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Background. Febrile illness is a leading cause of morbidity and mortality among children in low- and middle-income countries, 
yet the spatial distribution and environmental drivers of pediatric fever in Uganda remain poorly characterized.

Methods. We analyzed data from the 2016 Uganda Demographic and Health Survey to estimate the prevalence of febrile illness 
among children under 5 years of age. Using a geostatistical binomial model, we evaluated associations between fever prevalence and 
environmental, nutritional, and sociodemographic covariates. Spatial prediction and model calibration were conducted using the 
PrevMap package in R, and model performance was assessed using nonrandomized probability integral transform (nrPIT) and 
theoretical variograms.

Results. Among 14 195 children from 685 clusters, 4990 (35.1%) were reported to have had fever in the prior 2 weeks. Predicted 
fever prevalence varied substantially by region and month, with highest rates in the eastern and northeastern regions and in the 
period following the rainy season. Covariates including poverty, anemia, rainfall (2-month lag), enhanced vegetation index 
(1-month lag), and seasonality significantly improved model performance and reduced spatial uncertainty.

Conclusions. Our findings reveal pronounced geographic and temporal heterogeneity in pediatric febrile illness in Uganda. 
Environmental and nutritional factors significantly contribute to this variation. These results support targeted, region-specific 
public health interventions and inform future research into the etiologic drivers of pediatric fever.
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Febrile illness is still one of the major public health problems in 
low- and middle-income countries (LMICs) [1]. As of 2019, 
over one-third of all childhood deaths were caused by fever- 
related diseases [2]. In LMICs, children experience an average 
of 40 or greater episodes of fever by 5 years of age [3]. Although 
advances have been made in the diagnosis and treatment of fe
brile illnesses globally, even among the survivors of fevers, the 
associated morbidity and mortality remain high [4].

It is known that infectious diseases are the leading cause of 
febrile illnesses in children [5]. Understanding this principle 
necessitates the implementation of public health interventions 

aimed at preventing the transmission of infectious diseases. 
Many infectious causes of febrile illness, particularly vector- 
and water-borne diseases, are influenced by environmental 
and climatic factors, whereas respiratory and urinary infections 
may exhibit seasonality largely driven by behavioral patterns, 
such as increased indoor crowding during cooler or wetter 
months [6, 7]. Therefore, epidemiological studies that delineate 
and characterize the impact of these environmental and climat
ic factors on the occurrence and geographical distribution of fe
brile illnesses are highly needed [8]. Our recent analysis showed 
that the distribution of fever in Africa is heterogeneous and 
likely driven by the distinct geographical and climatic environ
ment [9]. Previous studies have largely focused on specific eti
ologies of fever, such as malarial, bacterial, viral, and helminth 
infections, and their associations with climatic features [10– 
17]. Despite such analyses being useful, they are biased because 
they do not provide an all-inclusive picture of the environmen
tal determinants of febrile illnesses.

Although it has been recognized as crucial to identify the en
vironmental factors associated with febrile illness and charac
terize their spatial distribution, we are not aware of any study 
so far that has characterized the spatial distribution and envi
ronmental drivers of febrile illnesses in Uganda [18, 19]. We 
aim to predict the prevalence of fever cases among children un
der 5 years of age in Uganda using geostatistical models, while 
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exploring the potential association with environmental, nutri
tional, and sociodemographic factors. We hypothesize that the 
spatial distribution of pediatric fevers in Uganda is heterogeneous 
and impacted by these factors. Our analyses are keys for global 
health efforts to identify, mitigate, and develop targeted public 
health interventions relevant to smaller geographical locales.

