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Abstract
Modelling multiple network data is crucial for addressing a wide range of applied research questions. However, there are
many challenges, both theoretical and computational, to address. Network cycles are often of particular interest in many
applications; for example in ecology a largely unexplored area has been how to incorporate network cycles within the
inferential framework in an explicit way. The recently developed Spherical Network Family of models (SNF) offers a flexible
formulation formodellingmultiple network data that permits any type ofmetric. This has opened up the possibility to formulate
network models that focus on network properties hitherto not possible or practical to consider. In this article we propose a
novel network distance metric that measures similarities between networks with respect to their cycles, and incorporates this
within the SNFmodel to allow inferences that explicitly capture information on cycles. These network motifs are of particular
interest in ecological studies aimed at understanding competitive and hierarchical interactions. We further propose a novel
computational framework to allow posterior inferences from the intractable SNF model for moderate-sized networks. Lastly,
we apply the resulting methodology to a set of ecological network data studying aggressive interactions between species of
fish. We show our model is able to make cogent inferences concerning the cycle behaviour amongst the species, and beyond
those possible from a model that does not consider this network motif.
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1 Introduction

Inmanyfields,modelling network data is essential to answer-
ing the applied research questions of interest. In ecology,
the interactive behaviour of different individuals or species
within a geographical area can be represented by a directed
network with each species corresponding to a node and the
edges representing interactions between species (Delmas
et al. 2019; Mittelbach and McGill 2019). If these inter-
actions are directed, such as aggression behaviour between
individuals of different species, these networks can capture
competitive species interactions at the ecosystem scale, e.g.
certain species vying over a particular food source or type
of habitat. Each aggressive interaction can be represented
through a directed edge (i.e. arrow)with the direction indicat-
ing which species is the aggressor and which is the recipient
respectively.

Within ecology, a particular phenomenon of interest is
where the aggressive interactions result in intransitive com-
petition patterns, a set of cyclical interactions that results in
no single dominant species, with different species winning
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out depending on the circumstances. Intransitive competition
is of ecological importance as it is thought to promote species
coexistence (Laird and Schamp 2006). In a network these
would be characterised through directed cycles (Koutrouli
et al. 2020).

More generally, cycles reveal information about network
topology (Maugis et al. 2017; Fan et al. 2019), and is a motif
of interest in many applications beyond ecology. Examples
include neuroscience, where the formation of cycles in a
humanbrain network is crucial for human cognitive functions
(Sizemore et al. 2018), and biology where RNAs forming
covalently closed loop structures, called circular RNAs, have
been associated with diseases such as cancer (Han et al.
2017).

Recent methodological developments permit data to be
analysed where each observation is a network. In ecology,
this arises when recording species’ interactions across mul-
tiple different areas or sites. In this setting, the goal is to
model the underlying mechanism that generates the multiple
network data and to be able to directly compare networks
across different spatial or temporal scales. Recent studies
have focused on the problem of modelling multiple net-
work data utilising (a) a latent space framework (Gollini
and Murphy 2016; Durante et al. 2017; Wang et al. 2019;
Nielsen andWitten 2018; Arroyo et al. 2021), (b) a measure-
ment error process (Le et al. 2018; Newman 2018; Peixoto
2018; Mantziou et al. 2024; Young et al. 2022), (c) dis-
tance functions (Lunagómez et al. 2020; Kolaczyk et al.
2020; Ginestet et al. 2017; Josephs et al. 2023) and (d)
a Stochastic Block Model (SBM) structure (Josephs et al.
2023). Another study utilising an SBM structure for mod-
elling multiplex networks is the study of Amini et al. (2024).
Multiplex networks are different to multiple networks as the
former refers to networks observed at different layers with
edges at each layer having a different interpretation of rela-
tion, while in multiple network data, the edges express the
same type of relation across networks. In Amini et al. (2024),
the authors propose a hierarchical Stochastic Block Model
(SBM) to recover communities of nodes at different network
layers. However none of these models explicitly consider
networks’ cyclical properties in their formation, making it
difficult to determine the underlying processes that sustain
species interactions in thewild, or tomeasure how theymight
differ when drivers change. Recent work utilising subgraph
counts to test whether networks arise from a given distribu-
tion (Maugis et al. 2020) highlights how network properties,
such as cycles, can be valuable in the analysis of network
populations.

Distance-based models offer a way to encode networks’
cycle information by incorporating this information in a
metric measuring similarity between networks. There are a
multitude of ways to define a similarity measure between
different networks and for a review of these see Donnat and

Holmes (2018). However, none of these metrics explicitly
consider cycles when measuring network dissimilarity.

In this article we propose a distance-based model for
multiple network data that explicitly utilises the cycle infor-
mation in the distance metric. Specifically, the metric we
propose involves counting the number of uncommon cycles
between the two networks, denoted as the symmetric differ-
ence, and combining this with the Hamming distance (both
defined in the next section). The resulting metric is denoted
as the Hamming-Symmetric difference (HS) distancemetric.
Enumerating cycles within a network is a computationally
intensive task. To deal with computational challenges in
detecting large cycles, in this studywe consider only directed
cycles formed by three nodes, i.e. directed triangles. From
an ecological perspective, three-node motifs are of interest
as they indicate where on the transitive to intransitive contin-
uum a species triad falls, with a directed triangle representing
intransitive competition. There is thus an ecological, as well
as mathematical, interest in studying directed triangles in
network data.

We adopt a Bayesian approach and utilise the Spherical
Network Family (SNF) of models (Lunagómez et al. 2020)
to make posterior inferences as this gives us the flexibility
to specify the distance metric of our choice, which in our
setting is the HS distance. However, the computational chal-
lenges associated with fitting the SNF model are significant,
with the model having an intractable normalising constant,
which is a sum over the space of graphs. For a detailed review
on methods for intractable distributions see Park and Haran
(2018). Notably, for an directed network with n-nodes there
are 2n(n−1) possible networks, which means that even for a
moderate-sized network with n = 20 nodes there will be
more than 2.46 × 10114 network configurations which are
not practically possible to enumerate.

