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Abstract 

Urbanization has accelerated globally in recent decades, producing dramatic urban land 

expansion. With cities attracting attention from scientists from different fields, urban growth 

is a key topic, commonly studied using remotely sensed raster imagery. Urban entities such 

as cities are more readily thought of as spatial objects. Despite this, object-based methods 

are rarely applied in research on urban growth. This research utilized newly available 

remotely sensed annual land cover time-series data coupled with a novel object-based 

approach involving (i) raster-to-vector conversion, (ii) careful temporal linking of objects, 

(iii) comprehensive specification of the possible urban growth states (introduction, 

establishment, coalescence and no change) and (iv) the creation of a spatial graph structure 

linking neighbouring objects, to study urban growth. The stated object-based graph structure 

facilitated analysis of the state of urban objects based on previous states of the object and its 

neighbours, and the spatial-temporal links between them. First, the unprecedented scale of 

urban expansion between 1992 and 2014 was quantified across 13 regional capitals and their 

surrounding cities in China. By characterizing urban growth based on urban objects in 

different buffers at the regional level, the results suggested that core cities doubled or tripled 

in size, with synchronized growth patterns at specific times potentially driven by national 

and regional policies. Regional disparities were also observed which highlight the impacts 

of regional governance and local policy interventions. Second, a conceptual framework 

characterizing urban growth events was proposed including introduction (including through 

dispersal), establishment, coalescence and no change. Applying a rule-based approach to 

identify these events and quantifying their spatial-temporal changes, synchronous temporal 

trends in growth events in the core and buffer regions at the landscape level were observed. 

However, a specific logical sequence of these events at the population (or landscape) level 

was not obvious. The results show concurrent events with shifting dominance of specific 
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events over time, thus, providing insights into urban growth processes and reflecting the 

complexity of urban growth processes. Third, a Bayesian linear mixed-effects model was 

integrated with a spatial-temporal graph of urban objects to model the states of urban objects. 

It was found that the coalescence state of urban objects is influenced by their prior object 

states, proximity to neighbouring objects, and the states of neighbouring objects in a defined 

small buffer. The growth state (i.e., growth or unchanged) is related to its previous state and 

the dynamics of neighbouring objects. The area of objects that have grown was found to be 

influenced by the largest interactions with neighbouring objects, with the magnitude of these 

effects varying by object size. By modelling explicitly the relationships between urban 

objects on a graph, the developed object-based approach provides valuable insights into the 

dynamics of urban objects and their relationships within megacities, using cities in China as 

examples.  

This research advances the understanding of urban growth by quantifying spatial-temporal 

patterns, building spatial-temporal links between urban objects, and explicitly modelling the 

relationships between objects. It provides a new perspective for studying urban dynamics 

and may contribute to better urban development, governance strategies and sustainable 

environment management in future. 
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1 Introduction 

Urbanization is one of the most significant processes experienced globally, especially in recent 

decades (Bloom et al., 2008; Batty, 2020). It promotes economic growth, urban population 

increase and the transformation of the landscape (Marshall, 2007; Bloom et al., 2008; Clemente, 

2021). Take China as an example, whose urbanisation level calculated by urban population 

increased from 17.9% in 1978 to over 60% by 2018 from Chinese National Statistics Bureau. 

Such rapid urban growth is usually accompanied by significant urban land expansion, with 

profound implications for related economic, social, and environmental systems(Chan, 1994; 

Deng et al., 2010; Dai et al., 2018; Chen et al., 2022). In general, the transformation to urban 

land cover is irreversible, fundamentally reshaping landscapes and creating new opportunities 

as well as considerable challenges. While urbanization has provided better lives for people 

around the world, it has also led to substantial problems such as environmental pollution, social 

inequalities, and loss of biodiversity(Robinson et al., 2012; Seto, Güneralp, et al., 2012; Li et 

al., 2023). For example, urban expansion, typically at the expense of agricultural and forest 

land cover, l leads to soil degradation, habitat loss and climate change (DeFries et al., 2010; 

d’Amour et al., 2017; Zhu & Yuan, 2023). This effect is not restricted to the region where 

urbanization occurs but influences global change in the long term which threatens sustainable 

development worldwide (Entwisle et al., 2008; Meyfroidt et al., 2009). To understand the 

implications of urbanization and address these emerging issues, the first step is to understand 

the dynamics of urban growth. This can lead to a better understanding of how it affects other 

systems and processes which could further contribute to providing management strategies and 

sustainable urban planning. 

1.1 Urban Growth Studies 

Urban growth has been measured using a variety of approaches, including the increase in the 
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transformation of land cover to urban land, migration of population to cities and development 

of the economy (Anderson & Ge, 2004; Berling-Wolff & Wu, 2004; Marshall, 2007; Ding & 

Li, 2019; Mahtta et al., 2022). Thus, to learn about urban growth, the first crucial step is to 

determine how best to represent it. Different representations provide different data that leads 

to different methods to be utilized to study urban growth. Urban growth studies have developed 

significantly over the past century, from focusing on quantifying urban growth of an area or its 

population (Feng et al., 2002; Lin, 2002; Anderson & Ge, 2004) to monitoring spatial urban 

change and analysing the spatial pattern of urban growth (Cheng & Masser, 2003a; Aguilera et 

al., 2011; Liu et al., 2016) by analysing urban areas within land cover data generated from 

remote sensing data and Geographic Information System (GIS) methods; and to further 

predicting urban growth with the development of computational techniques by incorporating 

data representing different aspects of cities (Castells, 2010; Meerow et al., 2019; Burghardt et 

al., 2022). The availability of remote sensing data significantly promotes the development of 

urban growth studies since they provide consistent, frequent and complete land cover data that 

are ideally suited to analysis of change in space and time. Meanwhile, urban growth studies 

have also evolved to incorporate approaches from other disciplines such as economics, social 

science, landscape ecology and computer science (Aguilera-Benavente et al., 2014; Cottineau 

et al., 2018; Zhai et al., 2020).  

1.1.1 Characterizing urban growth 

Early studies on urbanization were largely descriptive and focused on quantifying the growth 

of cities, identifying drivers of urbanization (Yue et al., 2013; Wu et al., 2019) and 

understanding the basic patterns of urbanization (Capello & Camagni, 2000; Luo & Wei, 2009; 

Aguilera et al., 2011) due to data availability and limitation of analysis techniques. Typically, 

using statistical data such as urban area or urban population, they sought to understand how 

cities expand over time and investigate the consequences of such growth. Such approaches 
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were helpful for examining growth rates over time across different cities. Some studies examine 

urban growth from a different perspective, using concepts from fractal geometry and 

complexity science (Shen, 2002; Tan et al., 2021). These studies suggest that urban growth 

exhibits similar characteristics at different levels of magnification, much like the growth 

patterns observed in the growth of organisms in biological systems. Studies use this concept to 

characterize growth patterns over time or compare the growth trends in different cities. 

Similarly, some studies have utilized rank-size methods to analyse how cities grow over time 

with the assumption that there is a relationship between the rank of the city and its size 

(Fragkias & Seto, 2009; Huang et al., 2015). This kind of research provides insights into the 

overall structural change of cities. Other studies have combined demographic, social, and 

economic data and utilize statistical methods to understand factors and processes that drive 

urban growth and model the relationship between urban growth and its underlying drivers 

(Goodkind & West, 2002; Kuang et al., 2016; Wu et al., 2019). 

With the availability of fine-resolution remote sensing data in recent decades, urban growth 

has been intensively studied especially for its spatial-temporal patterns using various spatial 

metrics. Within this framework, cities have been represented as raster data extracted from 

remote sensing data. This approach allows for a detailed exploration of the spatial aspect of 

urban growth, such as how urban growth differs at within city level (Cheng & Masser, 2003b; 

Li et al., 2013), and how the spatial form and patterns change as urban areas expand (Burger 

& Meijers, 2012; He et al., 2017). For example, a variety of landscape metrics have been 

developed to analyse the spatial characteristics of urban land over space and time (Seto & 

Fragkias, 2005; Aguilera et al., 2011). Based on spatial patterns, various metrics relating to 

density, compactness and spatial form have also been developed to characterize the detailed 

inter or intra-city level patterns (Jiao, 2015; Dibble et al., 2017; Luan & Fuller, 2022). These 

methods provide insights into the spatial-temporal dynamics of urban growth. From studying 
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how urban spatial structure and morphology change over time, researchers can infer related 

processes that contribute to observed urban growth patterns.  

Some researchers have proposed urban growth theories relating to growth phases (Dietzel, et 

al., 2005a, 2005b; He et al., 2017). They identified different growth phases including dispersal 

and coalescence representing the introduction of new urban land into the space and the 

connection of existing urban land, and suggested that urban growth shifts between dispersal 

and coalescence (Dietzel, et al., 2005b). This study implies that on the city level, different 

growth stages could be inferred through the analysis of spatial patterns using landscape metrics. 

Meanwhile, some studies distinguished different growth types based on the spatial 

relationships between new and existing urban land (Li et al., 2013; Jiao et al., 2015; Glockmann 

et al., 2022), such as identifying infilling development, edge expansion and leapfrogging 

growth at the patch level (Li et al., 2013). When mapped, these different growth types can 

provide deeper insights into related processes. These studies suggest that urban growth studies, 

which had previously been more conceptual, became increasingly sophisticated and able to 

examine the spatial-temporal change in patterns and forms of cities by incorporating spatial 

patterns analysis. The key contribution is that they provided a perspective to link the pattern 

change to underlying processes. 

1.1.2 Modelling urban growth 

However, these are all static methods but cities are essentially dynamic systems that evolve. 

Urban systems exhibit continuous dynamics both spatially and temporally. This is why the 

cellular automata (CA) models were introduced into urban studies. CA models can simulate 

urban growth by representing a landscape as a lattice of grid cells, each of which can be either 

urban or non-urban. It follows predefined transition rules to determine the states of grid cells, 

so each cell is updated at every timestep. This method can be used to simulate how urban cells 

spread over time at the micro level and therefore capture the spatial-temporal evolution of 
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urban growth. Since it allows for continuous updating of urban cells and non-linear 

relationships, and incorporates many other aspects, such as population density, economic 

activities, land availability, infrastructure conditions and interaction between lands, it provides 

a more flexible way to model urban growth compared to other approaches. 

In CA models, cities are often treated as self-organizing systems. They are viewed as complex 

systems consisting of different aspects interacting with each other and evolving continuously 

driven by both internal dynamics and external forces. Since in CA models, urban land is 

represented by cells, one of the major advantages is that it can incorporate spatial interactions 

between cells in the model. In the transition rules, the state of cells is determined by the state 

of the cell itself and its neighbours. Therefore, the interaction term is represented in the model 

which is crucial in geographic processes.  

CA models have been intensively studied and widely applied in urban growth modelling due 

to their simplicity, flexibility, and intuitive representation of spatial dynamics. They have also 

evolved and been integrated with other methods as well. For example, parcel-based CA models 

have also been applied to urban growth (Abolhasani et al., 2016; Guan et al., 2023). They 

represent cities as parcels which overcome the cell-size sensitivity in traditional CA and define 

a neighbourhood effect based on parcel characters and geometric parameters. With the 

development of artificial intelligence algorithms, related methods have also been integrated 

with CA models, such as AI-CA, neural network with CA and machine learning with CA 

(Shafizadeh-Moghadam et al., 2017; Zhai et al., 2020). These newly developed CA models 

have contributed to improving the model accuracy and power of simulations.  

