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Abstract—Bimanual teleoperation tasks are highly demanding
for human operators, requiring the simultaneous control of two
robotic arms while managing complex coordination and cognitive
load. Current approaches to this challenge often rely on rigid
control schemes or task-specific automation that do not adapt well
to dynamic environments or varied operator needs. This paper
presents a novel large language model (LLM)-aided bimanual
teleoperation assistant (BTLA) that helps operators control dual-
arm robots through an intuitive voice command interface and
variable autonomy. The BTLA system enables a hybrid control
paradigm by combining natural language interaction for an assis-
tive robot arm with direct teleoperation of the dominant robotic
arm. Our system implements six core manipulation skills with
varying autonomy, ranging from direct mirroring to autonomous
object manipulation. The BTLA leverages the LLM to interpret
natural language commands and select an appropriate assistance
mode based on task requirements and operator preferences.
Experimental validation on bimanual object manipulation tasks
demonstrates that the BTLA system yields a 240.8% increase in
success rate over solo teleoperation and a 69.9% increase over
dyadic teleoperation, while significantly reducing operator mental
workload. In addition, we validate our approach on a physical
dual-arm UR3e robot system, achieving a 90% success rate on
challenging soft-bottle handling and box-transportation tasks.

Index Terms—Human-robot Collaboration, LLM, Teleopera-
tion, Bimanual Manipulation, Embodied Al

I. INTRODUCTION

Teleoperation has become a crucial approach for operat-
ing robotic systems in environments that are inaccessible or
hazardous to humans, ensuring both efficiency and safety. It
has been successfully applied in diverse domains, including
space rendezvous and docking [1], underwater operations
[2], and remote surgery [3|]. Within these contexts, dual-
arm teleoperation has gained particular importance because
it provides additional dexterity and more degrees of freedom
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compared to single-arm configurations. This capability enables
the execution of more sophisticated tasks that demand precise
coordination.

Two primary modes of interaction dominate dual-arm tele-
operation: (i) solo teleoperation, where a single operator
controls both arms simultaneously, and (ii) dyadic teleoper-
ation, in which two individuals each control one arm with
their dominant hand. Solo teleoperation is highly sensitive
to ergonomic factors, task complexity, and operator workload
[4]. The operator needs to simultaneously manage the motion
and coordination of two robotic arms, which can lead to
increased mental workload and reduced performance [5]. In
dyadic arrangements, although collaboration distributes the
control effort, synchronization, communication, and arbitration
between operators often limit efficiency. To mitigate these
challenges, the operator can concentrate on a subset of task
elements, while the robotic partner manages the complemen-
tary aspects [6]. Nevertheless, existing assistance strategies
are generally either task-specific or employ fixed autonomy
levels, restricting their ability to adapt to diverse environments
and operator preferences. They may also require specialized
training or rely on rigid command structures that do not align
naturally with human communication styles.

In this paper, we propose the Bimanual Teleoperation LLM
Assistant (BTLA), a system that integrates natural language
communication with variable autonomy to support single
operators in dual-arm teleoperation. With BTLA, the operator
directly controls one robotic arm, while the secondary arm
is commanded via voice instructions. An LLM interprets
these instructions and selects suitable assistance modes from a
predefined set of manipulation skills. The main contributions
of this work are summarized as follows:

1) We introduce a flexible assistance system that reduces
operator cognitive load by enabling natural language
control of a secondary robotic arm without compromis-
ing task success.

2) We integrate LLM for robust natural language under-
standing in robotic teleoperation, enabling operators to
issue complex manipulation commands intuitively.

3) We implement and validate six manipulation skills with
adjustable autonomy levels (from direct mirroring to
autonomous object manipulation), supporting seamless
transitions between assistance modes.

4) We provide an extensive experimental evaluation that
demonstrates clear improvements in task success rates
and reductions in operator workload compared with
conventional solo and dyadic teleoperation.
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II. RELATED WORK

Dual-arm teleoperation is mainly realized in two forms.
In single-person bimanual (SPB) control, one operator si-
multaneously drives both manipulators, whereas in dyadic
control, each operator drives a single manipulator. SPB can
impose considerable cognitive and coordination demands on
the operator, particularly as task complexity grows, which
in turn degrades performance [7|]. Dyadic control distributes
effort but introduces other difficulties: human-human syn-
chronization, communication overhead, and arbitration among
control decisions can offset the benefits of shared work [8]];
in some settings, dyads do not outperform a single skilled
operator [9]. To cope with changing task demands, adaptive
architectures that switch online between controllers or control
structures have been proposed, enabling flexible reconfigura-
tion at runtime [[10]].