The methodology proposed in Lunagómez et al. (2020)
utilises a diffusion distance metric and the auxiliary vari-
able implementation based on Møller et al. (2006) to deal
with the double intractability problem. The choice of the
diffusion distance metric in Lunagómez et al. (2020) is moti-
vated by a neuroscience application, as diffusion distance
can capture differences between networks with respect to
how messages propagate through brain regions. However,
for our ecological application, the specification of the diffu-
sion distance metric would hinder ecological interpretation
as it would not be clear how to translate message propagation
in this setting. In our framework, we are interested in local
changes in the structure of the networks with respect to edge
flips and cycles differences rather than the global changes
captured by the diffusion distance. The specification of our
proposed HS distance metric allows for capturing such prop-
erties, however, the auxiliary variable technique formulated
in Lunagómez et al. (2020) does not result in satisfactory
performance for making posterior inferences in our setting.
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We thus develop an alternative computational framework to
make posterior inferences through approximating the nor-
malising constant using an Importance Sampler. This was
inspired by an approach taken in Vitelli et al. (2017), albeit
in a different setting with less computational challenges. The
resulting modelling framework performs significantly bet-
ter in making posterior inferences. More details are given in
Section 5.3. We further evaluate our approach on field data
of competitive interactions between fish species at various
reefs in the Indo-Pacific Ocean.

While the seminal approach taken in Lunagómez et al.
(2020) has opened up exciting possibilities for developing
interpretable Bayesianmodels formultiple network data, and
which ourmodelling framework is based on,wenote a related
earlier study Banks and Carley (1994), which provides one
of the first approaches in the literature for modelling multi-
ple network data. Banks and Carley (1994) propose a model
with the same functional form to the SNF model presented
in Lunagómez et al. (2020), and consider the Hamming dis-
tance metric to make inferences for multiple network data.
The key differences with Lunagómez et al. (2020) are (i)
the inferential framework in Banks and Carley (1994) is for-
mulated for the Hamming distance and variants of it while
(Lunagómez et al. 2020) offer an inferential framework that
allows the practitioner to specify a distance metric of their
choice and (ii) Banks and Carley (1994) do not account for
uncertainty quantification as in Lunagómez et al. (2020) who
address this with a fully Bayesian framework.

Our key contributions in this paper are thus three-fold.
First,we propose a novel network distancemetric, namely the
HS distance, that has not been considered in the network lit-
erature. Second, we develop and implement a novel Markov
ChainMonteCarlo (MCMC) scheme tomake posterior infer-
ences from the Spherical Network Family (SNF) model for
multiple network data under the proposed HS distance met-
ric. Specifically, we introduce an Importance Sampling (IS)
step to approximate the SNF model’s intractable normalis-
ing constants within a Metropolis-Hastings (MH) algorithm.
Third we utilise the modelling framework to infer cycle
properties from a group of ecological networks studying
aggressive interactions between species of fish.

The remainder of this article is organised as follows. Sec-
tion2briefly reviews relevant fundamental network concepts,
Section 3 describes our proposed metric as well as the eco-
logical application that motivated its derivation. In Section 4
we give an overview of the SNF model and how Lunagómez
et al. (2020) address the problem of the intractable normal-
ising constant. In Section 5 we present how we modify the
computations tomake posterior inferences for the SNFmodel
and deal with the MCMC mixing issue, along with sim-
ulation experiments for evaluating the performance of our
method. Section 6 applies our modelling framework to eco-
logical data, specifically to quantify aggressive interactions

between coral-eating reef species of fish. Finally Section 7
ends with some concluding remarks.

2 Relevant network properties and
preliminaries

We represent a directed graph by G = (V , E), with V =
{1, . . . , n} denoting the set of n nodes and E ⊆ En denot-
ing the set of edges in G, with En = {(i, j) | i, j ∈ V }.
Directed networks have ordered edges, such that (i, j) is
distinct to ( j, i). We note here that in this paper, we focus
only on directed networks, however, our framework is easily
adaptable to the simpler setting of undirected networks. We
use an n × n matrix, namely the adjacency matrix, to rep-
resent the presence and absence of edges in graph G. Thus,
the (i, j)th element of the adjacency matrix for a graph with
binary edges is,

AG(i, j) =
{
1, if an edge occurs from node i to node j,

0, otherwise.

(1)

By G1, . . . ,GN we represent a population of N directed
graphs,with corresponding adjacencymatrices AG1 , . . . , AGN .
We further assume that the networks in the populationhaveno
self-loops, and share the same set of n labelled nodes suggest-
ing that the rows/columns of the adjacency matrices adhere
to the same order. We represent the space of graphs with n
nodes by {G|n|}, such that {G|n|} = {G = (V , E) :| V |= n}.
Thus, the size of the space of directed, with no self-loops
graphs is | {G|n|} |= 2n(n−1).

