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Background. Febrile illness is a leading cause of morbidity and mortality among children in low- and middle-income countries,
yet the spatial distribution and environmental drivers of pediatric fever in Uganda remain poorly characterized.

Methods. We analyzed data from the 2016 Uganda Demographic and Health Survey to estimate the prevalence of febrile illness
among children under 5 years of age. Using a geostatistical binomial model, we evaluated associations between fever prevalence and
environmental, nutritional, and sociodemographic covariates. Spatial prediction and model calibration were conducted using the
PrevMap package in R, and model performance was assessed using nonrandomized probability integral transform (nrPIT) and
theoretical variograms.

Results. Among 14 195 children from 685 clusters, 4990 (35.1%) were reported to have had fever in the prior 2 weeks. Predicted
fever prevalence varied substantially by region and month, with highest rates in the eastern and northeastern regions and in the
period following the rainy season. Covariates including poverty, anemia, rainfall (2-month lag), enhanced vegetation index
(1-month lag), and seasonality significantly improved model performance and reduced spatial uncertainty.

Conclusions. Our findings reveal pronounced geographic and temporal heterogeneity in pediatric febrile illness in Uganda.
Environmental and nutritional factors significantly contribute to this variation. These results support targeted, region-specific

public health interventions and inform future research into the etiologic drivers of pediatric fever.
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Febrile illness is still one of the major public health problems in
low- and middle-income countries (LMICs) [1]. As of 2019,
over one-third of all childhood deaths were caused by fever-
related diseases [2]. In LMICs, children experience an average
of 40 or greater episodes of fever by 5 years of age [3]. Although
advances have been made in the diagnosis and treatment of fe-
brile illnesses globally, even among the survivors of fevers, the
associated morbidity and mortality remain high [4].

It is known that infectious diseases are the leading cause of
febrile illnesses in children [5]. Understanding this principle
necessitates the implementation of public health interventions
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aimed at preventing the transmission of infectious diseases.
Many infectious causes of febrile illness, particularly vector-
and water-borne diseases, are influenced by environmental
and climatic factors, whereas respiratory and urinary infections
may exhibit seasonality largely driven by behavioral patterns,
such as increased indoor crowding during cooler or wetter
months [6, 7]. Therefore, epidemiological studies that delineate
and characterize the impact of these environmental and climat-
ic factors on the occurrence and geographical distribution of fe-
brile illnesses are highly needed [8]. Our recent analysis showed
that the distribution of fever in Africa is heterogeneous and
likely driven by the distinct geographical and climatic environ-
ment [9]. Previous studies have largely focused on specific eti-
ologies of fever, such as malarial, bacterial, viral, and helminth
infections, and their associations with climatic features [10-
17]. Despite such analyses being useful, they are biased because
they do not provide an all-inclusive picture of the environmen-
tal determinants of febrile illnesses.

Although it has been recognized as crucial to identify the en-
vironmental factors associated with febrile illness and charac-
terize their spatial distribution, we are not aware of any study
so far that has characterized the spatial distribution and envi-
ronmental drivers of febrile illnesses in Uganda [18, 19]. We
aim to predict the prevalence of fever cases among children un-
der 5 years of age in Uganda using geostatistical models, while
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exploring the potential association with environmental, nutri-
tional, and sociodemographic factors. We hypothesize that the
spatial distribution of pediatric fevers in Uganda is heterogeneous
and impacted by these factors. Our analyses are keys for global
health efforts to identify, mitigate, and develop targeted public
health interventions relevant to smaller geographical locales.

METHODS

Data Sources

Outcome Data. We utilized data from the 2016 Uganda
Demographic and Health Survey (UDHS). The UDHS is a na-
tionally representative, population-based household survey
conducted every 5 years using a stratified 2-stage cluster sam-
pling design [20]. In the 2016 UDHS, the first stage involved se-
lecting clusters based on the 2014 Uganda National Population
and Housing Census, followed by the selection of households at
the second stage; this resulted in a total of 20 880 households.
Data were collected by the Uganda Bureau of Statistics
(UBOS) from 15 June to 18 December 2016.