Two complementary approaches have emerged: (i) more
intuitive interfaces and (ii) assistance algorithms. Intuitive
human-machine interfaces for dual-arm robots provide oper-
ators with natural control sensations and user-friendly opera-
tion. Natural interaction channels have been developed, includ-
ing gesture-based [3]], virtual reality-based [[11]], and haptic
device-based [12] control, which reduce mental effort and
enhance situational awareness. Additionally, haptic rendering
and feedback laws further enhance precision by conveying
contact and constraint information to the human operator [/13]].
On the assistance side, mapping strategies and shared-control
methods combine human intent with autonomous behaviors
to coordinate both arms efficiently [14]. Recent taxonomies
and empirical studies show that human-oriented arbitration
can markedly reduce cognitive load and improve trust and
performance in teleoperation tasks. [[15] demonstrated that
appropriate autonomy allocation reduced operator cognitive
load by 34% in multi-robot control tasks. [16] developed
data-driven shared control for robot swarms, showing that
the intelligent distribution of autonomy decreased NASA-TLX
scores across all dimensions.

Large language model (LLM) and vision-language model
(VLM) have been used to enhance robots’ high-level un-
derstanding, enabling task planning from images and natu-
ral language, and then delegating execution to lower-level
skills or knowledge bases [17], [18]. However, for multi-
contact teleoperation and tight physical interaction, purely
LLM-planned behaviors can be suboptimal: grasping and
manipulation in cluttered or dynamic environments may still
benefit from human adaptability and rapid on-the-fly reason-
ing due to their intuitive understanding of the task and the
ability to adapt quickly to minor variations [19]. This paper,
therefore, repositions LLM not as a primary planner but as
a human-robot interface, concentrating on its core strength
of natural language processing (NLP) to effectively convey
human intentions. Compared with traditional NLP pipelines
that depend on hand-written grammars, the LLM handles
diverse phrasings, maintains conversational context, and toler-
ates ambiguity. These benefit high-cognitive-load teleoperation
scenarios where operators benefit from unconstrained natural
language communication. This preserves human supervision

of planning and execution while making assistance flexible,
conversational, and fast to invoke.

III. METHODOLOGY

The bimanual teleoperation problem is formulated in Sec-
tion [[II-A] Subsequently, we detail the methodology by which
BTLA employs an LLM to facilitate bimanual teleoperation
tasks.

A. Problem Formulation

We target SPB teleoperation in which the human directly
commands a dominant arm and issues natural-language re-
quests that drive an assistive arm. At time ¢, the system
processes multiple input streams to determine appropriate
assistance behaviors, including natural language commands
I that specify desired assistive behaviors, proprioception for
the dominant (s,,;) and the assistant arms (s, ), environ-
mental observations (Ocpy,¢), human control inputs (u;), and
sensor measurements (z;). Note that [ can be long-horizon,
context-aware, or ambiguously defined (e.g., “move slightly
upwards”), necessitating sophisticated contextual and semantic
interpretation.

We assume a skill base S containing reusable low-level
manipulation primitives. The problem formulation can be
summarized as follows: given instruction ! and the multi-
modal state {Sg ¢, Sm, ¢, Ut, Z¢, Ocnu i ), the embodied Al sys-
tem should (1) decompose the high-level instruction [ into
a sequence of skills from & with parameters, and (2) map
those skills to a control policy m for the assistant arm:
7 = BTLA(skill sequence, params, u;, z;). To this end, the
skill knowledge in the base S can be adapted to accommo-
date different task requirements. Therefore, our focus is not
on learning the primitives themselves but on selecting and
instantiating the right skills online, and therefore the assistant
can reliably support the human’s ongoing bimanual action.