A way to quantify similarities among networks is through
the use of distance metrics which we denote by dG(·, ·). Two
main types are: (a) structural distances that aim to capture
similarities on edge-specific local properties of the graphs,
and (b) to spectral distances that aim to capture similari-
ties with respect to global properties of the graphs using a
spectral representation (Donnat and Holmes 2018). A well-
known structural distance metric is the Hamming distance,
that counts the not in common edges and non-edges between
two graphs Gk and Gl for k, l ∈ {1, . . . , N }. The unnor-
malised Hamming distance between Gk and Gl is defined
as:

dH (AGk , AGl ) =
∑
i, j

| AGk (i, j) − AGl (i, j) | . (2)

Networks are objects that can exhibit complex structures,
thus the derivation of network properties such as the degree
distribution is important for evaluating their characteris-
tics. Network cycles are known to be crucial in revealing
information about their topology (Maugis et al. 2017). We

123



   58 Page 4 of 15 Statistics and Computing            (2026) 36:58 

Fig. 1 Example of graph with directed cycles {1−2−6−1}, {1−3−
5 − 4 − 1} and {1 − 3 − 4 − 1}

acknowledge that terminology about motifs is not universal,
and thus we use the following toy network to clarify what we
mean by directed triangles which is the focus of our study.
Firstly, a directed cycle in a directed network is a sequence
of connected nodes in which the only repeated nodes are
the first and the last node in the sequence. An illustrative
example of an directed graph with three directed cycles is
presented in Figure 1. We note here that {3, 5, 4} does not
form a directed cycle since there is an edge (3, 4) rather than
(4, 3). The sequence of nodes {3, 5, 4} and {1, 3, 4} form tri-
angles. In this study, we consider only directed cycles that
form triangles (e.g. {1, 3, 4, 1}), namely directed triangles.

3 Ecological Application and proposed
metric

Data have been collected on aggressive interactions between
butterflyfish (genus Chaetodon) on different coral reefs,
across the Indo-Pacific region (Keith et al. 2018). We use
a network representation, where nodes represent fish species
and edges represent aggressive encounters.

In Ecology, it is often of interest to identify competition
structures among species that share resources, which enable
particular ecological dynamics to be inferred e.g., hierarchi-
cal versus intransitive competition. Changes in competitive
interactions can have broader effects, altering population
dynamics, community structure, ecosystem function (Eco-
logical Competition 2022; Mohd 2019; Grether et al. 2017;
Kinlock 2021). In particular, the formation of directed cycles
in graphs representing aggressive interactions among species
point to intransitive competition patterns which are of partic-
ular interest ecologically (Sokhn et al. 2012; Koutrouli et al.
2020). Hence, a research question arising here is the follow-
ing: How can we best use cyclical properties of networks,

together with other network properties, to jointly analyse
multiple network data, when the applied research questions
pertain to directed cycles?We develop a Bayesian modelling
and inferential framework to address this.

An appealing way to answer this research question is with
the SNF model (Lunagómez et al. 2020) that infers a rep-
resentative network in the population, determined through a
user-specified distance metric. In addition, the SNF model
involves a dispersion parameter that quantifies the level of
dissimilarity between the network data and the network
representative, with respect to the specified metric. The flex-
ibility in the choice of the distance metric is a key motivating
factor for developing a SNF model to analyse the data.

As our interest lies in cycles formed in the network data,
we propose a measure that captures information about dis-
similarities between the cycles of two networks. Specifically,
we propose a Hamming-Symmetric difference (HS) distance
metric consisting of two parts:

1. TheHammingdistance countingnot in commonedges/non-
edges between two graphs.

2. The symmetric difference between the cycles formed in
two graphs, i.e. counting the number of not in common
cycles in two graphs.

Hence, a mathematical representation of the constructed
distance metric for two graphs Gk,Gl for k, l ∈ {1, . . . , N }
is,

dHS(Gk,Gl) = dH(AGk , AGl ) + λ· | CGk�CGl |, (3)

where dH(·, ·) denotes the Hamming distance, CGi denotes
the directed cycles in graph i, � indicates the symmetric dif-
ference and λ ∈ R is a weighting factor. In Supplementary
material Section 1, we show that HS is a distance metric.
Under this construction, we encode information about dis-
similarities in the structure of the networks, with respect to
both their edges and cycles. The tuning of the λ parameter
corresponds to how much influence we allow the symmet-
ric difference to have on the total distance. In the rest of this
article, we assume λ to be equal to 1, suggesting equal impor-
tance between the Hamming and the Symmetric difference
distance.

The specification of the HS distance metric for the SNF
model induces significant challenges when adopting the
MCMC framework proposed by Lunagómez et al. (2020)
to make posterior inferences with the SNF model. Notably
the mixing of chains is very poor with acceptance rates close
to zero, as illustrated in Figure 3 in Section 5.3. This moti-
vated us to develop an alternative computational framework
to make posterior inferences with the SNF model and details
are given in Section 5.
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4 Overview of the SNFmodel

In this section we provide a brief overview of the SNFmodel
proposed in Lunagómez et al. (2020), and why it is a com-
pelling model to consider for this setting. We also highlight
some shortcomings with the current implementation which
limits its usefulness in our setting.

4.1 Motivation andModel formulation

Lunagómez et al. (2020) develop a model for network data
inspired by the form of a Normal distribution. Specifically,
they assume an underlying mean network representing the
network population and a dispersion parameter denoting the
variation of the networks about this mean. They express the
mean network in terms of a Fréchet mean, as seen in the
studies of Ginestet et al. (2017) and Kolaczyk et al. (2020),
and the dispersion parameter in terms of an entropy. Under
this construction, they obtain the probabilistic mechanisms
that generate data sets of multiple network data which they
denote the SNF model.

Specifically, ifwe assumewehave a population of directed
and unweighted graphs G1, · · · ,GN then the joint distribu-
tion characterised by the SNF model is given by,

P(AG1 , · · · , AGN | AGm , γ ) = 1

Z(AGm , γ )N

exp

{
−γ ·

N∑
i=1

φ(dG(AGi , AGm ))

}
, (4)

where Gm is the Frechét mean, dG(·, ·) is a distance metric,
γ > 0 is the dispersion, φ(·) > 0 is a monotone increasing
function and the model partition function is

Z(AGm , γ ) =
∑

AG∈{G|n|}
exp{−γ · φ(dG(AG, AGm ))}, (5)

where {G|n|} is the space of n-node networks. The parameters
Gm , and γ can thus be seen to relate to themean and precision
parameters in a Normal distribution.

