized into five groups:
226 HCBD, $\sum_{23}\text{HHCs}$, $\sum_7\text{VMS}$, $\sum_{17}\text{CNBs}$, and $\sum_4\text{HCHs}$. To avoid misclassification, HCBD was
227 considered separately from $\sum_{23}\text{HHCs}$ because it is listed as a restricted POP under the
228 Stockholm Convention, whereas the other halogenated hydrocarbons remain
229 unregulated. The median concentration of HCBD was 187 pg/m³ (33.7 - 1.57×10^4
230 pg/m³), while the concentrations of other HV-POPs were ranked as follows: $\sum_7\text{VMS}$
231 (1.26×10^5 pg/m³, 1.07×10^4 - 1.16×10^6 pg/m³) $\gg \sum_{23}\text{HHCs}$ (9.20×10^3 pg/m³, $1.29 \times$
232 10^3 - 6.79×10^4 pg/m³) $> \sum_{17}\text{CNBs}$ (147 pg/m³, 40.6 - 657 pg/m³) $> \sum_4\text{HCHs}$ (10.4 pg/m³,
233 0.747 - 107 pg/m³). $\sum_7\text{VMS}$ accounted for $84 \pm 18\%$ of the total HV-POPs concentrations,
234 and together with $\sum_{23}\text{HHCs}$, they contributed approximately $99 \pm 1\%$, highlighting their


235 dominance in the urban atmosphere. Detection rates of individual HV-POPs across all
 236 samples ranged from 13 to 100%, with 46-49 compounds detected in over 50% of
 237 samples, and 26-38 compounds present in all samples.

238
 239 **Figure 1.** (A) Composition and gaseous concentration (pg/m³) of total HV-POPs in 78 urban
 240 air samples. (B) Spatial profiles of HV-POPs ($\Sigma_7\text{VMS}$, $\Sigma_{23}\text{HHCs}$, HCBD, $\Sigma_{17}\text{CNBs}$ and $\Sigma_4\text{HCHs}$) at
 241 six sampling sites across Asia and Africa. The figure (B) was modified on the base map of
 242 China sourced form “MAP WORLD” (<https://www.tianditu.gov.cn/>).

243 Comparison of HV-POPs and other air pollutants in Guangzhou

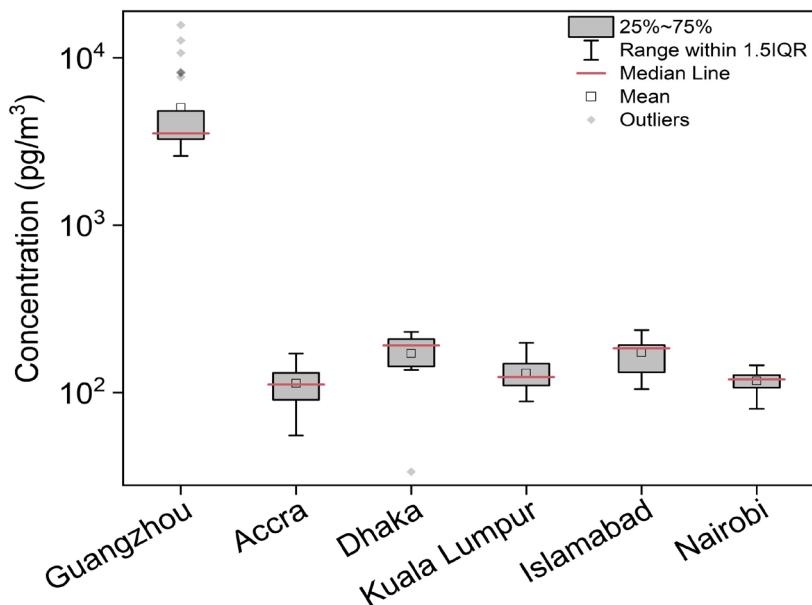
244 To better understand the importance of HV-POPs relative to other POPs, we compared
 245 HV-POPs concentrations with other air pollutants' data from the same sampling site
 246 in Guangzhou (Figure 2 and Text S7).^{34, 52} HV-POPs were higher than all other analyzed
 247 POPs, accounting for approximately 50% of the total measured compounds. Other
 248 notable POP groups, in descending order of median concentration, included short-
 249 chain chlorinated paraffins (SCCPs: 168 ng/m³, 39.3-589 ng/m³), medium-chain
 250 chlorinated paraffins (MCCPs: 109 ng/m³, 2.65-497 ng/m³), polycyclic aromatic
 251 hydrocarbons (PAHs: 23.6 ng/m³, 12.0-50.4 ng/m³) and organophosphate flame
 252 retardants (OPFRs: 1.64 ng/m³, 0.638-14.4 ng/m³). In contrast, legacy POPs, such as
 253 polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs),
 254 organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs) and novel
 255 brominated flame retardants (NBFRs) showed much lower concentrations (3.13×10^{-3}
 256 ng/m³-1.32 ng/m³), predominantly at the pg/m³ to ng/m³ level. Notably, the mean
 257 HV-POPs concentration was more than twice that of SCCPs and MCCPs, highlighting
 258 their dominance in urban air.

259

260 **Figure 2.** Comparison of the concentrations (ng/m³) of various pollutants in the gas phase at
 261 the same sampling site in Guangzhou. Pollutants include: 201 polychlorinated biphenyls
 262 (PCBs), 75 polychlorinated naphthalenes (PCNs), 27 organochlorine pesticides (OCPs), 8
 263 polybrominated diphenyl ethers (PBDEs), 6 novel brominated flame retardants (NBFRs), 11
 264 organophosphate flame retardants (OPFRs), 16 polycyclic aromatic hydrocarbons (PAHs),
 265 short-chain chlorinated paraffins (SCCPs), medium-chain chlorinated paraffins (MCCPs), and
 266 52 HV-POPs.

267 **Stockholm Convention-listed HV-POPs**

268 ***Hexachlorobutadiene***


269 Figure 3 shows the concentrations of HCBD across cities ($p < 0.05$), with median
 270 concentrations as follows: Guangzhou (3,540 pg/m³, 2,590-15,700 pg/m³) \gg Dhaka
 271 (192 pg/m³, 33.7-231 pg/m³) $>$ Islamabad (184 pg/m³, 105-236 pg/m³) $>$ Kuala Lumpur
 272 (124 pg/m³, 88.06-198 pg/m³) $>$ Nairobi (120 pg/m³, 79.9-146 pg/m³) $>$ Accra (112
 273 pg/m³, 55.5-171 pg/m³). HCBD concentrations in Guangzhou were approximately 30-
 274 40 times higher than those in other cities, suggesting significant unintentional
 275 emissions from local sources. Current sources of HCBD in the atmosphere include its
 276 production as a commercial chemical and unintentional emissions from industrial
 277 activities such as chemical production, metal smelting, waste incineration and
 278 landfills.^{53, 54} Among the studied countries, only China has enforced a complete ban
 279 (production, use, and trade) on HCBD since 2023, while other countries have yet not
 280 announced specific regulatory measures or policies.⁵⁵ This suggests that unintentional

281 emissions are likely the dominant atmospheric source of HCBD in China, posing
282 significant challenges for effective control under current regulations.

283 Moreover, chlorinated chemical manufacturing remains the primary unintentional
284 HCBD source.⁷ High concentrations of HCBD have been detected near chlor-alkali
285 production facilities. For example, in 2015, HCBD concentrations of 1170 µg/m³ and
286 5530 µg/m³ were measured near a tetrachloroethylene production facility in China.⁵⁶
287 Similarly, in 2018, concentrations of 0.21 µg/m³ were detected near a chlor-alkali plant
288 in Catalonia, Spain.¹⁴ Guangzhou is one of China's seven major petrochemical
289 industrial bases, with 698 petrochemical enterprises producing approximately
290 240,000 tons of chemical reagents and 930,000 tons of coatings annually (as of
291 2022).⁵⁷ Consequently, intensive petrochemical industries likely contribute to the
292 elevated HCBD concentrations found in the air samples. Furthermore, the ratio
293 between maximum to minimum HCBD concentrations in each city ranged from 1.8 to
294 6.9, indicating relatively low variability across the cities.

295 A comparison of HCBD concentrations obtained in this study with other active and
296 passive air sampling (PAS) studies is presented in [Table S13](#). Atmospheric HCBD
297 concentrations in all six cities exceeded those reported from the Arctic,³ where active
298 sampling using PUFs was conducted (<0.37–21 pg/m³), indicating that urban areas
299 exhibit significantly elevated HCBD levels relative to remote areas far from industrial
300 emissions. In contrast, HCBD concentrations in Guangzhou in this study were
301 significantly lower than those previously reported in other Chinese cities (<0.05–9.55
302 µg/m³),¹³ likely due to the differences in sampling and analytical methods.

303 Previous studies on atmospheric HCBD primarily employed active sampling methods
304 such as Summa canister, Tenax-TA adsorbent tubes, and activated charcoal ([Table](#)
305 [S13](#)).^{12, 16, 58} Summa canisters, however, are susceptible to storage conditions, pre-
306 cleaning procedures, and internal gas concentrations, resulting in relatively high
307 detection limit (typically ~2 µg/m³),⁵⁹ considerably higher than the detection limit
308 achieved with PUF/XAD/PUF cartridges in this study (17.9 pg/m³). Thus, the sampling
309 method used here offers improved sensitivity and accuracy for quantifying trace-level
310 HCBD concentrations.