1.2 Object-based methods 

Despite these advancements in urban growth research, there is still a need for a more explicit 
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representation of urban entities to study their dynamics and the spatial-temporal relationships 

between them, since cities are not just collections of individual cells but are complex systems 

of interconnected components that interact with each other over time and space (Benenson & 

Torrens, 2004; Batty, 2020). In the real world, cities are urban objects with various activities 

located on them and interacting with each other, which influences the dynamic change of 

objects. Urban objects also evolve over time by expanding in area and merging with other 

objects to become new objects which suggests that urban object have their own “lead” objects 

unless newly introduced into the space. It implies that urban objects have a potential temporal 

link between them and could be defined through this expansion or merging behaviour. Overall, 

cities are urban objects interacting with each other through spatial-temporal links. 

Object-based approaches, which have emerged from disciplines like landscape ecology and 

remote sensing, focus on the analysis of land cover as individual "objects"(Cantwell & Forman, 

1993; Fall et al., 2007; de la Barra et al., 2022). For example, some researchers have used 

object-based methods to study the land cover change over time and the dynamics of habitat and 

its connectivity (Minor & Urban, 2008; Zou et al., 2023). By representing different land cover 

as objects, these studies explicitly track how land objects evolve. Some researchers have 

attempted to build spatial and temporal links among objects and study their dynamics with 

graph-based methods. These prove that object-based methods can be used to explicitly 

characterise how land objects change over time (Zou et al., 2023) and provide insights into how 

objects relate to each other both spatially and temporally. However, object-based methods are 

rarely applied in urban studies and currently, most studies concentrate on characterising the 

dynamics of land objects. Even though the object-based methods provide a perspective to study 

the relationship between objects, most studies focus on the network structure and the 

interactions between objects are not explicitly studied. Therefore, object-based methods are 

employed to represent urban land to characterize urban growth and explore the relationships 
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between objects by building spatial-temporal links in this research. At this stage, the object-

based data is obtained by extracting objects from remote sensing data. In this research, the 

object-based data is extracted from land cover products generated by the European Space 

Agency which have global coverage for multiple years and relatively high accuracy of land 

cover classes, including the urban class.  

1.3 Research Aims and Objectives 

This research aims to analyse and model the spatial-temporal patterns and processes of urban 

growth by treating individual urban patches as geospatial objects and building spatial and 

temporal links among them.  

In this study, traditional concepts of urban growth phase, including dispersal and coalescence, 

are replaced by four definitive, measurable types of growth event: introduction, establishment, 

dispersal and coalescence, and a fifth inactivity event, stability. These events are attributable at 

the object level hence are measurable directly once each individual city is represented as a 

geospatial object. Spatial links are also constructed between objects to derive spatial-temporal 

networks that can be used to study spatial-temporal interactions between objects. In this context, 

the research aim is achieved through addressing the following objectives. 

1. Developing an object-based representation of urban areas from a time-series of high-

quality land cover data. 

2. Characterizing urban growth over space and time from the perspective of urban objects. 

3. Expanding traditional concepts of urban growth theory to incorporate additional states for 

urban objects by linking urban objects through time. 

4. Exploring urban growth processes by analysing the spatial-temporal dynamics of the 

states of urban objects. 
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5. Exploring spatial-temporal interactions between these objects by building spatial-

temporal networks between urban objects. 

6. Predicting the dynamics of urban land at the object level. 

The specific research questions are listed as follows: 

1. What are the temporal trajectories and spatial patterns of urban growth in the study region, 

especially for the growth characteristics of different-sized objects across cities and what 

can be inferred from their temporal trajectories and differences between cities? 

2. How do urban growth states in different study areas change over time? What underlying 

urban growth processes can be inferred when accumulating the characters of urban growth 

states at the city level? Compared to current key urban theories, what evidence and 

references can be made from the results? 

3. What is the relationship between the object states of coalescence, establishment and 

unchanged and the dynamics of other neighbouring objects and can these states be predicted 

through Bayesian linear mixed effects models? How do the interactions between objects 

affect the area of grown objects and how does this effect differ across different-sized objects? 

1.4 Thesis structure 

This thesis consists of six chapters with an introduction chapter and a literature review chapter; 

three chapters on analysing and addressing the aims and objectives respectively, and a 

discussion and conclusion chapter on the overall findings and suggestions for future research. 

The details for each chapter are as follows: 

Chapter 1. Introduction 
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This chapter first introduces the research background and provides a brief review of urban 

growth studies. It then explains the importance of urban growth studies and why object-based 

methods is used to study urban growth. Finally, it introduces the research aims and objectives. 

Chapter 2. Literature review 

This chapter first reviews the urbanization process in China and how urban spatial patterns 

change in China. It then introduces related definitions and different measurements of cities in 

related research. It follows with reviews of urban growth studies including characterising urban 

growth with landscape metrics, fractal analysis, rank-size analysis and related geostatistical 

models; models for predicting urban growth; dynamic models including Cellular Automatic 

models and Agent-Based models used in urban growth study and forecasting in urban growth 

studies. Finally, it summarises the related gaps in the literature and suggests direction for future 

study. 

Chapter 3. Revealing the scale and synchronicity of rapid urban growth in China in the 2000s 

in response to reform and regional policies by treating provincial capital cities as sets of spatial 

objects 

This chapter quantifies the temporal trajectories and spatial patterns of urban growth in China 

post-Reform based on urban objects. It examines how cities of different sizes and across 

various regions have experienced distinct growth patterns to provide insights into the factors 

driving urban growth in different regions. This study was submitted to the journal Applied 

Geography (2024) and has been accepted subject to major revision. 

Chapter 4. Analysing the Growth of Megacities Using an Object-based Method 

This chapter quantifies changes in different growth events based on the urban objects method 

and makes references to the urbanization processes across different cities. This study was 
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published in the journal Geographical Analysis (2024). 

Chapter 5. Modelling urban objects through Bayesian linear mixed effect models 

This chapter models the states of urban objects through their relationships with neighbouring 

objects and predicts their states using Bayesian linear mixed effect models. It also explores the 

relationships between the area of grown objects and their interactions with neighbouring 

objects. This study will be submitted to an appropriate journal later this year.   

Chapter 6. Discussion and conclusion 

This chapter discusses the results and findings of chapters 3 to 5; and makes references to the 

main contribution of this research, as well as the limitations and suggestions for future research. 
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2  Literature Review 

2.1 Introduction 

2.1.1 Research background 

More than half of the global population now lives in urban areas (United Nations, Department 

of Economic and Social Affairs). Population growth and urbanization are projected to continue, 

especially in developing countries, with more than two thirds of world population projected to 

live in urban areas by 2050 (United nations, 2022). The rate of urban growth in Africa and Asia 

is higher than in other regions (United Nations, 2022). Furthermore, medium- and small-sized 

cities have experienced more urbanisation than large cities or metropolitan areas in recent 

decades (UNDESA, 2014) with rapid urbanization resulting in increasing numbers of people 

living in cities. Urban areas influence on the environment and biochemistry process from local 

to global scales, such as carbon cycle, air quality, and climate change (Kalnay & Ming, 2003; 

Seto et al., 2010; Li et al., 2023; Tu et al., 2023). The impact of urbanization is not constrained 

to its surrounding area, and can extend far away from the “source” area through teleconnection 

(Seto, Reenberg, et al., 2012; Yu et al., 2013). For example, importing construction materials 

such as wood from other countries directly influences forest patterns in the country of origin 

with impacts on the local climate and related environmental processes. Furthermore, the 

dynamics of the urbanized area have a direct and close relationship with the quality of people’s 

lives (Parr, 2007; Huang & Wong, 2016). Different urban forms can lead to different patterns 

of commuting and transportation of goods and services. Overall, the study of urban growth not 

only gives us insights into the urban dynamics and contributes to sustainable urban landscape 

planning and management, but is also essential to understand global change and make 

strategies and adaptations to these changes. 
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2.1.2 Urbanization in China 

2.1.2.1 Historical period of urbanization in China 

The urbanization process in China can be classified into two major periods: the pre-Reform 

period and the post-Reform period. Urban growth, urban size, and urban spatial form have 

shown different characteristics before and after the Reform and Opening-up in 1979 (Plan, 

2014; Schneider et al., 2015; Wang et al., 2022). China experienced a relatively low rate of 

urbanization before the Reform, but relatively high rates of urbanization after the Reform, 

especially in recent years (Gaughan et al., 2016; Wang et al., 2022).  

Before the Reform and Opening-up which took place in 1979, state control and planning 

economics played an important role in the urbanization process (Lin, 2002). During this period, 

city forms were strongly impacted by planning economics. The state emphasized industrial 

production in cities while their consumption and commercial sectors were weakened (Chan, 

1992). Concentrating on industrial production and planning economics, ‘work units’ played an 

important role in shaping urban spatial form. These units were self-contained spaces that 

provides not only spaces for working, but also people’s daily services, such as housing, 

education, and food for its residents (Schneider et al., 2015). Widely implemented across China, 

these work units resulted in cities taking on highly standardised, lower density forms during 

this period (Abramson, 2006).  

Migration to cities was under strict control. Before the Reform. The state adopted a ‘hukou’ 

system (a national household registration system) to divide residents into two groups: the 

agricultural population and the non-agricultural population (Chan, 1994; Cheng & Selden, 

1994). The state was concerned that a large number of the population migrating to cities might 

put pressure on the provision of food and urban services. This hukou system widened the urban-
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rural gap and contributed to the creation of a dual urban-rural structure at this time (Lin, 2002). 

Before the Reform, both the growth of existing cities and the creation of new cities were limited 

with levels of urbanization increasing from 10.64% in 1949 to 18.96% in 1979 (based on the 

percentage of urban population in total population) (Chan, 1992). The number of cities 

increased from 132 to 193 during the same period (Lin, 2002). Geographically, the state 

focused on a different location in different periods (Abramson, 2006). Initially, the state 

focused on Northeast and North China where energy and resources were relatively abundant; 

then, the state concentrated on Southwest and interior China (which is called the Third Front 

project) in the 1960s and early 1970s due to national security and defence concerns.  

During this period, large cities experienced significant growth while the development and 

growth of small cities were limited (Chan, 1992). Most of these large cities are provincial 

capitals or special municipalities. They were regarded as important political and critical 

economic centres which had better infrastructure and more state investment.  

After the Reform, the economy gradually shifted to a more market-led economy (Chan, 1994; 

Lin, 2002; Power, 2018). In the meanwhile, decision-making became more decentralized, 

giving local government more power. In accordance with the Reform, there were several 

policies that had significant impacts on urbanization.  

First, migration policy was gradually relaxed even though migration (to get a “hukou”) to large 

cities was maintained (Chan, 1994; Gaughan et al., 2016). A shift in power of decision-making 

to individual agricultural households significantly boosted agricultural productivity and 

efficiency resulting in the release of a large amount of the agricultural population (Lin, 2002; 

Schneider & Mertes, 2014). This change in policy has allowed large numbers of surplus labours 

in the agricultural population to migrate to nearby small towns and small cities. This in turn 

helped boost the economic growth of both large and small cities. The amount of urban 
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population and size of cities has grown tremendously since then. 

Second, the housing reforms enacted in 1982. This allowed foreign and domestic capital to 

build houses in cities which had a direct impact on the urban spatial form and commuting 

patterns. In addition, urban land use value and the urban land market were introduced in 1987. 

Since then, urban land value has played an essential role in shaping urban spatial patterns. This 

has helped to make Chinese cities exhibit spatial gradients based on land rent (Seto & Fragkias, 

2005; Yue et al., 2013). Urban land sales and leasing have accounted for a large percentage of 

local government budgets in recent years. This money has been used to boost economic growth 

such as infrastructure construction, education, and medical services which in turn has led to 

more significant urban growth. 