All women aged 15-49 years who were either residents or visi-
tors of the selected households were eligible for an interview.
During the interviews, eligible women were asked whether their
children under 5 years of age had experienced a fever in the 2
weeks preceding the survey. Fever within the preceding 2 weeks
was assessed based on caregiver recall; this is consistent with the
World Health Organization-standardized Demographic and
Health Survey (DHS) methodology. Validation studies have
demonstrated that caregiver or parental assessment of fever pro-
vides reasonably accurate estimates of measured temperature. A
systematic review and meta-analysis reported a pooled sensitiv-
ity of 87.5% (95% CI: 79.3%-92.8%) and specificity of 54.6%
(95% CI: 38.5%-69.9%) for tactile detection of fever in children
[21]. Similarly, a primary care study found that parents’ subjec-
tive assessments had a sensitivity of 93% (95% CI: 73%-99%)
and specificity of 75% (95% CI: 71%-80%) compared with
thermometer-measured fever [22].

Covariate Data. 'We examined environmental, socioeconomic,
and nutritional factors as potential risk factors for childhood fe-
ver. Environmental and socioeconomic data for Uganda were
obtained from publicly accessible sources. Nutritional data
were derived from the 2016 UDHS, in which blood samples
were collected from children aged 6-59 months in one-third
of the survey’s selected households to examine conditions in-
cluding anemia and Vitamin A deficiency. We interpolated
the proportions of children with these conditions by creating
raster files using a model-based geostatistical approach [23].
Data from previous studies were also used to estimate the pro-
portions of children under 5 years of age who were under-
weight, stunting, or wasting [24, 25]. All covariate values
were extracted at a spatial resolution of 1 km?. A detailed list

of covariate data sources is provided in the Supplementary
data (Supplementary Table 1; Supplementary Figures 1-6).

Geostatistical Modeling

We developed a geostatistical model to estimate the prevalence
of febrile illnesses among children under 5 years of age in
Uganda from June to December 2016. Based on this model,
we predicted the monthly prevalence of fever. Parameter esti-
mation for the geostatistical model and spatial prediction
were performed using the R package PrevMap [23]. Model val-
idation was conducted using nonrandomized probability inte-
gral transform (nrPIT). To assess the contribution of covariates
to the spatial prediction, we compared the theoretical vario-
gram from the estimated model with and without covariates.
The detailed procedure is described below.

Exploratory Analysis. First, we assessed the relationship be-
tween the empirical logit of fever cases and each covariate by
fitting univariate models. The enhanced vegetation index
(EVI), rainfall, standardized precipitation-evapotranspiration
index, and mean temperature were monthly variables; we ex-
amined their lagged values up to 3 months before the survey
month for each cluster. The optimal lag for each variable was
selected based on the lowest Akaike Information Criterion
(AIC) value. AIC is defined as:

AIC= =2I(0) + 2k

where [(6) is the maximum log-likelihood based on the estimat-
ed parameters 6, and k is the number of parameters in the
model. Covariates demonstrating a strong linear relationship
with the logit of fever prevalence, as determined by visual in-
spection, were selected. When covariates were highly correlat-
ed, the one with the lowest AIC value was retained in the
geostatistical model. Consequently, poverty, anemia, 2-month-
lagged rainfall, 1-month-lagged EVI, and seasonality (defined
as “rainy season” for September to November and “dry season”
for June to August or December) were included [26, 27].
Geostatistical Model. In the geostatistical binomial model, we
included the selected covariates as fixed effects and accounted
for both spatially structured and nonspatially structured ran-
dom effects, such that

P(Xi) :
log{m} =B, + ;[ijdj(xi) + S(x;) + Z;,

where p;(x;) and d;(x;) represent the prevalence of febrile illness
and covariate values, respectively, in cluster x;. Each covariate
was standardized by subtracting the mean and dividing by
the standard deviation. S(x;) is a stationary and isotopic
Gaussian process representing between-cluster variation,
with mean zero, variance ¢?, and correlation function
p(u) = Corr(S(x), S(x)) = exp{—|x — x'|/4}. ¢ is the scale
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parameter controlling how rapidly spatial correlation decays
with increasing distance between x and x’. Z; represents inde-
pendent and identically distributed Gaussian noise with
mean zero and variance 72, accounting for within-cluster vari-
ation such as measurement error. Parameters were estimated
using Monte Carlo maximum likelihood (MCML).

