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Non-Hermitian Su-Schrieffer-Heeger model with the energy levels of free parafermions
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Using a parent Hermitian tight-binding model on a bipartite lattice with chiral symmetry, we theoretically
generate non-Hermitian models for free fermions with p orbitals per unit cell satisfying a complex generalization
of chiral symmetry. The p complex energy bands in k space are given by a common k-dependent real factor,
determined by the bands of the parent model, multiplied by the p th roots of unity. When the parent model is the
Su-Schrieffer-Heeger (SSH) model, the single-particle energy levels are the same as those of free parafermion
solutions to Baxter’s non-Hermitian clock model. This construction relies on fully unidirectional hopping to
create Bloch Hamiltonians with the form of generalized permutation matrices, but we also describe the effect of
partial unidirectional hopping. For fully bidirectional hopping, the Bloch Hamiltonians are Hermitian and may
be separated into even and odd parity blocks with respect to inversion of the orbitals within the unit cell. Partially
unidirectional hopping breaks the inversion symmetry and mixes the even and odd blocks, and the real energy
spectrum evolves into a complex one as the degree of unidirectionality increases, with details determined by the
topology of the parent model and the number of orbitals per unit cell, p. We describe this process in detail for
p = 3 and 4 with the SSH model. We also apply our approach to graphene, and we show that AA-stacked bilayer
graphene evolves into a square-root Hamiltonian of monolayer graphene with the introduction of unidirectional
hopping. We show that higher-order exceptional points occur at edge states and solitons in the non-Hermitian
SSH model, and at the Dirac point of non-Hermitian graphene.

DOI: 10.1103/hdzd-94qm

I. INTRODUCTION

The Su-Schrieffer-Heeger (SSH) model [1–3] is a Hermi-
tian tight-binding model of noninteracting spinless fermions
in one dimension with staggered nearest-neighbor hopping
and two orbitals per unit cell. It satisfies time-reversal, charge-
conjugation, and chiral symmetries, placing it in the BDI
class of topological insulators [4–7]. Non-Hermitian SSH
models have been considered by adding additional tight-
binding parameters, usually in one of two ways. The first
is to add alternating complex on-site energies, which break
chiral symmetry but satisfy parity-time (PT) symmetry and
may preserve a real energy eigenvalue spectrum [8–18]. The
second approach is to add terms that introduce unidirectional
hopping [19–25], an imbalance in the left-moving and right-
moving hopping parameters, breaking PT symmetry but pre-
serving chiral symmetry [15–17,26–28]. Novel phenomena
include exceptional points and the non-Hermitian skin effect
[13,15–17,23–48].

In this paper, we consider non-Hermitian Hamiltonians
for noninteracting fermions, which satisfy a complex gener-
alization of chiral symmetry [48–51] expressed, for a Bloch
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Hamiltonian H(k) in k space, as

ZH(k)Z−1 = ωH(k), ω = exp(2π i/p), (1)

where p � 2 is an integer. This chiral symmetry guarantees
that the energy spectrum separates into p sectors, and bands in
different sectors are related by a common real part multiplied
by the p th roots of unity.

For simplicity, we consider p orbitals per unit cell so that
H(k) is a p × p matrix with p energy bands, and the chiral
operator Z is a p × p generalization of the diagonal Pauli
matrix, Z = diag(1, ω, ω2, . . . , ωp−1). Then, the chiral sym-
metry (1) may generally be satisfied with H(k) in the form of a
generalized permutation matrix [50] containing p independent
functions of k. Instead of a general Hamiltonian, however, we
propose a theoretical scheme to generate the non-Hermitian
models from parent Hermitian models on a bipartite lattice.
By introducing unidirectional hopping [19–22] and increasing
the number of orbitals to p, the p complex energy bands are
given by a common k-dependent real factor, determined by
the bands of the parent model, multiplied by the p th roots of
unity.

An example where the parent model is the SSH model is
illustrated in Fig. 1. Figure 1(a) shows the Hermitian SSH
model with two orbitals per unit cell on sublattices A and
B with intracell hopping t � 0 and intercell hopping J � 0,
where the hopping is bidirectional. The non-Hermitian SSH
model with p = 3 is shown in Fig. 1(b), where site B supports
two orbitals, B1 and B2, connected by unidirectional hopping
γ > 0, with unidirectional hopping from A to B1 and from
B2 to A. The unidirectional hopping is implemented so that
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FIG. 1. (a) Hermitian SSH model with two orbitals per unit cell
on sublattices A and B with intracell hopping t � 0 and intercell hop-
ping J � 0. (b) Non-Hermitian Hamiltonian formed from the parent
SSH model with two orbitals B1 and B2 connected by unidirectional
hopping γ > 0 as indicated by the arrows, with unidirectional hop-
ping from A to B1 and from B2 to A. (c) The topologically trivial
phase in the trimer limit with J = 0, where each trimer has three
states with energies ε3 = γ t2. (d) The topologically nontrivial phase
in the trimer limit with t = 0, where each trimer has three states with
energies ε3 = γ J2, and there are three edge states with energy ε = 0.

it circulates in a counterclockwise direction in every intracell
trimer and in a clockwise direction in every intercell trimer,
as if created by an imaginary gauge field [19–22]. For fully
unidirectional hopping, the non-Hermitian model has an en-
ergy spectrum related to that of the parent SSH model, and,
as with the parent SSH model [3], bulk-edge correspondence
may be understood pictorially in the trimer limit. For t �= 0,
J = 0 [Fig. 1(c)], the system splits into separate trimers, each
with energy ε3 = γ t2, and there are no edge states (the trivial
phase). However, for t = 0, J �= 0 [Fig. 1(d)], the system
splits into separate trimers, each with energy ε3 = γ J2, plus
p = 3 edge states with energy ε = 0 (the nontrivial phase):
two at the right edge and one at the left edge. This is an
exceptional point [13,15–17,27–33,35–38,40–43,45–47,51]:
The right edge supports a defective eigenvalue at zero energy
with an algebraic multiplicity of 2, as defined by the roots of
the characteristic polynomial, but, due to the unidirectional
coupling of γ from B1 to B2, there is only one linearly
independent eigenvector. In fact, this is an example of a frag-
mented exceptional point [43,46] because the left edge also
supports a zero-energy state so, overall, the algebraic multi-
plicity is 3 with only two linearly independent eigenvectors.

It is generally difficult to realize unidirectional hopping in
electronic condensed matter systems [20–22]. However, there
have been theoretical proposals and experimental realizations
of partially unidirectional hopping in other platforms includ-
ing optical [22,51–59], acoustic [60–62], cold atom [63–65],
and topolectrical [66–73] systems. The non-Hermitian model
with p = 3 and the SSH model as the parent model, Fig. 1(b),
bears some similarity to the model discussed in Ref. [51] as
a cube root of the SSH model, although their model has six
sites per unit cell (instead of three) and different values of the
unidirectional hopping parameters as compared to H (1,2). Ref-
erence [51] proposes the implementation of their model using
photonic ring resonators [22,52,54,55,57], and they estimate
that it is possible to achieve very close to perfect unidirection-
ality. Motivated by these works on experimental realizations,
we consider the influence of partially unidirectional hopping
in Sec. III.