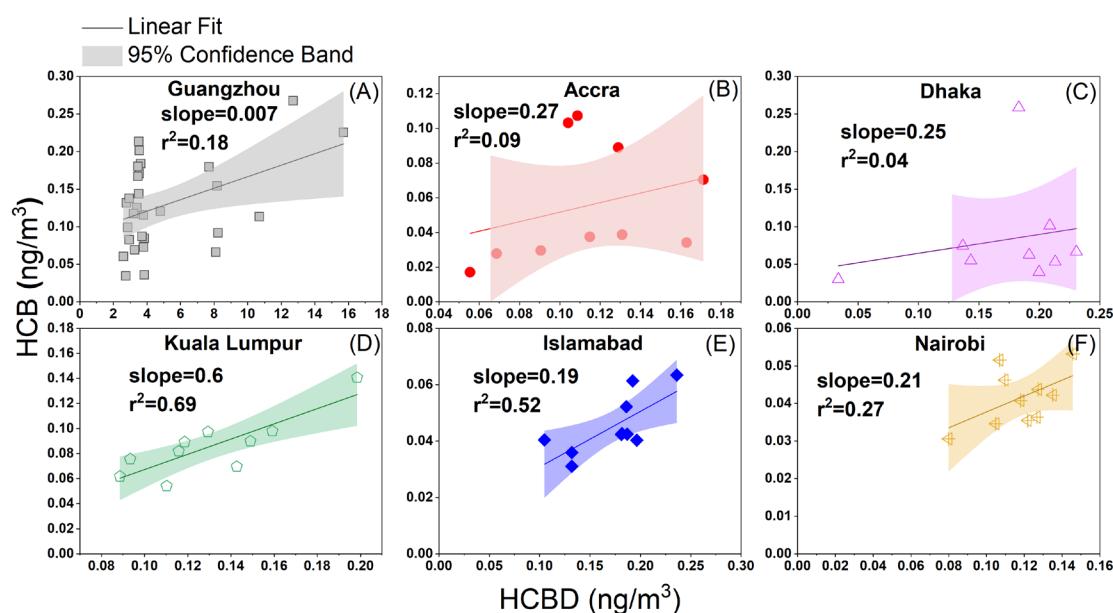
311

312

Figure 3. Box plot of HCBD concentrations (pg/m³) in urban air across six cities.

313 ***Hexachlorobenzene and Pentachlorobenzene***

314 Concentrations of hexachlorobenzene (HCB) and pentachlorobenzene (PeCB)
 315 measured via active air sampling and passive air sampling are summarized in [Tables](#)
 316 [S14](#) and [S15](#). Among the six cities, median concentrations of PeCB were highest in
 317 Dhaka (99.2 pg/m³, 37.7-442 pg/m³), followed by Guangzhou (90.4 pg/m³, 29.1-216
 318 pg/m³), Kuala Lumpur (54.8 pg/m³, 36.0-123 pg/m³), Nairobi (43.8 pg/m³, 22.5-56.4
 319 pg/m³), Accra (36.5 pg/m³, 14.1-83.5 pg/m³), and Islamabad (31.7 pg/m³, 17.7-44.8
 320 pg/m³) ($p < 0.05$). These concentrations are broadly consistent with global active
 321 sampling datasets, where typical urban PeCB concentrations range 20 to 80 pg/m³,
 322 similar to levels reported in Beijing (75.8 ± 66.5 pg/m³), Yantai (39.8 ± 29.5 pg/m³),
 323 and Kuwait (24.6 ± 24.1 pg/m³).^{60, 61} For passive air sampling, urban and agricultural
 324 sites in the Latin American and Caribbean Group (GRULAC) region exhibited higher
 325 PeCB levels (39 to 146 pg/m³).⁶² PeCB concentrations in Ghana appear to show an
 326 upward trend, as earlier studies reported lower concentrations, including 15 pg/m³ at
 327 a background site, 9 pg/m³ at an urban site, and 10 pg/m³ at a suburban site.³⁸


328 The median concentrations of HCB among the six cities were ranked as follows:
 329 Guangzhou (121 pg/m³, 34.6-268 pg/m³) > Kuala Lumpur (85.6 pg/m³, 54.0-141
 330 pg/m³) > Dhaka (62.7 pg/m³, 30.1-259 pg/m³) > Islamabad (42.4 pg/m³, 31.1-63.4
 331 pg/m³) > Nairobi (41.5 pg/m³, 30.6-53.2 pg/m³) > Accra (38.1 pg/m³, 17.0-107 pg/m³)

332 ($p < 0.05$). In Guangzhou, HCB concentrations was 2-3 times higher than levels
333 measured at the same sampling site in 2018 (8.65–132 pg/m³).³⁴ Globally, HCB
334 concentrations in the Asian and African cities (17.0–268 pg/m³) were slightly higher
335 than those in Europe (15.8–74.7 pg/m³).⁶³

336 PeCB and HCB were detected in all samples and showed a significant positive
337 correlation ($r = 0.709–1$, $p < 0.01$), suggesting potential shared industrial sources or
338 emission pathways. Similarly, Spearman's correlation analysis (Table S10) revealed a
339 strong correlation between HCBD and ten other chlorinated benzenes, excluding HCB,
340 in Guangzhou ($r = 0.471–0.780$, $p < 0.01$). These findings support the hypothesis that
341 HCBD and chlorinated benzenes (CBs) likely originate from similar industrial activities,
342 particularly as unintentional byproducts of chemical production. However, regulatory
343 frameworks for HCBD vary across regions, which may influence emission profiles and
344 control measures.

345 Regional correlations between HCBD and HCB (Figure 4) provide additional insights
346 into potential emission sources. HCBD has never been intentionally produced in China,
347 but is known to be generated as a byproduct of industrial processes, particularly the
348 production of trichloroethylene and perchloroethylene, making it a useful indicator of
349 unintentional emissions.⁵³ While all the studied countries have banned the use of HCB,
350 regulatory measures for HCBD remain inconsistent, contributing to regional
351 differences in its occurrence and distribution. However, existing bans do not
352 necessarily eliminate emissions. While the production and use of HCB have ceased in
353 past decades, it is crucial not to ignore its unintentional release as a byproduct of
354 incomplete combustion or chlorinated chemical manufacturing process.⁶⁴ Moreover,
355 a comprehensive evaluation of existing bans necessitates considering their
356 enforcement mechanisms, the impact of legacy contamination, and potential gaps in
357 emission inventories or trade monitoring. Although comprehensive national emission
358 estimates are not yet available for all studied compounds, integrating governmental
359 or independently derived emission data into future work will be of high value. Given
360 these complexities, exploring the relationship between HCBD and HCB may provide
361 valuable insights into the potential sources. Significant positive Spearman correlations
362 between HCBD and HCB were observed in Kuala Lumpur ($r = 0.806$, $p < 0.01$) and
363 Islamabad ($r = 0.636$, $p < 0.05$), suggesting shared sources or similar environmental

364 behaviors in these cities. In contrast, no significant correlation was observed in
 365 Guangzhou, possibly due to more complex industrial inputs or seasonal variability
 366 related to monsoonal influence in the Pearl River Delta region. Weaker correlations
 367 were also observed in Accra, Dhaka, and Nairobi, where incomplete HCBD bans remain
 368 in effect, and more diverse source contributions may lead to varied atmospheric
 369 distributions. These findings highlight HCBD's potential as a marker of unintentional
 370 emissions, especially in regions with diverse industrial sources and inconsistent
 371 regulatory controls.

372
 373 **Figure 4.** Correlations between HCBD and HCB concentrations in six cities: (A) Guangzhou,
 374 (B) Accra, (C) Dhaka, (D) Kuala Lumpur, (E) Islamabad, and (F) Nairobi.

375 **Hexachlorocyclohexanes**

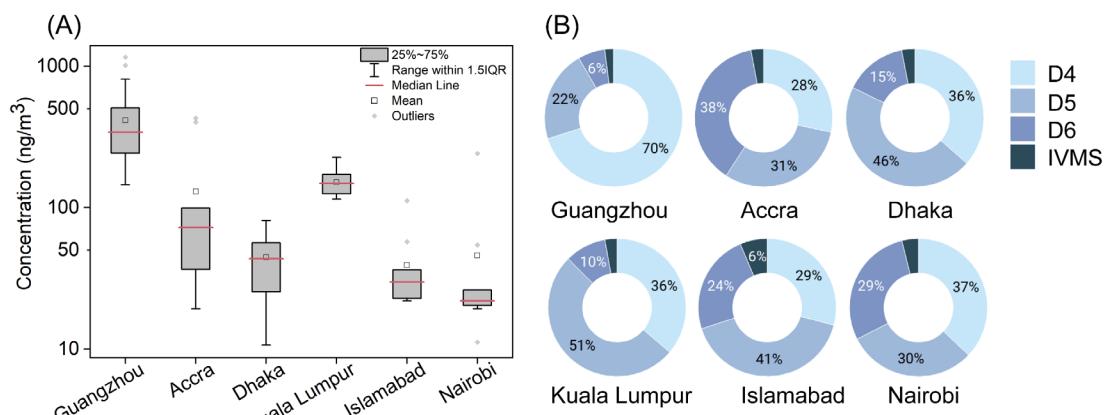
376 Additional data on hexachlorocyclohexane (HCHs) measured by active and passive air
 377 sampling were presented in [Table S16](#). The detection rates of the four HCH isomers in
 378 all samples ranged from 68 to 95%. Total HCH concentrations (Σ_4 HCHs) were ranged
 379 from 0.747 to 107 pg/m³ with a median concentration of 10.4 pg/m³, following the
 380 order: Kuala Lumpur (32.8 pg/m³, 24.7-42.5 pg/m³) > Guangzhou (19.2 pg/m³, 1.94-
 381 107 pg/m³) > Islamabad (12.0 pg/m³, 8.89-16.9 pg/m³) > Dhaka (9.88 pg/m³, 5.09-24.3
 382 pg/m³) > Accra (6.98 pg/m³, 2.42-10.3 pg/m³) > Nairobi (4.32 pg/m³, 0.747-7.38
 383 pg/m³) ($p < 0.05$). In Nairobi, the γ -HCH concentration in the urban atmosphere was
 384 found to be nearly 67 times lower than that measured in an industrial area in 2017.³⁹

385 Moreover, δ -HCH concentrations reported in this study are at a moderate level
386 compared to rural area in Ghana, whereas α -HCH, β -HCH, and γ -HCH concentrations
387 were significantly lower than those recorded in background and suburban area of
388 Ghana in 2008.³⁸