Last but not least, after the Reform, several different kinds of development zones were 

established, with the aim of attracting investment and boosting economic growth. In 1979, four 

Special Economic Zones were established in Shenzhen which proved successful. In 1984, 14 

coastal cities were opened to foreign investment. Economic Technology Development Zones 

were also built in many open cities. After that, large areas were opened as Coastal Open 

Economic Zones and these areas were ultimately extended to all coastal provinces. These 

development zones have successfully boosted economic growth in coastal areas. To balance 

the development between eastern and western regions, High-Technology Industrial 

Development Zones were set up in provincial capitals in inland China in 1991. Due to the 

success of national development zones, local governments started to build provincial-level 

development zones. These development zones (both national and provincial level) have played 

a crucial role in the urbanization process (Seto & Fragkias, 2005; Schneider et al., 2015). On 

the one hand, these areas have made a significant contribution to economic growth in these 

areas. On the other hand, these areas were established near urban fringes which were mostly 
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formerly agricultural land or green land and affected the urban spatial pattern. During this 

period, the development was concentrated in coastal areas which led to a higher urbanization 

level in coastal areas. Since 2000, the state has set up a series of policies to balance this spatial 

inequality of urbanization, aiming to stimulate economic growth in interior China. Central 

governmental investment has played an important role in urban growth in Western China and 

Foreign Direct Investment (FDI) played an important role in Eastern China (Schneider et al., 

2005, 2015).  

2.1.2.2 Urban spatial pattern in China 

Urban spatial form can also be characterized by two periods: pre-Reform and post-Reform. 

The spatial form of cities was relatively compact and monocentric before the Reform (Lin, 

2002). While after the Reform, cities have witnessed rapid growth in both urban population 

and urban land use amount (Gaubatz, 1999; Schneider & Mertes, 2014; Montero et al., 2021; 

He & Zhou, 2024). The relaxation of rural-urban migration policy has contributed to simulating 

urban growth, especially in small cities and urban fringe areas (Lin, 2002). The rapid growth 

of small towns or cities especially those near large cities has led to the emergence of polycentric 

characteristics in large cities (Schneider et al., 2015; Liu & Wang, 2016). There are some other 

phenomena related to this such as semi-urbanization, suburbanization, and urban clusters. All 

of these have emphasized the decentralization of urban population and function and the 

development of surrounding urban areas. However, most research on polycentric cities has 

been based on urban land data or population or employment data to identify the polycentric 

morphological characteristics (Burger & Meijers, 2012; Liu & Wang, 2016). Studies on the 

functional characteristics of polycentric cities, and levels of connectivity between them, are 

largely limited. In the meantime, large metropolitan areas have formed in some areas, such as 

Shanghai (the Yangtze River Delta), Beijing, and Guangzhou (the Pearl River Delta). The 
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housing reform and development zones made a significant contribution to shaping urban form 

during this rapid urbanization period. The pursuit of land rent has potentially accelerated the 

transformation of agricultural land close to cities to urban land (Wu et al., 2015). Research has 

shown the urban edge area to be fragmented at the micro level (Liu, Li, Chen, et al., 2010a). 

Most development zones are located in urban fringe areas, leading to dispersed urban growth. 

It is argued that this is often followed by an infill process.  

2.2 Definition 

2.2.1 Land cover and land use  

Land cover and land use are two commonly used terms in geography and other related 

disciplines such as urban planning and resource management. Land cover and land use have 

distinct definitions. Land cover describes the physical surface of the earth, such as forest, 

grassland, river, and concrete. In contrast, land use refers to the purpose the land serves, for 

example, road, park, and agriculture. Land cover only describes the surface on the ground 

regardless of its usage. Land use is a function-based concept that indicates how people use the 

land. The same land cover type can be used for different purposes (uses), for instance, grassland 

land cover can be used for pasture, leisure, and environmental protection. Conversely, the same 

land use type can consist of different types of land cover, for example, land for leisure activities 

could include grassland, water, and forest. 

Land cover data can be derived from a variety of different sources, including aerial 

photography and remote sensing data, which provide data at the pixel level. Land cover data is 

dependent on the classification and interpretation of raw data. The classification system 

determines the land cover data extracted from the original data (Schneider et al., 2005). The 

classification systems are hierarchical since the land cover itself is hierarchical. The 

classification starts at a broad level and divides each class into more detailed sub-classes. It is 
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mutually exclusive at each level. In contrast, land use data is usually hierarchically aggregated 

from land cover data. It is inferred from land cover data based on other related knowledge, such 

as urban planning and environmental protection documents, and is usually, object-based. Land 

cover and land use data provide useful information across a variety of fields including 

ecological conservation, land management, urban planning, and resource management. Land 

use and land cover data can be analysed to highlight changes over time. Such information is 

not only useful for governments and agencies, but also for researchers in a variety of fields, 

including climatologists, ecologists, and urban planners. 

2.2.2 Urban area and rural area  

Urban land and rural land are land use-based definitions. They describe how people are using 

this land and potentially whether this land is used for urban-related purposes or non-urban-

related purposes. Both urban and rural land can be composed of a variety of different land cover 

types. For example, in an urban area, asphalt and concrete can be treated as urban land; grass 

can also be treated as urban land when it is used for leisure and climate mitigation. When 

defining urban land, it is important to distinguish this from other similar land cover or land use 

definitions, such as built area, settled area, and impervious area. Built area or built-up area is 

strongly related to the urban space. The criteria (minimum population or population density) 

may be slightly different in different countries, but it is usually defined as a well-urbanized 

area, used for urban functions, such as work, residence, and industrial production, with basic 

infrastructure (Parr, 2005, 2007). In a monocentric city, the built-up area is usually a large 

continuous area; while in a polycentric city, the built-up area may be composed of several 

contiguous areas (Burger & Meijers, 2012). The settled area is another land use-based 

definition. It refers to land used for settlement. An urban area encompasses not only a settled 

area. Impervious areas are closely related to human activities. They are defined as artificial 
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surfaces covered by impenetrable materials such as asphalt and concrete. For instance, 

pavement, industrial construction, and buildings are regarded as impervious areas.  

When studying urban-related topics, researchers with different backgrounds focus on different 

aspects of cities and use different definitions based on the research topic. Spatially, an urban 

area can be treated as a physical entity (Parr, 2007). From this perspective, the urban spatial 

pattern can help to define the city and characterize its features, such as landscape metrics and 

geostatistical models. However, it is not only a spatial entity, but it is also a centre for economic 

activities, consumption, employment, and workforce (Parr, 2007; Huang & Wong, 2016; Fang 

& Yu, 2017). It is not a sum of these activities, rather, it is a hierarchical, dynamic, adaptive 

system, with all these activities which are the behaviour of individuals and groups interacting 

with each other (Bettencourt et al., 2007; Batty, 2008; Sultana & Weber, 2014). Scholars 

emphasize the importance of connections and networks in cities (Vasanen, 2012). Rather than 

considering the city as a top-down entity (control with policies and planning), it is argued that 

these interactions and networks directly relate to the nature of cities and urban patterns from 

the bottom up (Batty & Longley, 1994; Batty, 2012, 2013a). Both physical and social networks 

connect people in cities and allow the flow of goods, energy, and information. As the node or 

centre for connection, cities attract more people which leads to more connections and flows, 

eventually causing the growth of cities. Furthermore, urban land is also connected with other 

urban areas or different land use types through teleconnection (Seto, Reenberg, et al., 2012; Yu 

et al., 2013). This teleconnection also has a link to urban pattern change and urban growth. The 

contemporary world has made this connection even more complex and dynamic. To better 

understand these interactions and connections, dynamic models have been used to simulate 

urban systems. 
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2.2.3 Representations: raster-based and object-based model  

Raster-based and object-based models are two ways of representing specific objects or 

phenomena in geography. Unlike modelling in other disciplines, modelling in geography 

describes not only the characters of objects or phenomena but also their spatial location (Lloyd 

et al., 2017). When representing phenomena or objects in space, there are two approaches to 

modelling them: the entity approach and the continuous field approach. In Geographical 

Information Systems (GIS), the continuous field approach relates to gridded data or raster data, 

which equates to a set of pixels (the size is the spatial resolution), with each pixel having an 

(x,y) value representing its location in space and a value representing the value of specific 

phenomena (e.g., land cover, elevation) at that location. The entity approach relates to an object 

or vector data, which consists of a set of points, lines, or polygons with an (x,y) value 

representing its location and associated attributes held in attribute tables (e.g., name of zone, 

area of zone) 

2.3 Measurement 

2.3.1 Remote sensing data 

Remote sensing data has been widely used in many aspects, such as urban planning, agriculture 

management, environmental protection, natural hazards monitoring, and geology (Schneider 

& Woodcock, 2008; Sexton et al., 2013; Taubenböck et al., 2017; Wu et al., 2019; Zou et al., 

2023). It provides long-term, consistent data for large spatial extents and has been used in 

numerous studies regarding monitoring urban change, including changes of size, shape, 

location and pattern (urban spatial characteristics) in recent decades (Anderson et al., 1976; 

Decker et al., 2007; Schneider, 2012). Raw remote sensing data records land surface radiation 

(reflected radiation or emitted radiation) in different wavebands as grid cells. The size of grid 

cells or pixels is the resolution of remote sensing data and this can vary from 1km to less than 
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1m depending on the satellite sensors. Before being used for analysis, raw remote sensing data 

needs to be pre-processed, for example, to correct for any atmospheric effects, and 

geometrically registered to a coordinate system. These processes occur before any 

interpretation of remote sensing data. After image classification, the accuracy of classification 

is usually checked. The classified product can then be interpreted or analysed accordingly.  

Remote sensing data is a major source for quantifying urban change and spatial patterns. After 

being classified, remote sensing data provide basic land cover or land use information. When 

used in quantifying urban spatial patterns, it is crucial to take spatial resolution into 

consideration, to ensure that the resolution is sufficient to capture the dynamics of the land 

surface under investigation.  

2.3.2 Population data and economic data 

Population data is frequently used when studying urban-related topics. For example, population 

is widely used to classify cities (large, medium, or small cities) and calculate levels of 

urbanization; the spatial distribution of population also provides useful information when 

studying urban form and spatial structure (DeFries et al., 2010; Hernando et al., 2013; Gaughan 

et al., 2016). Population data is often obtained from government census data. Since the data 

collection process is usually based on administration units, population data is often available 

at aggregate level, e.g., county, city, and province level. When used spatially, this type of 

population data is usually displayed in vector format with polygons representing administrative 

boundaries and population data assigned as an attribute of corresponding polygons. However, 

this level of aggregation can be quite coarse when researching at local scales, especially when 

used in conjunction with land cover or land use data which is usually available at much finer 

resolution. Thus, researchers have utilized a variety of approaches to generate raster population 

data at finer spatial resolution. The Gridded Population of the World (GPW) series is an openly 
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available gridded global dataset which models the spatial distribution of population on land 

surfaces with grid-type data. This is now in the fourth version (Doxsey-Whitfield et al., 2015). 

This data set utilizes an area-weighting method which disaggregates population from 

administrative units into raster cells. The GPW v4 is available at a resolution of 30 arc-seconds 

(approximately 1 km) for 2000, 2005, 2010, and 2020. Recently, the WorldPop Project has 

produced an open-access population dataset at a finer resolution with higher accuracy (Lloyd 

et al., 2017). This dataset utilised a variety of spatial datasets such as nightlight data, land cover 

data, Open Street Map, and elevation, to generate gridded population data at 3 arc-second 

spatial resolution (approximately 100m). These finer-resolution population datasets provide 

essential support to measure a variety of population-related research topics, for example, urban 

growth, urban planning, impacts of population growth, and epidemic modelling.   