METHODS

Data Sources
Outcome Data. We utilized data from the 2016 Uganda 
Demographic and Health Survey (UDHS). The UDHS is a na
tionally representative, population-based household survey 
conducted every 5 years using a stratified 2-stage cluster sam
pling design [20]. In the 2016 UDHS, the first stage involved se
lecting clusters based on the 2014 Uganda National Population 
and Housing Census, followed by the selection of households at 
the second stage; this resulted in a total of 20 880 households. 
Data were collected by the Uganda Bureau of Statistics 
(UBOS) from 15 June to 18 December 2016.
All women aged 15–49 years who were either residents or visi
tors of the selected households were eligible for an interview. 
During the interviews, eligible women were asked whether their 
children under  5 years of age had experienced a fever in the 2 
weeks preceding the survey. Fever within the preceding 2 weeks 
was assessed based on caregiver recall; this is consistent with the 
World Health Organization–standardized Demographic and 
Health Survey (DHS) methodology. Validation studies have 
demonstrated that caregiver or parental assessment of fever pro
vides reasonably accurate estimates of measured temperature. A 
systematic review and meta-analysis reported a pooled sensitiv
ity of 87.5% (95% CI: 79.3%–92.8%) and specificity of 54.6% 
(95% CI: 38.5%–69.9%) for tactile detection of fever in children 
[21]. Similarly, a primary care study found that parents’ subjec
tive assessments had a sensitivity of 93% (95% CI: 73%–99%) 
and specificity of 75% (95% CI: 71%–80%) compared with 
thermometer-measured fever [22].

Covariate Data. We examined environmental, socioeconomic, 
and nutritional factors as potential risk factors for childhood fe
ver. Environmental and socioeconomic data for Uganda were 
obtained from publicly accessible sources. Nutritional data 
were derived from the 2016 UDHS, in which blood samples 
were collected from children aged 6–59 months in one-third 
of the survey’s selected households to examine conditions in
cluding anemia and Vitamin A deficiency. We interpolated 
the proportions of children with these conditions by creating 
raster files using a model-based geostatistical approach [23]. 
Data from previous studies were also used to estimate the pro
portions of children under 5 years of age who were under
weight, stunting, or wasting [24, 25]. All covariate values 
were extracted at a spatial resolution of 1 km2. A detailed list 

of covariate data sources is provided in the Supplementary 
data (Supplementary Table 1; Supplementary Figures 1–6).

Geostatistical Modeling

We developed a geostatistical model to estimate the prevalence 
of febrile illnesses among children  under 5 years of age in 
Uganda from June to December 2016. Based on this model, 
we predicted the monthly prevalence of fever. Parameter esti
mation for the geostatistical model and spatial prediction 
were performed using the R package PrevMap [23]. Model val
idation was conducted using nonrandomized probability inte
gral transform (nrPIT). To assess the contribution of covariates 
to the spatial prediction, we compared the theoretical vario
gram from the estimated model with and without covariates. 
The detailed procedure is described below.

Exploratory Analysis. First, we assessed the relationship be
tween the empirical logit of fever cases and each covariate by 
fitting univariate models. The enhanced vegetation index 
(EVI), rainfall, standardized precipitation-evapotranspiration 
index, and mean temperature were monthly variables; we ex
amined their lagged values up to 3 months before the survey 
month for each cluster. The optimal lag for each variable was 
selected based on the lowest Akaike Information Criterion 
(AIC) value. AIC is defined as:

AIC = −2l(θ) + 2k 

where l(θ) is the maximum log-likelihood based on the estimat
ed parameters θ, and k is the number of parameters in the 
model. Covariates demonstrating a strong linear relationship 
with the logit of fever prevalence, as determined by visual in
spection, were selected. When covariates were highly correlat
ed, the one with the lowest AIC value was retained in the 
geostatistical model. Consequently, poverty, anemia, 2-month- 
lagged rainfall, 1-month-lagged EVI, and seasonality (defined 
as “rainy season” for September to November and “dry season” 
for June to August or December) were included [26, 27].

Geostatistical Model. In the geostatistical binomial model, we 
included the selected covariates as fixed effects and accounted 
for both spatially structured and nonspatially structured ran
dom effects, such that

log
p(xi)

1 − p(xi)

􏼚 􏼛

= βo +
􏽘4

j=1
βjdj(xi) + S(xi) + Zi, 

where pi(xi) and dj(xi) represent the prevalence of febrile illness 
and covariate values, respectively, in cluster xi. Each covariate 
was standardized by subtracting the mean and dividing by 
the standard deviation. S(xi) is a stationary and isotopic 
Gaussian process representing between-cluster variation, 
with mean zero, variance σ2, and correlation function 
ρ(u) = Corr(S(x), S(x′)) = exp{−|x − x′|/ϕ}. ϕ is the scale 
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parameter controlling how rapidly spatial correlation decays 
with increasing distance between x and x′. Zi represents inde
pendent and identically distributed Gaussian noise with 
mean zero and variance τ2, accounting for within-cluster vari
ation such as measurement error. Parameters were estimated 
using Monte Carlo maximum likelihood (MCML).