389 α -HCH was the dominant isomer ($56 \pm 21\%$) in Guangzhou, whereas γ -HCH
390 predominated in Kuala Lumpur ($72 \pm 14\%$), Accra ($47 \pm 19\%$), Dhaka ($51 \pm 10\%$), and
391 Nairobi ($55 \pm 24\%$). In Islamabad, the proportions of α -HCH, β -HCH, and γ -HCH were
392 approximately equal. Variations in HCH isomer composition reflect source differences,
393 which can be evaluated using the α -/ γ -HCH ratio, a commonly used diagnostic
394 indicator for source identification. A ratio of α -/ γ -HCH closer to 1 typically indicates
395 the recent or ongoing use of lindane. In contrast, a higher ratio—often exceeding 7—
396 can suggest the influence of long-range atmospheric transport (LRAT), since α -HCH is
397 more volatile and has greater LRAT capacity,⁶⁵ while γ -HCH degrades faster in the
398 atmosphere and can photochemically convert to α -HCH.⁶⁶ The α -/ γ -HCH ratio in five
399 cities ranged from 0.1 to 2, indicating the potential ongoing use of lindane, while the
400 much higher ratio observed in Guangzhou (1.0–22) indicates a stronger influence of
401 LRAT. Compared to monitoring data from the same sampling site in Guangzhou in
402 2018 ($51 \pm 20 \text{ pg/m}^3$, α -/ γ -HCH ratio: 0.3–3.5),⁶⁷ $\sum_4 \text{HCHs}$ concentrations have declined,
403 with a notable increase in the α -/ γ -HCH ratio. This provides further evidence that,
404 following the ban on HCHs, atmospheric HCH inputs in Guangzhou are now primarily
405 driven by long-range transport.

406 **Non-listed HV-POPs**

407 ***Volatile Methylsiloxanes***


408 In this study, $\sum_7 \text{VMS}$ refers to three linear volatile methylsiloxanes (IVMS: L3, L4, L5)
409 and four cyclic volatile methylsiloxanes (cVMS: D3, D4, D5, D6). All seven VMS
410 compounds were detected in 99% samples, indicating their ubiquitous presence in the
411 urban atmosphere. $\sum_7 \text{VMS}$ concentrations ranged from 10.7 to 1,160 ng/m^3 , with a
412 median of 126 ng/m^3 (Figure 5), cyclic VMS dominated, accounting for over 98% of
413 $\sum_7 \text{VMS}$ concentration on average. In comparison, $\sum_3 \text{IVMS}$ concentrations ranged from
414 0.241 to 8.95 ng/m^3 (median: 1.13 ng/m^3), with L4 as the dominant congener (60%),
415 followed by L5 (30%). Among all cities, Guangzhou had the highest $\sum_7 \text{VMS}$

416 concentration (341 ng/m³, 145–1160 ng/m³), which was 2 to 9 times higher than other
417 cities ($p < 0.05$).

418 D5 was the dominant congener in Kuala Lumpur (51%), Dhaka (46%), and Islamabad
419 (41%), while D6 predominated in Accra (38%). Nairobi showed a more balanced
420 composition, with similar proportion of D4, D5 and D6. Uniquely, D4 was the dominant
421 congener in Guangzhou (70%), significantly higher than that in other cities. This
422 pattern contrasts sharply with previous studies conducted in Chicago, New York, and
423 southern Saitama, Japan, where D5 was consistently dominated (>50%).^{68–70} Moreover,
424 the average D5/D4 ratio in Guangzhou was 0.33, while the average ratios for other
425 five cities were all greater than 1.2. Given that all sampling sites were urban sites, and
426 D5 has a shorter half-life than D4, these inter-city differences in VMS composition
427 reflect variations in emission sources. Major urban sources of VMS include silicone
428 polymer manufacturing and the use of personal care products (PCPs) like shampoos,
429 moisturizers, and body washes.^{68, 71} D5 is the dominant congener used in PCPs,
430 accounting for approximately 25% of its total global production.^{72, 73} In contrast, less
431 than 5% of D4 production is used in PCPs.⁷³ However, elevated concentrations and
432 proportions of D4 have been detected in air samples near siloxane manufacturing
433 facilities,⁷¹ indicating its substantial use or production in industrial processes. These
434 findings imply that a D4-dominated VMS profile may be characteristic of areas
435 influenced by industrial sources, rather than consumer product use.

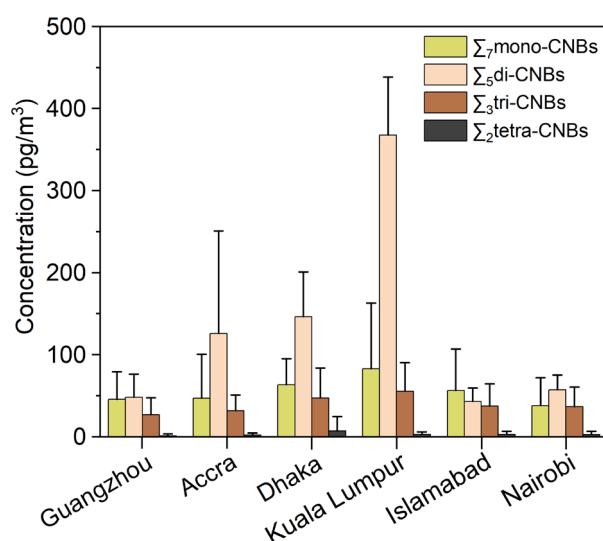
436 China is the world's largest producer of silicon and the second-largest cosmetic
437 consumer market, with an annual organosilicon output reaching 6 million tons by
438 2022.^{74, 75} Guangzhou is a major hub for silicone manufacturing, contributing 55% of
439 China's total cosmetics production.⁷⁶ Within a 10.5 km radius of the sampling site in
440 Guangzhou, there is a cosmetics industrial cluster with 1,288 manufacturing
441 enterprises.⁷⁷ Therefore, the dominance of D4 in Guangzhou strongly suggests that
442 local industrial production activities, rather than PCP usage, are the primary VMS
443 source. In contrast, D5 dominated in Kuala Lumpur and Dhaka, consistent with
444 previous studies,^{19, 69} indicating PCPs usage is the main source. Spearman correlation
445 analysis among VMS congeners in Guangzhou ($r = 0.483$ – 0.870 , $p < 0.01$) (Table S9)
446 further supports this, indicating similar industrial sources and atmospheric behaviors.

447 Table S12 summarizes VMS concentrations reported in previous studies using both
 448 active and passive air sampling. Compared with other regions, VMS levels in
 449 Guangzhou were relatively high, second only to those reported in New York, where
 450 $\Sigma_{4c}\text{VMS}$ ranged from 18.8 to 2,010 ng/m³.⁷⁰ Additionally, when compared with the
 451 SIP-PAS sampling data (2017) from urban sites in the Global Atmospheric Passive
 452 Sampling (GAPS) network, Guangzhou's VMS concentrations were in the upper
 453 concentration observed in the GAPS dataset.^{24, 25} When compared with studies using
 454 active air samplers equipped with PUF/XAD/PUF cartridges, $\Sigma_7\text{VMS}$ concentrations at
 455 a semi-urban site in Toronto (122 \pm 71.0 ng/m³) were comparable to those in Accra
 456 and Kuala Lumpur in this study.⁷⁸ By contrast, atmospheric VMS concentrations
 457 measured near point sources (e.g., siloxane production facilities, oil refineries,
 458 wastewater treatment plants) can be 1–6 orders of magnitude higher than those
 459 reported at all urban sites in this study,^{71, 79–81} further highlighting Guangzhou's
 460 elevated VMS levels, likely driven by the high density of silicone-related industries and
 461 strong industrial emissions.

462
 463 **Figure 5.** Atmospheric concentrations (ng/m³) (A) and compositions (B) of $\Sigma_7\text{VMS}$ in six cities.

464 **Halogenated hydrocarbons**

465 In this study, 23 halogenated hydrocarbons (HHCs) were grouped as $\Sigma_{23}\text{HHCs}$,
 466 including 11 chlorinated benzenes ($\Sigma_{11}\text{CBs}$), three chlorotoluenes,
 467 dichloronaphthalene, hexachlorocyclopentadiene, hexachloroethane,
 468 bromobenzene, pentabromobenzene, 1-bromo-2-nitrobenzene, 1,3,5-
 469 tribromobenzene, and two bromochlorobenzenes. Dhaka had the highest $\Sigma_{23}\text{HHCs}$
 470 median concentration (32.0 ng/m³, 2.18–67.9 ng/m³), followed by Nairobi (22.0 ng/m³,


471 11.6-26.7 ng/m³), Kuala Lumpur (16.7 ng/m³, 9.84-28.4 ng/m³), Accra (6.22 ng/m³,
472 4.51-14.6 ng/m³), Guangzhou (6.60 ng/m³, 1.29-19.1 ng/m³), and Islamabad (3.23
473 ng/m³, 1.61-4.76 ng/m³) ($p < 0.05$). Among these compounds, \sum_{11} CBs accounted for
474 34–99% of the total \sum_{23} HHCs, with concentrations ranging from 0.9 to 66.6 ng/m³
475 (median: 5.08 ng/m³) across six cities. Relatively high median concentrations of \sum_{11} CBs
476 were found in Dhaka (31.4 ng/m³, 1.92-66.6 ng/m³), Nairobi (21.3 ng/m³, 10.8-25.9
477 ng/m³) and Kuala Lumpur (16.3 ng/m³, 9.49-27.9 ng/m³).

478 1,4-Dichlorobenzene (1,4-DCB) was the dominant congener among \sum_{23} HHCs,
479 contributing 67 ± 28% to the total, with concentrations ranging from 0.616 to 61.9
480 ng/m³ (median: 4.17 ng/m³). The textile industry is a major component of Bangladesh's
481 economy, accounting for about 82% of the country's total export earnings as of
482 2018.⁸² CBs are extensively used as solvents and auxiliaries in the textile and dyeing
483 industries.⁸³ The elevated levels of \sum_{11} CBs and 1,4-DCB concentrations in Dhaka are
484 likely attributable to its role as one of the world's largest garment production hubs,
485 which hosts a highly concentrated textile industry that makes extensive use of dyes
486 and auxiliary chemicals. Moreover, Spearman correlation analysis ([Table S11](#)) showed
487 significant positive correlations among the 11 CBs across all cities ($r = 0.384-1$, $p <$
488 0.05), suggesting that these CBs may have similar sources.