Economic data is another widely used data when studying urban-related topics, especially 

urban economic activities. Usually, economic data can be obtained from official census data. 

When studying urban growth, economic data is usually used in combination with other data to 

measure the growth rate and amount (Bloom et al., 2008). 

2.3.3 Other types of data 

There are some other ways to measure urban patterns in urban studies. Scholars have used 

nighttime lights to measure the urban extent and urban growth, which usually refers to the 

Defence Meteorological Satellite Program/Operational Line-scan System (DMSP/OLS) 

nighttime stable light (Zhou et al., 2015). Some efforts have been made to use this nighttime 

light data alone or with data such as population data to measure urban extent nationally or even 

globally and identify urban clusters (Yu et al., 2014; Gao et al., 2016). In recent years, an 

increasing number of researchers have used social network data and other types of big data 

such as mobile phone signal and transportation data to study urban growth and urban activity 
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patterns(Chen et al., 2022; Dong et al., 2024). This type of data is usually individual as opposed 

to aggregate, making it useful in modelling urban evolution, the pattern of activities, and 

connections within a city or among cities (Batty, 2013a; Huang et al., 2016; Huang & Wong, 

2016). For example, population flow is considered as a useful tool to study urban growth in 

recent years since cites are becoming more connected as networks through the flow of goods, 

technologies and information (Xia et al., 2019; Xu et al., 2021; Xu et al., 2023; Hu et al., 2024).  

2.4 Statistical Model: Characterization Model 

2.4.1 Landscape metrics analysis, fractal analysis, and rank-size analysis 

2.4.1.1 Landscape metrics in analysing urban pattern dynamics 

Landscape metrics are effective ways to characterise urban patterns and configurations at 

multiple scales over time. Landscape metrics can be patch-based (e.g., patch density, patch 

shape, patch size, and fractal dimension) and pixel-based (e.g., contagion). These metrics can 

be used to describes the size, complexity, shape, and other aspects of urban areas at different 

scales (Schneider et al., 2005; Torres et al., 2016; Bosch et al., 2020). For example, frequently 

used landscape metrics such as patch density, mean patch size, and edge density can be used to 

measure the continuous fragmentation of urban land whilst the contagion index can be used to 

measure the heterogeneity of landscape (Luck & Wu, 2002; Von Der Dunk et al., 2011; Fan & 

Myint, 2014). Landscape metrics can be classified by quantifying the composition or 

configuration of the landscape (Berling-Wolff & Wu, 2004a; Yu et al., 2014). No single metric 

can adequately measure or describe complex urban patterns and their changes over time. 

However, many landscape metrics are correlated. Thus, the metrics selected for research should 

not be highly correlated and can be used to capture essential and meaningful landscape 

information. Another critical issue that needs to be considered when using landscape metrics 
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is scale. Since the landscape itself exhibits different characteristics at different scales of 

investigation, no single scale can provide full information on the landscape. Therefore, it is 

essential to calculate metrics at multi-scales.  

Scholars have utilized landscape metrics to characterize spatial-temporal urban patterns within 

a single city, in several cities in a region, or even globally (Berling-Wolff & Wu, 2004a; 

Schneider & Woodcock, 2008; Schneider et al., 2015). Landscape metrics have been used to 

calculate changes in urban form within different buffer zones to better understand urban growth 

both spatially and temporally, indicating that common patterns exist in the size, shape, and 

growth of urban land across cities in a region and that disconnected urban land converges to a 

continuous urban fabric (Schneider et al., 2005, 2015). Landscape metrics have also been used 

to assess policy and planning outcomes, and how policies have driven urban growth, which 

supports planning and management in the future (Schneider et al., 2005). Another benefit of 

landscape metrics is that they provide a series of consistent measures which can be applied to 

different cities to make comparisons across cities. Researchers have used metrics to measure 

urban growth characteristics and urban form within countries, such as comparison among 

coastal cities and inland cities in China, and globally, to contribute to understanding of urban 

sprawl among countries (Schneider & Woodcock, 2008; Gao et al., 2016). Researchers have 

used landscape metrics to link empirical observations to urban growth theory. For example, a 

case study in California’s Central Valley was used to identify diffusion and coalescence process 

and link to relating theory (Dietzel, et al., 2005a). In addition to these classical landscape 

metrics, researchers have introduced new indexes based on landscape pattern characteristics to 

better quantify landscape pattern dynamics. For instance, the Landscape Expansion Index (LEI) 

was used to identify different urban growth patterns, i.e., infilling, edge expansion, and outlying 

(Liu et al., 2014; He & Zhou, 2024). Unlike most landscape metrics that measure characteristics 

for one period of time, the LEI identify and quantifies urban growth types and characters for 
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two or more periods of time (Liu, Li, Chen, et al., 2010a) which essentially provides insights 

into urban growth process at the micro level. 

2.4.1.2 Fractal analysis 

The concept of fractal refers to spatial objects exhibiting self-similarity, scale-independent, and 

irregularity characteristics (Falconer, 1986; Batty, 2013b). When a fractal object is subdivided 

into parts, each part looks similar to the whole object (Frankhauser, 2009). Many natural spatial 

objects have been found to exhibit fractal characteristics, including coastlines and plants. Many 

artificial spatial objects have also been shown to exhibit fractal characteristics, including urban 

areas and transportation infrastructure (Batty & Longley, 1988; Wong & Fotheringham, 1990; 

Lu & Tang, 2004; Mohajeri et al., 2012; Batty, 2013b). The fractal dimension has been widely 

used to measure how the detail in the fractal changes with scale. The most commonly used 

methods for calculating fractal dimension include box-counting analysis (Benguigui et al., 

2000; Shen, 2002), area-radius scaling (Chen, 2010), and area-perimeter scaling (Wang et al., 

2005). It is suggested that the box-counting approach works best when analysing the spatial 

distribution of built-up objects, while the area-radius scaling approach works best when 

analysing the fractal dimension of the urban growth process due to its consistency with urban 

areas and urban peripheries (Chen, 2013). Since being introduced into geographical research, 

fractal analysis has been applied to analyses of urban form, urban growth, urban systems, and 

inner urban structure (e.g., transportation, infrastructure, and population density) (Wong & 

Fotheringham, 1990; Chen, 2010; Tannier & Thomas, 2013; Chen et al., 2014). Fractal theory 

provides new perspectives with which to understand cities (Batty, 2013b; Bosch et al., 2020; 

Lagarias & Prastacos, 2020; Tan et al., 2021).  

Using fractal simulation techniques, researchers have explored the fractal dimension of urban 

form, urban growth, and urban structure for individual or multiple periods in time. For instance, 
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empirical analysis of the fractal dimension of urban growth in London was consistent with that 

of urban growth in Cardiff (Batty & Longley, 1994). Extensive research has also been 

conducted for cities across the world, studying urban form, urban agglomeration, and a specific 

inner urban characteristics (Wong & Fotheringham, 1990; Chen, 2010; Thomas et al., 2012; 

Tannier & Thomas, 2013). To better compare the fractal characteristics among different cities, 

the top 20 cities ranked by population in the US were selected using a box-counting algorithm 

to calculate their fractal dimension for urbanized areas and examined to determine the statistical 

relationship between fractal dimension and population density using a log-linear function 

(Shen, 2002). The results indicated that different urban forms could share similar dimension 

values, and that cities with the same dimension values and urbanised areas could have very 

different population sizes. This suggests that the fractal dimension worked as an aggregate 

measure of the whole urban form rather than its specific configuration, and the fractal 

dimension alone was not a good indicator of population density. To investigate the reasonable 

range of fractal dimension value and explore the relationship among various urban fractal 

indicators, scholars have integrated the scaling analysis, spectral analysis, and spatial 

correlation analysis to generate a set of fractal parameters linked with each other based on the 

density-radius scaling method (Chen, 2013). The results revealed that the appropriate range of 

dimension value is between 1.5 to 2.0. This approach could be applied as a useful tool to 

understand urban evolution. The morphological similarities of the built-up area have been 

explored across countries. Researchers utilized fractal indices to calculate the morphological 

similarities of 97 towns located in 18 European urban agglomerations (Thomas et al., 2012). 

The results indicated that the morphological characteristics resembled each other more strongly 

across cities (or countries) than within cities. This research has provided many empirical cases, 

advanced analysis techniques, and enhanced fractal theories. In addition to that, researchers 

have also developed a multifractal method to study the spatial form and growth and cities. It is 
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argued that the monofractal methods lack self-comparability, has limited ability to conduct 

analysis at a local scale to provide more details, and cannot provide multiple perspectives (Chen 

& Wang, 2013). Thus, the multifractal method was developed and has been used to study 

different components of urban systems, such as the spatial distribution of population, the rank-

size distribution of cities, and the morphological characters of cities (Haag, 1994; Appleby, 

1996; Chen & Zhou, 2004). Based on the box-counting method, the research utilized the 

multifractal method to study the multifractal characters in Beijing, China (Chen & Wang, 2013). 

The results indicated that the growth pattern of this city exhibited multifractal characteristics. 

The high-density city centre area was degenerated due to space over filling and the fringe low-

density area exhibited a disordered character. These two areas are where urban problems mainly 

occur such as traffic congestion, inefficient land use, and high population density. This 

approach is effective in helping to understand the urban evolution process from a different 

perspective. Recently, it has also been suggested that fractal analysis could be used to transform 

the study urban systems from the perspective of complex networks (Zhang et al., 2020) since 

recent rapid developments in technology and the availability of data make it possible for 

researchers to conduct more complex analyses from different perspectives.  

2.4.1.3 Rank-size analysis 

Some research has focused on the intra-city relationship, the spatial distribution, spatial layouts 

of cities, and the morphology of urban clusters (Brakman et al., 1999; Reed, 2002; Fragkias & 

Seto, 2009; Xu & Harriss, 2010; Peris et al., 2021; Wang et al., 2024). The rank-size 

distribution research has explored the distribution of some elements of cities, such as city size, 

city population, and economic activities (Berry, 1961; Haag, 1994; Guérin-Pace, 1995; Reed, 

2002; Fragkias & Seto, 2009). One widely used power law to characterize the distribution is 

Zipf’s law. Zipf discovered that the frequency of some events and their rank were connected 
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through a power law function. This was later called Zipf’s law (Brakman et al., 1999). Zipf’s 

law has been extensively applied to various elements of the urban system, providing much 

empirical research on the rank-size distribution (Gabaix, 1999; Decker et al., 2007; Marshall, 

2007). For example, the rank-size distribution was conducted based on multiple time series 

remote sensing data to study the urban cluster evolution in a metropolitan area (Fragkias & 

Seto, 2009). This research revealed the intra-city variation of urban form and the oscillating 

behaviour in the rank-size distribution. This research also provided an empirical study of the 

birth-growth-coalescence urban growth process. These laws have also been combined to reveal 

the overall evolution of urban systems (Xu et al., 2025). Overall, the rank-size analysis could 

help to understand the distribution of urban clusters at regional or national scales and reflect 

the evolution process of urban clusters, but it could not adequately capture the spatial pattern 

of urban areas, especially the multiple scales pattern. 

2.4.2 Geostatistical Model in Characterizing 

It is recognized that in geostatistics two things need to be considered unlike in traditional 

statistics. The first one is the sampling framework. The spatial data obtained is the function of 

the sampling framework and its spatial variation. The sampling framework determines the 

resolution of spatial data which directly influences the analysis results since the resolution is 

crucial in capturing the spatial variation (Atkinson, 1999). The second one is that in traditional 

statistics, data is assumed to be independent. While in geography, the spatial data is spatially 

dependent and exhibits an auto-dependent behaviour (Tobler, 1979; Overmars et al., 2003). 