Section II details the construction of non-Hermitian Hamil-
tonians with p orbitals and fully unidirectional hopping which
satisfy the complex chiral symmetry (1). We show that it is
possible to construct an arbitrary n th root model of the parent
[51,55,74–82], and we describe the occurrence of excep-
tional points [13,15–17,27–33,35–38,40–43,45–47,51]. When
the parent model is the SSH model, the single-particle energy
levels in position space with open boundary conditions are
the same as those of free parafermion solutions to Baxter’s
non-Hermitian clock model [49,83,84].

Section III describes the role of partially unidirectional
hopping which breaks the complex chiral symmetry (1). Nev-
ertheless, the complex energy spectrum is constrained by
time-reversal symmetry (TRS) and, for an even number of
orbitals p, by sublattice symmetry. For fully bidirectional
hopping, the constructed model is Hermitian, and it can be
block-diagonalized into even and odd parity blocks with re-
spect to inversion of the orbitals within the unit cell. Partially
unidirectional hopping breaks the inversion symmetry and
mixes the even and odd blocks, and the real energy spectrum
evolves into a complex one as the degree of unidirectionality
increases. This process is determined by the topology of the
parent model and by the number of orbitals per unit cell, p,
which we describe in detail for p = 3 and 4 with the example
of the SSH model. When the SSH model is the parent model,
there are real energy levels due to states localized at edges in
the topological phase or localized on solitons.

Section IV considers the application to graphene [85–87].
For fully unidirectional hopping, it is possible to construct an
arbitrary n th root Hamiltonian of graphene with exceptional
points at the Dirac points characterized by 2n complex bands
with dispersion ε ∼ |q|1/n for small wave vector q and Berry’s
phase π [10,88–92]. In particular, we show how the introduc-
tion of unidirectional hopping changes Hermitian AA-stacked
bilayer graphene [93,94] into a square-root Hamiltonian of
monolayer graphene.

II. FULLY UNIDIRECTIONAL HOPPING

A. General form of the non-Hermitian Bloch Hamiltonian

In this section, we describe the construction of the non-
Hermitian model when the hopping is fully unidirectional.
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We consider a Hamiltonian H (m,n)(u) for a system with
m orbitals on the A site, A1, A2, …, Am, n orbitals on
the B site, B1, B2, …, Bn, and p = m + n orbitals per
unit cell. The parameter 0 � u � 1 indicates the degree of
unidirectionality in the hopping, with u = 0 being the Her-
mitian limit of bidirectional hopping and u = 1 being the
limit of fully unidirectional hopping. The Hamiltonian is
non-Hermitian for u > 0. With translational invariance and
periodic boundary conditions, it is possible to Fourier trans-
form the Hamiltonian as H (m,n)(u) = ∑

k c†
kH(m,n)(k, u)ck ,

where c†
k = (c†

k,A1 · · · c†
k,Am c†

k,B1 · · · c†
k,Bn) and the

Bloch Hamiltonian H(m,n)(k, u) is a p × p matrix. For the rest
of this section, we consider u = 1.

We consider a parent model which is a Hermitian tight-
binding model on a bipartite lattice (p = 2), with A and B
sublattices and a 2 × 2 Bloch Hamiltonian of the form

H(1,1)(k, 0) =
(

0 h∗(k)
h(k) 0

)
. (2)

This satisfies chiral symmetry as σzH(1,1)(k, 0)σz =
−H(1,1)(k, 0), where σz is the diagonal Pauli spin matrix,
and it has two energy bands ε

(1,1)
j (k, 0) = (−1) j |h(k)| for

j = 1, 2.
A non-Hermitian model is formed from the parent by

adding additional orbitals on either the A or the B site and
introducing unidirectional hopping. For the example of the
SSH model with p = 3, Fig. 1(b), the non-Hermitian model
is formed by adding an additional orbital on site B, to give
orbitals B1 and B2 on site B, with a new Bloch Hamiltonian
in the A, B1, B2 basis,

H(1,2)(k, 1) =
⎛
⎝ 0 0 h∗(k)

h(k) 0 0
0 γ 0

⎞
⎠, (3)

where γ > 0 is the amplitude for unidirectional hopping from
B1 to B2. This Hamiltonian satisfies a complex generalization
of chiral symmetry, ZH(1,2)(k, 1)Z−1 = ωH(1,2)(k, 1), where
Z is a 3 × 3 generalization of σz, Z = diag(1, ω, ω2) with
ω = exp(2π i/3) [49–51]. There are three complex energy
bands related to those of the parent model as ε

(1,2)
j (k, 1) =

ω j (γ |h(k)|2)1/3 for j = 1, 2, 3, and the topology of the model
is related to that of the parent as illustrated in Figs. 1(c) and
1(d).

In general, the Bloch Hamiltonian H(m,n)(k, 1) is a p × p
matrix, p = m + n, with matrix elements given by

H(m,n)
m+1,m(k, 1) = (

H(m,n)
1,m+n(k, 1)

)∗ = h(k),

H(m,n)
�+1,�(k, 1) = γ (4)

for � = 1, 2, . . . , m − 1 and � = m + 1, . . . , p − 1. All other
matrix elements are zero. This matrix is a generalized permu-
tation matrix with only one nonzero entry in each row and
each column. It has an element on the end of the first row,
H(m,n)

1,m+n(k, 1) = h∗(k), and all other nonzero matrix elements
are along the lower diagonal. As a result, the Hamiltonian
satisfies the complex generalization of chiral symmetry (1).

The Bloch Hamiltonian H(m,n)(k, 1) may be viewed as
a p th root of the parent model squared, [H(1,1)(k, 0)]2,
generalizing the concept of square-root Hamiltonians

[51,55,74–82]. Chiral symmetry behaves as a unitary
symmetry when applied to the Bloch Hamiltonian raised
to the p th power, Z[H(m,n)(k, 1)]pZ−1 = [H(m,n)(k, 1)]p,
block-diagonalizing it into p separate blocks. Hence,
[H(m,n)(k, 1)]p is diagonal [50],

(H(m,n)(k, 1))p = γ p−2|h(k)|2Ip, (5)

where Ip is the p × p identity matrix. Thus, p complex energy
bands ε

(m,n)
j (k, 1), j = 1, 2, . . . , p, of H(m,n)(k, 1) are given

by the distinct solutions of(
ε

(m,n)
j (k, 1)

)p = γ p−2|h(k)|2. (6)

The Bloch Hamiltonian H(n,n)(k, 1) is an n th root
of the parent Hamiltonian H(1,1)(k, 0). This means that
[H(n,n)(k, 1)]n may be written as being block diagonal, using
a unitary transformation to reorder the basis, with n separate
blocks, each of which is a 2 × 2 matrix, γ n−1H(1,1)(k, 0).

B. Exceptional points

The Bloch Hamiltonian H(m,n)(k, 1) has an exceptional
point at h(k) = 0 [13,15–17,27–33,35–38,40–43,45–47,51].
In particular, it has defective eigenvalues whereby their alge-
braic multiplicity, as defined by the roots of the characteristic
polynomial, is greater than their geometric multiplicity, the
number of associated linearly independent eigenvectors. For
u = 1 and h(k) = 0, all eigenvalues of H(m,n)(k, 1) are at zero
energy with an algebraic multiplicity of p and a geometric
multiplicity of 2 with partial degeneracies [43,46] (l1, l2) =
(m, n) associated with the A and B sites, respectively. For the
SSH model, h(k) �= 0 for the bulk in the gapped phases, but
the defective eigenvalues may be manifested in position space
at edges, as described in Sec. III B, and on domain walls,
Sec. III F. For graphene, exceptional points occur at the Dirac
point of the parent model (monolayer graphene) in k space
where h(k) = 0, Sec. IV.