Using the geostatistical model, we predicted the monthly
prevalence of febrile illness from June to December 2016 at 5
km? spatial resolution. To estimate national-level prevalence
in Uganda, we generated 10000 predictive samples for each
prediction location by MCML and weighted them by popula-
tion data from WorldPop. The mean and 2.5% and 97.5%
quantiles of these samples were used to compute the national
mean prevalence and its 95% prediction interval.

Model Validation.
distribution. Calibration is the statistical consistency between

We assessed the calibration of the predictive

probabilistic forecasts and observations. We employed nrPIT
for count data [28], adjusting it for the geostatistical model
[29]. We used 30% of the dataset as a test set and compared
nrPIT from the model with and without covariates.

Assessment of the Contribution of Covariates to Spatial Prediction.
To quantify the contribution of covariates to spatial prediction,
we compared the theoretical variograms of random effects
from the model with and without covariates. The theoretical
variogram is defined as

2+ 02(1 — exp{u})

¢
where 72, 6%, and ¢ are the maximum likelihood estimates from
the fitted model.

RESULTS

In the 685 surveyed clusters, 4990 of 14 195 children were re-
ported to have had a febrile illness in the 2 weeks before the sur-
vey. The crude (or unadjusted) prevalence of fever widely
ranged from ~0% to 100%, with a median of 30.43% (Figure 1).

The predicted prevalence varied both temporally and spa-
tially. Based on the model, prevalence was highest in June, de-
clined through September, and then increased thereafter
(Table 1). Overall, the eastern and northeastern regions of
the country had a higher prevalence than the southern regions
throughout the study period (Figure 2).

According to the nrPIT, both models, with and without covar-
iates, were well-calibrated (Supplementary Figure 7). This justi-
fies the use of geostatistical models, although there was no
practical difference between the models. We found that the in-
clusion of covariates into the geostatistical model reduced the
uncertainty in spatial prediction, albeit not substantially. This is
evident in the theoretical variogram (Supplementary Figure 8)
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Figure 1.

Crude (or unadjusted) prevalence of febrile illness among children <5y

from June to December 2016 in Uganda. The points represent the prevalence in
each surveyed cluster.

Table 1.

Predicted Prevalence of Febrile lliness Among Children <5
Years From June to December 2016 in Uganda.

Month Predicted Prevalence (%) 95% Prediction Interval
June 43.30 42.45-44.14
July 39.49 38.62-40.45
August 37.15 36.31-37.96
September 29.43 28.7-30.25
October 29.85 29.07-30.67
November 31.84 31.06-32.63
December 38.99 38.06-39.83

The 95% prediction interval is derived from Monte Carlo maximum likelihood.

and parameter estimates (Supplementary Tables 2 and 3), as co-
variates reduced ¢ and 7> by explaining some of the spatial corre-
lation exhibited in the data.

DISCUSSION

Using a geospatial modeling approach, we found that the prev-
alence of fever in Uganda exhibited both spatial and temporal
distribution. Poverty, anemia, rainfall, and vegetation index
were major factors contributing to these dynamics. These find-
ings are crucial for public health interventions and identifying
children at-risk for infectious diseases. They can guide future
interventions tailored toward specific geographic regions with
the greatest need.

Previous studies on febrile illnesses in LMICs have primarily
focused on social, demographic, and economic factors associat-
ed with the epidemiology of childhood fevers [1, 9]. However,
most have lacked analyses of environmental or climatic drivers
of infectious diseases, which are major causes of fevers world-
wide [5]. Our study goes beyond these limitations and provides
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Figure 2. Predicted prevalence of febrile illness among children <5y from June to December 2016 in Uganda. The prediction is at a 5 km resolution based on the geo-

statistical model accounting for covariates.

critical evidence of key etiological and nutritional factors fun-
damental to known drivers of infections. We used fever as a
proxy for infectious diseases in Uganda, implying that unstud-
ied viral, protozoal, spirochaetal, and bacterial infections may
be linked to precipitation.

