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Abstract— This paper investigates two distinct paradigms for
gaze-based control in human-robot collaboration (HRC). While
gaze tracking offers a promising hands-free interaction method,
the optimal mapping between eye movements and robot con-
trol remains an open research question. We examine two
fundamentally different control approaches: (1) position-based
control, which utilizes fiducial markers for spatial referencing
and maps gaze positions directly to physical target locations;
and (2) velocity-based control, whose functions are similar
to a joystick where gaze position relative to camera frame
centers determines movement direction and speed. Participants
completed standardized pick-and-place tasks with both control
methods. Performance was assessed through objective metrics
including task completion time, trajectory efficiency, and er-
ror rates. Subjective experiences were evaluated using NASA
Task Load Index questionnaires. Both systems incorporate a
blink detection mechanism for gripper activation, enabling
completely hands-free operation. This research addresses fun-
damental questions in eye-based robotic control for HRC,
with applications spanning assistive technologies for mobility-
impaired users, industrial settings that require hands-free oper-
ation, and medical environments where maintaining sterility is
crucial. Results indicate significant differences between control
paradigms, providing design insights for more intuitive and
effective gaze-based interfaces in human-robot systems.

I. INTRODUCTION

As robotic systems expand from industrial settings into
healthcare, domestic applications, and hazardous material
handling, developing intuitive control mechanisms has be-
come essential for both specialists and the general public.
Traditional control interfaces—joysticks, keyboards, and spe-
cialized input devices impose a significant cognitive bur-
den, require extensive training, and remain inaccessible to
individuals with motor impairments [1]–[3]. This limitation
creates a substantial barrier to the broader adoption of robotic
assistance systems, particularly in the levels of automation
where hands-free operation is necessary [4].

Eye tracking technology offers a promising alternative by
leveraging the natural visual attention system intrinsic to hu-
man cognition. The oculomotor system exhibits remarkable
precision in spatial targeting with minimal conscious effort,
with visual attention naturally preceding motor actions in
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the sensorimotor hierarchy [5]. This predictive relationship,
i.e., we look before we act, creates an opportunity for con-
trol interfaces that directly harness attentional mechanisms.
Whereas traditional manual input methods segregate visual
perception and manual control into distinct modalities [6],
[7], gaze interfaces, by integrating both functions within the
visual modality, necessitate managing an inherent dichotomy
between observational and intentional ocular actions. This
challenge manifests when a gaze event should trigger a
control action versus when it merely represents visual infor-
mation gathering, i.e., midas touch [8]. Robotic manipulation
tasks intensify this challenge, requiring operators to split
visual attention between perceiving the robot’s dynamic state
and executing deliberate gaze-based control actions.

To address these challenges, we evaluate two distinct
paradigms for gaze-based robotic manipulation control: (i)
Position-based control establishes a direct spatial mapping
by interpreting gaze locations as target destinations, thereby
commanding the robot to move toward the fixated point. This
approach essentially implements a “look-to-place” paradigm,
aligning with principles of direct manipulation where system
responses correspond immediately and transparently to user
actions without intermediary transformations; (ii) Velocity-
based control functions kinematically analogous to a virtual
joystick. The direction and magnitude of the gaze vector
relative to a designated reference point determine continu-
ous movement velocity vectors. This implements an “eye-
gaze-as-joystick” metaphor, translating established manual
rate-control concepts into the ocular domain. While both
paradigms have been studied extensively [9]–[13], their im-
plementation and comparative efficacy in gaze-based robotic
control remain underexplored. The main contributions of this
paper are as follows:

1) A comparative analysis of position-based versus
velocity-based control for eye-tracked robotic manipu-
lation, providing quantitative and qualitative evidence
for their respective performance characteristics and
usability implications.

2) An empirical investigation of the dual-role challenge
in eye-tracking interfaces, demonstrating how different
control paradigms affect the cognitive load associated
with using the eye simultaneously for perception and
control.