C. The non-Hermitian SSH model

The Hermitian SSH model has the form of H(1,1)(k, 0),
Eq. (2), with h(k) = t + Jeika, where t � 0 describes intracell
hopping, J � 0 is intercell hopping, and a is the lattice con-
stant. The lattice in position space is shown in Fig. 1(a). In ad-
dition to chiral symmetry (1) with Z = σz (the diagonal Pauli
spin matrix) and ω = −1, the model has time-reversal sym-
metry [H(1,1)(k, 0)]∗ = H(1,1)(−k, 0) and charge-conjugation
symmetry σz[H(1,1)(k, 0)]∗σz = −H(1,1)(−k, 0). It has two
energy bands given by Eq. (6),

ε
(1,1)
j (k) = (−1) j

√
t2 + J2 + 2tJ cos(ka). (7)

The non-Hermitian model (4) has time-reversal sym-
metry [H(m,n)(k, 1)]∗ = H(m,n)(−k, 1), generalized chiral
symmetry (1), and generalized charge-conjugation sym-
metry Z[H(m,n)(k, 1)]∗Z−1 = ωH(m,n)(−k, 1), where ω =
exp(2π i/p). There are p complex energy bands ε

(m,n)
j (k),

j = 1, 2, . . . , p, given by(
ε

(m,n)
j (k)

)p = γ p−2(t2 + J2 + 2tJ cos(ka)), (8)

which are gapless at k = π/a for t = J , as for the SSH model.
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D. Relation to free parafermions

When the SSH model is the parent model, the single-
particle energy levels are the same as those of free
parafermions in Baxter’s clock model [49,83,84]. This con-
nection may be understood by considering the form of the
Hamiltonian H (1,p−1)(u = 1) in position space,

H (1,p−1)(u = 1) =
pL∑

j,m=1

c†
jH

(1,p−1)
j,m cm, (9)

where c†
j and c j are creation and annihilation operators for

spinless fermions on site j, p is the number of orbitals per unit
cell, L is the number of unit cells, and H(1,p−1) is a pL × pL
matrix. Intercell terms are given by

H(1,p−1)
(�−1)p+1,�p = H(1,p−1)

(�−1)p+2,(�−1)p+1 = t,

H(1,p−1)
(�−1)p+m+2,(�−1)p+m+1 = γ

for � = 1, 2, . . . , L and m = 1, 2, . . . , p − 2, and intracell
terms are given by

H(1,p−1)
(�−1)p+2,�p+1 = H(1,p−1)

�p+1,�p = J

for � = 1, 2, . . . , (L − 1), where t � 0, J � 0, and γ > 0 are
real. All other matrix elements are zero, and we assume open
boundary conditions.

As examples, the Hermitian SSH model [1–3], Fig. 1(a),
corresponds to p = 2,

H(1,1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 t 0 0 0 . . . 0 0 0
t 0 J 0 0 . . . 0 0 0
0 J 0 t 0 . . . 0 0 0
0 0 t 0 J . . . 0 0 0
0 0 0 J 0 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . 0 J 0
0 0 0 0 0 . . . J 0 t
0 0 0 0 0 . . . 0 t 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

For p = 3, H(1,2) [Fig. 1(b)] is given by

H(1,2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 t 0 0 0 0 . . . 0 0 0 0
t 0 0 J 0 0 0 . . . 0 0 0 0
0 γ 0 0 0 0 0 . . . 0 0 0 0
0 0 J 0 0 t 0 . . . 0 0 0 0
0 0 0 t 0 0 J . . . 0 0 0 0
0 0 0 0 γ 0 0 . . . 0 0 0 0
0 0 0 0 0 J 0 . . . 0 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

...

0 0 0 0 0 0 0 . . . J 0 0 t
0 0 0 0 0 0 0 . . . 0 t 0 0
0 0 0 0 0 0 0 . . . 0 0 γ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

The matrices H(1,p−1) are the same as the matrices in the
construction [49] of generalized raising and lowering oper-
ators for p-state parafermions (denoted Mn in [49]), except
for rescaling of the hopping parameters. Hence, they have
the same single-particle energy levels as free parafermions.
In particular, for a system with L unit cells, the SSH model
H(1,1) has L positive eigenvalues, denoted εSSH

j , and H(m,n)

has pL eigenvalues ε
(p)
j given by(

ε
(p)
j

)p = γ p−2
(
εSSH

j

)2
, (12)

where j = 1, 2, . . . , L and p = m + n. Note that, although the
non-Hermitian SSH model has the same single-particle energy
levels as Baxter’s clock model [49,83,84], its many-body en-
ergy spectrum differs due to different occupation numbers of
fermions and parafermions. The models here are constructed
using fermionic creation and annihilation operators, and they
do not exhibit the unusual exchange and braiding properties
of parafermions [49]. Nevertheless, as the two models share
the same single-particle levels, they have common symmetries
and topology, determined by the Hamiltonian matrix (11), say,
as we describe in the following sections. Note that the topo-
logical properties of the Hamiltonian matrix may be simulated
by classical systems such as topolectrical circuits [66–73]

which generally take no account of occupation numbers and,
thus, would not distinguish between the non-Hermitian SSH
model and Baxter’s clock model.

III. PARTIAL UNIDIRECTIONAL HOPPING

A. Symmetries

We now consider systems with partial unidirectional hop-
ping by considering the Hamiltonian

H(m,n)(k, u) = H(m,n)(k, 1) + (1 − u)(H(m,n)(k, 1))†, (13)

where H(m,n)(k, 1) is the fully unidirectional Bloch Hamil-
tonian defined in Eq. (4) and the degree of directionality
0 � u � 1. Hamiltonian H(m,n)(k, u) is Hermitian for u = 0
and non-Hermitian otherwise.

We begin by describing the symmetries of H(m,n)(k, u)
using the definitions of the symmetry classification for non-
Hermitian Hamiltonians [95,96]. Throughout this paper, we
consider only real tight-binding parameters, so H(m,n)(k, u)
satisfies time-reversal symmetry,

(H(m,n)(k, u))∗ = H(m,n)(−k, u), (14)
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for all u values. This dictates that the energy spectrum is
either real or comes with complex-conjugate pairs [95] (it
has reflection symmetry in the real energy axis). For fully
unidirectional hopping, u = 1, the Hamiltonian also satisfies
complex chiral symmetry (1) and this guarantees that the
spectrum has the form (6) given by the p th roots of unity and
the parent model. The combination of time-reversal symme-
try and chiral symmetry (1) gives a generalized particle-hole
symmetry Z (H(m,n)(k, 1))

∗
Z−1 = ωH(m,n)(−k, 1).