489 ***Chlorinated Nitrobenzenes***

490 Concentrations of 17 chlorinated nitrobenzenes (\sum_{17} CNBs), including isomers
491 containing one to four chlorine atoms, were measured ([Figure 6](#)), ranging from 40.6
492 to 657 pg/m³ (median: 147 pg/m³). The highest median concentration was observed
493 in Kuala Lumpur (528 pg/m³, 364-657 pg/m³), followed by Dhaka (252 pg/m³, 129-430
494 pg/m³) and Accra (190 pg/m³, 57.1-540 pg/m³) ($p < 0.05$). Lower concentrations were
495 observed in Nairobi (127 pg/m³, 45.6-257 pg/m³), Islamabad (123 pg/m³, 48.0-270
496 pg/m³), and Guangzhou (117 pg/m³, 40.6-283 pg/m³). The elevated CNB levels in Kuala
497 Lumpur are likely associated with emissions from its chemical, pharmaceutical,
498 electronics, and petrochemical industries, which release chlorinated byproducts
499 during manufacturing.³⁶ In Dhaka, extensive use of dyes and auxiliaries in the textile
500 industry, along with high population density and traffic emissions, likely contribute to
501 its elevated CNBs concentrations.^{35, 84}

502 Moreover, nitrobenzenes substituted with one to three chlorine atoms were widely
 503 detected in all samples (detection frequency: 41-100%), whereas 2,3,4,5-
 504 tetrachloronitrobenzene was detected in only 3% of the samples. In all cities, the
 505 composition of Σ_{17} CNBs was dominated by mono-, di-, and trichlorinated
 506 nitrobenzenes, indicating their prevalence in the urban atmosphere.
 507 Dichloronitrobenzenes were the dominant congeners ($51 \pm 22\%$), followed by
 508 monochloronitrobenzenes ($27 \pm 16\%$), trichloronitrobenzenes ($20 \pm 12\%$), and
 509 tetrachloronitrobenzenes ($2 \pm 5\%$). Chlorinated nitrobenzenes primarily originate
 510 from anthropogenic activities, serving as intermediates in the production of dyes,
 511 pesticides, pharmaceuticals, and other organic chemical products, with negligible
 512 contributions from natural sources.^{84, 85} Lower-chlorinated CNBs are more likely to
 513 form than their higher-chlorinated counterparts, due to the nature of unintentional
 514 emissions, which are largely driven by radical reactions in industrial or combustion
 515 processes. This pattern aligns with the findings of this study, where lower chlorinated
 516 nitrobenzenes were more prevalent in the air, whereas highly chlorinated derivatives
 517 were far less abundant, reflecting differences in their formation dynamics and
 518 emission characteristics. Such patterns are analogous to those of atmospheric PCB
 519 distributions, where lighter congeners (e.g., PCB-11) are mainly associated with
 520 unintentional emissions than heavier ones (e.g., PCB-138/153).⁸⁶

521
 522 **Figure 6.** Averaged gaseous concentrations of chloronitrobenzene isomers categorized by
 523 degree of chlorination across six cities (pg/m³). Green bars represent seven
 524 monochloronitrobenzenes, pink bars represent five dichloronitrobenzenes, brown bars

525 represent three trichloronitrobenzenes, and dark gray bars represent two
526 tetrachloronitrobenzenes.

527 **Influencing factors**

528 To identify meteorological and socioeconomic factors influencing gaseous
529 concentrations of HV-POPs, we conducted Spearman's correlation analysis between
530 chemical concentrations and environmental and socioeconomic variables. Although
531 Spearman's correlation doesn't account for collinearity among variables, it was
532 selected for its robustness to non-normality and small sample sizes, providing initial
533 insight into potential influencing factors. Relevant data were obtained from The World
534 Bank (<https://data.worldbank.org.cn/>) and the Guangzhou Statistical Bureau
535 (https://tjj.gz.gov.cn/datav/admin/home/www_nj/).⁵⁷ Full results are presented in
536 **Table S17** and **S18**. In Guangzhou, gaseous concentrations of several target
537 compounds exhibited significant correlations with ambient temperature. Specifically,
538 HCB, four HCH isomers, as well as D4 and D6, showed positive correlations with
539 temperature ($r = 0.374\text{--}0.759$, $p < 0.05$), which is consistent with nationwide
540 observations that higher temperatures enhance pollutant volatilization from local
541 sources.⁸⁷ In contrast, HCBD and most halogenated hydrocarbons displayed strong
542 negative correlations with temperature ($r = -0.384\text{--}-0.780$, $p < 0.05$), likely due to
543 enhanced atmospheric degradation or increased dispersion under warmer conditions,
544 resulting in lower atmospheric concentrations. In the other five cities, fewer
545 significant correlations were observed (<5 compounds), which may reflect weaker
546 temperature-driven processes or variations in local environmental conditions. Across
547 all six cities, relative humidity and wind speed exhibited weak or non-significant
548 correlations with chemical concentrations (<6 compounds), suggesting that these
549 meteorological factors have limited influence on the distribution of HV-POPs.

550 Correlation results between HV-POPs concentrations and socioeconomic indicators,
551 including per capita GDP, total population, and national merchandise trade volume,
552 are summarized in **Table S18**. A significant positive correlation was found between
553 $\Sigma_{7}\text{VMS}$ and both total population ($r = 0.545$, $p < 0.05$) and merchandise trade volume
554 ($r = 0.784$, $p < 0.05$), suggesting that VMS concentrations are associated with PCP
555 usage and trade-related economic activity. Moreover, $\Sigma_{23}\text{HHCs}$ and $\Sigma_{17}\text{CNBs}$ showed

556 strong positive correlations with per capita GDP ($r = 0.604\text{--}0.658$, $p < 0.01$), suggesting
557 industrial activities and consumer behavior associated with higher income levels may
558 contribute to increased emissions of these pollutants.

559 **Chemical Risk Assessment**

560 Daily inhalation dose (ADD_{inh}) of HV-POPs for adults (18–60 years old) in outdoor
561 environments was estimated using country-specific exposure parameters, including
562 inhalation rate, exposure time, exposure durations, and body weight. The average
563 ADD_{inh} of total HV-POPs across all cities followed the order: Guangzhou (2×10^4
564 pg/(kg·d)) > Kuala Lumpur (8×10^3 pg/(kg·d)) > Accra (6×10^3 pg/(kg·d)) > Dhaka ($4 \times$
565 10^3 pg/(kg·d)) > Nairobi (3×10^3 pg/(kg·d)) > Islamabad (2×10^3 pg/(kg·d)), with
566 detailed results in [Table S21](#). Guangzhou had the highest ADD_{inh} for both ΣVMS and
567 HCBD, with values 1 to 2 orders of magnitude higher than other cities. According to
568 the Scientific Committee on Consumer Safety of the European Commission, the
569 maximum total daily exposure to D4 and D5 across all cities were 4×10^4 and 1×10^4
570 pg/(kg·d), respectively. These exposure levels are far below the chronic reference dose
571 (cRfD) of 1.5×10^8 pg/(kg·d),⁸⁸ suggesting that, despite the abundance of D4 and D5 in
572 the environment, current respiratory exposure levels are unlikely to pose significant
573 health risk. While not intended to quantify total personal exposure, this assessment
574 provides a preliminary perspective on ambient VMS levels and their potential
575 regulatory implications.

576 Non-carcinogenic risk results are presented in [Table S22](#). The total hazard index (HIs)
577 for non-carcinogenic risks across cities ranged from 9×10^{-7} to 7×10^{-5} , indicating
578 negligible non-carcinogenic risks, as the HIs for 1,4-DCB, 1,2,4-TCB, HCCPD,
579 hexachloroethane, bromobenzene, and D5 were all below 0.01, further supporting
580 that inhalation exposure to these compounds at current concentrations poses
581 minimal non-carcinogenic health concerns.

582 Carcinogenic risk assessments were conducted for five compounds with available
583 inhalation unit risk (IUR) values, including HCB, HCBD, α -HCH, β -HCH and γ -HCH ([Table](#)
584 [S23](#)). Total carcinogenic risks across all cities were below 10^{-6} , ranging from 2×10^{-9}
585 to 1×10^{-7} . Guangzhou exhibited the highest total carcinogenic risk (1×10^{-7}), mainly
586 contributed by HCBD (55%) and HCB (29%), while Accra showed the lowest total

587 carcinogenic risk (2×10^{-9}). In contrast, the remaining five cities exhibited carcinogenic
588 risks primarily driven by HCB, indicating that inhalation exposure to these HV-POPs
589 currently poses negligible carcinogenic risk. Compared with air samples collected from
590 the same site in Guangzhou in 2020, the estimated carcinogenic risks for HCB, α -HCH,
591 and β -HCH have decreased from potential levels (0.07×10^{-6} - 2.11×10^{-6}) to negligible
592 risks (6×10^{-11} - 3×10^{-8}), reflecting the effectiveness of HCHs ban in China.⁶⁷ Notably,
593 only 10 compounds (representing 19% of the target analytes) had available IUR values
594 for quantitative risk assessment. As such, the cumulative health risks from HV-POPs
595 may be underestimated, particularly given that the majority of measured compounds
596 lack toxicity reference values. Additionally, the risk assessment was based on annual
597 mean concentrations, which may not capture short-term peak exposures near
598 emission sources.

599 **Limitations and Environmental Implications**

600 Despite increasing attention of HV-POPs, major challenges remain in fully
601 understanding their environmental behavior, exposure pathways, and health
602 risks.⁸⁹ These challenges include the absence of dedicated and harmonized
603 analytical protocols across laboratories,⁹⁰ which limits comparability across the
604 results of scattered case studies, and the lack of long-term and seasonally resolved
605 monitoring data, particularly in developing regions.^{91, 92} In this study, short and
606 inconsistent sampling durations across sites may forfeit information on potential
607 seasonal variability and introduced uncertainty in spatial comparisons. The current
608 absence of reliable source profiles from relevant industrial emissions, as well as lack
609 of information on HV-POPs in products, also hinders a sound source diagnostic and
610 apportionment of HV-POPs in the atmosphere.