Using the geostatistical model, we predicted the monthly 
prevalence of febrile illness from June to December 2016 at 5 
km2 spatial resolution. To estimate national-level prevalence 
in Uganda, we generated 10 000 predictive samples for each 
prediction location by MCML and weighted them by popula
tion data from WorldPop. The mean and 2.5% and 97.5% 
quantiles of these samples were used to compute the national 
mean prevalence and its 95% prediction interval.

Model Validation. We assessed the calibration of the predictive 
distribution. Calibration is the statistical consistency between 
probabilistic forecasts and observations. We employed nrPIT 
for count data [28], adjusting it for the geostatistical model 
[29]. We used 30% of the dataset as a test set and compared 
nrPIT from the model with and without covariates.

Assessment of the Contribution of Covariates to Spatial Prediction.
To quantify the contribution of covariates to spatial prediction, 
we compared the theoretical variograms of random effects 
from the model with and without covariates. The theoretical 
variogram is defined as

τ2 + σ2 1 − exp
|x − x′|

ϕ

􏼚 􏼛􏼒 􏼓

, 

where τ2, σ2, and ϕ are the maximum likelihood estimates from 
the fitted model.

RESULTS

In the 685 surveyed clusters, 4990 of 14 195 children were re
ported to have had a febrile illness in the 2 weeks before the sur
vey. The crude (or unadjusted) prevalence of fever widely 
ranged from ∼0% to 100%, with a median of 30.43% (Figure 1).

The predicted prevalence varied both temporally and spa
tially. Based on the model, prevalence was highest in June, de
clined through September, and then increased thereafter 
(Table 1). Overall, the eastern and northeastern regions of 
the country had a higher prevalence than the southern regions 
throughout the study period (Figure 2).

According to the nrPIT, both models, with and without covar
iates, were well-calibrated (Supplementary Figure 7). This justi
fies the use of geostatistical models, although there was no 
practical difference between the models. We found that the in
clusion of covariates into the geostatistical model reduced the 
uncertainty in spatial prediction, albeit not substantially. This is 
evident in the theoretical variogram (Supplementary Figure 8) 

and parameter estimates (Supplementary Tables 2 and 3), as co
variates reduced ϕ and τ2 by explaining some of the spatial corre
lation exhibited in the data.

DISCUSSION

Using a geospatial modeling approach, we found that the prev
alence of fever in Uganda exhibited both spatial and temporal 
distribution. Poverty, anemia, rainfall, and vegetation index 
were major factors contributing to these dynamics. These find
ings are crucial for public health interventions and identifying 
children at-risk for infectious diseases. They can guide future 
interventions tailored toward specific geographic regions with 
the greatest need.

Previous studies on febrile illnesses in LMICs have primarily 
focused on social, demographic, and economic factors associat
ed with the epidemiology of childhood fevers [1, 9]. However, 
most have lacked analyses of environmental or climatic drivers 
of infectious diseases, which are major causes of fevers world
wide [5]. Our study goes beyond these limitations and provides 

Table 1. Predicted Prevalence of Febrile Illness Among Children <5 
Years From June to December 2016 in Uganda.

Month Predicted Prevalence (%) 95% Prediction Interval

June 43.30 42.45–44.14

July 39.49 38.62–40.45

August 37.15 36.31–37.96

September 29.43 28.7–30.25

October 29.85 29.07–30.67

November 31.84 31.06–32.63

December 38.99 38.06–39.83

The 95% prediction interval is derived from Monte Carlo maximum likelihood.

Figure 1. Crude (or unadjusted) prevalence of febrile illness among children <5 y 
from June to December 2016 in Uganda. The points represent the prevalence in 
each surveyed cluster.
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critical evidence of key etiological and nutritional factors fun
damental to known drivers of infections. We used fever as a 
proxy for infectious diseases in Uganda, implying that unstud
ied viral, protozoal, spirochaetal, and bacterial infections may 
be linked to precipitation.