Lunagómez et al. (2020) show the Centered Erdös-Rényi
(CER) model is a special case of a SNF model when the
Hamming distance metric is used. Under the CER model a
population of networks is generated by perturbing the edges
of a centroid network Gm using a Bernoulli distribution with
probability α, as follows:

AG(i, j) | (AGm (i, j), α) =| AGm (i, j) − Z(i, j) |, (6)

where Gm is the Frechét mean and Z(i, j)’s are iid Ber(α),
with 0 < α < 0.5. The joint distribution of a population of

directed and unweighted G1, · · · ,GN graphs is then

P(AG1 , · · · , AGN | AGm , α) =
N∏
i=1

αdH (AGi ,AGm )

· (1 − α)n(n−1)−dH (AGi ,AGm ) (7)

where dH (·, ·) denotes the Hamming distance metric and n
is the number of nodes.

Tomake inferences, the authors adopt aBayesian approach.
Aprior distribution forγ is specifiedwith support onR+. The
prior choice and support is strongly related to the specified
distance metric. A prior distribution for the network repre-
sentative AGm is specified with the same functional form as
that of the SNF model. The priors for the parameters of the
CER model are specified in a similar manner, with the prior
for the representative having the functional form of the CER
model. The prior for α in the CERmodel requires support on
(0, 0.5) with a scaled Beta distribution on (0, 0.5) proposed.

4.2 Addressing the intractable normalising constant

Lunagómez et al. (2020) make posterior inferences using
a MCMC scheme to draw samples from the posterior dis-
tribution based on a Metropolis-Hastings (MH) algorithm.
However, the normalising constant of the SNF model,
Z(AGm , γ ), depends on the parameters of the model. Thus,
the normalising constants do not cancel in the Metropolis-
Hastings ratio.

To tackle the intractable normalising constants, Lunagómez
et al. (2020) apply theAuxiliaryVariable technique presented
inMøller et al. (2006). Notably, Møller et al. (2006) consider
a likelihood of the form,

P(y | θ) = qθ (y)

Z(θ)
, (8)

where θ denotes the model parameter, y represents the data,
qθ (y) the unnormalised density, and Z(θ) is an intractable
normalising constant that depends on θ .

They propose the use of an auxiliary variable x that has
the same support as that of y, with density f (x | θ, y) to
obtain an unbiased estimator of Z(θ). In light of Importance
Sampling, under Møller et al. (2006) Z(θ) can be written as,

Z(θ) = E

[
q(x | θ)

f (x | θ, y)

]
, (9)

where the expectation is taken with respect to the density
of the auxiliary variable x , f (x | θ, y). In this regard, they
propose sampling x from P(· | θ) as seen in equation (8) and
use the approximation,
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Z(θ) ≈ q(x | θ)

f (x | θ, y)
. (10)

Thus, they can substitute the normalising constant Z(·) by its
unbiased estimator q(x | ·)/ f (x | ·, y) in theMHacceptance
ratio. In this respect, q(x | ·) and f (x | ·, y) are evaluated in
each MCMC iteration at the auxiliary variable x drawn from
the proposal P(· | θ).

The formulation of the Auxiliary Variable Method in the
case of the SNF model involves the simulation of a set of
auxiliary variables G∗, defined on the same state space as
the network data {Gi }Ni=1. Lunagómez et al. (2020) exploit
the probabilistic mechanism of the CER model to specify
the conditional density f (AG∗

1
, . . . , AG∗

N
| {Gi }Ni=1, AGm , α̃)

of the auxiliary network variables G∗
1 , . . . ,G∗

N . Thence, in
each iteration of the MH algorithm a new state of both the
model parameters and the auxiliary network variables will be
proposed,with the latter sampled fromaproposal distribution
that has the same functional form as the likelihood. Under
this formulation, the normalising constants cancel in the MH
ratio. For a more detailed description of this MH algorithm
see Lunagómez et al. (2020).

A main challenge in implementing the Auxiliary Variable
Method for the SNF model is the slow mixing of the chain
for γ , as seen in Figure 3 in Section 5.3. Notably, we see a
very low acceptance rate and thus poor mixing. Depending
on the distance metric choice, this issue is apparent even for
small network sizes.

The occurrence of this phenomenon can be attributed to
the discrepancy between the likelihood, the SNF model, and
the choice of auxiliary density, the CER model. Depending
on the choice of the distance metric for the SNF model, this
discrepancy can increase leading to a bad mixing or, in some
cases, the chain not exploring the state space at all.

The poor mixing makes this impractical to consider for
our setting and motivates our development of an alterna-
tive strategy to approximate the normalising constant. The
proposed approach greatly improves performance of the
MCMC, allowing it to be applied to similar sizes of networks
present in the ecological data set.

5 Proposed Bayesian inference framework
for the SNFmodel using Importance
Sampling

Toovercome shortcomingsof theAuxiliaryVariable approach
we develop an alternative method to approximate the
intractable normalising constant. Specifically, we formulate
an Importance Sampling step within our MCMC equiva-
lent to Ratio Importance Sampling (Chen and Shao 1997).
We were motivated by Vitelli et al. (2017) who also use
Importance Sampling to make Bayesian inference from the

Mallow’s model (Mallows 1957), a common model for
analysing rank datawith the same functional form as the SNF
model. Frequentist inferencemay also be possible, withMar-
dia and Dryden (1999) developing this for the Watson model
that also has the same functional form as the SNF model.