II. RELATED WORK

Eye-tracking as an interaction modality has evolved sig-
nificantly since [14] first demonstrated the feasibility of
manual and gaze combined pointing. In robotic manipulation



contexts, [15] developed gaze-based assistive robotic arms
but primarily focused on implementation viability rather than
comparing control paradigms. [16] explored fixation-based
selection techniques for object manipulation but limited
their investigation to virtual environments without addressing
the physical constraints of robotic systems. More recently,
[17] examined dwell-time activation mechanisms for gaze-
controlled interfaces, while [18] developed predictive al-
gorithms to enhance gaze estimation accuracy in dynamic
scenes. However, these works emphasized algorithmic im-
provements rather than investigating fundamental control
metaphors that determine how eye movements translate to
robot actions. The position-velocity distinction explored in
our work builds upon [19] findings on control order in
touch interfaces, but extends beyond their virtual interaction
context to address the unique challenges of physical robot
manipulation.

The dual-role problem—using eyes simultaneously for
perception and control—remains inadequately addressed in
existing literature. While [20] examined spatial awareness
challenges in teleoperation, it primarily concerned visual
feedback mechanisms rather than input modalities. Sim-
ilarly, [21] demonstrated workload reduction through di-
rect manipulation interfaces for search and rescue robots,
without considering the perceptual-motor conflicts unique
to eye-tracking interfaces. While research on the midas
touch problem provides conceptual foundations for miti-
gating unintended activations, the efficacy of proposed so-
lutions remains empirically unvalidated within the context
of robotic control [8]. Our work differs from these pre-
vious studies by empirically comparing two fundamentally
different control metaphors—position-based versus velocity-
based—specifically in the context of robotic manipulation
tasks, while quantifying both objective performance metrics
and subjective workload dimensions to address the inherent
perceptual-motor tensions in gaze-based interfaces.

III. METHODOLOGY

The proposed gaze-based control system employs a hi-
erarchical architecture that decouples perceptual processing
from robotic actuation to address the dual-role challenge by
combining temporal multiplexing and spatial partitioning.

A. System Architecture

The experimental platform comprises a human interface
layer and a robot execution layer, as illustrated in Fig.
1. This bifurcated structure facilitates the decoupling of
human-centered perceptual processes from robotic actuation
mechanisms, enabling system modularity while maintaining
operational cohesion.

The human interface layer coordinates eye tracking data
acquisition, user interface rendering, and control paradigm
implementation. This layer performs signal processing func-
tions including gaze vector estimation, fixation detection,
and intentional command disambiguation. The robot execu-
tion layer manages kinematic transformations, environmental
state estimation, and task execution processes, functioning as

Fig. 1: Overview framework.

the bridge between high-level intent recognition and physical
actuation.

The interface employs a Pupil Core eye tracker operating
at 120Hz sampling frequency, providing sub-millisecond
temporal resolution for gaze trajectory capture. The multi-
view visual feedback system presents three orthogonal per-
spectives (Top, Front, and Side views) simultaneously on
a spatially segmented interface, as shown in Fig. 2. This
trinocular visualization enhances spatial cognition by provid-
ing complementary viewpoints that collectively disambiguate
the three-dimensional workspace configuration.

The gaze-processing pipeline implements multiple stages
of filtering and interpretation. Starting with the pupil cap-
ture’s native geometric filtering using 3D eye modeling and
bundle adjustment, the raw gaze data then undergoes sec-
ondary filtering through confidence thresholding (Cthreshold ≥
0.8, where Cthreshold represents the confidence score thresh-
old) and exponential moving average smoothing to reduce
physiological tremor while preserving intentional saccadic
movements

St = αXt + (1− α)St−1 (1)

where St is the smoothed gaze coordinate at time t, Xt is the
raw gaze coordinate at time t, St−1 is the previous smoothed
coordinate, and α = 0.15 is the adjustable smoothing
coefficient controlling the balance between responsiveness
and stability. The filtered gaze coordinates undergo contex-
tual mapping to generate control primitives based on the
active control paradigm and the currently attended viewpoint.
The system addresses the fundamental midas touch problem
through a deliberate blink detection module that recognizes
intentional action triggers. The implementation requires five
consecutive blinks within a 1.2s temporal window to toggle
gripper actuation, establishing a clear delineation between
passive observation and active control intent by requiring a
statistically improbable blink pattern that would not occur
during normal visual perception activities.

The robotic subsystem consists of a 6-degree-of-freedom
serial manipulator with a parallel-jaw end effector. Environ-
mental perception utilizes a distributed camera network with
ArUco marker tracking to establish spatial referencing and



Fig. 2: Multi-view gaze control interface showing the three orthogonal perspectives (Top, Front, and Left views) with control
zones and visual feedback elements.

provide real-time visual feedback. The system maintains a
continuously updated environmental model that incorporates
both static workspace features and dynamic elements.