For partial unidirectional hopping, 0 < u < 1, the sym-
metries depend on whether the number of orbitals per cell
p = m + n is even or odd. For odd p, the Hamiltonian is
pseudo-Hermitian η(H(m,n)(k, u))

†
η−1 = H(m,n)(k, u), where

η is unitary and Hermitian [96,97]. Combined with time-
reversal symmetry, this gives a variant time-reversal symme-
try, C+(H(m,n)(k, u))

T C−1
+ = H(m,n)(−k, u), where C+C∗

+ =
+1 [96]. For even p, the Hamiltonian obeys sublattice
symmetry SH(m,n)(k, u)S−1 = −H(m,n)(k, u), where S2 = 1
[96]. Combined with time-reversal symmetry, this gives
a variant particle-hole symmetry, T−(H(m,n)(k, u))

∗T −1
− =

−H(m,n)(−k, u), where T−T ∗
− = +1 [96]. This dictates that

the energy spectrum for even p is either purely imagi-
nary or comes with (ε,−ε∗) pairs [95] (it has reflection
symmetry in the imaginary energy axis). The topology of
the models, resulting from the symmetries, is discussed in
Sec. III E.

For bidirectional hopping, H(m,n)(k, 0) is a Hermitian
Hamiltonian. It can be block-diagonalized into even and odd
parity blocks with respect to inversion of the orbitals within
the unit cell. Partially unidirectional hopping u > 0 breaks the
inversion symmetry and mixes the even and odd blocks, and
the real energy spectrum evolves into a complex one as the
degree of unidirectionality u increases. This process is deter-
mined by the topology of the parent model and by the number
of orbitals per unit cell, p = m + n. Below, we describe this
process in detail for p = 3 and 4 with the example of the SSH
model.

B. H (1,2)

There is one model with p = 3, H (1,2), with one orbital
on the A site and two on the B site, Fig. 1(b). The Bloch
Hamiltonian H(1,2)(k, 1) written in the A, B1, B2 basis is given
by Eq. (3). In the bidirectional limit, there is a symmetry
related to swapping the B1 and B2 orbitals. Hence, we write
the Hamiltonian H(1,2)(k, u) in a basis of even and odd parity
states, A, (B1 + B2)/

√
2, (B1 − B2)/

√
2, as

H̃(1,2)(k, u) =

⎛
⎜⎝ 0

√
2h̃∗(k) −√

2ũh̃∗(k)√
2h̃(k) γ̃ ũγ̃√

2ũh̃(k) −ũγ̃ −γ̃

⎞
⎟⎠,

(15)

where

h̃(k) = (1 − u/2)h(k), (16)

γ̃ = (1 − u/2)γ , (17)

ũ = u/(2 − u). (18)

This explicitly illustrates that the unidirectional hopping u
breaks the inversion symmetry and mixes the even and odd
blocks.

The odd state gives a flat band [76,78,98–101], and the
even 2 × 2 block takes a form similar to the parent model, but
with different on-site energies (this is the Rice-Mele model
[102] if the parent Hamiltonian is the SSH model). The energy
eigenvalues of the even and odd blocks on their own are

E1,2(k) = γ̃

2
±

√
γ̃ 2

4
+ 2|h̃|2, (19)

E3 = −γ̃ . (20)

Now we write the Hamiltonian in the eigenbasis of these
states,

H̄(1,2)(k, u) =
⎛
⎝ E1 0 −ũa1

0 E2 −ũa2

ũa1 ũa2 E3

⎞
⎠, (21)

where

a1,2 = 2(|h̃|2 − γ̃ E1,2/2)√
E2

1,2 + 2|h̃|2
. (22)

Depending on the particular form of h(k), energies E2 and E3

are degenerate or nearly degenerate for some k values. For
small u, we describe the mixing of these degenerate states
using a 2 × 2 effective Hamiltonian,

H(1,2)
eff (k, u) =

(
E2 −ũa2

ũa2 −γ̃

)
, (23)

which has energies

ε±(k) = E2 − γ̃

2
±

√
(E2 + γ̃ )2

4
− ũ2a2

2. (24)

As u increases, the band energies ε±(k) evolve from being
purely real to being complex. Since |h(k)| varies across the
band, the evolution is done via the formation of a circular band
structure, centered on the real axis.

For the SSH model, h(k) = t + Jeika. Across the first Bril-
louin zone, the maximum value of |h(k)| is |t + J| and the
minimum value is |t − J|. The evolution of the complex
energy spectra as a function of the degree of unidirectional-
ity u is shown in Fig. 2 (top row). Energy eigenvalues are
determined numerically in position space with open bound-
ary conditions by diagonalizing H(1,2)(u) = H(1,2)(1) + (1 −
u)(H(1,2)(1))

†
, where H(1,2)(1) is given in Eq. (11). Parameter

values are t = 0.5, J = γ = 1.0, and there are L = 200 unit
cells. In Fig. 2, the second row shows the real part of the
energy bands and the third row shows their imaginary part,
plotted for −π � ka � π and obtained by diagonalizing the
Bloch Hamiltonian (21).

For u = 0, Fig. 2(a), the even parity blocks given two
real bands equivalent to the Rice-Mele model [102] with a
band gap centered on energy γ /2 (19). In addition, the odd
parity states give a flat band at energy −γ (20). For u = 0.25,
Fig. 2(b), the two bands with Re(ε) < 0 have some purely real
energies and some complex ones forming a circular structure
according to Eq. (24). For u = 0.5, Fig. 2(c), these two bands
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FIG. 2. Complex energy spectra for p = 3 orbitals, model H (1,2), as a function of the degree of unidirectionality u when the SSH model
is the parent model. The top row shows energy eigenvalues (circles) determined numerically in position space by diagonalizing H(1,2)(u) =
H(1,2)(1) + (1 − u)(H(1,2)(1))

†
, where H(1,2)(1) is given in Eq. (11), using open boundary conditions and L = 200 unit cells. The inset in

(b) shows a closeup of the region where the eigenvalues form a circular shape. For all u values, there are three edge states with energies on the
real axis [isolated circles, except one is obscured by other energies in (a) and (b)], and they are threefold degenerate at zero energy for u = 1
in (e). The second row shows the real part of the energy bands and the third row shows their imaginary part, plotted for −π � ka � π and
obtained by diagonalizing the Bloch Hamiltonian (21). Dashed lines show the band that is always real, and solid lines show the two bands that
are partly real and partly imaginary. When the imaginary parts of the latter (solid lines) are nonzero, their real parts are superimposed on each
other and appear as a single line in the plots. The bottom row shows the response power P(ε) (25) as a function of real energy ε determined
in position space using open boundary conditions and L = 200 unit cells. To smooth these plots, we add a small imaginary energy as ε + iδ,
where δ = 0.005. In all plots, parameter values are t = 0.5 and J = γ = 1.0.

contain no purely real energy values, and they continue to
evolve until u = 1, Fig. 2(e), where they are described by
Eq. (8). The details of how the two bands with Re(ε) < 0
coalesce, according to Eq. (24), depend on the bandwidth of
|h(k)|. Plots with different values of t and J are given in the
Supplemental Material [103].