A key difference between the Mallow’s model for rank
data and the SNF model is that the normalising constant
in the latter involves both the representative network and
the dispersion parameter, while for the Mallow’s model the
normalising constant depends only on the dispersion param-
eter, for right-invariant distance metrics considered in Vitelli
et al. (2017). This allows an off-line approximation of the
normalising constant through IS, using a pseudo-likelihood
approximation of the target distribution.

Graphs are more complex objects than rank data, due to
diverse structures they exhibit such as the formation of com-
munities and motifs, as well as other topological structures
revealed by their spectral decomposition. For networks, the
right-invariance property does not hold for the majority of
distance functions, with different properties governing rank
and network data. Thus, approximating the normalising con-
stant of the SNFmodel is amore challenging scenario.Unlike
Vitelli et al. (2017), we formulate an Importance Sampler
within our MCMC to give a good approximation to the nor-
malising constant.

5.1 Formulation of IS step for the SNFmodel

The normalising constant of the SNFmodel has the following
form,

Z(AGm , γ ) =
∑

AG∈{G|n|}
exp{−γ · φ(dG(AG, AGm ))}, (11)

this involves computing a sum over the space of n-node
graphs, {G|n|}. Even for modest n, this sum is impractical
to compute. Instead, using ideas from Importance Sampling
(Robert and Casella 2013) we can rewrite the sum as

∑
AG∈{G|n|}

exp{−γ · φ(dG(AG, AGm ))}

=
∑

AG∈{G|n|}

exp{−γ · φ(dG(AG, AGm ))}
g(AG)

g(AG)

= Eg

[
exp{−γ · φ(dG(AG, AGm ))}

g(AG)

]
,

(12)

which can then be approximated by drawing a sample of
networksG1, . . . ,GK from an Importance Sampling (IS) pro-
posal density g and calculating,

Ẑ(AGm , γ ) ≈ 1

K

K∑
k=1

exp{−γ · φ(dG(AGk , AGm ))}
g(AGk )

. (13)
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One advantage of the ISmethod is theflexibilitywith spec-
ifying the IS density. In this regard, choices of distributions
that are easy to sample fromare preferred (Robert andCasella
2013). In our problem, a natural choice of the IS density is
the distance-based CER model for two main reasons, (i) the
CER model is a member of the Spherical Network Family
(SNF) of models (Lunagómez et al. 2020), and (ii) sampling
network data from the CERmodel is quick, thus will result in
a less computationally intensive MCMC algorithm. To sam-
ple networks from the CER model, we perturb the edges of
the centroid ÃGm using Bernoulli noise with probability α̃,
as per equation (6).

Thus, the estimator in (13) takes the following form under
the CER IS density:

Ẑ(AGm , γ )

≈ 1

K

K∑
k=1

exp{−γ · φ(dG(AGk , AGm ))}
α̃dH(AGk , ÃGm )(1 − α̃)n(n−1)−dH(AGk , ÃGm )

, (14)

where {AGk }Kk=1 are networks sampled from the CER model
with parameters α̃ and ÃGm .

We determine α̃ and ÃGm by fitting the data to the CER
model to obtain the posterior mean of α̃ and posterior mode
of ÃGm . In this way, we encode information about the data
that may allow a better approximation of the normalising
constant.

5.2 MCMC schemewith IS step

We now describe our computational framework to obtain
posterior draws for the SNF model parameters. As seen in
Lunagómez et al. (2020), the joint posterior distribution of
the centroid AGm and the dispersion parameter γ can be
expressed as

P(AGm , γ | AG1 , · · · , AGN )

∝ 1

Z(AG0 , γ0)
exp

{−γ0φ(dG(AGm , AG0))
}
P(γ | α0)

· 1

Z(AGm , γ )N
exp{−γ

N∑
i=1

φ(dG(AGi , AGm ))}. (15)

We follow a largely similar scheme to Lunagómez et al.
(2020) to make inferences, using Metropolis-Hastings to
sample from the joint posterior of the parameters. How-
ever, to overcome the double-intractability problem, we
approximate the normalising constant within each iteration
of the MCMC using the estimator obtained through Impor-
tance Sampling, different to the Auxiliary Variable Method
adopted by Lunagómez et al. (2020). Notably, we obtain pos-
terior draws from the target distribution in Equation (15),

after substituting the normalising constant in the likelihood
with its estimate in equation (14).

To obtain posterior draws for the parameters AGm and
γ , we follow a similar scheme to Lunagómez et al. (2020).
Details are given in Supplementary material Section 2.

Algorithm 1 sketched below illustrates the MH algorithm
with IS step.

Algorithm 1:Metropolis-Hastings Algorithm with IS step

Data: AG1 , . . . , AGN Hyperparameters:
AG0 , γ0, α0, α̃, ÃGm

Initialisation: Randomly generate γ (0) and
A(0)
Gm ∼ Bernoulli(

∑N
i=1 AGi /N )

for i ← 1 to M do
MH step with a mixture of kernels: Update AGm or γ

Sample v ∼ Multinomial(ξ1, . . . , ξL)

Depending on the value of v propose
A(i)
Gm ∼ q(A(i)

Gm | A(i−1)
Gm )

or γ (i) ∼ q(γ (i) | γ (i−1))

Draw new IS sample of networks:
AI S(i)
G1

, . . . , AI S(i)
GK

∼ CER(α̃, ÃGm ).