B. BTLA System Implementation

BTLA fuses natural-language understanding with robot
control so that an operator can speak to the assistant arm
while manually teleoperating the dominant arm. An LLM
parses utterances, maintains conversational context, and re-
turns the appropriate skill and arguments to execute. Compared
to traditional template-based NLP methods, which require
extensive rule engineering and struggle to handle the linguistic
variations common in high-stress teleoperation scenarios, our
LLM-based approach offers two critical advantages. First, the
LLM maintains conversation history, enabling operators to use
pronouns and references (e.g., “move it closer”, “stop that”)
without explicit object specification. Secondly, the system
interprets diverse phrasings of identical commands (tested
with 47 command variations, achieving 89% consistency).
These capabilities directly address operator cognitive load
by eliminating the need for memorization of rigid command
syntax during complex bimanual coordination.

BTLA’s LLM module comprises three cooperating parts:
(1) the natural language interface uses OpenAl’s Whisper
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Fig. 1. Architecture diagram of the BTLA framework.

model for speech-to-text conversion and LLM processing to
interpret operator intentions; (i) a skill layer implementing
six core primitives: Follow(-), Symmetrical Follow(-), Ap-
proach(-), Move(-), Handover(-), and Fetch(-); (iii) a policy
generator that turns selected skills plus state into safe, exe-
cutable robot commands, with guardrails for transitions and
safety constraints. Unlike a simple skill switcher, the LLM
can interpret complex instructions, understand context, and
provide feedback when needed. This flexibility enables the
robot assistant to adapt to a wider range of scenarios and
user needs, embodying the variable autonomy principle of the
BTLA framework.

Fig. [T] presents BTLA as three principal elements: the hu-
man operator, the human-robot interface, and the teleoperation
environment. The operator maintains task focus by perceiving
the scene through visual feedback, directly teleoperating one
arm via the interface, and delegating complementary subtasks
to an Al-assisted partner arm for cooperative execution. The
Al-assisted arm accepts natural-language commands, retrieves
the most pertinent skill from the library S, and instantiates
the required task parameters. Combining the chosen skill
with environmental perception (e.g., vision and force/torque
sensing), proprioceptive signals, and operator inputs yields
the control policy that drives the Al-assisted arm. The LLM
processes this multi-modal context to select appropriate skills.
In this arrangement, the operator supplies high-level intent and
oversight, while the Al-assisted arm contributes contextual
understanding and the capability to achieve the objective
efficiently within the teleoperation workspace. Algorithm [I]
summarizes the core control loop: voice commands are parsed
by the LLM to choose and invoke skills, accommodating both
continuous real-time skills that persist until canceled (e.g.,
following) and autonomous skills that complete discrete goals
(e.g., object fetching).

Explicit entry conditions and termination tests specify each

skill. Real-time skills, such as Follow(:) and Symmetrical
Follow(+), continuously adapt to the motions of the dominant
robotic arm, whereas autonomous skills (e.g., Fetch(-) and
Handover(-)) execute closed-loop manipulation routines to
complete discrete objectives. Intent parsing runs concurrently
with action execution. Upon receiving a voice command,
the controller keeps the current behavior active while the
LLM pipeline interprets the new instruction, enabling smooth
transitions between assistance modes. The operator may speak
new commands at any time; the system completes the current
motion action before switching to the requested behavior. For
safety, BTLA arbitrates simultaneous voice and direct teleop-
eration inputs via a priority-driven state machine. Emergency
directives (e.g., “stop”) pre-empt all other activity and halt
execution immediately; non-urgent requests are deferred until
the ongoing operation finishes. During tightly coordinated
phases, overlapping control channels between the two arms are
temporarily lock-protected to prevent contention. A hysteresis
band on state transitions suppresses rapid oscillation when
contradictory commands arrive in quick succession.

Extending the skill library and task taxonomy, the frame-
work adds a fault-handling layer that addresses command
misinterpretation and kinematic singularities. It detects such
conditions and initiates safe recovery or clarification routines
to maintain reliable operation. To ensure safe and effective
operation, BTLA implements a confirmation process before
executing any task. When the robot receives a command,
it first interprets the instruction and generates an execution
plan. Before proceeding, it communicates this plan back to
the human operator for confirmation. This step allows the
operator to verify that the robot has correctly understood the
command and provides an opportunity to make corrections
if needed. In cases where the robot encounters singularities
or potential issues during task execution, it immediately halts
the operation and seeks guidance from the human operator.
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Algorithm 1 Embodied Al-Assisted Robot Arm Control
Require: Initial skills base S with predefined skills, LLM
initial language description [