With t < J , the parent SSH model is in the topologically
nontrivial phase. For all u values, there are edge states with
real energies, shown in Fig. 2 (top row). Their energies may
be estimated by considering the trimer limit t = 0, Fig. 1(d),
in which there are three edge states: one on the left side has

energy ε = 0 and two on the right side have energies ε =
±γ

√
1 − u. These estimates are a good approximation for

J > t > 0 beyond the trimer limit in a large enough system,
and they are in excellent agreement with the numerical data in
Fig. 2.

In general, the edge states give defective eigenvalues when
u = 1, t = 0. They are at zero energy with an algebraic mul-
tiplicity of p and a geometric multiplicity of 2 with partial
degeneracies [43,46] (l1, l2) = (m, n), partitioned according
to the left and right ends of the system. The defective eigen-
values produce a characteristic resonant response determined
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FIG. 3. Non-Hermitian Hamiltonians formed from the parent
SSH model with p = 4 orbitals per unit cell. (a) Model H (1,3) with
three orbitals B1, B2, B3 connected by unidirectional hopping γ > 0
as indicated by the arrows, with unidirectional hopping from A to
B1 and from B3 to A. (b) Model H (2,2) with two orbitals A1, A2 and
two orbitals B1, B2 connected by unidirectional hopping γ > 0, with
unidirectional hopping from A2 to B1 and from B2 to A1. (c) Model
H (2,2) with a domain wall hosting localized states.

by the largest partial degeneracy �m = max(m, n) of the
fragmented exceptional point [43,46]. With the Green’s func-
tion G(ε) = (εI − H(m,n) )−1, the spectrally resolved response
power [43,45,46] is

P(ε) = tr{[G(ε)]†G(ε)}. (25)

For the edge states, we find that

P(ε) ∼ γ 2�m−2

|ε|2�m
; �m = max(m, n) (26)

for u = 1, t = 0, and energy ε near zero, in agreement with
Refs. [43,46]. The power (25) as a function of the degree of
unidirectionality u is plotted for H (1,2) in Fig. 2 (bottom row)
for J > t > 0, determined numerically in position space with
open boundary conditions. There are plateaus at the location
of the bands (on the real energy axis) and distinctive peaks
corresponding to the edge states, with the most prominent
peak appearing at zero energy for u = 1. Similar peaks will
appear due to states localized on domain walls, as described
in Sec. III F.

C. H (1,3)

There are two models with p = 4, namely H (1,3) and H (2,2):
H (1,3) has one orbital on the A site and three on the B site,
Fig. 3(a). In the bidirectional limit, there is a symmetry related
to swapping the B1 and B3 orbitals. Hence, we write the
Hamiltonian H(1,3)(k, u) in a basis of even and odd parity

states, A, (B1 + B3)/
√

2, B2, (B1 − B3)/
√

2, as

H̃(1,3)(k, u) =
√

2

⎛
⎜⎜⎝

0 h̃∗(k) 0 −ũh̃∗(k)
h̃(k) 0 γ̃ 0

0 γ̃ 0 ũγ̃

ũh̃(k) 0 −ũγ̃ 0

⎞
⎟⎟⎠,

(27)

using the definitions in Eqs. (16)–(18). The even 3 × 3 block
has two dispersive bands plus a flat band at zero energy. The
odd state also gives a flat band at zero energy. The energy
eigenvalues of the even and odd blocks on their own are

E1,2(k) = ±
√

2(γ̃ 2 + |h̃|2), (28)

E3 = E4 = 0, (29)

and the Hamiltonian in the eigenbasis of these states is

H̄(1,3)(k, u) =

⎛
⎜⎜⎝

E1 0 0 ũb1

0 E2 0 ũb1

0 0 0 ũb∗
2−ũb1 −ũb1 −ũb2 0

⎞
⎟⎟⎠, (30)

where

b1 = (γ̃ 2 − |h̃|2)√
γ̃ 2 + |h̃|2

, b2 = 2
√

2γ̃ h̃√
γ̃ 2 + |h̃|2

. (31)

For small u, we consider a 2 × 2 effective Hamiltonian de-
scribing mixing of the two zero-energy flat bands,

H(1,3)
eff (k, u) =

(
0 ũb∗

2−ũb2 0

)
, (32)

which has energies

ε±(k) = ± 2
√

2iũγ̃ |h̃(k)|√
γ̃ 2 + |h̃(k)|2

. (33)

Hence these two bands are purely imaginary for u > 0 [and
|h̃(k)| �= 0].

The evolution of the complex energy spectra as a function
of the degree of unidirectionality u is shown in Fig. 4 (top
row). Energy eigenvalues are determined numerically in posi-
tion space with open boundary conditions. Parameter values
are t = 0.5, J = γ = 1.0, and there are L = 200 unit cells.
For all u, all energies lie on either the real or the imaginary
axes. For u = 0, Fig. 4(a), energies are given by Eqs. (28)
and (29) with two degenerate flat bands at zero energy. For
u > 0, Fig. 4(b), these two bands become purely imaginary
and dispersive, in accordance with Eq. (33). They remain
on the imaginary axis for all subsequent u, and, at u = 1,
Fig. 4(e), where they are described by Eq. (8).

With t < J , there are four edge states with real energies
for all u values, shown in Fig. 4 (top row). Their energies
may be estimated by considering the limit t = 0 in Fig. 3(a).
One edge state on the left side has energy ε = 0 and three on
the right side have energies ε = 0 and ε = ±γ

√
2(1 − u).

These estimates are a good approximation for J > t > 0 be-
yond the t = 0 limit in a large enough system, and they are
in excellent agreement with the numerical data in Fig. 4 (top
row).
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FIG. 4. Complex energy spectra for p = 4 orbitals, as a function of the degree of unidirectionality u when the SSH model is the parent
model. The top row shows model H (1,3), the bottom row H (2,2). Energy eigenvalues (circles) are determined numerically in position space with
open boundary conditions by diagonalizing the Hamiltonian. Parameter values are t = 0.5, J = γ = 1.0, and there are L = 200 unit cells. For
all u values, there are four edge states with energies on the real axis (isolated circles). For H (1,3) (top row), two are degenerate at zero energy,
the other two are at nonzero energy for u < 1. For H (2,2) (bottom row), the edge states are twofold degenerate for all u < 1. For u = 1, the
edge states are fourfold degenerate at zero energy in (e) and (j).

D. H (2,2)

The non-Hermitian model H (2,2) has two orbitals on the
A site and two on the B site, Fig. 3(b). Unlike H (1,2) and
H (1,3), there is parity related to inverting the whole system
[e.g., swapping A1 on the left edge with B1 on the right
edge in Fig. 3(b)]; the parent (SSH) model has an analogous
symmetry. In the bidirectional limit, H (2,2) corresponds to two
coupled SSH chains [104–110], and, as with the other models,
there is symmetry related to swapping orbitals within the unit
cell (A1 and A2, and B1 and B2). We write the Hamiltonian
H(2,2)(k, u) in a basis of even and odd parity states, (A1 +
A2)/

√
2, (B1 + B2)/

√
2, (A1 − A2)/

√
2, (B1 − B2)/

√
2, as

H̃(2,2)(k, u) =

⎛
⎜⎜⎝

γ̃ h̃∗(k) ũγ̃ −ũh̃∗(k)
h̃(k) γ̃ −ũh̃(k) ũγ̃

−ũγ̃ ũh̃∗(k) −γ̃ −h̃∗(k)
ũh̃(k) −ũγ̃ −h̃(k) −γ̃

⎞
⎟⎟⎠,

(34)

using the definitions in Eqs. (16)–(18). The even 2 × 2 block
takes the form of the parent model centered on energy γ̃

and the odd 2 × 2 block takes the form of the parent model
centered on energy −γ̃ . The energy eigenvalues of the even
and odd blocks on their own are