Estimate Z: Use equation (14) to estimate normalising
constant in posterior P(A(·)

Gm , γ (·) | AG1, . . . , AGN )

Calculate MH ratio:

r = min

(
1,

P(A(i)
Gm , γ (i) | AG1 , . . . , AGN

) · q(A(i−1)
Gm , γ (i−1) | A(i)

Gm , γ (i))

P(A(i−1)
Gm , γ (i−1) | AG1 , . . . , AGN

) · q(A(i)
Gm , γ (i) | A(i−1)

Gm , γ (i−1))

)

u ∼ Bernoulli(r)
if u=1 then

Accept proposals A(i)
Gm , γ (i)

else
Reject proposals A(i)

Gm , γ (i)

end
end

We randomly generate an initial centroid network Gm(0)

by sampling edges independently from a Bernoulli distri-
bution with probabilities equal to the average adjacency
matrix obtained from the observed network population∑N

i=1 AGi /N . Thus, we assist ourMCMCwith ameaningful
network initialisation using information from the observed
network population. In our implementation, we initialise γ (0)

at 0.1. In practice, any real positive can be specified, ideally
upper bounded by the value of γ for which the average dis-
tance of the networks from the centroid is close to 0 (see
Figure 4). For the mixture of kernels we consider propos-
als imposing both moderate and more drastic changes in the
current values of the parameters. Our investigation suggests
that inferences are not sensitive to moderate changes in the
probabilities. The prior specification for the centroid and the
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Fig. 2 Simulated centroid with 13 nodes

dispersion is performed as suggested in Lunagómez et al.
(2020).

5.3 Addressing theMCMC chainmixing issue

In this section, we illustrate the improvement in the MCMC
chain mixing using the IS step compared to the auxiliary
variable technique used in Lunagómez et al. (2020), for the
HS distance metric.

In this simulation experiment, we consider network size,
population size and parameter values similar to that of the
ecological application. In particular, we simulate a popula-
tion of N = 13 networks with n = 13 nodes, under the
scenario of a 13-node centroid with density approximately
0.1 (Figure 2) and γ = 1.2. Similarly to Lunagómez et al.
(2020), we simulate from the SNFmodel with this parameter
specification using an MH algorithm with target distribution
the density of the SNF model as seen in equation (4). In Fig-
ure 3, we show the results after running theMCMC using the
auxiliary variable technique for 5,000 iterations (left) and our
proposed MCMC with IS step for 50,000 iterations (right),
with an IS sample of 3000 networks. We observe a drastic
improvement in the mixing of the MCMC chain using our
proposed MCMC scheme.

The auxiliary variable technique requires sampling from
the SNF model using an MH algorithm in each MCMC
iteration, resulting in a computationally intensive algorithm.
Indicatively, running the MCMC with the auxiliary variable
technique for 5,000 iterations in this simulation experiment
requires approximately 20 hours. In contrast, our proposed
MCMC scheme with IS step does not require running an
MH algorithm in each MCMC iteration since we can sample
directly from the CER model using (6). In this simulation
experiment, running our proposed MCMC with IS step for
50,000 iterations requires approximately 20 hours. Running
each MCMC scheme for 5,000 iterations and 50,000 itera-

tions respectively, results in running the two approaches for
a comparable amount of time. Thus, our proposed approach
not only improves mixing but also substantially improves
computation time.

We observe that the posterior region for γ explored by
the MCMC is slightly lower than the true value of γ = 1.2
specified to simulate the network population. An explanation
is possible by examining the EDA violin plots obtained in
Figure 4, showing the distribution of theHSdistance between
the centroid and simulated networks from the SNF model
for different γ values. We see when the true value of γ lies
in (0.9, 1.21) the distribution of the distance between the
simulated networks and the centroid is similar. Thus, for this
regime, changes in the parameter space result in very small
changes in the distribution, making the estimation of γ in
this regime a more challenging task.

The scope of this experiment is to illustrate the perfor-
mance of our method and highlight the improvement of the
MCMC chain mixing compared to the auxiliary variable
technique, in a similar setting to that of the real data appli-
cation. In the next section, we consider a regime with higher
noise and a centroid with more cycles, to further illustrate the
performance of ourmethod in recovering γ and the practical-
ity of our proposed approach in recovering cycles compared
to the baseline CER model.

5.4 Network population withmore cycles and high
noise

We consider a simulation regime with a 13-node centroid
enclosing 26 directed triangles, and high noise indicated by
a smaller size of γ . Notably we specify γ = 0.2 for which
regime the distribution of distance in its neighbourhood is
more distinguishable. We simulate a population of N = 100
networks using the SNF model with HS distance.

Figure 5 shows the traceplot of the posterior draws for γ

for 50,000 iterations of the MCMC, and the density of the
posterior distribution for γ with the 95% credible interval
(blue dashed lines) and the true size of γ (red dashed line).
The results suggest accurate recovery of the true γ with pos-
terior mean 0.19 and the true value of γ lying within the 95%
credible interval.

We also examine the ability of our approach in recov-
ering the cycles of the true centroid and compare it to the
CERmodel as a baseline. We summarise the results from the
posterior draws for the centroid by calculating the Posterior
Inclusion Probability (PIP) of the directed triangles which
are present in the true centroid, for the SNF with HS distance
and the CER model respectively, as shown in Figure 6. The
results shown are for 50,000MCMC iterations with a burn-in
of 1,000 iterations for the SNF model with HS distance, and
for 200,000MCMC iterations with a burn-in of 150,000 iter-
ations for the CER model. We observe that the SNF model
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Fig. 3 MCMC samples for the dispersion parameter γ in the SNFmodel with HS distance metric using the auxiliary variable method in Lunagómez
et al. (2020) (left), versus using our framework utilising Importance Sampling (right), for the same simulated network population

Fig. 4 Distribution of HS
distance between simulated
graphs from SNF model and
centroid Gm , for varying γ

values

Fig. 5 MCMC samples for the dispersion parameter γ in the SNF model with HS distance metric using IS (left), density plot of MCMC samples
with blue dashed lines indicating the 95% credible interval and red dashed line indicating the true size of γ = 0.2 (right)
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Fig. 6 Posterior Inclusion Probabilities (PIP) for directed triangles in
true centroid forMCMCsamples of SNFmodelwithHSdistancemetric
using IS (top), and of CER model (bottom)

with HS distance is able to recover all the directed triangles
present in the true centroid with PIP up to 0.4, while the CER
model is able to recover only approximately half of the true
directed triangles (14 out of 26) with up to 0.98 PIP. This
result highlights the key difference between the two models;
on the one hand the SNF model with HS distance explic-
itly accounts for directed cycles but with smaller PIP due to
the presence of high noise with respect to directed triangles
in the simulated population. On the other hand the directed
triangles detected using the CER model are only incidental
and an artifact of the frequency of specific edges within the
simulated network population.