Usually, the closer the two data are located, the more similar the two data are.  

Geostatistics is usually applied to spatial variables which exhibit spatially dependent 

characteristics. It is widely used in remote sensing image analysis (e.g., texture classification 

and smooth classification) and for characterizing spatial patterns (Woodcock et al., 1988; 
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Atkinson & Lewis, 2000; Atkinson & Tate, 2000; van der Meer, 2012).  

Among these techniques, variogram analysis has been extensively used in remote sensing 

research, to characterize image structure, estimate image texture, classify texture, map land use 

and identify spatial patterns and land cover change (Curran, 1988; Garrigues et al., 2007; 

Millward, 2011; Balaguer-Beser et al., 2013). Variograms could reflect the spatial variation of 

a specific variable. Its shape and properties could provide information on the spatial pattern of 

specified elements (Woodcock et al., 1988). For example, semivariogram indices were used to 

study the spatial distribution and spatial pattern of trees (Balaguer-Beser et al., 2013). This 

approach considered a limited number of directions and could be applied to other elements to 

understand their spatial heterogeneity pattern. It has also been used to characterise the spatial 

heterogeneity of vegetation cover and land cover (Garrigues et al., 2007). 

2.5 Statistical Model: Prediction Model 

2.5.1 Geostatistics and classification of remote sensing data 

The classification of remote sensing data could be treated as a prediction process since it is 

essentially a process that could provide the most likely value of a variable at one location (Stein, 

1999). Classification of remote sensing data is an important procedure since it deals with the 

raw remote sensing inputs and produces outputs for further analysis. The method and accuracy 

of classification directly influence the analysis results. Various algorithms have been developed 

and applied to classify the image for both pixel-based classification and object-based 

classification (Atkinson & Lewis, 2000; Stefanov, 2001; Zhang, 2001; Berberoglu et al., 2007). 

The most widely used classification methods are unsupervised classification methods such as 

the K-means algorithm and supervised classification methods such as the maximum likelihood 

algorithm. Both of these methods are pixel-based and generate pixel-level data, while object-
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based methods create objects that consist of homogenous pixels.   

2.5.2 Regression model 

Traditional statistical methods have been used in geography for quite a long time. Among these, 

urban growth-related topics such as urban growth mechanisms, urban growth patterns, and 

urban growth impacts have been explored utilizing a variety of geostatistical methods (Cheng 

& Masser, 2003a; Stoebner & Lant, 2014; Zhao et al., 2017; Wang et al., 2020; Gielen et al., 

2021). Various regression models have been applied at the local, regional, or even national 

level to study urban growth-related topics (Cheng & Masser, 2003a; Yu, 2006; Riitters et al., 

2017). For example, the regression model has long been used to study the relationship between 

urban growth and population growth or between urban growth and economic growth (Hsu, 

1996). Logistic regression has also been widely used in studying determinants of urban growth 

or urban spatial patterns and has proved its effectiveness in addressing this sort of problem 

(Zhao et al., 2017).  

The regression model has been employed in the study of urban patterns. This geostatistical 

model is effective in describing the spatial characteristics of urban patterns, reflecting the 

heterogeneity of spatial patterns, and revealing the determinant of variation in such patterns 

(Aspinall, 2004; Stoebner & Lant, 2014; Liu & Wang, 2016). Since space is not homogenous, 

global statistical models may have a weakness in characterizing local variations. To address 

such problems, some localized statistic models have been developed to characterize local 

variation, such as Local Indicators of Spatial Analysis (LISA) (i.e., the local Moran’s I index) 

(Anselin, 1995) and Geographically Weighted Regression (GWR) (Brunsdon et al., 1996). This 

type of model has been successfully applied to some regions and proved to be effective in 

revealing local change and its influencing factors (Wheeler & Tiefelsdorf, 2005; Bitter et al., 

2007; Huang et al., 2015). 
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These regression methods have been combined with other statistical methods to model urban 

land use from an economic perspective. For example, a regression model was employed with 

a Granger causality analysis based on economic, demographic, and land use data to analyse the 

drivers of urban land use change in the Pearl River Delta in China (Seto & Kaufmann, 2003). 

This research was conducted at a macro-level to reveal macro-level socioeconomic factors that 

drive urban land change. The results indicated that at a macro level, the urban land conversion 

was primarily caused by exogenous factors such as Foreign Direct Investment (FDI). The 

relative ratio of agricultural land, industrial land, and urban land productivity was identified as 

the main drivers of natural and agricultural land conversion to urban land. This method 

provided a better understanding of the macroeconomic drivers of urban land change and 

supported further research on identifying the drivers of urban land change at different levels. 

The logistic regression model has been used to detect the influencing factors of urban growth 

and urban patterns. For instance, the logistic model was used to study and compare the 

influencing factors of urban patterns between two border cities in the US and Mexico (Zhao et 

al., 2017). These two adjacent cities provided an excellent case to explore and compare the 

underlying factors influencing urban patterns such as transportation, population, and 

economics. This research characterized the historical urban growth in these two cities first. 

Then a logistic regression model was utilized to evaluate the effects of a variety of factors on 

the urban pattern and compare the differences in driving mechanisms. The results suggested 

that different economic and development backgrounds were underlying the different urban 

growth patterns and that some local factors were the main determinants of this growth. The 

results indicated that the city in the US exhibited a more dispersed pattern, and population and 

highway density showed different effects in these two cross-border cities. 

A spatial logistic model has been used to explore the determinants of urban growth in Wuhan 
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(Cheng & Masser, 2003b). Unlike most research-based study areas in coastal or large cities, 

this research studied the urban growth pattern in Wuhan, a central medium-sized city which 

provided a unique case to compare with other large coastal cities and western cities. This 

research first performed an exploratory data analysis to make a hypothesis. Then a logistical 

regression model was used as a confirmatory analysis. To deal with the spatial dependence, this 

research designed a spatial sampling scheme to reduce its effect on the analysis. The result 

suggested that after the land reform and before 2000, major urban infrastructure and newly 

developed zones played an essential role in promoting urban growth during this period, while 

the role of local government’s role and master planning was weakened. This method has 

provided a useful approach to studying the influencing factors in urban growth. The results 

could be further used in the dynamic model of urban growth. 

A logistic GWR has been applied in Nanjing city in China (Luo & Wei, 2009). This large city 

remains compact in form in the rapidly urbanizing context of contemporary China, which 

makes it a good case to study how the impacts of factors influencing urban patterns vary among 

different cities. Both the global logistic regression model and GWR were applied to this city. 

The results indicated that the GWR fitted better than the global regression model and performed 

better at revealing the determinants of spatial variation. The GWR allows the variation of 

parameters across space. This approach could provide a better understanding of variations of 

urban patterns and the different impacts of determinants. GWR has also been applied at a 

regional scale to identify the spatial non-stationarity characters in regional development 

mechanisms (Yu, 2006). This model was applied in the Greater Beijing Area which consisted 

of 13 cities to investigate the spatial variation of mechanisms in regional development. The 

results indicated that the regional development mechanism produced significantly different 

local characteristics and that spatial non-stationarity played a crucial role in the regional 

development. This method provides a useful tool for understanding regional development 
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mechanisms and their spatial variation. Apart from that, GWR has also been used to study the 

urban sprawl and landscape fragmentation multi-scale relationships (Torres et al., 2016). 

Scholars employed both the global regression model and GWR together with landscape metrics 

to explore the mismatches between urban sprawl and landscape fragmentation across scales. 

Based on the quantification of the urban sprawl and landscape fragmentation spatially, this 

research performed the global regression model first, then used GWR to explore the spatial 

variation of this urban sprawl and landscape fragmentation relationship and its scale-dependent 

behaviour. The results indicated that the relationship between urban sprawl and landscape 

fragmentation does not prevail. It is rather non-stationary, and scale-dependent. This research 

provided support for better land conservation and management.  

LISA have been applied to measure inter-building distances when studying local urbanisation 

patterns in Southern Brussels (Caruso et al., 2017). This method first employed the Minimum 

Spanning Tree (MST) to build a connected urban and suburban graph and utilized this inter-

building distance as a direct measure of built land. LISA were then used to calculate this 

distance to measure urban patterns at a fine scale. Together with LISA, this method is based on 

fine-scale inter-building distance and measured local scale spatial pattern which supports better 

planning and management. 

The regression method has also been used to study the urban growth pattern at multiple scales 

(Cheng & Masser, 2003a). Treating the city as a self-organized hierarchical system, this 

research constructed a logistical regression model to study the determinants of urban growth at 

different scales. Since studying microscale determinants requires fine resolution of land 

cover/use data and more social, economic, and other factors, this research only focused on 

macro and meso levels (the probability of change and the density of change respectively). The 

results suggested that the urban growth pattern was scale-dependent. This multiple-scale 
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analysis helped to provide a deeper understanding of urban growth patterns, as well as a better 

understanding of the temporal process of urban growth. Given increasing study of urban 

dynamics from a network perspective, network weight matrices have been incorporated into 

regression models to study the processes driving urban growth. This approach seems to produce 

more accurate results, is better at revealing underlying process (He et al., 2023), and suggests 

that the network perspective should be given more attention in future studies. 

Since urban dynamics involves a variety of processes at different temporal and spatial scales, 

research conducted at one single scale, a pure bottom-up, or top-down method cannot fully 

capture the drivers of urban land change and reveal its complicated growth mechanisms. For 

instance, regional scale methods usually reveal that macro-scale urban growth is influencing 

factors such as population, economy, and land market. While the local-level method usually 

reveals micro-level driving factors such as infrastructure, biophysical factors, and individual 

or group behaviours (Cheng & Masser, 2003a; Fragkias & Seto, 2009). To incorporate factors 

at multiple scales scholars developed a coupled system dynamics spatial logit (CSDSL) model 

which coupled both a local scale logistic regression model and a regional scale system dynamic 

model (Güneralp et al., 2012). This model not only incorporates both regional and local level 

factors but also allows interactions between local and regional scales of land change. This 

model was utilized to analyse and forecast the amount of urban land change and the urban land 

pattern change. The results indicated that the integrated model performed better at analysing 

and forecasting both the change in the amount of urban land and its pattern. This method 

captures spatial complexity and variation of the urban land better. This research indicated that 

local urban land change is tightly linked with regional-scale processes. However, this method 

showed its limitation in forecasting isolated urban land change and had a weakness in capturing 

development projects. 
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It is argued that these regression models usually have a low degree of explanation and small 

sample size (Irwin et al., 2009; Luo & Wei, 2009). Even though statistical methods could not 

fully capture the dynamics of urban land change and the characteristics of the urban growth 

process, and have weaknesses in modelling urban growth process and multiple scale 

relationships and feedback, they have still provided much useful information in identifying the 

determinants of urban growth at different levels. They have illustrated the complexity of urban 

dynamics, the multi-scale characteristics of urban land change, as well as the multi-scale 

relationships among urban land change and its driving process (Yu, 2006; Torres et al., 2016; 

Zhao et al., 2017). Statistical methods also work as a crucial component of dynamic models to 

provide useful information such as selecting factors, setting parameters, and helping to 

determine the transition rule in dynamic models. 

2.6 Dynamic Model 

2.6.1 Complexity in modelling urban systems 

Urban systems are a complex, dynamic and hierarchical. They involve a variety of interactions 

and feedback among different kinds of individuals, groups, and different levels of government 

at different levels. Their interaction and feedbacks are also cross-scale (Irwin et al., 2009). 

Individual and group behaviour shapes the city from the bottom up, for instance, individuals’ 

choices of residence location and transportation have an impact on the urban spatial structure, 

urban form, and intra-city flow. In contrast, the government usually impose urban dynamics 

from the top down, for example, the government’s policy and planning contribute to shaping 

the urban form and influence the location choice of individuals and groups.  