E1(k) = γ̃ + |h̃|; E2(k) = γ̃ − |h̃|, (35)

E3(k) = −γ̃ + |h̃|; E4(k) = −γ̃ − |h̃|, (36)

and the Hamiltonian in the eigenbasis of these states may be
written in a block diagonal form as

H̄(2,2)(k, u) =

⎛
⎜⎜⎝

E1 ũE2 0 0
−ũE2 E4 0 0

0 0 E2 ũE1

0 0 −ũE1 E3

⎞
⎟⎟⎠ (37)

with energies

εr,±(k) = ±
√

(γ̃ + |h̃|)2 − ũ2(γ̃ − |h̃|)2, (38)

εi,±(k) = ±
√

(γ̃ − |h̃|)2 − ũ2(γ̃ + |h̃|)2. (39)

In terms of the original parameters, Eqs. (16)–(18),

εr,±(k) = ±
√

(γ + [1 − u]|h|)([1 − u]γ + |h|), (40)

εi,±(k) = ±
√

(γ − [1 − u]|h|)([1 − u]γ − |h|). (41)

Thus, there are two bands with real energies εr,±(k) and two
bands εi,±(k) with energies that evolve from being purely real
to being purely imaginary as u increases. For |h(k)| < γ , these
bands are imaginary for |h(k)| > (1 − u)γ .

The evolution of the complex energy spectra as a function
of the degree of unidirectionality u is shown in Fig. 4 (bottom
row). Energy eigenvalues are determined numerically in posi-
tion space with open boundary conditions. Parameter values
are t = 0.5, J = γ = 1.0, and there are L = 200 unit cells.
For all u, all energies lie on either the real or the imaginary
axes. For u = 0, Fig. 4(f), the energies are those of two parent
(SSH) models centered on γ and −γ as in Eqs. (35) and
(36). For u > 0, Fig. 4(g), two bands become partly real and
partly imaginary, Eq. (41). For large enough u, Fig. 4(h), they
become wholly imaginary and, at u = 1, Fig. 4(j), they are
described by Eq. (8).
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With t < J , there are four edge states with real energies for
all u values, shown in Fig. 4 (bottom row). Their energies may
be estimated by considering the limit t = 0 in Fig. 3(b). Two
edge states on the left side have energies ε = ±γ

√
(1 − u)

and they are degenerate with two on the right side, ε =
±γ

√
(1 − u). These estimates are a good approximation for

J > t > 0 beyond the t = 0 limit in a large enough system,
and they are in excellent agreement with the numerical data in
Fig. 4 (bottom row).

The Bloch Hamiltonian H(n,n)(k, 1) is an n th root of the
parent Hamiltonian H(1,1)(k, 0). With Eq. (34), (H̃(2,2)(k, u))

2

is block-diagonal, consisting of two 2 × 2 blocks, each of
which is

Hsq(u) =
(

(1 − u)(γ 2 + |h|2) (u2 − 2u + 2)γ h∗

(u2 − 2u + 2)γ h (1 − u)(γ 2 + |h|2)

)
.

(42)

This has the parent model on the off-diagonal with an ad-
ditional dispersing term on the diagonal, and, for u = 1, the
diagonal term is zero.

E. Topology

According to the non-Hermitian symmetry classification
of Ref. [35], which describes 38 different symmetry classes,
H(m,n) for p = m + n � 3 is in the AI non-Hermitian class
due to the presence of time-reversal symmetry (TRS). For
even p, there is also sublattice symmetry commuting with
TRS, giving a Z topological index in one dimension, but no
topology in two dimensions [35]. For odd p, there is also
pseudo-Hermiticity commuting with TRS, giving a Z topo-
logical index in one dimension with an imaginary line gap
(appropriate for TRS), but no topology in two dimensions
[35].

The topology of the non-Hermitian models is determined
by the parent model due to the presence of k-independent
γ factors in the Hamiltonians, as we show explicitly in the
Supplemental Material [103]. In one dimension, assuming the
system is gapless, the topology is described by the Hermitian
winding number W [3] of the parent model (2),

W = 1

2π i

∫ π/a

−π/a
dk

d

dk
ln h(k). (43)

Hence, for the SSH model as parent (which only has two
insulating phases due to the limited number of parameters),
there is a trivial phase for t > J (winding number of 0), a
gapless phase for t = J , and a topologically nontrivial phase
for t < J (winding number of 1).

Note that, for u � 1, the model H(m,n)(k, u) is adiabatically
connected to the model for u = 1, H(m,n)(k, 1), i.e., the value
of u can be increased to u = 1 without breaking any relevant
symmetry or closing a band gap (the classification [35] does
not include the complex chiral and charge-conjugation sym-
metries described above). Examples are Fig. 4(b) (u = 0.25),
which is connected to Fig. 4(e) (u = 1), and Fig. 4(i) (u =
0.75), which is connected to Fig. 4(j) (u = 1). However, for
u � 1, the model H(m,n)(k, u) is not adiabatically connected
to the Hermitian model for u = 0, H(m,n)(k, 0), because a
band gap must close to reach u = 0. Examples where the

gap has closed are Fig. 4(a) (u = 0) and Fig. 4(h) (u = 0.5).
Additional plots illustrating this behavior for other parameter
values are given in the Supplemental Material [103].

F. Localized states and exceptional points on solitons

When the SSH model is the parent model, there are edge
states with real energies for t < J and, for u = 1, t = 0, the
edges support defective eigenvalues at zero energy. Simi-
lar behavior occurs for states localized on solitons (domain
walls in the relative strength of t and J), as we now discuss.
As an example, we consider H (2,2) in position space with
open boundary conditions, with a domain wall as shown in
Fig. 3(c). For clarity, we consider t > J and strong t bonds
at the edges [as shown in Fig. 3(c)] so that the only local-
ized states occur on the soliton, not at the edges [111,112].
The energies of the states localized on the domain wall
may be estimated by considering the limit J = 0. In this
case, the energies are ε = ±γ

√
1 − u. For u = 1, these are

defective eigenvalues at zero energy with an algebraic mul-
tiplicity of 2 and a geometric multiplicity of 1. As there
are no other zero-energy states (at the ends, say), this is an
exceptional point as opposed to the fragmented exceptional
point [43,46] in the system with two edge states, Sec. III B.

Numerical results are shown in Fig. 5 obtained by di-
agonalizing the Hamiltonian in position space with open
boundary conditions, 802 orbitals in total, and a domain wall
at the center of the system. The complex energy spectra,
top row of Fig. 5, look very similar to those of a fault-free
system, bottom row of Fig. 4, the main difference being that
the isolated energy levels are due to localized states on the
domain wall instead of the ends. The bottom row of Fig. 5
shows the response power (25) as a function of u. There are
plateaus at the location of the bands (on the real energy axis)
and distinctive peaks corresponding to the edge states, with
the most prominent peak appearing at zero energy for u = 1,
similar to the behavior for edge states discussed in Sec. III B.