5.5 Empirical evaluation of normalising constant
approximation

We now evaluate the performance of our IS approximation to
the normalising constant in a simulation setting. Specifically,

Fig. 7 Simulated centroid with 4 nodes

we consider the approximation applied to 4-node directed
networks. Here there are 212 = 4, 096 possible networks,
which is a small enough set to calculate the normalising con-
stant exactly under a given model parameterisation in each
iteration of the MCMC. This is then used as a benchmark
with which to compare the normalising constant approxi-
mated through IS.

We simulate a population of N = 13 networks, similarly
to the population size in our ecological application, using
the SNF model with dispersion γ = 1 and 4-node directed
network centroid, as shown in Figure 7, enclosing 1 directed
triangle. We run our MCMC scheme with IS step for 50,000
iterations, and in each iteration , we also calculate the true
normalising constant. To further explore the sensitivity of
the approximation to the IS sample size K , we consider a
range of values for K = {1000, 3000, 5000, 7000}. In Fig-
ure 8 we present the distribution of the ratio of the estimated
normalising constant Ẑ(AGm , γ ) and the exact normalising
constant Z(AGm , γ ) for varying K sizes and 50,000 itera-
tions of our MCMC. We observe that the distribution of the
ratio has mean (points in Figure 8) and median equal to 1
for all K , and standard deviation (error bars in Figure 8)
of 0.036, 0.019, 0.016 and 0.013 for each K respectively.
The approximation is only marginally sensitive to the size of
K for K ≥ 3000, which justifies the choice of an IS sample
K = 3000 networks, to avoid additional computational com-
plexity of cycle detection for large samples of networks in
eachMCMC iteration. The results indicate that our proposed
IS step not only improves the mixing of the MCMC chain
(see Section 5.3), but it is also a good approximation with
respect to the exact Z(AGm , γ ) even for small K = 1000.
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Fig. 8 Distribution of ratio Ẑ(AGm , γ )/Z(AGm , γ ) for 50,000
iterations of our MCMC scheme with IS step for K =
{1000, 3000, 5000, 7000}, for 4-node directed networks

6 Reef fish aggressive interactions

We analyse data collected at various reefs at different regions
(Philippines, Bali, Christmas, Iriomote) in the Indo-Pacific
ocean (Keith et al. 2018). Each network observation repre-
sents the competitive interactions between species of fish.
We align the node set across all reefs to comprise the fish
species that are in common across all regions, resulting in
networks with 13 nodes. The node labels used to represent
the species are presented in Table 1. The resulting number of
reefs (networks) in our sample is 13, and are visually repre-
sented in Supplementary material, Section 3. In this network
population, there are three reefs for which directed triangles
are observed, as shown in Table 2. We observe that there are
no reefs sharing common cycles.

Table 1 Node labels for species
across all regions

species label

auriga 1

baronessa 2

citrinellus 3

ephippium 4

kleinii 5

lunula 6

lunulatus 7

ornatissimus 8

rafflesii 9

speculum 10

trifascialis 11

unimaculatus 12

vagabundus 13

Table 2 Triangles in observed
networks (reefs)

Reef Cycle

Jemeluk 2-3-5-2

2-5-7-2

2-9-5-2

3-5-7-3

3-5-13-3

5-7-9-5

Lipah 2-11-3-2

Nata 7-12-11-7

Fig. 9 Traceplot for γ for SNF fitted on fish networks from all regions

To fit the SNF model with HS distance, we first tune the
prior distributions of the parameters and the IS density. We
tune the prior for the centroid and dispersion parameter in a
similar manner as in Lunagómez et al. (2020). Specifically,
we centre the prior for the centroid at the network observation
that minimises the distance from the rest of the networks in
the sample (Lunagómez et al. 2020). We specify a Gamma
prior distribution for the dispersion parameter γ and center it
with respect to the average HS distance of the network data
from the centroid estimate, where the centroid estimate is
obtained by majority vote (connect nodes i and j in centroid
estimate if the majority of the network population has an
edge between i and j). The size of each IS sample is set to
K = 3000 networks.

We run our MCMC for 50,000 iterations and obtain sum-
maries of the posterior centroids and associated posterior
draws of the dispersion parameter γ of the SNF model. Fig-
ure 9 shows a traceplot for the parameter γ .

To investigate our model’s efficacy in capturing directed
cycle information in the network data, we obtain the 10
most common directed triangles enclosed in the posterior
centroids, along with the proportion of the posterior cen-
troid samples containing each cycle, and detectwhether these
cycles are also observed in the data. In Table 3 we present the
10most common directed triangles identified in the posterior
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Table 3 Most common directed
triangles in posterior draws for
centroid Gm

SNF model with HS distance directed triangles
most common directed triangles proportion of times identified observed/ inferred

2-3-7-2 0.52 inferred

3-5-7-3 0.49 observed

2-5-11-2 0.49 inferred

2-5-7-2 0.48 observed

2-5-3-2 0.48 inferred

3-9-5-3 0.47 inferred

2-9-7-2 0.46 inferred

3-5-13-3 0.46 observed

2-9-11-2 0.43 inferred

2-3-5-2 0.42 observed

Fig. 10 Two posterior centroids with highest posterior mass 0.002 (left) and 0.0015 (middle). Pink edges indicate edges also present in the data.
Signal to noise ratio (number of edges in common/number of edges inferred) 1.44 and 1.38 respectively. Union of network population (right)

draws for the centroid network after 10,000 iterations burn-
in, along with the proportion of times identified and whether
the cycle is observed in the network data (observed) or not
observed in the network data (inferred).