B. Control Paradigms

In the position control (PC) paradigm, the interface es-
tablishes distinct control zones centered on each camera
view. This paradigm implements a reference-based control
scheme where the user’s gaze point functions as a spatial
target within the projected workspace. The system calculates
the angular displacement and radial distance from the zone
center to the gaze point, deriving directional intent and
magnitude parameters, respectively. The PC implementation
incorporates a nonlinear velocity scaling function that maps
normalized radial distance to end-effector velocity:

v(t) = vmin + (vmax − vmin)

(
d(t)

dmax

)1.5

(2)

where vmin = 8 units and vmax = 30 units define the velocity
bounds, d(t) = ∥ptarget(t) − probot(t)∥ is the Euclidean
distance between the gaze point and the robot’s estimated
position in image coordinates, and dmax = 320 pixels is the
maximum control radius. This nonlinear mapping enables an
adaptive control sensitivity profile, allowing fine positioning
through small gaze displacements and rapid traversal with
larger displacements. The position command is given by
integrating (2) with respect to time. The resulting control
behavior mimics human reaching dynamics, which typically
begin with a ballistic phase (v(t) → vmax as d(t) → dmax)
followed by a decelerated precision phase (v(t) → vmin as
d(t) → 0).

The PC paradigm performs distinct coordinate transforma-
tions for each viewpoint to map two-dimensional gaze pro-
jections onto appropriate three-dimensional robot movement
vectors. For instance, in the left camera view, horizontal gaze
displacement maps to the manipulator’s x-axis while vertical
displacement governs z-axis actuation. Similar view-specific
mappings are implemented for the front and top perspectives,
creating a comprehensive spatial control vocabulary.

The velocity control (VC) paradigm implements a different
interaction metaphor, where gaze functions analogously to a
virtual joystick controlling the end-effector velocity vector,
establishing a direct spatial mapping between the gaze-
to-robot displacement vector (as represented in the inter-
face) and the resulting motion command. The magnitude
of the commanded velocity scales proportionally with the
Euclidean distance from the robot’s current position to the
gaze point, while its direction aligns with the displacement
vector, replicating the displacement-velocity transfer function
characteristic of conventional manual input devices.

In the VC mode, the system defines circular control
regions anchored at the center of each camera view. When
the gaze point falls within a region (excluding a defined dead
zone), the control algorithm computes a normalized radial
distance d ∈ [0, 1], and applies a nonlinear scaling function
to determine the actuator velocity:

v(t) = vmin + (vmax − vmin)d(t)
1.5 (3)

where vmin = 8 units and vmax = 30 units define the lower
and upper bounds of end-effector velocity, and d(t) is the
normalized radial distance calculated as:

d(t) =
r(t)− rdead

rcontrol − rdead
. (4)

Here, r(t) is the Euclidean distance from the gaze point to
the center of the control zone, rdead is the radius of the
inner dead zone where no movement occurs, and rcontrol
is the outer limit of the control zone. The exponent 1.5
ensures that small gaze deviations result in low velocity for
precise adjustments, while larger deviations produce faster
movements for efficient navigation.

The VC paradigm can be conceptualized as the temporal
derivative of position control, where instantaneous gaze
position generates proportional velocity rather than absolute
position commands. This derivative relationship creates a
control integration effect, where sustained gaze in a particular
direction results in continuous motion along that vector.
Conversely, PC can be viewed as the spatial integration



of VC, where the end goal, rather than the motion path,
becomes the control primitive.

Both control paradigms operate seamlessly across all three
camera perspectives, with view-specific coordinate transfor-
mations automatically applied based on the active viewpoint.
This multi-perspective control strategy enhances spatial flex-
ibility by allowing users to select the most appropriate
viewpoint for particular motion components. For example,
users typically prefer the top view for x−y plane movements
and the front or left views for z-axis adjustments.

The integration between PC and VC paradigms repre-
sents a hybrid approach that leverages the complementary
strengths of each method. While position control excels at
direct spatial targeting, VC offers superior path following
and dynamic adjustment capabilities. The system enables
contextual switching between these paradigms, allowing
users to employ the PC for discrete targeting operations and
velocity control for continuous manipulation sequences. This
dual-paradigm approach addresses the inherent limitations
of single-mode control systems by providing complementary
interaction modalities that collectively span a broader range
of manipulation contexts. The synergistic integration of these
control approaches represents a significant advancement over
conventional single-mode interfaces, offering enhanced flex-
ibility and control expressivity within the constraints of the
eye-gaze interaction modality.