1: Initialize ¢ < 0, skill < None

2: while not finished do

3 if voice commands received then

4 skill < LLM (voice commands)
5: m < BTLA (skill, skill parameters,uy, z)
6 if skill is real-time then

7 repeat

8 Execute 7w

9 t+—t+1

10: until voice commands to stop
11: else if skill is autonomous then
12: repeat

13: Execute 7w

14: t+—t+1

15: until skill is done

16: end if

17: end if

18: end while

This interactive loop between the human operator and the
robot assistant ensures a robust and adaptable system that can
recover from misunderstandings and navigate complex scenar-
ios, maintaining the balance between autonomous operation
and human oversight.

C. Haptic Control

To streamline manual control, we develop a velocity map-
ping between the haptic device stylus displacement and the
robot end-effector velocity:

Vi,robot =k, - di,handai € {ﬂf,y, Z}7 (D

where d; nand is the stylus tip displacement along axis ¢ and £,
is the velocity gain. V; ,op0¢ is the velocity of the end effector
of the dominant robot arm. As demonstrated in Fig. 2} the red
ball represents the virtual origin point whose displacement is
zero in each direction. The user can feel the force feedback
when the pen tip moves out of the virtual blue ball, which
is within the physical maximum extension of the controller,
represented by the virtual green ball. Force feedback provides
a boundary sensation and speed awareness through

Fi,Feedback = kf ' di,hand + Finitiala (2)

where k¢ is the scale parameter. Iy 14 i the initial force
that allows the user to feel a sense of boundaries. F} peedback
is the feedback force on the user, which is equal in magnitude
but opposite in direction to the force applied by the human
on the haptic device, i.e., Freedback = —FHuman- The
user experiences resistance proportional to stylus deflection,
aligning perceived effort with commanded robot motion and
making the control envelope explicit. The haptic interface
also incorporates two physical buttons on its stylus. The grey
button redefines the current end-effector position as the virtual
origin, and the white button engages or disengages the gripper.

-

Freeaback = - Fruman

Fig. 2. Teleoperation control scheme.
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Fig. 3. Experimental procedure for assessing bimanual teleoperation. Partici-
pants first received instruction and practice on three tasks: reaching, pick-and-
place, and pushing. They then completed three teleoperation sessions (SPB,
Dyadic, and BTLA). These were administered in a randomized sequence
unique to each participant.

Simultaneous activation of both buttons toggles the control
mode between end-effector position and orientation control.

IV. EXPERIMENT

To examine BTLA’s practical effectiveness, we conducted
a series of bimanual object-manipulation experiments to eval-
uate:

1) How does BTLA impact task performance compared
to traditional single-operator and dyadic teleoperation
approaches?

2) To what extent does BTLA reduce operator workload
during complex bimanual tasks?

3) What is the user experience and acceptance of LLM-
based assistance in teleoperation?

To pursue these questions, we further conducted a user
study with a dual-arm robotic platform performing manip-
ulation and transport of bulky, high-mass objects. The end-
to-end workflow, from operator familiarization to quantitative
performance assessment, is shown in Fig. @ We benchmark
BTLA against conventional teleoperation by measuring task
efficiency, operator workload, and user satisfaction.

A. Experimental Setup

1) Equipment and Software: We used two 3D Systems
Touch haptic devices for operator input. Environments, robot
control, and visualization were implemented with PyBullet.
Custom objects were modeled in Fusion 360 and exported as
URDFs to control appearance and physics consistently across
trials. GPT-3.5-Turbo served as the default LLM, selected after
comparison trials with GPT-4 and Mistral-7B-OpenOrca: all
three exhibited comparable command-interpretation accuracy,
but GPT-3.5-Turbo delivered noticeably lower response la-
tency.
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2) Initial LLM configuration: We initialize the LLM with a
concise role description and response schema that clarify the
robot assistant’s remit and objectives. This approach eliminates
the need for pre-interaction overhead, immediately turning
user utterances into an executable “skill + parameters” record.
The initial prompt instructs the LLM to translate spoken
operator commands into a JSON-formatted script:  “Skill”:
“Write the function here.”, “Description”: Include a necessary
description about this skill, as if you are talking to the user
directly. The robot assistant is equipped with the admissible
manipulation skills from the skill library S, enabling direct
matching between utterances and callable functions. The LLM
is programmed to provide user feedback on its actions through
the “Description” field in the JSON script. If a command
maps to a known skill, the LLM returns the corresponding
script; if not, it produces a script with an empty function and
a description explicitly noting that no action will be taken. This
catalog- and schema-based priming (see Fig. 4)) standardizes
interpretation and selection of skills. Before execution, the
assistant immediately confirms its understanding in natural
language, yielding more fluent, reliable interactions for biman-
val handling tasks.