611 VMS, a representative class of HV-POPs, exemplify these knowledge gaps. Their
612 potential health impacts remain difficult to quantify due to the lack of inhalation
613 unit risk (IUR) data. It was suggested that oxidation products of VMS (e.g., silanols
614 and formates) may enhance secondary organic aerosol (SOA) formation from
615 personal care product emissions.⁹³ SOA can elevate fine particle mass and oxidative
616 potential, exacerbating air pollution and posing health risks such as
617 cardiorespiratory diseases.^{94, 95} However, model-based evaluations indicate that

618 the contribution of siloxanes to ambient SOA is relatively small,^{96, 97} and field-based
619 evidence supporting this pathway remains limited. Noteworthily, there might be
620 distinct regional variation in VMS congener profiles in various PCP formulations on
621 the global market, this will add more uncertainty to source diagnostics.

622 The observed elevated VMS concentrations in urban air underscore their
623 environmental relevance as a major component of HV-POPs. The widespread
624 presence highlights the necessity of including VMS in atmospheric chemicals
625 monitoring programs, and calls for regulatory awareness and assessment. For HCBD,
626 the high gas-phase concentrations align with its expected partitioning behavior, and
627 brings forth the limitations of particle-phase-only sampling strategies.¹⁰ These
628 results emphasize the need for gas-phase-inclusive methods, such as the use of XAD
629 sorbent, to avoid underestimation of exposure and to improve the accuracy of
630 health risk assessment.

631 The detection of CNBs across multiple cities provides the first regional evidence of
632 their occurrence in ambient air. The frequent detection of low-chlorinated
633 congeners, combined with the limited availability of toxicological data, suggests the
634 need for further investigation into their potential health effects. Given their
635 persistence and volatility,³² CNBs may represent an overlooked component of
636 inhalation exposure in urban environments, particularly in regions where industrial
637 or combustion-related activities are widespread.

638 HV-POPs are prevalent in the gas phase due to their high volatility, however, their
639 partitioning into particles or other environmental media under cold, humid, or highly
640 polluted environments may not be absent in a comprehensive and careful risk
641 assessment. Addressing these broader knowledge gaps surrounding HV-POPs requires
642 coordinated efforts to develop standardized sampling and analytical protocols, and to
643 implement long-term monitoring.^{90, 92} Our active sampling dataset, across Asia and
644 Africa, provides direct observational evidence for the evaluation of HV-POPs under the
645 global chemicals management framework, which faces growing pressure to prioritize
646 chemicals posing the greatest global risks.²²

647 **Supporting Information**

648 Detailed sampling information, instrumental method, detection limits, HV-POPs
649 concentration summaries, comparison with literature, and additional results.

650 **Acknowledgments**

651 This work is supported by the National Natural Science Foundation of China (42030715
652 and 42473070), the Alliance of National and International Science Organizations for
653 the Belt and Road Regions (ANSO-CR-KP-2021-05), the Guangdong Basic and Applied
654 Basic Research Foundation (2023B0303000007 and 2023B1515020067), and the
655 Youth Innovation Promotion Association of CAS (2022359).

656 **References**

657 (1) Jones, K. C. Persistent Organic Pollutants (POPs) and Related Chemicals in the
658 Global Environment: Some Personal Reflections. *Environ. Sci. Technol.* **2021**, 55 (14),
659 9400-9412. DOI: 10.1021/acs.est.0c08093.

660 (2) Zhao, S. Z.; Jones, K. C.; Weber, R.; Xiao, Y. W.; Zhang, G. Overlooked Highly Volatile
661 Persistent Organic Pollutants in the Atmosphere. *Environ. Sci. Technol.* **2024**, 58 (32),
662 14062-14064. DOI: 10.1021/acs.est.4c02731.

663 (3) Balmer, J. E.; Hung, H.; Vorkamp, K.; Letcher, R. J.; Muir, D. C. G.
664 Hexachlorobutadiene (HCBD) contamination in the Arctic environment: A review.
665 *Emerging Contam.* **2019**, 5, 116-122. DOI:
666 <https://doi.org/10.1016/j.emcon.2019.03.002>.

667 (4) Zhang, H.; Wang, Y.; Sun, C.; Yu, M.; Gao, Y.; Wang, T.; Liu, J.; Jiang, G. Levels and
668 distributions of hexachlorobutadiene and three chlorobenzenes in biosolids from
669 wastewater treatment plants and in soils within and surrounding a chemical plant in
670 China. *Environ. Sci. Technol.* **2014**, 48 (3), 1525-1531. DOI: 10.1021/es405171t.

671 (5) Jiang, L.; Lv, J.; Jones, K. C.; Yu, S.; Wang, Y.; Gao, Y.; Wu, J.; Luo, L.; Shi, J.; Li, Y.; Yang,
672 R.; Fu, J.; Bu, D.; Zhang, Q.; Jiang, G. Soil's Hidden Power: The Stable Soil Organic
673 Carbon Pool Controls the Burden of Persistent Organic Pollutants in Background Soils.
674 *Environ. Sci. Technol.* **2024**, 58 (19), 8490-8500. DOI: 10.1021/acs.est.4c00028.

675 (6) Hermanson, M. H.; Isaksson, E.; Hann, R.; Ruggirello, R. M.; Teixeira, C.; Muir, D. C.
676 G. Historic Atmospheric Organochlorine Pesticide and Halogenated Industrial

677 Compound Inputs to Glacier Ice Cores in Antarctica and the Arctic. *ACS Earth Space*
678 *Chem.* **2021**, 5 (9), 2534-2543. DOI: 10.1021/acsearthspacechem.1c00211.

679 (7) Zhang, H.; Shen, Y.; Liu, W.; He, Z.; Fu, J.; Cai, Z.; Jiang, G. A review of sources,
680 environmental occurrences and human exposure risks of hexachlorobutadiene and its
681 association with some other chlorinated organics. *Environ. Pollut.* **2019**, 253, 831-840.
682 DOI: 10.1016/j.envpol.2019.07.090.

683 (8) Tang, Z.; Huang, Q.; Cheng, J.; Qu, D.; Yang, Y.; Guo, W. Distribution and
684 accumulation of hexachlorobutadiene in soils and terrestrial organisms from an
685 agricultural area, East China. *Ecotoxicol. Environ. Saf.* **2014**, 108, 329-334. DOI:
686 <http://210.76.211.142:80/rwt/ELSEVIER/https/MSYXTLUQPJUB/10.1016/j.ecoenv.2014.07.024>.

688 (9) Wania, F. Potential of Degradable Organic Chemicals for Absolute and Relative
689 Enrichment in the Arctic. *Environ. Sci. Technol.* **2006**, 40 (2), 569-577. DOI:
690 10.1021/es051406k.

691 (10) Zhao, C.; Yang, L.; Sun, Y.; Chen, C.; Huang, Z.; Yang, Q.; Yun, J.; Habib, A.; Liu, G.;
692 Zheng, M.; Jiang, G. Atmospheric emissions of hexachlorobutadiene in fine particulate
693 matter from industrial sources. *Nat. Commun.* **2024**, 15 (1), 4737. DOI:
694 10.1038/s41467-024-49097-0.

695 (11) Juang, D. F.; Yuan, C. S.; Hsueh, S. C.; Chiou, L. J. Distribution of volatile organic
696 compounds around a polluted river. *Int. J. Environ. Sci. Technol.* **2009**, 6 (1), 91-104.
697 DOI: 10.1007/bf03326063.

698 (12) Yang, M.; Mao, H.; Li, H.; Yang, F.; Cao, F.; Yan, W. Quantifying Concentrations and
699 Emissions of Hexachlorobutadiene - A New Atmospheric Persistent Organic Pollutant
700 in northern China. *Environ. Res.* **2023**, 216, 114139. DOI:
701 10.1016/j.envres.2022.114139.

702 (13) Lv, Y.; Tan, L.; Teng, E.; Wang, C.; Lv, T.; Liang, X. Concentration levels and
703 composition characteristics of VOCs at the background locations in China (in Chinese).
704 *Environ. Chem.* **2013**, 32 (5), 726-733.

705 (14) van Drooge, B. L.; Marco, E.; Grimalt, J. O. Atmospheric pattern of volatile
706 organochlorine compounds and hexachlorobenzene in the surroundings of a chlor-
707 alkali plant. *Sci. Total Environ.* **2018**, 628-629, 782-790. DOI:
708 <https://doi.org/10.1016/j.scitotenv.2018.02.088>.

709 (15) Chen, X.; Luo, Q.; Wang, D.; Gao, J.; Wei, Z.; Wang, Z.; Zhou, H.; Mazumder, A.

710 Simultaneous assessments of occurrence, ecological, human health, and organoleptic
711 hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China.
712 *Environ. Pollut.* **2015**, *206*, 64-72. DOI:
713 <http://210.76.211.142:80/rwt/ELSEVIER/https/MSYXTLUQPJUB/10.1016/j.envpol.2015.06.027>.

715 (16) Kosyakov, D. S.; Shavrina, I. S.; Ul'yanovskii, N. V.; Lakhmanov, D. E.; Lebedev, A. T.
716 Occurrence of Volatile and Semi-Volatile Organic Pollutants in the Russian Arctic
717 Atmosphere: The International Siberian Shelf Study Expedition (ISSS-2020).
718 *Atmosphere* **2021**, *12* (6). DOI: 10.3390/atmos12060767.

719 (17) Capela, D.; Alves, A.; Homem, V.; Santos, L. From the shop to the drain — Volatile
720 methylsiloxanes in cosmetics and personal care products. *Environ. Int.* **2016**, *92-93*, 50-
721 62. DOI: 10.1016/j.envint.2016.03.016.