2.6.2 Cellular Automata models 

Cellular Automata (CA) Models have been widely used to model complex systems. CA models 
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are typically cell-based, with the model simulating the change in state of each cell at each time 

point following a defined transition rule. In a CA model, all cells are assigned with an initial 

state (Santé et al., 2010). The state of each cell depends on the state of its neighbourhood cells 

and the transition rules (Syphard et al., 2005). Time is considered discrete. The model updates 

each cell’s state-based transition rule at each time interval and repeats this calculation process 

iteratively. At each time interval, the model generates the new state of all cells. 

CA were first introduced in the late 1940s and further developed by Wolfram who demonstrated 

that they could be used to model complex natural phenomena (Wolfram, 1984). CA models 

were initially used in modelling physical processes and natural processes. In 1979, Tobler 

introduced the CA model in geography and discussed the neighbourhood and transition rules 

in the CA model. In the discussion, Tobler introduced the first law of geography: “Everything 

is related to everything else, only near things are more related than distant things” (Tobler, 

1979). Based on this theory, the land use at a location is dependent on the land use of its 

neighbourhood locations, which laid the foundation of the CA model’s application in geography. 

He stated that in geographical space, the state of a cell, e.g., the representation of land use in 

the model, is the function of the size, shape, orientation of the cell, and other characters of its 

neighbourhood and transition rules (Tobler, 1979).  

Later, with the development of computers and increasing discussion of CA theory, a variety of 

CA models have been applied in geographical and ecological research, including research on 

landscape pattern change, land use and land cover change, forest fire diffusion, urban expansion, 

rural-urban land transition, risk assessment, agricultural or grassland protection, and ecological 

security. Research has been conducted at both local and regional scales (Fang et al., 2005; 

Hagoort et al., 2008; Santé et al., 2010; Liu et al., 2013a).  

Among this research, the application of the CA model in urban dynamics is the most 
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extensively studied. CA models have been applied to simulate urban spatial dynamics, and 

various CA models were built to simulate urban growth. Built based on self-organization, the 

CA model views urbanisation to be the product of complex, self-organizing dynamic systems 

(Wolfram, 1984; Chen et al., 2014; Montero et al., 2021; Guan et al., 2023; Lin et al., 2023; 

Yao et al., 2024). Application of the CA model in urban dynamics is based on the assumption 

that the previous state of the urban land pixel has an impact on future urban dynamics through 

the interaction of the land pixel and its surrounding land pixels (Tobler, 1979; Clarke & Gaydos, 

1998; Li et al., 2017). In these examples, the spatial resolution of land cells varied from 30m 

to 1km. The state of the land cell also varied from urban and non-urban to several types of land 

use. Regarding neighbourhood, researchers usually select the Moore rule, or a radius or a 

square of a selected number (usually 2 to 9) of cells (Santé et al., 2010). For transition rules, 

some models use strict transition rules while others use transition rules based on transition 

potential (growth potential) or probability (Wu, 1998a; de Almeida et al., 2003). Some 

researchers even use transition rules based on artificial intelligence or fuzzy logic (Wu, 1998b; 

Li & Yeh, 2002). For example, researchers have integrated Markov chain analysis with the CA 

model to simulate urban growth under different scenarios and used landscape metrics to analyse 

and compare simulation under different scenarios (Dietzel, et al., 2005a; Zhang et al., 2011). 

The integration approach has been proven to be effective in representing, simulating, and 

forecasting urban evolution over space and time. Some CA models have been used to analyse 

the influencing factors of urban land change, while others have been used to forecast urban 

change in the future which is followed by a model validation and a comparison of simulated 

urban patterns and real urban patterns (Aguilera-Benavente et al., 2014; Fang et al., 2005; Han 

et al., 2009; Zhang et al., 2023).  

It is recognized that urban growth and its spatial-temporal pattern are the results of multiple 

factors interacting with each other at multiple scales and across scales. Thus, some researchers 



48 

 

stated that as a bottom-up model, CA models emphasise the interaction and state of individual 

cells at the local scale, and lack adequate information regarding policy, economic, and other 

influencing factors at higher levels. For instance, urban growth is not only spatially constrained 

by topology and related policy (e.g., urban planning, natural resources management practice, 

and preservation zones) but is also impacted by regional economic development and population 

flows (He et al., 2008; Chen et al., 2014). To overcome this shortcoming and better incorporate 

influencing factors at multiple scales, some researchers have integrated the CA model with 

other exogenous models which usually reflect the population, economic, and other factors at a 

higher level to simulate urban growth patterns (Santé et al., 2010). For example, some 

researchers utilized an Urban Expansion Dynamic (UED) model which incorporated a CA 

model based on urban transition potential to simulate urban growth patterns and forecast future 

expansion in Beijing city (He et al., 2008). This model integrated the spatial distribution of 

Gross Domestic Product (GDP) and population at the macro-scale and overall urban spatial 

pattern to provide transition potential. The results indicated that the simulation without 

transition potential underestimated the agglomeration effect of the urban core area and sub-

central urban areas. To better understand and model urban dynamics, researchers have 

integrated the CA model with the system dynamics model to incorporate urban growth driving 

forces at macro scales (Chen et al., 2014). The results showed that the integrated model 

performed well at both simulating urban growth and future expansion forecasting. Through this 

integrative method, macro-level urban growth driving forces such as population migration, 

policy, economic growth influence and their interactions are considered in the simulation. 

Furthermore, the CA model has also been integrated with Multi-Agent Systems (MAS) to 

simulate the transition of rural settlements to townlands (Liu et al., 2013). This integration 

facilitated both the behaviour of agents and their interactions with the environment in the 

simulation. This method builds transition rules based on both the neighbourhood state and 
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agents’ behaviour. The application of this method in three fast-developing towns in China 

indicated that this simulation method is effective in analysing micro-interactions between the 

environment and multi-agents and their influence on land conversion. 

In the modelling of urban expansion, most CA models utilize transition rules based on the 

weighted sum which is calculated from logistic regression or fuzzy approaches which allow 

uncertainty in the simulation. Both of these approaches are based on adjacent urban transition 

which assumes that the non-urban pixel adjacent to an urban pixel has more probability to 

transit to an urban pixel. However, previous research has revealed that urban growth occurs at 

both non-urban pixels adjacent to urban pixels and non-urban pixels away from urban pixels 

(Liu, et al., 2010a). The former can be classified into two categories: i.e., infilling and edge 

growth, which refers to growth at a non-urban pixel surrounded by urban pixels and growth at 

a non-urban pixel at the edge of urban patches respectively. The latter one is outlying growth 

which refers to urban growth at non-urban pixels adjacent to non-urban pixels. This type of 

growth usually occurs at a location away from urban patches. In the disperse-coalescence urban 

growth theory, this is viewed as the early stage of urban growth. Since most CA models are 

based on neighbourhood transition rules, they have proven their ability to capture urban growth 

near urban pixels in a variety of research settings (i.e., the infilling and edge growth). However, 

these neighbourhood transition rules cannot capture outlying growth (Liu et al., 2014). To 

incorporate urban growth that occurs away from the urban patch, some researchers have used 

t the SLEUTH urban growth model which selects new urban cells that deviate from the urban 

patch randomly (Clarke & Gaydos, 1998); some scholars proposed a LEI-CA model which 

integrates the CA model with LEI landscape index. In the LEI-CA model, scholars utilize 

different rules to simulate the adjacent growth and outlying growth (Liu et al., 2014). The 

model was applied in the Dongguan city in China and has successfully simulated urban 

expansion patterns. The comparison between the LEI-CA model and the logistic-based model 
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has proven that the LEI-CA model could better simulate outlying urban growth.  

However, some scholars have argued that cell-based methods have limitations in simulating 

future urban land patterns since they cannot adequately reflect the evolution of urban land 

patches (in the real world, urban growth usually occurs as land parcels increase in size or 

amount), and especially in China where most urban growth is spontaneous which is not fully 

reflected in cell-based models (Chen et al., 2014). Thus, patch-based CA models have been 

proposed to simulate urban growth using patch-based methods (Chen et al., 2014; Yang et al., 

2023; Yao et al., 2024). For example, a Patch-Logistic-CA model and a patch-based CA model 

using the patch-growing algorithm. A patch-based logistic CA model has been used to simulate 

the urban growth pattern in Guangzhou city and compared with the results of a cell-based CA 

model. The results indicated that the patch-based CA model worked better for simulating 

realistic urban growth, and the cell-based CA model could only simulate new urban cells 

connected to urban cells initially. 

Apart from these efforts to advance the technical aspects of CA models in simulation spatial 

dynamics, some researchers have focused on the central neighbourhood rules and the model 

fitness of the real world. For instance, research has been concentrated on explicitly revealing 

the neighbourhood interactions by incorporating the spatial externality in simulating urban 

dynamics (Hagoort et al., 2008). More specifically, how the land use change in the 

neighbourhood influences the land use change at one location and how this impact varies with 

distance. Furthermore, the single neighbourhood rule ignores the intraregional and 

interregional differences which may influence the simulation results. Based on this 

consideration, one researcher incorporated spatial externality in a CA simulation and generated 

a set of neighbourhood rules (Geertman et al., 2007). The regionalized rules and a general rule 

were then used to simulate urban dynamics. The comparison and validation of the results 
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indicated that a better-founded neighbourhood rule and regional-specific rules could support 

the CA model to produce a better-fitted simulation and better practical use. 

2.6.3 Agent-Based model 

Another dynamic model that has been widely used in modelling urban dynamics is the Agent-

Based Model (ABM). Unlike most CA models that are based on cells, ABM models simulate 

urban dynamics based on agents which could be land parcels, individuals, or groups 

(Rounsevell et al., 2012; Filatova et al., 2013). In the CA model, most transition rules are spatial 

based which reflects the interaction and relationship among cells. In ABM, the transition rule 

is more varied. It could be spatial, such as distance to the city centre, or reflect an individual’s 

decision-making, or interactions between individuals and space (Matthews et al., 2007; Walsh 

et al., 2013).  

ABM’s ability to represent adaptive and interactive agents makes it useful in simulating 

processes which involve multiple agents interacting with each other. For example, in the 

simulation of land use change, ABM could capture the behaviour of different agents, e.g., 

individuals, households, companies, and local governments, and their interaction which is 

usually nonlinear (Crooks et al., 2008; An et al., 2014). In an ABM, the behaviour of agents 

could be passive or proactive, and the agents may have different types, e.g., individuals, groups, 

and some influencing environmental or economic factors. These characteristics make ABM 

widely applied in environmental and geographical research since they can capture the features 

and dynamics of a variety of related agents. However, this also increases the complexity and 

uncertainty in simulation due to the complex behaviour of different agents and the nonlinear 

relationship among those agents (An et al., 2005; Walsh et al., 2008).  

In an urban system, urban dynamics and evolution processes involve various agents’ decision-
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making. The behaviour of one agent could impact other agents’ decision-making directly or 

indirectly. The choice of these agents plays a crucial role in influencing the urban dynamic, and 

their spatial preferences have an important impact on the resulting spatial pattern. Therefore, 

as a dynamic model which could simulate the adaptive behaviour of multiple agents, ABM has 

been widely used in modelling various geographical processes, such as urban growth, 

population mobility, land use and land cover change, agricultural dynamics, crime spatial 

dynamics, land or housing market, and epidemics (Filatova et al., 2013; Magliocca et al., 2015; 

Fu & Hao, 2018). Unlike static models, ABM can be used to simulate urban systems dynamics 

at the level where the system’s components are interacting with each other. Modelling the 

process could also help to reveal how the decision-making of different agents influences urban 

dynamics. 