IV. EXPERIMENTS

The experiments were approved by the Ethics Committee
of Lancaster University (FST-2024-4525-RECR-4), and all
participants provided informed consent. Seven participants
(coded P1-P7) were recruited for the experiment. All partic-
ipants had normal or corrected-to-normal vision and no prior
experience with eye-controlled robotic systems. Participants
represented a diverse range of technical backgrounds, though
all had basic familiarity with computer interfaces.

A. Experimental Setup

Participants were required to complete a standardized
pick-and-place task: controlling the robotic arm to grasp a
wooden block and to place it at a designated target location.
Fig. 3 shows the experimental setup with the robotic arm, ob-
jects, and workspace configuration. The task involved three
primary phases: navigation, grasping, and placement. During
the navigation phase, participants maneuvered the robot arm
from its initial position to the vicinity of the wooden block.
In the grasping phase, they positioned the gripper around the
block and activated the gripper using five consecutive blinks.
Finally, in the placement phase, they moved the grasped
block to the target location and released it using another
blink sequence. The task was considered successful when
the block was accurately positioned at the target location.
This standardized task was chosen for its representativeness
of fundamental robotic manipulation operations while being
approachable for novice users.

B. Procedure

Each participant underwent a 10-minute induction period
to familiarize themselves with the system, during which the
experimenter explained the control paradigms and demon-
strated the interface. Following the induction, participants
performed the pick-and-place task under both PC and VC
in counterbalanced order to mitigate learning effects. For
each condition, participants used eye movements to control
the robotic arm while the system monitored their pupil
diameter. The blink-based gripper control (five consecutive
blinks to toggle the gripper state) was consistent across both
conditions.

C. Measurements

The comparative analysis focused on differences between
the two control paradigms. Task performance metrics were
analyzed to determine efficiency and effectiveness, while
pupil diameter measurements provided an objective indicator
of cognitive load. NASA Task Load Index (TLX) scores
offered insight into subjective perceptions of workload as-
sociated with each control method.

Statistical analyses included calculation of means, standard
deviations, and variances. Given the sample size, we focused
on effect sizes and practical significance rather than null
hypothesis significance testing.

V. RESULTS

TABLE I: Participants performance metrics.

ID VC
Time (s)

VC
Success

(%)

PC
Time (s)

PC
Success

(%)

System
Perf.

P1 124 100 91 100 7
P2 155 100 113 100 6
P3 218 100 175 100 4.5
P4 423 100 - 0 4
P5 178 100 113 100 7
P6 170 100 259 100 6.25
P7 239 100 157 100 5.75

The analysis of task completion times revealed significant
differences between the two control paradigms. PC demon-
strated an average completion time of 151.5s (excluding
the participant who failed to complete the task), with times
ranging from 91 to 259s. VC showed an average completion
time of 215.3s, with times ranging from 124 to 423s. Thus,
PC demonstrated a 29.8% faster average completion time
compared to VC. Furthermore, PC exhibited lower variance
in completion time (std = 61.1s) compared to VC (std =
91.9s), indicating more consistent performance across partic-
ipants. Table I presents the individual completion times for
each participant under both control conditions. Of particular
note is participant P4, who failed to complete the task using
PC despite successfully completing it with VC.

The success rates differed between the two control
paradigms. PC achieved an 85.71% success rate (6 out of 7
participants), while VC reached a 100% success rate (7 out
of 7 participants). While PC offered faster task completion,



Fig. 3: Experimental setup for the pick-and-place task.

VC proved more robust, enabling all participants to complete
the task.

A. Pupil Diameter Analysis

The PC exhibited a broader distribution of pupil diameters
(more high-magnitude outliers) with a median value around
37 units. In contrast, the VC showed a more constrained dis-
tribution with a lower median value of around 32 units.The
interquartile range (IQR) for the PC was notably larger than
for the VC, indicating greater variability in pupil response
during the PC tasks. The more consistent pupil diameter
measurements in the VC suggest a more stable cognitive
load throughout the task duration.