722 (18) Molinier, B.; Arata, C.; Katz, E. F.; Lunderberg, D. M.; Liu, Y.; Misztal, P. K.; Nazaroff,
723 W. W.; Goldstein, A. H. Volatile Methyl Siloxanes and Other Organosilicon Compounds
724 in Residential Air. *Environ. Sci. Technol.* **2022**, *56* (22), 15427-15436. DOI:
725 10.1021/acs.est.2c05438.

726 (19) Genualdi, S.; Harner, T.; Cheng, Y.; MacLeod, M.; Hansen, K. M.; van Egmond, R.;
727 Shoeib, M.; Lee, S. C. Global Distribution of Linear and Cyclic Volatile Methyl Siloxanes
728 in Air. *Environ. Sci. Technol.* **2011**, *45* (8), 3349-3354. DOI: 10.1021/es200301j.

729 (20) Global silicon mining-Statistics & Facts.
730 <https://www.statista.com/topics/1959/silicon/#topicOverview> (accessed 2024-12-15).

731 (21) European Commission and the European Chemicals Agency. European Union
732 proposal to list Octamethylcyclotetrasiloxane (D4), Decamethylcyclopentasiloxane (D5)
733 and Dodecamethylcyclohexasiloxane (D6) in Annex B to the Stockholm Convention on
734 Persistent Organic Pollutants. 2023.

735 (22) Wania, F.; McLachlan, M. S. The Stockholm Convention at a Crossroads:
736 Questionable Nominations and Inadequate Compliance Threaten Its Acceptance and
737 Utility. *Environ. Sci. Technol.* **2024**, *58* (31), 13587-13593. DOI:
738 10.1021/acs.est.4c06775.

739 (23) Whelan, M. J.; Kim, J. Application of multimedia models for understanding the
740 environmental behavior of volatile methylsiloxanes: Fate, transport, and
741 bioaccumulation. *Integrated Environmental Assessment and Management* **2022**, *18*
742 (3), 599-621, Review. DOI: 10.1002/ieam.4507.

743 (24) Saini, A.; Chinnadurai, S.; Schuster, J. K.; Eng, A.; Harner, T. Per- and polyfluoroalkyl
744 substances and volatile methyl siloxanes in global air: Spatial and temporal trends.
745 *Environ. Pollut.* **2023**, 323, 121291. DOI:
746 <https://doi.org/10.1016/j.envpol.2023.121291>.

747 (25) Rauert, C.; Shoieb, M.; Schuster, J. K.; Eng, A.; Harner, T. Atmospheric
748 concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile
749 methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive
750 Sampling (GAPS) network. *Environ. Pollut.* **2018**, 238, 94-102. DOI:
751 <https://doi.org/10.1016/j.envpol.2018.03.017>.

752 (26) Rauert, C.; Harner, T.; Schuster, J. K.; Eng, A.; Fillmann, G.; Castillo, L. E.; Fentanes,
753 O.; Villa Ibarra, M.; Miglioranza, K. S. B.; Moreno Rivadeneira, I.; Pozo, K.; Aristizábal
754 Zuluaga, B. H. Atmospheric Concentrations of New Persistent Organic Pollutants and
755 Emerging Chemicals of Concern in the Group of Latin America and Caribbean (GRULAC)
756 Region. *Environ. Sci. Technol.* **2018**, 52 (13), 7240-7249. DOI: 10.1021/acs.est.8b00995.

757 (27) Xiang, X.; Liu, N.; Xu, L.; Cai, Y. Review of recent findings on occurrence and fates
758 of siloxanes in environmental compartments. *Ecotoxicol. Environ. Saf.* **2021**, 224,
759 Review. DOI: 10.1016/j.ecoenv.2021.112631.

760 (28) Guo, J.; Zhou, Y.; Sun, M.; Cui, J. n.; Zhang, B.; Zhang, J. Methylsiloxanes in plasma
761 from potentially exposed populations and an assessment of the associated inhalation
762 exposure risk. *Environ. Int.* **2020**, 143, 105931. DOI: 10.1016/j.envint.2020.105931.

763 (29) Dionisio, K. L.; Phillips, K.; Price, P. S.; Grulke, C. M.; Williams, A.; Biryol, D.; Hong,
764 T.; Isaacs, K. K. The Chemical and Products Database, a resource for exposure-relevant
765 data on chemicals in consumer products. *Sci. Data* **2018**, 5 (1). DOI:
766 10.1038/sdata.2018.125.

767 (30) Feltes, J.; Levsen, K.; Volmer, D.; Spiekermann, M. Gas chromatographic and mass
768 spectrometric determination of nitroaromatics in water. *J. Chromatogr. A* **1990**, 518,
769 21-40. DOI: [https://doi.org/10.1016/S0021-9673\(01\)93159-0](https://doi.org/10.1016/S0021-9673(01)93159-0).

770 (31) Qi, S. Y.; Xu, X. L.; Ma, W. Z.; Deng, S. L.; Lian, Z. X.; Yu, K. Effects of Organochlorine
771 Pesticide Residues in Maternal Body on Infants. *Front Endocrinol (Lausanne)* **2022**, 13,
772 890307. DOI: 10.3389/fendo.2022.890307.

773 (32) Guard, U. S. C. *Chemical Hazards Response Information System (CHRIS) Hazardous*
774 *Chemical Data*; Department of Transportation, Washington, DC, 1999.
775 http://www.suttercountyfire.org/YSHMRT/CHRIS%20MANUAL%20CIM_16465_12C.pdf.

777 (33) Bidleman, T. F.; Wong, F.; Dryfhout-Clark, H.; Hung, H.; Tysklind, M. Collecting
778 Airborne Organochlorines on Polyurethane Foam: Comparison of Field Observations
779 with a Breakthrough Model. *ACS ES&T Air* **2025**. DOI: 10.1021/acsestair.4c00281.

780 (34) Tian, L.; Li, J.; Zhao, S.; Tang, J.; Li, J.; Guo, H.; Liu, X.; Zhong, G.; Xu, Y.; Lin, T.; Lyv,
781 X.; Chen, D.; Li, K.; Shen, J.; Zhang, G. DDT, Chlordane, and Hexachlorobenzene in the
782 Air of the Pearl River Delta Revisited: A Tale of Source, History, and Monsoon. *Environ.*
783 *Sci. Technol.* **2021**, 55 (14), 9740-9749. DOI: 10.1021/acs.est.1c01045.

784 (35) Khan, R. H.; Quayyum, Z.; Rahman, S. A quantitative assessment of natural and
785 anthropogenic effects on the occurrence of high air pollution loading in Dhaka and
786 neighboring cities and health consequences. *Environ. Monit. Assess.* **2023**, 195 (12),
787 Article. DOI: 10.1007/s10661-023-12046-3.

788 (36) Abdul Rahman, S.; Suhaimi Hamzah, M.; Wood, A. K.; Elias, M. S.; Adullah Salim,
789 N. A.; Sanuri, E. Sources apportionment of fine and coarse aerosol in Klang Valley, Kuala
790 Lumpur using positive matrix factorization. *Atmos. Pollut. Res.* **2011**, 2 (2), 197-206.
791 DOI: <https://doi.org/10.5094/APR.2011.025>.

792 (37) Alamdar, A.; Syed, J. H.; Malik, R. N.; Katsoyiannis, A.; Liu, J.; Li, J.; Zhang, G.; Jones,
793 K. C. Organochlorine pesticides in surface soils from obsolete pesticide dumping
794 ground in Hyderabad City, Pakistan: Contamination levels and their potential for air-
795 soil exchange. *Sci. Total Environ.* **2014**, 470-471, 733-741. DOI:
796 <https://doi.org/10.1016/j.scitotenv.2013.09.053>.

797 (38) Adu-Kumi, S.; Kareš, R.; Literák, J.; Borůvková, J.; Yeboah, P. O.; Carboo, D.; Akoto,
798 O.; Darko, G.; Osae, S.; Klánová, J. Levels and seasonal variations of organochlorine
799 pesticides in urban and rural background air of southern Ghana. *Environ. Sci. Pollut.*
800 *Res.* **2012**, 19 (6), 1963-1970. DOI: 10.1007/s11356-012-1013-y.

801 (39) Lisouza, F. A.; Lalah, J. O.; Owuor, P. O. Applications of Active and Passive Sampling
802 Techniques in Environmental Monitoring of Organochlorine Pesticides (OCPs) in Kenya.
803 *Journal of Applied Chemistry* **2019**, 12 (6), 55-63.

804 (40) Mao, S.; Zhang, G.; Zhao, S.; Li, J.; Liu, X.; Cheng, Z.; Zhong, G.; Malik, R. N.; Liu, X.
805 High Abundance of Unintentionally Produced Tetrachlorobiphenyls (PCB47/48/75, 51,
806 and 68) in the Atmosphere at a Regional Background Site in East China. *Environ. Sci.*
807 *Technol.* **2019**, 53 (7), 3464-3470. DOI: 10.1021/acs.est.8b07286.

808 (41) Peters, A. J.; Lane, D. A.; Gundel, L. A.; Northcott, G. L.; Jones, K. C. A Comparison
809 of High Volume and Diffusion Denuder Samplers for Measuring Semivolatile Organic
810 Compounds in the Atmosphere. *Environ. Sci. Technol.* **2000**, 34 (23), 5001-5006. DOI:

811 10.1021/es000056t.

812 (42) U.S. EPA. *Risk Assessment for Carcinogenic Effects*; Washington, DC, 2005.
813 <https://www.epa.gov/fera/risk-assessment-carcinogenic-effects> (accessed 2025-01-
814 15).

815 (43) Ministry of Ecology and Environment The People's Republic of China. *Report of*
816 *Environmental Exposure Related Activity Patterns Research of Chinese Population*
817 *(Children) (in Chinese)*; 2013.

818 (44) Duan, X.; Zhao, X.; Wang, B.; Chen, Y.; Cao, S. Highlights of the Chinese exposure
819 factors handbook (in Chinese). Science Press: Beijing, China, 2014.

820 (45) U.S. EPA. *Exposure factors handbook: 2011 edition*; U.S. Environmental Protection
821 Agency, Office of Research and Development, National Center for Environmental
822 Assessment, Washington, DC, 2011.
823 <https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100F2OS.txt>.