Researchers have built ABM to analyse how the heterogeneity of residential preferences affects 

urban sprawl in southeastern Michigan (Brown & Robinson, 2006). This research utilized 

social survey data as source data to simulate the behaviour of agents in the ABM. This model 

has defined two different types of heterogeneity in terms of agent preferences, i.e., variability 

and categorization which assume agent characters are independent and correlated respectively. 

The results of this simulation suggested that the urban sprawl could be viewed as a process 

driven by various preferences to some extent. 

Most ABMs have been applied at a local scale since when applied to a large scale, the 

complexity and diversity of adaptive systems may increase substantially which increases the 

difficulty and uncertainty to simulate, and large-scale modelling may require large data which 

limits the simulation. Efforts are still being made to apply ABM at regional scales. Scholars 

have proposed a conceptual framework to apply ABM at a regional scale to analyse land use 

and land cover change and apply this model in the Netherlands (Valbuena et al., 2010). This 
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research defined the internal and external factors that influence the decision-making of agents 

and linked the environmental factors with agents’ actions. Combining individuals, an agent 

typology, and a probabilistic decision-making method could simplify the variability of decision 

making which helps to fulfil this simulation at the regional scale. The results suggested that 

this integrated approach is flexible and generic and could be applied in different regions to 

simulate the land use and land cover change process.  

ABM has been used to study what factors influence the land use decision-making of 

landowners. For instance, an ABM model was built to study to what extent land suitability, 

land use preferences, and spatial externalities influence landowners’ decision-making (Kelley 

& Evans, 2011). This model built a household-based spatially explicitly land portfolio ABM 

and revealed that land suitability and spatial externality played a more critical role in 

determining land use change than preferences. These results could contribute to support policy 

management, especially in forest or agricultural management. 

ABM has been integrated with other theories or models to simulate the various spatial 

processes. Researchers have integrated economic models with ABM to build an economic 

ABM to study the dispersed urban pattern and its influencing factors in the urban fringe area 

(Magliocca et al., 2014). This method simulated the behaviour of agents based on basic 

microeconomic decision making which is agent optimisation and market price and allowed 

more heterogeneity in agents. This simulation could help to reveal the fundamental economic 

features of the urban dispersal process and its influencing factors.  

2.7 Forecasting 

Forecasting urban dynamics is an important topic in urban studies since forecasting could 

provide essential information for supporting urban planning, assessing urban growth impacts, 
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policy making, and land and resources management. However, due to the inherent complexity 

of urban systems, the variety of urban systems components, the complicated interaction and 

feedback among components, as well as the existence of external shocks, the forecasting of 

urban growth and urban dynamics remains difficult (Syphard et al., 2005; Seto, Güneralp, et 

al., 2012). The forecasting results may vary due to factors such as data quality and data quantity, 

the resolution of spatial or temporal data, a different understanding of urban systems, and model 

fitness (Pijanowski et al., 2002; Seto, Güneralp, et al., 2012). Various methods have been 

employed to model urban growth and urban dynamics, such as statistical methods, scenario-

based modelling, Markov transition matrix, and dynamic simulation methods (Guan et al., 2011; 

Wang & Li, 2011; Pijanowski et al., 2014). Forecasting related to urban dynamics has mainly 

focused on urban land change and urban land growth since urban land change is one of the 

most fundamental changes and most influencing aspects of urban growth (e.g., the amount, 

location, and spatial pattern of urban growth), urban population growth which put heavy 

pressure on both urban and environment, urban economic growth, and urban impacts (Li & 

Yeh, 2002; Herold et al., 2003). With the advance of technology (both the development of 

remote sensing to provide higher resolution data to obtain more detailed topological and 

morphological features of spatial objects and the advance of modelling technique) and more 

in-depth understanding of urban systems, more sophisticated methods have been developed to 

simulate and forecast urban dynamics. 

For example, the CA model has been recognized as a useful tool in both simulating and 

forecasting urban growth. Researchers have built an Urban Growth Model based on the CA 

model to forecast the spatial extent of the urban area in southern California and its impact on 

habitat patterns based on three scenarios from 2000 to 2050 (Syphard et al., 2005). A statistical 

method was used to test the model's fitness with the comparison of the forecasting results for 

past years and data for those years. A comparison was also made between the forecasting results 



55 

 

and the results of a GIS overlay model using landscape metrics. The results suggested that all 

scenarios produced an increasing cluster of urbanized areas separating the main mountain area, 

and more significant habitat loss would occur in the scenario in which urban growth is located 

on steeper slopes. The CA model produced a similar future urban growth patch as the GIS 

overlay method and forecasted more patches and edges than the GIS overlay model. This 

method performed well at producing spatially explicit results and capturing local interactions 

and non-linear behaviour in forecasting urban growth. A similar method has also been applied 

in the Algarve region in Portugal to forecast urban growth in 2020 (Aguilera-Benavente et al., 

2014). This research also built three scenarios based on different socioeconomic pathways 

representing variations in socioeconomic drivers of urban growth. Other developed CA models 

such as the SLEUTH model have also been applied to forecast the spatial and temporal form 

of urban growth to 2030 (Wu et al., 2010). The results indicated that the forecasting of the 

amount and location of the new urban area still needed to be improved. It is also suggested that 

landscape metrics might be used as constraints in the simulation of urban growth patterns to 

improve the forecasting results. Apart from that, the Markov model has also been integrated 

with the CA model to simulate and forecast urban land change. A Markov-CA model was used 

to analyse the spatial distribution and temporal change of land use and forecast the land use 

change from 2015 to 2042 (Guan et al., 2011). This method incorporated both natural and 

socioeconomic data to conduct the simulation. In this method, the transition probability matrix 

from the Markov method could help to determine the number of transition cells in the CA 

forecasting.  

A basic urban growth forecast could be conducted using the growth rates of population and 

GDP with a regression model, especially at a large scale to make a comparison and produce 

overall urban growth trends. Scenarios have been widely used in forecasting representing 

different growth paths (Wu et al., 2010).  
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Some other methods have been applied to forecast land change. For instance, a neural network 

was used to forecast land use change combined with GIS. A Land Transformation Model was 

built based on these two techniques at both regional and national scales. Utilizing High-

Performance Computing (HPC) and big data, the simulation and forecasting of national urban 

growth was conducted in the US (Pijanowski et al., 2014). This method has provided a useful 

tool for a large-scale approach to model and forecast land use change. 

2.8 Summary 

Urban systems are not only the aggregation of subsystems involving various activities such as 

individual activities, economic, ecological, and political activities but also the result of 

interactions and feedback between these activities. These activities also take place at different 

levels which lead to urban systems exhibiting hierarchical behaviour. The urban system is also 

a spatial entity that exhibits spatial dynamics and spatial heterogeneity at multiple scales. The 

spatial patterns and characteristics of the urban system reflect the impacts and interactions of 

local, regional, national, and even global activities. To understand the dynamics of urban 

systems, both spatially explicit methods and process-based methods are important in providing 

information on spatial pattern change and the underlying driving processes. For example, 

geostatistical methods, landscape metrics, and fractal methods may be used to reflect the 

physical characteristics and processes of urban systems. They characterize the spatial form, 

spatial distribution, and spatial pattern of urban systems. In contrast, process-based models can 

reveal the underlying process such as an individuals’ behaviour and socioeconomic processes 

that drive urban growth and changes in urban pattern. Incorporating processes at multiple levels 

is also essential in urban modelling. The process at a lower level could influence higher-level 

spatial patterns and higher-level system dynamics.  

A variety of approaches have been adopted to study patterns of urbanisation, urban growth 
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processes, and their relationships. Studies provide lots of empirical examples of the 

characteristics of urban growth, urban growth process and their driving forces; have advanced 

theories on urban growth and urban pattern change; and contributed to developing better 

methods of urban study. For example, research on the single-city growth patterns has revealed 

urban growth trajectories and provided empirical examples to advance the development of 

dispersal-growth-coalescence-growth theories. Similarly, research on both the inter- and intra-

city levels of urban growth patterns have contributed to a better understanding of urban 

evolution and underlying processes. However, few researchers have utilized object-based 

methods to study urban growth. Urban entities are not just an accumulation of urban pixels, but 

systems, comprising various activities and both internal and external interactions. Object-based 

methods could be used to represent urban entities directly, allowing for explicit analysis of 

urban growth patterns and growth processes at the patch level by studying per-object dynamics 

and at the city level by accumulating object dynamics.  

The dynamics of urban entities are not fully considered in the current urban growth literature. 

Relationships between urban entities during phases of urban growth can only be inferred 

through the analysis of raster data. Object-based methods could address this gap by explicitly 

modelling relationships between objects, providing new perspectives on growth patterns and 

processes. This research will employ an object-based method to study spatial and temporal 

patterns of urban growth. It will first characterize urban growth by treating urban land as urban 

objects and explore its advantages compared to existing methods. It will then explicitly analyse 

urban growth processes at object and city level by building temporal connections between 

objects, and reflect on the additional insights this approach offers over previous studies. Finally, 

by treating urban objects as parts of a system that are spatially and temporally connected, the 

dynamics of urban objects will be predicted at object level. 
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3 Revealing the scale and synchronicity of 

rapid urban growth in China in the 2000s 

in response to reform and regional policies 

by treating provincial capital cities as sets 

of spatial objects 

 

Abstract 

While urbanization in China has accelerated since the ‘Reform and Opening-up’ policy 

of 1978, little is known about the precise trajectories and patterns of per-city urban 

growth, and the relation of these patterns of growth to national and regional policies. 

We used a reliable annual time-series dataset of land cover and a logically consistent 

object-based approach to reveal the scale and patterns of growth from 1992 to 2014 in 

13 provincial capital cities, treated as sets of 100s of spatial objects. The results provide 

precise quantification of the space-time distribution of per-object urban growth between 

and, importantly, within the 13 provincial capitals of China. The urban area of most 

core cities doubled, and in some cases tripled, over the 23 years. Most surrounding 

smaller cities also experienced rapid growth, following expansion of the core city. The 

growth was surprisingly synchronous across most cities, but asynchronous in a few 

notable others. We demonstrate how this extraordinary synchronous and asynchronous 

growth was related to the timeline of key national and regional government policies, 

respectively. The results provide a new evidence base with which to consider urban 

growth in China, its impacts on society and environment, and future government policy 

interventions. 
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 3.1 Introduction 

China, as one of the largest developing countries in the world, has experienced rapid 

urbanization, especially since the ‘Reform and Opening-up’ policy in 1978 (Schneider 

& Mertes, 2014). According to the Chinese National Statistical Bureau, the level of 

urbanization (the percentage of the population classed as urban) was 17.9% in 1978, 

36% in 2000 and 59.6% in 2018. Since 1978, the high level of rural-to-urban population 

migration in China has brought around 640 million people into cities. This represents 

an extraordinary growth rate when placed in the long-run history of civilization. This 

rapid urban expansion has had significant impacts on the environment, such as 

increased air pollution, reduced biodiversity and carbon pools, and climatic change 

(Kalnay & Cai, 2003; Seto, Guneralp, & Hutyra, 2012; Silva et al., 2013; Zhou et al., 

2015). It has also influenced social and political systems, for example, linked to social 

inequality, social welfare and urban governance (Wu, 2002; Liu & Diamond, 2005; 

Meng, Gregory, & Wang, 2005; Acuto, Parnell, & Seto, 2018; Weiss et al., 2018; Suel 

et al., 2019). Here, as a crucial step towards better understanding and mitigation of the 

impacts of rapid urbanization in China, we analyze the temporal trajectories and spatial 

patterns of urban growth in China, post-Reform, with a focus on a period of rapid 

transformation in the mid-2000s.  