These pupillometric findings align with established re-
search correlating pupil diameter with cognitive load, sug-
gesting that the VC may impose a more consistent cognitive
demand than the PC. The variability in pupil dilation during
the PC could indicate moments of high cognitive load inter-
spersed with periods of lower demand, possibly reflecting the
more direct mapping between visual attention and control in
this paradigm.

B. NASA TLX Questionnaire Results

The multi-dimensional NASA TLX assessment reveals
statistically significant workload differentials between VC
and PC paradigms (p < 0.01, n = 7). Mental demand
exhibits the most pronounced disparity (∆ = 39.3), suggest-
ing heightened cognitive resource allocation requirements
during velocity-based teleoperation. Temporal demand met-
rics demonstrate similar divergence patterns (∆ = 38.6),
indicating potential temporal constraints in VC frameworks.
Performance indices (inverse scale) show markedly improved
task accomplishment in PC architectures (30.0 vs. 61.4).
Physical demand, while demonstrating the least differential
magnitude, maintains statistical significance (∆ = 27.2,
p < 0.05). Effort and frustration dimensions (∆ = 30.0 and
∆ = 30.7, respectively) further substantiate the cognitive and
affective advantages of PC methodologies. These indicate
that the PC architecture may optimize cognitive resource al-
location, and enhance operator performance in teleoperation
scenarios.

Fig. 4: NASA-TLX results: velocity vs position control
mode.

Participants also provided system performance ratings
specifically for the PC. Quantitative system performance
assessment of the PC paradigm (n = 7) yielded a mean
rating of m = 5.79 (std = 1.07) on a standardized 9-
point scale, with statistical clustering in the moderate-to-high
performance region (range: 4.0 − 7.0). Distribution analy-
sis revealed slight negative skewness (−0.43) and Kurtosis
values K = −1.21 that deviate from normality (Shapiro-
Wilk test statistic W = 0.89, p < 0.05). The obtained
ratings predominantly occupied the upper-middle segment
of the measurement continuum, with 71.4% of evaluations
exceeding the scale midpoint (5.0). Notably, no subjects
utilized the lower tertile of the scale (1.0− 3.0), suggesting
an absence of significant system deficiencies. The IQR =
2.25 indicates moderate variability in assessment, potentially
attributable to differential operator sensitivities to control
latency and spatial mapping fidelity. Performance quantifi-
cation exhibited bimodal tendencies with concentration at
points 7.0 (n = 2) and 4.0 − 4.5 (n = 2), warranting
exploration of individual operator characteristics as potential
mediating variables.

C. Correlation between Metrics

The relationship between pupil diameter measurements
and averaged NASA TLX scores revealed an interesting
pattern. The lower subjective workload reported for the PC
contrasts with the wider range and greater variability of pupil
diameters observed during this control mode. This suggests
that while the PC may have induced momentary peaks in
cognitive load (as indicated by pupil dilation spikes), the
overall perceived workload remained lower than for the VC.
For the VC, the higher NASA TLX scores corresponded
with more consistent but elevated pupil diameters, indicating
sustained cognitive engagement throughout the task. This
sustained engagement may explain why all participants could
complete the task using the VC, despite the higher perceived
workload and longer completion times.

The divergence between objective (pupillometry) and sub-
jective (NASA TLX) measures highlights the complex rela-
tionship between the dual roles of the eye in this interaction
context. The attentional division between perception and con-
trol appears to manifest differently across the two paradigms,



with the PC creating more variable but subjectively lower
cognitive demands.

D. Individual Differences

Inter-subject variability analysis of NASA TLX workload
dimensions (n = 7) revealed statistically significant dif-
ferences in cognitive ergonomics perception between VC
and PC architectures (p < 0.01, ANOVA). While dimen-
sional rank-order consistency was maintained across subjects
(Kendall’s coefficient of concordance W = 0.78), magnitude
calibration exhibited substantial variance, with coefficients
of variation ranging from 38.2% (mental demand) to 47.6%
(physical demand) in VC mode. Notable statistical outliers
emerged in both extrema: Subject 7 demonstrated floor
effects (µ = 20.0, σ = 4.1 for VC; µ = 8.3, σ = 3.5 for PC),
while Subjects 5-6 exhibited ceiling proximity in velocity
assessments (µ = 91.7, σ = 6.8). Individual performance-
frustration correlation coefficients varied significantly (r ∈
(0.37, 0.92)), suggesting differential psychometric mapping
of objective task outcomes to subjective workload constructs.