824 (46) Shirazu, I.; Mensah, Y. B.; Schandorf, C.; Mensah, S. Y. Determination Of Standard
825 Reference Body Indices For Clinical Application In Ghana. *Int. J. Sci Technol Res.* **2017**,
826 6, 225-231.

827 (47) World Health Organization. Country Office for, B. *Non-communicable disease risk*
828 *factor survey, Bangladesh 2010*; World Health Organization. Country Office for
829 Bangladesh, 2011.

830 (48) Lim, T. O.; Ding, L. M.; Zaki, M.; Suleiman, A. B.; Fatimah, S.; Siti, S.; Tahir, A.;
831 Maimunah, A. H. Distribution of body weight, height and body mass index in a national
832 sample of Malaysian adults. *Med J Malaysia* **2000**, 55 (1), 108-128. From NLM.

833 (49) World Health Organization. *World health statistics 2023: monitoring health for the*
834 *SDGs, sustainable development goals*; World Health Organization, Geneva, 2023.
835 <https://www.who.int/publications/i/item/9789240074323> (accessed 2025-06-25).

836 (50) Ministry of National Health Services Regulations and Coordination (Pakistan)
837 Pakistan Health Research Council (PHRC). *Pakistan STEPS Noncommunicable disease*
838 *risk factors survey; 2013-2014*. <https://ghdx.healthdata.org/record/pakistan-steps-noncommunicable-disease-risk-factors-survey-2013-2014> (accessed 2025-03-27).

840 (51) Olsson, U. Confidence Intervals for the Mean of a Log-Normal Distribution. *Journal*
841 *of Statistics Education* **2005**, 13 (1). DOI: 10.1080/10691898.2005.11910638.

842 (52) Lv, S.; Tian, L.; Zhao, S.; Jones, K. C.; Chen, D.; Zhong, G.; Li, J.; Xu, B.; Peng, P. a.;
843 Zhang, G. Aqueous secondary formation substantially contributes to hydrophilic
844 organophosphate esters in aerosols. *Nat. Commun.* **2025**, *16* (1), 4463. DOI:
845 10.1038/s41467-025-59361-6.

846 (53) Wang, L.; Bie, P.; Zhang, J. Estimates of unintentional production and emission of
847 hexachlorobutadiene from 1992 to 2016 in China. *Environ. Pollut.* **2018**, *238*, 204-212.
848 DOI: <https://doi.org/10.1016/j.envpol.2018.03.028>.

849 (54) Denier van der Gon, H.; van het Bolscher, M.; Visschedijk, A.; Zandveld, P.
850 Emissions of persistent organic pollutants and eight candidate POPs from UNECE–
851 Europe in 2000, 2010 and 2020 and the emission reduction resulting from the
852 implementation of the UNECE POP protocol. *Atmos. Environ.* **2007**, *41* (40), 9245-9261.
853 DOI: <https://doi.org/10.1016/j.atmosenv.2007.06.055>.

854 (55) Ministry of Ecology and Environment The People's Republic of China.
855 *Announcement on environmental risk management and control requirements of five*
856 *persistent organic pollutants including polychlorinated naphthalene*; Ministry of
857 Ecology and Environment of the People's Republic of China, Ministry of Foreign Affairs
858 of the people's Republic of China, Ministry of Science and Technology of the People's
859 Republic of China, Ministry of Industry and Information Technology of the People's
860 Republic of China, Ministry of Housing and Urban-Rural Development of the People's
861 Republic of China, Ministry of Agriculture and Rural Affairs of the People's Republic of
862 China, Ministry of Commerce of the People's Republic of China, Ministry of Emergency
863 Management of the People's Republic of China, General Administration of Customs of
864 the People's Republic of China, State Administration for Market Regulation, National
865 Disease Control and Prevention Administration, Beijing, 2023.
866 https://www.mee.gov.cn/xxgk2018/xxgk01/202306/t20230606_1032939.html
867 (accessed 2025-07-01).

868 (56) Zhang, L.; Yang, W.; Xue, L.; Li, X.; Dong, L. Distribution of hexachlorobutadiene in
869 the air of tetrachloroethylene factory (in Chinese). In *Chinese Society For*
870 *Environmental Sciences; Chinese Chemical Society*, **2016**; pp 173-175.

871 (57) Guangzhou Statistics Bureau. Guangzhou statistical yearbook. Guangzhou
872 statistics bureau of the People's Republic of China, Ed.; 2023.

873 (58) Juang, D. F.; Lee, C. H.; Hsueh, S. C. Chlorinated volatile organic compounds found
874 near the water surface of heavily polluted rivers. *Int. J. Environ. Sci. Technol.* **2009**, *6*
875 (4), 545-556. DOI: 10.1007/bf03326094.

876 (59) Ministry of Ecology and Environment of the People's Republic of China. *Ambient*

877 *air-Determination of volatile organic compounds- Collected by specially-prepared*
878 *canisters and analyzed by gas chromatography/mass spectrometry*; 2015.

879 (60) Yu, S. Y.; Liu, W. J.; Xu, Y. S.; Zhao, Y. Z.; Cai, C. Y.; Liu, Y.; Wang, X.; Xiong, G. N.; Tao,
880 S.; Liu, W. X. Organochlorine pesticides in ambient air from the littoral cities of
881 northern China: Spatial distribution, seasonal variation, source apportionment and
882 cancer risk assessment. *Sci. Total Environ.* **2019**, 652, 163-176. DOI:
883 10.1016/j.scitotenv.2018.10.230.

884 (61) Gevao, B.; Porcelli, M.; Rajagopalan, S.; Krishnan, D.; Martinez-Guijarro, K.;
885 Alshemmari, H.; Bahloul, M.; Zafar, J. Spatial and temporal variations in the
886 atmospheric concentrations of "Stockholm Convention" organochlorine pesticides in
887 Kuwait. *Sci. Total Environ.* **2018**, 622, 1621-1629. DOI: 10.1016/j.scitotenv.2017.10.036.

888 (62) Rauert, C.; Harner, T.; Schuster, J. K.; Eng, A.; Fillmann, G.; Castillo, L. E.; Fentanes,
889 O.; Ibarra, M. V.; Miglioranza, K. S. B.; Rivadeneira, I. M.; Pozo, K.; Aristizábal Zuluaga,
890 B. H. Air monitoring of new and legacy POPs in the Group of Latin America and
891 Caribbean (GRULAC) region. *Environ. Pollut.* **2018**, 243, 1252-1262. DOI:
892 <https://doi.org/10.1016/j.envpol.2018.09.048>.

893 (63) White, K. B.; Kalina, J.; Scheringer, M.; Přibylová, P.; Kukučka, P.; Kohoutek, J.;
894 Prokeš, R.; Klánová, J. Spatial and Temporal Trends of Persistent Organic Pollutants
895 across Europe after 15 Years of MONET Passive Air Sampling. *Environ. Sci. Technol.*
896 **2023**, 57 (31), 11583-11594. DOI: 10.1021/acs.est.3c00796.

897 (64) Gong, W.; Fiedler, H.; Liu, X.; Wang, B.; Yu, G. Emission factors of unintentional
898 HCB and PeCBz and their correlation with PCDD/PCDF. *Environ. Pollut.* **2017**, 230, 516-
899 522. DOI: <https://doi.org/10.1016/j.envpol.2017.05.082>.

900 (65) Beyer, A.; Mackay, D.; Matthies, M.; Wania, F.; Webster, E. Assessing Long-Range
901 Transport Potential of Persistent Organic Pollutants. *Environ. Sci. Technol.* **2000**, 34 (4),
902 699-703. DOI: 10.1021/es990207w.

903 (66) Zhan, L.; Lin, T.; Wang, Z.; Cheng, Z.; Zhang, G.; Lyu, X.; Cheng, H. Occurrence and
904 air-soil exchange of organochlorine pesticides and polychlorinated biphenyls at a
905 CAWNET background site in central China: Implications for influencing factors and fate.
906 *Chemosphere* **2017**, 186, 475-487. DOI:
907 <https://doi.org/10.1016/j.chemosphere.2017.08.003>.

908 (67) Tian, L. Study On Organochlorine Pesticides (OCPs) And Halogenated Flame
909 retardants(HFRs) In The Atmosphere Of The Pearl River Delta (in Chinese). Master's
910 thesis, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2022.

911 <https://link.cnki.net/doi/10.27544/d.cnki.gzcds.2020.000043> (accessed 2025-06-25).

912 (68) Yucuis, R. A.; Stanier, C. O.; Hornbuckle, K. C. Cyclic siloxanes in air, including
913 identification of high levels in Chicago and distinct diurnal variation. *Chemosphere*
914 **2013**, 92 (8), 905-910. DOI: <https://doi.org/10.1016/j.chemosphere.2013.02.051>.

915 (69) Horii, Y.; Ohtsuka, N.; Minomo, K.; Takemine, S.; Motegi, M.; Hara, M. Distribution
916 characteristics of methylsiloxanes in atmospheric environment of Saitama, Japan:
917 Diurnal and seasonal variations and emission source apportionment. *Sci. Total Environ.*
918 **2021**, 754, 142399. DOI: 10.1016/j.scitotenv.2020.142399.

919 (70) Brunet, C. E.; Marek, R. F.; Stanier, C. O.; Hornbuckle, K. C. Concentrations of
920 Volatile Methyl Siloxanes in New York City Reflect Emissions from Personal Care and
921 Industrial Use. *Environ. Sci. Technol.* **2024**, 58 (20), 8835-8845. DOI:
922 10.1021/acs.est.3c10752.

923 (71) Xu, L.; Shi, Y.; Wang, T.; Dong, Z.; Su, W.; Cai, Y. Methyl Siloxanes in Environmental
924 Matrices around a Siloxane Production Facility, and Their Distribution and Elimination
925 in Plasma of Exposed Population. *Environ. Sci. Technol.* **2012**, 46 (21), 11718-11726.
926 DOI: 10.1021/es3023368.