([

You are an Al assistant helping a robot arm execute missions.
Generate a script using the given format based on the user's command:

Seript: {

*Skill": "Write the function here.",

"Description”: "Include a necessary description about this skill, as if you are talking to the user directly. Use 'you' to address
the user.”

LLM Initial Prompt J 3\

Available skill functions:
Follow() - Follow the master robot arm (e.g. for pushing together);

SymmetricalFollow() - Act a mirror behavior of the master robot arm;

Approach() - Move the arm to approach an object (e.g. for lifting objects together); Move(distance, direction) - Move the arm
(ask user for distance in meters and direction:

" " My ' 2, )

Handover() - Handover an object to the master arm ;

Fetch() - Grab an object and bring it to the master arm;

Stop() ~Stop the current behavior or movement;

NoFunction() - Not a recognized command.

Give user feedback on your action in the description. If the command matches a skil, generate the corresponding script. If
the command doesn't match any skills, generate a script with NoFunction() and description on not doing anything.

Always respond with a JSON script in the given format.

n J

Fig. 4. LLM initial prompt: textual description of the mission and skills.

We implemented a keyword-based baseline system using
predefined command templates (e.g., “robot follow now”,
“grab object red”) for comparison. This system utilized rule-
based parsing without LLM interpretation, representing con-
ventional voice control approaches.

3) Skills: We distinguish two skill classes: autonomous and
real-time. Autonomous skills execute a predefined sequence
and terminate upon completion, such as Handover(-): transfer
an object to the dominant arm; Approach(-): move the arm to
an object’s vicinity, e.g., to co-locate items; Ferch(-): grasp an
object and deliver it to the dominant arm. Real-time skills
generate continuous motion and remain active until a stop
command is issued, such as Follow(-): track the dominant
arm for cooperative pushing; Symmetrical Follow(-): mirror
the dominant arm; Move(distance, direction): translate the arm
after querying the operator for a distance in meters and a
direction from “+z”, “—2”, “+y”, “—y”, “+27, “—2"). Each
skill performs parameter validation and safety gating before
execution.

B. Training Protocol

To standardize operator competence across conditions, we
adopted a structured training protocol. Participants first prac-
ticed three single-arm tasks (see Fig. [5) to standardize profi-
ciency: (i) waypoint reaching, (ii) obstacle-constrained pick-
and-place, and (iii) planar pushing to a target region. The
sequence progresses from free-space motion to contact-rich
manipulation, so users establish fundamental control skills be-
fore attempting coordinated bimanual actions. In the reaching
exercise, the end-effector was guided through a series of red
waypoints. The pick-and-place exercise required grasping a
square block with the gripper and depositing it in a target
area while clearing a vertical barrier. The pushing exercise
involved driving an object into a designated goal region along
the plane. Time limits were imposed on the latter: 4 min for
pick-and-place and 3 min for pushing.

C. Experimental Procedure

Ten participants (7 males, 3 females; aged 22-35) completed
all conditions following ethics approval (Lancaster University
FST-2024-4525-RECR-4). After training, subjects participated
in randomized trials of SPB, Dyadic, and BTLA and then
completed NASA-TLX along with a usability questionnaire.
None of the participants were experts in teleoperation, but
all received proper training in the system’s use before the
experiments. All participants gave informed consent and were
briefed on the nature of the tasks they would be performing.

The evaluation task required coordinated dual-arm transport
of a large object to a designated platform (see Fig. [6),
covering grasp, lift/transport, and placement phases. Each
participant experienced three teleoperation modes in counter-
balanced order: SPB, Dyadic, and BTLA. After each trial,
participants completed NASA-TLX [20] and a short usability
questionnaire. Randomization minimized order effects across
teleoperation modes. As depicted in Fig. [6] the task required
robust dual-arm coordination to convey the object to a spec-
ified goal while preserving its pose and preventing contact
with the environment. Panels (a)-(d) trace the progression
from the initial stance to a secure grasp, and panels (e)-(f)
show the subsequent transfer to the designated platform. The
experimental conditions are summarized in Table [I}

TABLE I
EXPERIMENTAL CONDITIONS DEFINITION.