VI. DISCUSSION

The PC offers faster task completion and lower perceived
workload, but at the cost of reduced reliability. The VC,
while slower and more cognitively demanding, provides
greater task success reliability. VC, functioning as an eye-
controlled joystick, requires users to maintain more con-
tinuous conscious control but appears more forgiving of
momentary attention shifts or gaze estimation errors. The
joystick-like interaction metaphor, where looking away from
the robot’s position generates movement in that direction
(similar to pushing a joystick), creates an additional cognitive
transformation layer. While this introduces higher mental
demand (as reflected in the NASA TLX scores), it also adds
a buffer against unintended actions, potentially explaining
the higher reliability of this approach.

The divergence between pupillometric data and subjective
workload ratings suggests complex interactions in using the
eye simultaneously for perception and control. The wider
variability in pupil diameter during the PC, despite lower
subjective workload ratings, may indicate rapid switching
between perceptual and control functions. Users may ex-
perience brief, intense cognitive load spikes during control
actions, followed by periods of lower load during perceptual
assessment. In contrast, the joystick-like VC may require
more continuous division of attention between perception
and control, resulting in more consistent pupil responses
but higher overall perceived workload. It aligns with Nor-
man’s action theory, which distinguishes between the gulf
of execution (translating intentions into actions) and the gulf
of evaluation (assessing the outcome of actions). The PC
may reduce the gulf of execution through direct mapping,
but potentially increases the gulf of evaluation by making it
harder to simultaneously attend to the effects of actions.

The joystick metaphor in the VC creates a more familiar
and structured control model, potentially reducing uncer-
tainty about how the system will respond to gaze inputs, but

at the cost of increased cognitive translation between spatial
goals and directional inputs.

A. Design Implications for Eye-Controlled Interfaces

Firstly, context-sensitive control selection could adaptively
switch between control paradigms based on task phase,
using position control for gross positioning (where speed is
advantageous) and VC for fine manipulation (where relia-
bility is crucial). Secondly, enhanced visual feedback could
provide clear indicators of the system’s interpretation of
gaze input, helping users disambiguate between perceptual
and control functions of their gaze. This is particularly
important for the joystick-like VC, where understanding the
calculated movement vector is crucial. Thirdly, personal-
ization features could accommodate varying user capabili-
ties and preferences, including adjustable sensitivity settings
for the joystick-like VC. Fourthly, alternative modes for
command confirmation beyond blink detection could further
help distinguish between looking for perception and control.
Finally, training and adaptation approaches could address the
moderate system performance ratings through user training
and system adaptation, potentially allowing users to develop
facility with the eye-gaze-as-joystick metaphor over time.

B. Limitations and Future Work

The relatively small sample size limits the statistical power
of our analyses. Future work should include larger, more
diverse participant groups. Additionally, while the pick-and-
place task represents a fundamental robotic operation, more
complex tasks might reveal additional differences between
control paradigms. Despite counterbalancing, some learning
effects may have influenced performance. Longitudinal stud-
ies could better assess how users adapt to different control
paradigms over time, especially given that the joystick-
like velocity control may have a steeper learning curve but
potentially higher ceiling for expert performance. Finally, the
precision of the eye tracker and robot system sets boundaries
on the achievable performance; advanced hardware might
yield different comparative results. Future research directions
can include investigation of hybrid control approaches that
leverage the strengths of both paradigms, possibly through
adaptive switching based on task context.

VII. CONCLUSION

This work compared position-based versus velocity-based
paradigms for gaze-driven robotic control, revealing distinct
performance characteristics: position control offers signif-
icantly faster task completion (29.8%) and reduced per-
ceived workload (better overall NASA TLX scores) but with
decreased reliability (85.71% success rate), while velocity
control achieves complete task reliability at the cost of
efficiency and increased cognitive demand. The observed di-
vergence between pupillometric data and subjective workload
measures illuminates the fundamental challenge of using the
visual channel simultaneously for perception and control—a
duality creating inherent attentional conflicts that must be



addressed through appropriate interface design. These find-
ings provide evidence-based guidance for developing intu-
itive gaze-based control systems across domains, including
assistive technology, surgical robotics, and hazardous envi-
ronment operations, suggesting that time-critical applications
may benefit from position control while reliability-critical
contexts would favor velocity-based approaches, with future
work exploring adaptive hybrid paradigms that dynamically
select control methods based on task context.
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