927 (72) Lu, Y.; Yuan, T.; Wang, W.; Kannan, K. Concentrations and assessment of exposure
928 to siloxanes and synthetic musks in personal care products from China. *Environ. Pollut.*
929 **2011**, 159 (12), 3522-3528. DOI: 10.1016/j.envpol.2011.08.015.

930 (73) Horii, Y.; Kannan, K. Main Uses and Environmental Emissions of Volatile
931 Methylsiloxanes. In *Volatile Methylsiloxanes in the Environment*, Homem, V., Ratola, N.
932 Eds.; Springer International Publishing, 2020; pp 33-70.

933 (74) National Minerals Information Center. U.S. Geological Survey Mineral Commodity
934 Summaries 2023 Data Release. 2023.

935 (75) Statista Research Department. *Silicon production volume in the Asia-Pacific region*
936 *in 2022, by selected country*. Statista research department, 2023.
937 <https://www.statista.com/statistics/1414397/apac-silicon-production-by-country/>
938 (accessed 2025-01-15).

939 (76) Guangzhou's beauty industry relies on independent innovation to continue to
940 develop (in Chinese). *Guangzhou Daily*, 2023.
941 https://www.gz.gov.cn/zt/gzlfzgzld/gzgzlfz/content/post_9360716.html (accessed
942 2023-12-05).

943 (77) South Reviews Media Institute; Guangzhou Quality Supervision and Testing
944 Institute. *Guangzhou Cosmetics Industry White Paper 2023*; 2023.

945 (78) Ahrens, L.; Harner, T.; Shoeib, M. Temporal Variations of Cyclic and Linear Volatile
946 Methylsiloxanes in the Atmosphere Using Passive Samplers and High-Volume Air
947 Samplers. *Environ. Sci. Technol.* **2014**, *48* (16), 9374-9381. DOI: 10.1021/es502081j.

948 (79) Liu, N.; Sun, H.; Xu, L.; Cai, Y. Methylsiloxanes in petroleum refinery facility: Their
949 sources, emissions, environmental distributions and occupational exposure. *Environ.*
950 *Int.* **2021**, *152*, 106471. DOI: <https://doi.org/10.1016/j.envint.2021.106471>.

951 (80) Dong, K.; Zhou, Y.; Guo, J.; Jiang, Y.; Zhang, B.; Wang, Y.; Chen, Y. Cyclic
952 methylsiloxanes in wastewater treatment plants: Occurrence, emissions,
953 environmental distributions, and occupational exposure. *Sci. Total Environ.* **2024**, *951*,
954 175524. DOI: <https://doi.org/10.1016/j.scitotenv.2024.175524>.

955 (81) Cheng, Y.; Shoeib, M.; Ahrens, L.; Harner, T.; Ma, J. Wastewater treatment plants
956 and landfills emit volatile methyl siloxanes (VMSs) to the atmosphere: Investigations
957 using a new passive air sampler. *Environ. Pollut.* **2011**, *159* (10), 2380-2386. DOI:
958 10.1016/j.envpol.2011.07.002.

959 (82) Hossain, L.; Sarker, S. K.; Khan, M. S. Evaluation of present and future wastewater
960 impacts of textile dyeing industries in Bangladesh. *Environ. Dev.* **2018**, *26*, 23-33. DOI:
961 <https://doi.org/10.1016/j.envdev.2018.03.005>.

962 (83) Yuan, Y.; Ning, X.-a.; Zhang, Y.; Lai, X.; Li, D.; He, Z.; Chen, X. Chlorobenzene levels,
963 component distribution, and ambient severity in wastewater from five textile dyeing
964 wastewater treatment plants. *Ecotoxicol. Environ. Saf.* **2020**, *193*, 110257. DOI:
965 <https://doi.org/10.1016/j.ecoenv.2020.110257>.

966 (84) Gulfam-E-Jannat, S.; Golui, D.; Islam, S.; Saha, B.; Rahman, S. M.; Bezbaruah, A. N.;
967 Iskander, S. M. Industrial Water Demand and Wastewater Generation: Challenges for
968 Bangladesh's Water Industry. *ACS ES&T Water* **2023**, *3* (6), 1515-1526. DOI:
969 10.1021/acsestwater.3c00023.

970 (85) Tiwari, J.; Tarale, P.; Sivanesan, S.; Bafana, A. Environmental persistence, hazard,
971 and mitigation challenges of nitroaromatic compounds. *Environ. Sci. Pollut. Res.* **2019**,
972 *26* (28), 28650-28667. DOI: 10.1007/s11356-019-06043-8.

973 (86) Zhao, S.; Breivik, K.; Liu, G.; Zheng, M.; Jones, K. C.; Sweetman, A. J. Long-Term
974 Temporal Trends of Polychlorinated Biphenyls and Their Controlling Sources in China.
975 *Environ. Sci. Technol.* **2017**, *51* (5), 2838-2845. DOI: 10.1021/acs.est.6b05341.

976 (87) Liu, Y.; Zhou, Y.; Lu, J. Exploring the relationship between air pollution and
977 meteorological conditions in China under environmental governance. *Scientific*
978 *Reports* **2020**, *10* (1), 14518. DOI: 10.1038/s41598-020-71338-7.

979 (88) Guo, J.; Zhou, Y.; Wang, Y.; Chen, Y.; Zhang, B.; Zhang, J. Methylsiloxanes risk
980 assessment combining external and internal exposure for college students. *Sci. Total*
981 *Environ.* **2022**, *845*, 157379. DOI: 10.1016/j.scitotenv.2022.157379.

982 (89) Hung, H.; MacLeod, M.; Guardans, R.; Scheringer, M.; Barra, R.; Harner, T.; Zhang,
983 G. Toward the next generation of air quality monitoring: Persistent organic pollutants.
984 *Atmos. Environ.* **2013**, *80*, 591-598. DOI:
985 <https://doi.org/10.1016/j.atmosenv.2013.05.067>.

986 (90) Melymuk, L.; Nizzetto, P. B.; Harner, T.; White, K. B.; Wang, X.; Tominaga, M. Y.; He,
987 J.; Li, J.; Ma, J.; Ma, W.-L.; Aristizábal, B. H.; Dreyer, A.; Jiménez, B.; Muñoz-Arnanz, J.;
988 Odabasi, M.; Dumanoglu, Y.; Yaman, B.; Graf, C.; Sweetman, A.; Klánová, J. Global
989 intercomparison of polyurethane foam passive air samplers evaluating sources of
990 variability in SVOC measurements. *Environmental Science & Policy* **2021**, *125*, 1-9. DOI:
991 <https://doi.org/10.1016/j.envsci.2021.08.003>.

992 (91) Magulova, K.; Priceputu, A. Global monitoring plan for persistent organic
993 pollutants (POPs) under the Stockholm Convention: Triggering, streamlining and
994 catalyzing global POPs monitoring. *Environ. Pollut.* **2016**, *217*, 82-84. DOI:
995 <https://doi.org/10.1016/j.envpol.2016.01.022>.

996 (92) Schuster, J. K.; Harner, T.; Eng, A.; Rauert, C.; Su, K.; Hornbuckle, K. C.; Johnson, C.
997 W. Tracking POPs in Global Air from the First 10 Years of the GAPS Network (2005 to
998 2014). *Environ. Sci. Technol.* **2021**, *55* (14), 9479-9488. DOI: 10.1021/acs.est.1c01705.

999 (93) McDonald, B. C.; de Gouw, J. A.; Gilman, J. B.; Jathar, S. H.; Akherati, A.; Cappa, C.
1000 D.; Jimenez, J. L.; Lee-Taylor, J.; Hayes, P. L.; McKeen, S. A.; Cui, Y. Y.; Kim, S.-W.; Gentner,
1001 D. R.; Isaacman-VanWertz, G.; Goldstein, A. H.; Harley, R. A.; Frost, G. J.; Roberts, J. M.;
1002 Ryerson, T. B.; Trainer, M. Volatile chemical products emerging as largest
1003 petrochemical source of urban organic emissions. *Science* **2018**, *359* (6377), 760-764.
1004 DOI: 10.1126/science.aaq0524.

1005 (94) Fan, W.; Chen, T.; Zhu, Z.; Zhang, H.; Qiu, Y.; Yin, D. A review of secondary organic
1006 aerosols formation focusing on organosulfates and organic nitrates. *J. Hazard. Mater.*
1007 **2022**, *430*, 128406. DOI: <https://doi.org/10.1016/j.jhazmat.2022.128406>.

1008 (95) Pye, H. O. T.; Ward-Caviness, C. K.; Murphy, B. N.; Appel, K. W.; Seltzer, K. M.
1009 Secondary organic aerosol association with cardiopulmonary disease mortality in the

1010 United States. *Nat. Commun.* **2021**, *12* (1), 7215. DOI: 10.1038/s41467-021-27484-1.

1011 (96) Pennington, E. A.; Seltzer, K. M.; Murphy, B. N.; Qin, M.; Seinfeld, J. H.; Pye, H. O.
1012 T. Modeling secondary organic aerosol formation from volatile chemical products.
1013 *Atmos. Chem. Phys.* **2021**, *21* (24), 18247-18261. DOI: 10.5194/acp-21-18247-2021.

1014 (97) Coggon, M. M.; Gkatzelis, G. I.; McDonald, B. C.; Gilman, J. B.; Schwantes, R. H.;
1015 Abuhassan, N.; Aikin, K. C.; Arend, M. F.; Berkoff, T. A.; Brown, S. S.; Campos, T. L.;
1016 Dickerson, R. R.; Gronoff, G.; Hurley, J. F.; Isaacman-VanWertz, G.; Koss, A. R.; Li, M.;
1017 McKeen, S. A.; Moshary, F.; Peischl, J.; Pospisilova, V.; Ren, X.; Wilson, A.; Wu, Y.; Trainer,
1018 M.; Warneke, C. Volatile chemical product emissions enhance ozone and modulate
1019 urban chemistry. *Proceedings of the National Academy of Sciences* **2021**, *118* (32),
1020 e2026653118. DOI: doi:10.1073/pnas.2026653118.

1021