Our findings can guide future research, pinpointing optimal
locations and timing for biospecimen sampling of children or
environments to identify key drivers of childhood febrile ill-
ness. They align with a growing body of literature demonstrat-
ing that climatic variability affects a wide spectrum of infectious
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diseases beyond malaria [30, 31]. Extreme rainfall and humid-
ity have been associated with meningococcal meningitis [32],
and nontyphoidal Salmonella bacteremia [33]. Temperature
fluctuations have been linked to meningitis incidence world-
wide [34]. these
infectious-disease burdens are increasingly shaped by climate

Collectively, studies underscore that
dynamics—a trend that supports integrating meteorologic
and geospatial surveillance into pediatric fever monitoring
and epidemic preparedness.

The positive association between febrile illness and EVI is
not unexpected [35-38], as disease vectors like mosquitos
thrive in dense vegetation and bushes. Therefore, strategies to
prevent infections in the identified hotspots should focus on
clearing bushes from near homesteads or incorporating the
spraying strategies that were effective at eliminating malaria
in the United States in the 1950s [39, 40].

While previous studies have explored the impact of poverty
and malnutrition on infectious diseases at an individual level
[41, 42], the most impactful interventions for both vector-
borne and environment-driven infections are those applied at
a regional or mass scale. While nutrition and vaccination pro-
grams are implemented nationally, geospatial risk mapping can
refine the timing and geographic prioritization of outreach,
such as intensifying malaria vector-control or immunization
efforts in eastern and northeastern Uganda during high-risk
rainy months. Such region-specific optimization aligns with ev-
idence that coordinated vaccination campaigns designed to
achieve herd immunity have far greater impact than interven-
tions targeting individuals [43, 44].

Undernutrition undermines both adaptive and innate im-
munity, making opportunistic infections more common in af-
fected individuals [45, 46]. Therefore, to effectively address
febrile illnesses in LMICs, prioritizing proper nutrition is cru-
cial. Our findings identify hotspots of febrile illnesses in
Uganda that could benefit not only from improved treatment
access but also enhanced nutrition through governmental
and nongovernmental efforts [25]. Although the 2016 UDHS
remains the most recent nationally geocoded dataset with envi-
ronmental covariates, future analyses incorporating the com-
pleted 2022 DHS will allow assessment of changes in spatial
risk under current warming trends. Ongoing climate change
may intensify or shift the observed associations between rain-
fall, vegetation, and pediatric fever. Although there is no quick
fix for poverty, population-based interventions like mandated
food supplementation (eg, iodized salt, folate-fortified corn
flour), access to clean public water sources, and immunizations
can counteract the influence of personal wealth or household
income [41, 47-49].

Our study has several strengths. Firstly, we employed robust
model-based geostatistical methods for accurate mapping.
Secondly, we incorporated key environmental, nutritional,
and sociodemographic variables that are known to influence

infectious diseases; inclusion of these factors fine-tuned our
model. Thirdly, our approach yielded actionable outcomes,
guiding public health interventions by advising researchers
on optimal sampling times and locations for fever cases in
Uganda. Lastly, we included a large sample of participants
(over 10 000) in our modeling approach, thereby providing a
stronger statistical power.

Nevertheless, our findings should be interpreted with cau-
tion, bearing in mind inherent limitations. Firstly, we did not
include all etiological factors that could influence the distribu-
tion of vectors that are associated with most infectious diseases
in sub-Saharan Africa. Secondly, these findings cannot be gen-
eralizable to all sub-Saharan Africa due to differences in genet-
capital,
economics, and the underlying herd immunity from immuni-
studies that
sub-Saharan countries are better positioned to address climate

ics, environments, political social behaviors,

zations. Comprehensive incorporate all
and infectious diseases in the region. Finally, fever ascertain-
ment was based on caregiver report rather than direct ther-
mometer measurement. Although this approach follows
standardized DHS methodology, it introduces potential mis-
classification bias due to subjective perception. However, prior
validation studies have shown that caregiver tactile and subjec-
tive assessments correlate reasonably well with objectively mea-
sured fever, with sensitivities exceeding 85% in both
meta-analytic and primary-care evaluations [21, 22].

CONCLUSIONS

We identified extensive within-country spatial variation in the
prevalence of febrile illness among children in Uganda, while
highlighting associations with rainfall, poverty, EVI, and ane-
mia. These findings may inform targeted public health policies
for fever management and generate hypotheses for future etio-
logic research.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases
online. Consisting of data provided by the authors to benefit the reader, the
posted materials are not copyedited and are the sole responsibility of the
authors, so questions or comments should be addressed to the correspond-
ing author.
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