Condition Control Method Operator(s) Assistance
SPB Dual haptic devices Single None
Dyadic Single haptic each Two Human partner
BTLA Haptic + Voice Single LLM assistant

D. Assessment

We measured completion time, success rate, and coverage
of the target area. A trial was deemed successful only if (1)
both arms grasped the object correctly, (2) transport occurred
without collisions or drops, and (3) placement achieved at
least 70% target coverage. Multiple trials per teleoperation
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Fig. 6. Execution sequence of BTLA for an object-transfer task: (a) initial configuration; (b) left arm moves independently with follow mode disabled; (c) right
arm, controlled by BTLA, performs symmetrical-following behavior; (d) both arms synchronize to reach the pick-up pose; (e) object grasp; (f) cooperative

transport with BTLA to the designated target location.

Statement Score
Unnatural [1]|2[3|4|5|6|7|8]|9| Natural
How do you feel about Unpleasant |1 (2|3 |4 |5|6|7|8]|9| Pleasant
the performance of the
intelligent agent? Strange |1|2(3|4|5|6|7|8|9| Typical
Dislikeable |12 3|4 |5|6|7|8]|9] Likeable

Fig. 7. Post-trial questionnaire results: six-dimension usability scores recorded
on a 9-point Likert scale.

mode were recorded to assess consistency. System usability
and operator experience were assessed through two comple-
mentary questionnaires. Usability was rated on a multi-item
Likert instrument, covering naturalness, satisfaction, perceived
intelligence, and overall usability (see Fig. [7). The second
employed the NASA-TLX to quantify workload on six sub-
scales: mental demand, physical demand, temporal demand,
performance, effort, and frustration, as shown in Fig.

To evaluate the LLM robustness, we conducted additional

experiments analyzing system performance under adverse con-
ditions. Voice commands were tested with varying background
noise levels (45 - 75 dB), simulating industrial environments.
Recognition accuracy decreased from 94% in quiet conditions
to 71% at 75 dB noise level, with average latency increasing
from 320 to 580 ms. Common misinterpretation patterns
included confusion between “Follow” and “Fetch” commands
(12% error rate) and numerical distance parameters (e.g.,
“two” vs “to”). We implemented a confirmation mechanism
for ambiguous commands, reducing critical errors by 67%.
Under noisy conditions, the system defaults to requesting
verbal confirmation before executing potentially hazardous
operations.

V. RESULTS AND DISCUSSION
A. Performance Metrics

Fig. [9] demonstrates that BTLA achieved the highest mean
coverage (0.861) and success probability (0.627) beyond
Dyadic and SPB, which indicates that the assistant-driven
workflow more reliably completes the bimanual transport
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Fig. 9. Boxplots depicting performance for SPB, Dyadic, and BTLA across
participants. (a) coverage (p < 0.05), (b) success rate (p < 0.05), (c)
completion time (p = 0.117).

and placement task. The keyword-based system achieved a
52% task success rate, significantly lower than BTLA. Users
required 3.2 times more command attempts due to rigid syntax
requirements. Failures predominantly occurred when context
or pronoun resolution mattered (e.g., “move it a bit closer”)
and could not be captured by fixed grammar rules.

The Kruskal-Wallis test confirmed that differences in cov-
erage (p = 0.003) and success rate (p = 0.004) across the
three modes were statistically significant. In contrast, the im-
provement in completion time did not reach significance (p =
0.117), despite BTLA’s lower median times. A correlation
analysis demonstrated in Fig. further showed a strong pos-
itive association between coverage and success (r = 0.708):
trials that explored a greater fraction of the task area were more
likely to finish successfully. Thus, natural-language-mediated,
variable autonomy primarily boosts effectiveness (coverage,
success) and reliability, with time benefits emerging, though
not uniformly across participants or scenarios.

All metrics follow statistical significance, i.e., p < 0.05.

Figures/likert_corr.pdf

Fig. 10. (A) Likert Scale Ratings. (B) Correlation matrix of performance

metrics.