IV. GRAPHENE

We consider monolayer graphene [85–87] as noninteract-
ing fermions on the honeycomb lattice with nearest-neighbor
hopping. This is another example of a parent model on a
bipartite lattice with chiral symmetry, with the form of Eq. (2),
where we replace h(k) with h(k) = −γ0 f ∗(k) [86,87,113],
where γ0 is the nearest-neighbor hopping parameter, k =
(kx, ky) is a two-dimensional wave vector, and

f (k) = eikya/
√

3 + 2e−ikya/(2
√

3) cos(kxa/2), (44)

where a is the lattice constant.
We focus on the case of H (2,2), discussed for the SSH

model in Sec. III D, which has two orbitals (A1 and A2) on
every A site of the honeycomb lattice, and two orbitals (B1 and
B2) on every B site. This is similar to Fig. 3(b), where one can
view the top and bottom layers as being honeycomb lattices,
with hoppings t and J replaced by γ0, and γ is an interlayer
coupling appearing on every site. For an arbitrary degree
of unidirectionality, 0 � u � 1, we may use the formulas in
Sec. III D, replacing h(k) with h(k). A major difference as
compared to the SSH model is that the band structure of the

045403-9



EDWARD MCCANN PHYSICAL REVIEW B 113, 045403 (2026)

u=0(a)

Re(ϵ)

Im(ϵ) u=0.25(b)

Re(ϵ)

Im(ϵ) u=0.5(c)

Re(ϵ)

Im(ϵ) u=0.75(d)

Re(ϵ)

Im(ϵ) u=1(e)

Re(ϵ)

Im(ϵ)

log10(P)log10(P)log10(P)log10(P)u=0(f) log10(P)

ϵ

u=0.25(g) u=0.5(h) u=0.75(i) u=1(j)

ϵ ϵ ϵ ϵ

FIG. 5. Complex energy spectra (top row) and the response power P(ε) (bottom row) with a domain wall in H (2,2) when the SSH model
is the parent model. All data are determined numerically in position space with open boundary conditions by diagonalizing the Hamiltonian.
Parameter values are t = γ = 1.0, J = 0.5, and there are 802 orbitals. We consider strong t bonds at the edges and a domain wall at the center
of the system. For the energy spectra (top row), states localized on the domain wall are isolated circles on the real energy axis, and they are
twofold degenerate at zero energy for u = 1. The bottom row shows the response power P(ε) (25) as a function of real energy ε, where we add
a small imaginary energy as ε + iδ with δ = 0.005.

parent model is gapless independent of the parameter values,
i.e., h(k) = 0 at the Dirac points in graphene.

The evolution of the complex energy spectra as a function
of the degree of unidirectionality u is shown in Fig. 6. The
top row shows energy eigenvalues determined numerically in
position space with closed boundary conditions and 20 000
orbitals. The middle row of Fig. 6 shows the real part of
the energy bands, and the bottom row shows their imaginary
part, plotted using analytical formulas: dashed lines show the
bands εr,±(k), Eq. (40), which are always real, and solid
lines show the bands εi,±(k), Eq. (41), which are partly real
and partly imaginary. The plots are for ky = 0 and −4π/3 �
kxa � 4π/3. This range includes two Dirac points at Kξ =
ξ (4π/(3a), 0), ξ = ±1, in the parent monolayer graphene
model where |h(Kξ )| = 0, and, at this point, εr,±(Kξ ) and
εi,±(Kξ ) touch. For all plots, we use parameter values
γ0 = γ = 1.0 for clarity of the qualitative features in the
figures.

For bidirectional hopping u = 0 (first column in Fig. 6),
H (2,2) is a nearest-neighbor hopping model of AA-stacked
bilayer graphene [93,94] which is Hermitian, and all the en-
ergy levels are real as given by Eqs. (35) and (36). There
are two crossing points at zero energy where |h(k)| = γ .
As u increases, the real bands εr,±(k) (dashed lines) remain
nonzero except for u = 1 at the points where |h(Kξ )| = 0.
Bands εi,±(k) (solid lines) are generally partly real and partly
imaginary, except for u = 1 where they are imaginary [other
than the points where |h(Kξ )| = 0 and the energy is zero].

For u = 1, the energies are εr,±(k) = ±√
γ |h(k)| and

εi,±(k) = ±i
√

γ |h(k)|. Monolayer graphene has energies
±|h(k)|, and H (2,2) is a square-root model [51,55,74–82] of
it. Near the Dirac point of graphene, k = Kξ , we consider a
small wave vector q as q = k − Kξ and f (k) ≈ −√

3a(ξqx −
iqy)/2 [86,87] giving h(k) ≈ h̄v(ξqx + iqy), where velocity

v = √
3aγ0/(2h̄). Thus, near the Dirac points, the Bloch

Hamiltonian (4) is

H(2,2)(q, 1) ≈

⎛
⎜⎜⎝

0 0 0 Q†

γ 0 0 0
0 Q 0 0
0 0 γ 0

⎞
⎟⎟⎠, (45)

where Q = h̄v(ξqx + iqy). This has energies εr,±(k) ≈
±√

γ h̄v|q| and εi,±(k) ≈ ±i
√

γ h̄v|q|, in agreement with
Eq. (6). As discussed in Sec. II B, there is an exceptional
point [13,15–17,27–33,35–38,40–43,45–47] at |q| = 0 where
all eigenvalues are at zero energy with fourfold algebraic mul-
tiplicity, but twofold geometric multiplicity. An experimental
signature of the exceptional point is the characteristic resonant
response as described by the response power (25), and we
find that P(ε) ∼ |ε|−4 in agreement with Eq. (26) and the
expectations of fragmented exceptional points [43,46].

As with a trajectory around the Dirac point in the parent
model, graphene [86–88], a trajectory in one of the bands
enclosing the exceptional point acquires Berry phase π . To
show this, we consider right |ψR,�〉 and left |ψL,�〉 eigenstates

where H(2,2)(q, 1)|ψR,�〉 = ε�|ψR,�〉, (H(2,2)(q, 1))
†|ψL,�〉 =

ε∗
� |ψL,�〉, and ε� = i�

√
γ h̄v|q| for � = 0, 1, 2, 3. The left and

right eigenstates are orthonormal as 〈ψL,�|ψR,m〉 = δ�,m, and
the complex Berry phase ϒ may be determined as ϒ =
i
∮ 〈ψL,�|∇q|ψR,�〉 · dq [10,89–92]. Taking a trajectory at con-

stant |q| > 0 around the exceptional point, we find ϒ = π

modulo 2π , independent of the band index �.
These results can be generalized to H (n,n), the n th root

model of monolayer graphene with p = 2n orbitals. For u =
1, and near the Dirac point of graphene, the p energy eigenval-
ues (6) are given by the complex solutions of (ε (n,n)

� (k, 1))
p =

γ p−2(h̄v|q|)2. For |q| = 0, there is an exceptional point as
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FIG. 6. Complex energy spectra for H (2,2) with graphene as the parent model, as a function of the degree of unidirectionality u. The top
row shows energy eigenvalues determined numerically in position space with periodic boundary conditions and 20 000 orbitals. The middle
row shows the real part of the energy bands, and the bottom row shows their imaginary part, plotted for ky = 0 and −4π/3 � kxa � 4π/3.
Dashed lines show the bands εr,±(k), Eq. (40), which are always real, and solid lines show the bands εi,±(k), Eq. (41), which are partly real
and partly imaginary. For all plots, parameter values are γ = γ0 = 1.0.

these eigenvalues are at zero energy with p-fold algebraic
multiplicity, but twofold geometric multiplicity. The Jordan
normal form of the Hamiltonian at the exceptional point
is given by the transpose of the Hamiltonian, (H(n,n)(q =
0, 1))

T
, with γ = 1. Near the exceptional point, the spectrally

resolved response power (25) behaves as P(ε) ∼ |ε|−2n. A
trajectory at constant |q| > 0 around the exceptional point
acquires Berry phase ϒ = π modulo 2π , independent of the
band index �.