We observe that 4 out of the 10 directed triangles in the
top 10 most common directed triangles are also observed in
the real data, with the rest of them enclosing nodes only
from the set of nodes observed in the directed triangles
present in the network population (Table 2). This indicates
that our MCMC algorithm meaningfully accepts posterior
centroids with respect to directed triangles observed in the
network population. Moreover, there is evidence to suggest
that the model is assigning posterior weight to directed trian-
gles based on information in the network data as opposed to
simply sampling networks with directed triangles formed by
randomly picking 3 unique nodes from amongst those that
form the observed directed triangles present in the data (com-
prising 8 distinct nodes). If it were we would expect each of
the

(8
3

)
possible directed triangles here to have approximately

equal posterior inclusion probabilities of 1/56 but the most
commonly identified cycles have posterior inclusion proba-
bilities much greater than this.

In Figure 10, we further illustrate the two networks (left
andmiddle graphs)with highest posteriormass.We highlight
which edges of these posterior samples are also present in any
of the network data in pink. We note that the two posterior
centroids, taken from the high posterior mass region, have
small posterior mass. This is to be expected when making
inferences across a large space of possible graphs coupled
with a diverse set of network data. The network at the right
in Figure 10 encloses the union of the edges of all observed
networks for ease of comparison.

For comparison we fit the CER model to the data, that
only considers theHamming distance.After running theCER
model on the network population for 50,000 iterations with
a burn-in of 10,000 iterations, we observe that the model
is unable to make inferences on directed triangles. Notably,
none of the posterior centroids encloses a directed triangle,
despite the presence of directed triangles in the network pop-
ulation. This is anticipated for two reasons, (i) as the CER
model assumes that the centroid is polluted by Bernoulli
noise, increasing the network population results in Bernoulli
noise corrupting the cycles in the data rather than preserving
them, and (ii) transitivity for Erdös-Rènyimodels is very low.
In contrast, the SNF model explicitly accounts for directed
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cycles through the HS distance metric. This finding high-
lights the importance of our proposed modelling framework
when it is of interest to capture the formation of directed
cycles in a network population.

7 Conclusion

Modelling multiple network data is essential to addressing
many applied research questions. In this articleweproposed a
metric that explicitly incorporates networks’ cycles, denoted
as the HS distance. We incorporated this metric within the
SNF model and developed a computational framework to
allow posterior inferences in practical ecological settings,
hitherto not possible with the original implementation of the
model. We applied our modelling framework to make infer-
ences from ecological data studying aggressive interactions
between species of fish and were able to infer cyclical prop-
erties that were not possible to detect using a simpler CER
model that does not account for cycle information.

While we have shown benefits of our approach in the anal-
ysis of ecological studies, cycles are of interest in many other
fields such as neuroscience or genetics. The HS distance can
thus be an informative measure in many other network appli-
cations. A key challenge in these settings may be the larger
size of networks (number of nodes). Dealing with cycles is
already a substantial computational endeavour, and this issue
will be exacerbated in larger networks. Specifically, cycle
detection is the main bottleneck for scaling to larger net-
works, since our approach requires the use of an IS sample
of networks and the calculation of cycles within this sample.
We addressed this here through restricting the model to only
consider directed triangles. This was relevant for the eco-
logical study which focused on intransitive competition, and
triadic isomorphs are commonly analysed in ecology due
to their ease of interpretation. Considering other strategies
to deal with the computational burden of calculating cycles
would also be of interest. A possible direction would be to
obtain an approximation of the HS distance metric using a
machine learning approach.

Another interesting direction for future research would be
to consider a model selection framework for the SNF model,
which could potentially inform the size of λ in the HS dis-
tance metric for a given data example.

The ecological study representing the species interactions
also contained edges weights, corresponding to the multi-
ple interactions observed between species of fish. It would
be interesting to consider how this feature could be incor-
porated within our modelling framework. A modification of
the Hamming distance in the HS metric would be required to
quantify dissimilarities between weighted graphs, with the
Frobenius distance an alternative. We would also need to
adapt the computational framework to permit sampling of

networks from a weighted space of graphs. This would be
necessary for both sampling network representatives in the
MCMC as well for approximating the normalising constant
through Importance Sampling. There is no straightforward
solution to addressing this, but if a model could be developed
and implemented practically, it would open up the possibility
to model a wide range of weighted networks previously not
possible with existing methods.

There have been various techniques developed to approx-
imate intractable normalising constants. We implemented
an IS that offered substantial advantages over the original
Auxiliary Variable method proposed for the SNF model in
Lunagómez et al. (2020). It would be interesting to explore
whether other approximations might also confer advantages
and develop an appreciation for which methods are best
suited for different settings.

More generally, the flexibility of the SNFmodel offers the
potential to address many applied research questions when
used to analyse populations of network data. It would be
interesting to consider whether the SNF model could be
further developed to construct formal hypothesis tests that
permit additional model based inferences in this setting. The
mathematical challenges to overcomehere are non-trivial and
present an interesting avenue for future research.

As our desire to analyse more complex data structures
increases so do the modelling and computational challenges.
Ourmethodology for incorporating network cycles for statis-
tical modelling and inference of ecological data has opened
up an exciting new area within analysis of multiple networks
to explore. Accordingly, there is the potential to build on this
and address a number of important questions in the field, both
theoretical and applied.
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The supplement to "Bayesian modelling and computation
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