B. Subjective Assessment

Statistical power analysis was conducted using G*Power
3.1. For our within-subjects design with n = 10 participants
and three conditions, we achieved 80% power to detect large
effect sizes (Cohen’s d = 0.84) at a = 0.05. Post-hoc analysis
revealed our observed effect sizes for coverage (d = 1.24)
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and success rate (d = 1.08) exceeded the MDE, validating
our sample size adequacy. For medium effects (d = 0.5), 16
participants would be required; however, our large observed
effects justify the current sample.

Across all NASA-TLX dimensions, including mental de-
mand (MD), physical demand (PD), temporal demand (TD),
performance (P), effort (E), and frustration (F), the BTLA
condition yielded the best scores: reduced demands, effort, and
frustration, together with higher perceived performance than
both Dyadic and SPB (see Fig. [). By contrast, SPB was the
most taxing, showing elevated demands, effort, and frustration,
and the lowest perceived performance. Dyadic occupied a
middle ground, with intermediate workload and performance
ratings between BTLA and SPB.

The Kruskal-Wallis tests indicated statistically significant
differences among the three modes for each dimension (MD:
x? = 17.974, p < 0.001; PD: x? = 14.701, p = 0.001; TD:
x? = 12.276, p = 0.0002; P: x*> = 15.723, p < 0.001; E:
X2 = 14.228, p = 0.0001; F: x? = 11.018, p < 0.001). Over
40% of participants attributed residual difficulty primarily
to the restricted 2D view, citing depth-perception limits and
occasional occlusion.

Furthermore, to validate BLTA’s real-world applicability,
we deployed it on a physical dual-arm UR3e robotic system
equipped with 6-DoF force/torque sensors at each end-effector.
The system utilizes two Force Dimension Omega 7 haptic de-
vices with bilateral force feedback. The robots were mounted
in a 45-degree upside-down configuration, and transforma-
tion matrices were applied to correct the kinematic mapping
between operator input and robot motion. We implemented
velocity control with exponential smoothing to enhance sta-
bility while preserving responsiveness. Force measurements
from the robot end-effectors were appropriately transformed
and scaled before being rendered as haptic feedback to the
operator. The system demonstrated robust performance across
10 trials with an 80% success rate in object manipulation
tasks. BTLA maintained superior performance in physical
trials despite additional challenges, including network latency
(12 + 3 ms), kinematic singularities (encountered in 20%
of trials). In soft bottle handling tasks (Fig. [T1] a-d), the
system maintained consistent force control within £2.5 N
of target values, preventing deformation while allowing safe
manipulation. For box transportation (Fig. [[1] e-h), the system
successfully coordinated dual-arm movements with a 90%
success rate (compared to dyadic 40% and SPB 60% in 10
trials) and completed transfers in an average of 12.3 s. Voice
commands were processed with 94% recognition accuracy and
an average response latency of 320 ms, enabling seamless
collaboration.

VI. CONCLUSION

We introduced BTLA, a language-mediated assistant for
single-operator dual-arm teleoperation that combines natural-
language interaction with adjustable autonomy. Across simu-
lated and physical evaluations, BTLA consistently increased
task effectiveness (e.g., raising success probability and cover-
age) while lowering operator workload relative to conventional

solo and dyadic control. These gains stem from allowing the
human to retain direct authority over the dominant arm while
invoking context-appropriate assistance on the partner arm
through conversational commands. Beyond aggregate perfor-
mance, the system successfully handled ambiguous or varied
phrasing, provided confirmations when needed, and supported
smooth transitions between real-time and autonomous skills.
Physical trials on a dual-UR3e platform further indicated
robustness to practical issues such as network delays and
kinematic singularities, with reliable manipulation of both
rigid and deformable objects.

Several promising directions for future work emerge from
this study. Firstly, expanding the range of autonomous behav-
iors and developing more sophisticated real-time autonomy
adaptation could further enhance the system’s flexibility. Sec-
ondly, investigating how operators and the assistant system
adapt to each other during extended use could provide in-
sights for improving human-robot collaboration. Thirdly, long-
term adaptation presents significant opportunities for BTLA
enhancement. Future implementations could incorporate re-
inforcement learning from operator feedback, enabling skill
refinement based on usage patterns.
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