In topolectrical circuits, nonreciprocal hopping is now rou-
tinely simulated by nonreciprocal capacitances created using
negative impedance converters [66–73], and the presence of
exceptional points has been observed through features in
impedance measurements [67]. Topolectrical circuits repre-
senting graphene and related materials have been proposed
[114–116] and realized experimentally [72,117], including a
non-Hermitian version of graphene with nonreciprocal hop-
ping [72].

V. GENERALIZATIONS OF THE CONSTRUCTION

For simplicity, we considered translational invariance of
the tight-binding parameters, which enables the use of the
k space representation, Sec. II A. As we consider the parent
models to be Hermitian, we also assumed that hopping di-
rected towards the right, e.g., from A to B1 in Fig. 1(b), is

the same strength as hopping directed towards the left within
the same unit cell, e.g., from B2 to A in Fig. 1(b). This latter
condition ensures that, although the hopping along a single
bond is nonreciprocal, hopping is reciprocal when considering
the unit cell as a whole. As a result, this construction does not
display the non-Hermitian skin effect [23–27,34].

These conditions may be relaxed, and the model will still
satisfy the generalized chiral symmetry (1). For example, the
matrix for the SSH model (9) could have intercell terms,

H(1,p−1)
(�−1)p+1,�p = t�L,

H(1,p−1)
(�−1)p+2,(�−1)p+1 = t�R,

H(1,p−1)
(�−1)p+m+2,(�−1)p+m+1 = γ�

for � = 1, 2, . . . , L and m = 1, 2, . . . , p − 2, where t�L (t�R) is
the left-moving (right-moving) hopping in cell �, and γ� is the
additional hopping in cell �. Intracell terms could be

H(1,p−1)
(�−1)p+2,�p+1 = J�L,

H(1,p−1)
�p+1,�p = J�R

for � = 1, 2, . . . , (L − 1), where J�L (J�R) is the left-moving
(right-moving) hopping between cells � and � + 1 (all other
matrix elements are zero, and we assume open boundary con-
ditions). For homogeneous γ values, i.e., γ� = γ for all �, this
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matrix would have single-particle energy levels as Eq. (12),
where εSSH

j , j = 1, 2, . . . , L, are the positive eigenvalues
of the corresponding parent SSH model. For t�L �= t�R or
J�L �= J�R, the system will generally exhibit the non-Hermitian
skin effect, inherited from the non-Hermitian parent model
[23–27,34]. This is described in detail in the Supplemental
Material [103].

Inhomogenous γ values do not break any symmetry (in-
cluding complex chiral symmetry), so the topology and
spectrum of the non-Hermitian models are still closely related
to that of the parent. However, the energy spectrum no longer
takes the simple form of Eq. (12) because there are multiple
γ values. More details are given in the Supplemental Material
[103], which also describes a study of small, random devi-
ations away from perfect unidirectionality. In this case, the
random hopping values break complex chiral symmetry. For
small deviations, the bulk energy spectrum is similar to the
perfect case u = 1 described here, but the random parameter
values can have a large impact on the edge states: For different
realizations of disorder, their energies can lie in different po-
sitions including along either the real or the imaginary energy
axis [103]. Such sensitivity to parameter values is a common
feature of behavior near an exceptional point [118,119].

For simplicity, we also considered models with time-
reversal symmetry (14), and this constrains the complex
energy spectrum to be either real or to appear with complex-
conjugate pairs [95] (it has reflection symmetry in the real
energy axis). Thus, breaking time-reversal symmetry (TRS)
is likely to have an important effect for u < 1, depending
on model details. However, it will not affect the form of
the spectrum for perfect unidirectionality u = 1, Eq. (6), be-
cause this is determined by the complex chiral symmetry (1).
According to the topological classification of non-Hermitian
systems [35], the topology in one dimension is the same with
(class AI) and without (class A) TRS.

The Hermitian parent model has chiral symmetry so that
the constructed non-Hermitian model satisfies complex chiral
symmetry (1) for u = 1. For simplicity, we considered models
with two orbitals per unit cell, but it will be possible to gener-
alize the construction to more orbitals, and this will not effect
the topological classification [35].

VI. CONCLUSIONS

We considered non-Hermitian Hamiltonians for noninter-
acting fermions with p orbitals per unit cell and unidirectional
hopping, generated from parent Hermitian models on a bipar-
tite lattice. For fully unidirectional hopping, the models satisfy
a complex version of chiral symmetry (1), and the p complex

energy bands (6) are given by a common k-dependent real fac-
tor, determined by the bands of the parent model, multiplied
by the p th roots of unity. When the SSH model is the parent
model, the single-particle energy levels in position space (12)
are the same as those of free parafermion solutions to Baxter’s
non-Hermitian clock model [49,83,84].

For fully unidirectional hopping, it is possible to generate
an arbitrary n th root model (with p = 2n orbitals) of the
parent model [51,55,74–82]. The models support fragmented
exceptional points [43,46], with defective eigenvalues having
an algebraic multiplicity of p and a geometric multiplicity
of 2. When the SSH model is the parent model, defective
eigenvalues are realized in position space at edges with open
boundary conditions and on solitons (domain walls in the rel-
ative hopping strength). When graphene is the parent model,
defective eigenvalues occur at the corresponding Dirac points.

We described the role of partial unidirectional hopping,
which breaks the complex chiral symmetry (1). With only
real tight-binding parameters used throughout this paper, the
models always satisfy time-reversal symmetry (14), which
ensures that the energy spectrum is either real or comes with
complex-conjugate pairs [95] (it has reflection symmetry in
the real energy axis). For an even number of orbitals p, the
models also obey sublattice symmetry, and the energy spec-
trum is either purely imaginary or comes with (ε,−ε∗) pairs
[95] (it has reflection symmetry in the imaginary energy axis).

For fully bidirectional hopping, the constructed model is
Hermitian, and it can be block-diagonalized into even and
odd parity blocks with respect to inversion of the orbitals
within the unit cell. Partially unidirectional hopping breaks
the inversion symmetry and mixes the even and odd blocks,
and the real energy spectrum evolves into a complex one
as the degree of unidirectionality increases. This process is
determined by the topology of the parent model and by the
number of orbitals per unit cell, p, as we described in detail
for p = 3 and 4 with the example of the SSH model. When the
SSH model is the parent model, there are real energy levels
due to states localized at the edges in the topological phase or
on solitons.
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