Our findings can guide future research, pinpointing optimal 
locations and timing for biospecimen sampling of children or 
environments to identify key drivers of childhood febrile ill
ness. They align with a growing body of literature demonstrat
ing that climatic variability affects a wide spectrum of infectious 

Figure 2. Predicted prevalence of febrile illness among children <5 y from June to December 2016 in Uganda. The prediction is at a 5 km resolution based on the geo
statistical model accounting for covariates.
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diseases beyond malaria [30, 31]. Extreme rainfall and humid
ity have been associated with meningococcal meningitis [32], 
and nontyphoidal Salmonella bacteremia [33]. Temperature 
fluctuations have been linked to meningitis incidence world
wide [34]. Collectively, these studies underscore that 
infectious-disease burdens are increasingly shaped by climate 
dynamics—a trend that supports integrating meteorologic 
and geospatial surveillance into pediatric fever monitoring 
and epidemic preparedness.

The positive association between febrile illness and EVI is 
not unexpected [35–38], as disease vectors like mosquitos 
thrive in dense vegetation and bushes. Therefore, strategies to 
prevent infections in the identified hotspots should focus on 
clearing bushes from near homesteads or incorporating the 
spraying strategies that were effective at eliminating malaria 
in the United States in the 1950s [39, 40].

While previous studies have explored the impact of poverty 
and malnutrition on infectious diseases at an individual level 
[41, 42], the most impactful interventions for both vector- 
borne and environment-driven infections are those applied at 
a regional or mass scale. While nutrition and vaccination pro
grams are implemented nationally, geospatial risk mapping can 
refine the timing and geographic prioritization of outreach, 
such as intensifying malaria vector-control or immunization 
efforts in eastern and northeastern Uganda during high-risk 
rainy months. Such region-specific optimization aligns with ev
idence that coordinated vaccination campaigns designed to 
achieve herd immunity have far greater impact than interven
tions targeting individuals [43, 44].

Undernutrition undermines both adaptive and innate im
munity, making opportunistic infections more common in af
fected individuals [45, 46]. Therefore, to effectively address 
febrile illnesses in LMICs, prioritizing proper nutrition is cru
cial. Our findings identify hotspots of febrile illnesses in 
Uganda that could benefit not only from improved treatment 
access but also enhanced nutrition through governmental 
and nongovernmental efforts [25]. Although the 2016 UDHS 
remains the most recent nationally geocoded dataset with envi
ronmental covariates, future analyses incorporating the com
pleted 2022 DHS will allow assessment of changes in spatial 
risk under current warming trends. Ongoing climate change 
may intensify or shift the observed associations between rain
fall, vegetation, and pediatric fever. Although there is no quick 
fix for poverty, population-based interventions like mandated 
food supplementation (eg, iodized salt, folate-fortified corn 
flour), access to clean public water sources, and immunizations 
can counteract the influence of personal wealth or household 
income [41, 47–49].

Our study has several strengths. Firstly, we employed robust 
model-based geostatistical methods for accurate mapping. 
Secondly, we incorporated key environmental, nutritional, 
and sociodemographic variables that are known to influence 

infectious diseases; inclusion of these factors fine-tuned our 
model. Thirdly, our approach yielded actionable outcomes, 
guiding public health interventions by advising researchers 
on optimal sampling times and locations for fever cases in 
Uganda. Lastly, we included a large sample of participants 
(over 10 000) in our modeling approach, thereby providing a 
stronger statistical power.

Nevertheless, our findings should be interpreted with cau
tion, bearing in mind inherent limitations. Firstly, we did not 
include all etiological factors that could influence the distribu
tion of vectors that are associated with most infectious diseases 
in sub-Saharan Africa. Secondly, these findings cannot be gen
eralizable to all sub-Saharan Africa due to differences in genet
ics, environments, political capital, social behaviors, 
economics, and the underlying herd immunity from immuni
zations. Comprehensive studies that incorporate all 
sub-Saharan countries are better positioned to address climate 
and infectious diseases in the region. Finally, fever ascertain
ment was based on caregiver report rather than direct ther
mometer measurement. Although this approach follows 
standardized DHS methodology, it introduces potential mis
classification bias due to subjective perception. However, prior 
validation studies have shown that caregiver tactile and subjec
tive assessments correlate reasonably well with objectively mea
sured fever, with sensitivities exceeding 85% in both 
meta-analytic and primary-care evaluations [21, 22].

CONCLUSIONS

We identified extensive within-country spatial variation in the 
prevalence of febrile illness among children in Uganda, while 
highlighting associations with rainfall, poverty, EVI, and ane
mia. These findings may inform targeted public health policies 
for fever management and generate hypotheses for future etio
logic research.
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