Since 1978, the Reform has had a profound influence on the Chinese economy and 

society as a whole, with China shifting gradually from a central planning economy 

towards a market-oriented economy (Lin, 2002). Accompanied by remarkable 
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economic growth, cities in China have expanded rapidly, and increased productivity in 

agriculture after the Reform has allowed surplus labor to be re-employed in industrial 

and service activities in cities (Lin, 2001). Population migration policy has also 

loosened gradually, leading to a significant increase in urban population (Lin, 2007). 

Concurrent with this population increase, urban land cover has expanded, particularly 

because land and urban housing Reforms introduced value to land and boosted the real 

estate industry, which has accelerated urban expansion (Ding, 2003; Wei & Zhao, 2009; 

Chen, Guo, & Wu, 2011). Meanwhile, decentralization of decision-making and fiscal 

power has stimulated regional governments to lease land use rights to acquire more 

local revenue (Schneider, Chang, & Paulsen, 2015). Furthermore, several types of 

special development zone have been established, initially in the coastal regions and then 

across China more widely, to attract more Foreign Direct Investment and boost 

economic growth (Schneider, Seto, & Webster, 2005). Usually located in suburban 

areas, these development zones have had an important impact, not only on economic 

growth, but also on urban form and urban expansion (Schneider, Chang, & Paulsen, 

2015). Understanding the combined impacts of these national and regional policies on 

the temporal and spatial characteristics of urban growth across China is a pre-requisite 

to building effective urban development strategies for the future and ensuring 

sustainability. 

In 2019, the population of China reached 1.4 billion, nearly one-fifth of the global 

population. Thus, ongoing urbanization in China is significantly impacting 

environmental, economic and ecological dynamics, not only within China, but globally. 
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Since the Reform and Opening-up in 1978, urbanization in China has accelerated (Fei 

& Zhao, 2019). However, while urban land and the urban population are known to have 

increased on a massive scale, this growth, including the rates of growth and the timings 

of growth, have not been quantified adequately per-city. Moreover, the relationships 

between the rates and timings of growth in different cities have not been explored. 

Finally, the relationship between growth in specific cities and related national and 

regional policies has not been established, not least because of the lack of a consistent 

method of quantifying per-city urban growth over this period.  

To address the above gaps, this research used a consistent dataset to quantify urban 

growth rates for 13 capital cities and their surrounding urban areas across China over 

23 years. In this research, the term “city-object” is used for convenience to represent 

distinct urban spatial objects that may be found inside cities and their surrounding 

regions. We focused here on the growth characteristics of the different-sized city-

objects that can be found inside cities, rather than the growth of a single city. This 

allowed the evaluation of differences in growth characteristics with distance from the 

city centre, and differences between the 13 capital city regions across China. We 

focused specifically on urban transformation in the 2000s as specific policies were in 

place to support rapid urban growth during this period. By disentangling the growth 

characteristics of cities by city-object, it was possible to relate this growth to a series of 

policies at the national and regional level after the Reform, with synchronicity of 

growth rate being a strong indicator of national policy. 



62 

 

To achieve the above aims, we first extracted the urban class for selected cities from a 

well-established and high accuracy annual time-series of land cover data spanning 1992 

to 2014. We calculated the magnitude of growth and annual growth rate of each of 

1000s of city-objects over this period. We then classified the city-objects according to 

their total area and compared the growth characteristics of these as constituents of the 

13 different capital cities across China. We further characterized the growth trajectories 

of the 13 sets of 100s of city-objects at the regional level and explored how these relate 

to key national and regional policies. 

3.2 Data and Methods 

Most previous research on urban change utilized the raster data model and, thus, raster-

based approaches to characterize urban spatial patterns (Liu et al., 2010). Raster-based 

methods can be used to monitor detailed spatial patterns of change in selected areas. 

While applied much less commonly, object-based methods provide an alternative that 

have the capability to capture directly and consistently the time-series dynamics of each 

urban city-object (i.e., urban city patch), where each city is comprised of the set of all 

such city-objects. Hence, we used an object-based approach to analyze city growth 

characteristics in China, where each city is considered as a set of spatial objects, based 

on an annual time-series of land cover data. This object-based approach provides a clear 

and consistent way to measure the time-series growth of each urban city, considered as 

a set of objects.  
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3.2.1 Data  

Our study used the global land cover data produced under the Climate Change Initiative 

Land Cover (CCI-LC) project (ESA, 2017). With an annual temporal resolution, and a 

spatial resolution of 300 m, data were available for 1992 to 2015. The CCI-LC data 

were acquired through the processing of several remote sensing data sources which 

included the full archive of Advanced Very-High-resolution Radiometer (AVHRR) 

(1992-1999), SPOT-Vegetation (1999-2013), Medium Resolution Imaging 

Spectrometer (MERIS) (2003-2012) and PROBA-Vegetation (2013-2015). The quality 

of the land cover product was assessed by external parties using independent reference 

data. The weighted-area overall accuracy of the 2015 map is 71.7%. The urban class 

has a larger accuracy (86%) (ESA, 2017). These land cover data consist of 37 land 

cover classes based on six groups corresponding to the United Nations Land Cover 

Classification System (Di Gregorio, 2005). Change in the urban class from 2014 to 

2015 is not included in the CCI-LC dataset. Hence, we used urban land cover data of 

mainland China from 1992 to 2014 for this research. 

3.2.2 Method  

Previous research has been conducted mainly on the characteristics and dynamics of 

urban growth, its drivers, and its impacts on China (Seto & Fragkias, 2005; Yue, et al., 

2013; Tong et al., 2017). Of the research that focused on cities, rather than urban area 

more generally, most focused on a single or several large cities to explore or compare 

changing spatial form (Luo & Wei, 2009; Zhang et al., 2011; Chen, Gao, & Yuan, 2016). 
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Studies that compared the growth characteristics of different-sized cities are still limited. 

When analyzing urban growth, most studies used administrative boundaries to define 

the study areas (Luo & Wei, 2009). However, in many cases, urban areas have expanded 

beyond their administrative boundaries, especially in some metropolitan areas where 

several urban areas have become spatially connected with each other. Thus, for many 

large cities, the use of administrative boundaries to define the study area results in an 

underestimation of growth.  

To detect urban growth, we employed an object-based method. Each contiguous urban 

land parcel was treated as one urban city-object, which in almost all cases will map to 

a named city or town. Importantly, we used the end year (i.e., 2014) as the baseline to 

monitor the growth of each urban city-object over the 1992-to-2014 period. Each 

contiguous urban city-object in 2014 was assigned a unique ID. Then, for each year 

before 2014, all the urban land within the 2014 boundary was labelled with the same 

ID. This specific approach was carefully designed to bring the specific benefit of being 

able to track urban city-objects through time.   

Figure 3.1 illustrates the measurement of urban land for three time points. The urban 

land boundary of an urban land parcel (U1 in Fig. 3.1) at time T3 is used as the boundary 

to measure the total area of urban land in T1 and T2. The total area of urban land within 

the dashed line at T1 and T2 is calculated as the area of urban land at times T1 and T2, 

respectively. This measurement means that in previous years, one ID may represent 

several urban land parcels. That is, they existed as independent urban land parcels and 
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became connected before 2014, or in 2014, as one contiguous urban area. All the urban 

land growth that occurred within this boundary is included in the growth statistic for 

this urban area and treated as one city-object.  

We calculated the total area of urban land and the growth rate for each city-object ID 

from 1992 to 2014. This approach ensured that per-object urban land growth was 

measured based on spatial extent rather than an administrative boundary. In some cases, 

the urban area consisted of several spatially interconnected city areas. In such cases, we 

treated them as one urban object and assigned them the same ID. Thus, this method 

provides a simple and logically consistent approach to measure how each urban city-

object existing at the end of the study period has developed over time. 

 

Figure 2.1 Illustration of the method used to measure urban growth over time. 

From the first time point (T1) to the last (T3). 

To examine the variation in urban growth trajectories across China, we sampled 13 

cities based on their populations (larger than 1 million in 2014), per capita GDP (ranked 

relatively high in the region), and location (distributed across the country) (Fig. 3.2). 

They are the national capital city (Beijing) and the provincial capital cities. The capital 

cities are usually regional centres and, thus, represent regional urban growth. These 13 
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cities are distributed across the northeastern, eastern, central and western regions of 

China.  

 

Figure 2.2 The location of the 13 provincial capital cities investigated in this research. 

The circles reflect each 150 km buffer zone used in the analysis of urban growth. 

We used a 150 km buffer zone around each of the 13 provincial capital cities to analyse 

the growth trajectory of all urban area objects within these buffers. The largest 

contiguous urban area within each buffer was defined as the core city. An exception 

occurs when a river runs through the core city and divides it into two parts. We treated 

these parts as one urban area and used the sum of these two parts as the total urban land 

of the core city. The core city approach allowed us to link the growth trajectories of 

major cities with those of surrounding urban area objects and permitted analysis of 

urban growth characteristics at the regional, rather than the city level.  
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To characterize the growth trajectories of cities of different sizes, we categorized them 

according to the total area of urban land cover in 2014. Specifically, we categorized 

cities into those larger than 100 km2, and between 50-100 km2, 20-50 km2, 10-20 km2, 

5-10 km2, and 1-5 km2. Since these categories are based on the area of each city in 2014 

only, the same city may previously have belonged to different, smaller categories as its 

total area is likely to have been smaller in earlier years. For each size category, the 

average increase in the urban area and the growth rate was calculated for each of the 13 

regions from 1992 to 2014.  

3.3 Results 

3.3.1 Temporal growth trends and regional differences 

According to the Ministry of Housing and Urban-rural Development of the People’s 

Republic of China (2016), urban area in China expanded nearly 2.5 times from 40,625 

km2 in 1992 to 139,304 km2 in 2014. Over the same period the proportion of the 

population that is urban doubled, from 27% to 54%.   

For the 13 regions selected, we found that city-objects in all size groups across China 

experienced unprecedented growth from 1992 to 2014 (Fig. 3.3). This is most obviously 

pronounced for the 13 core cities (i.e., core city-objects; black lines in Fig. 3.3). For 

example, for Guangzhou the core city increased by 2,300 km2, an increase of almost 

1.5 times compared to 1992. For smaller city-objects, the absolute increase in area was 

smaller. However, considering the initial area of urban land, the growth rate was 

significant. For example, in the Guangzhou buffer zone, the average area of city-objects 
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in the 5-10 km2 category increased from 1.27 km2 in 1992 to 6.82 km2 in 2014, which 

is five times larger than the initial area. Figure 3.3 shows that most city-objects 

expanded rapidly during the period 2000 to 2005. This phase of intensive urban 

expansion is seen across all of China, from coastal cities to inland cities of all size 

categories. From 2005 onwards, most city-objects continued to grow, but at a relatively 

lower and more stable rate. 
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Figure 2.3 Trajectories of the areas of core cities and their surrounding city-objects 

(based on the average area in each size group). 

a1-a3 are cities located in the central region, b1-b2 are cities located in the northeastern 

region, c1-c3 are cities located in the western region, d1-d5 are cities located in the 

eastern region. 

To explore variation in the growth patterns of cities across China, we first examined the 
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northeastern region (b1-b2 in Fig. 3.3 and Fig. 3.4; green region in Fig. 3.1). Here, the 

core city and city-objects with an area of 50-100 km2 already occupied large areas in 

the early 1990s. This is likely due to earlier economic development compared to other 

regions due to abundant natural resources and the role of the northeast as an industrial 

base in China before the Reform. However, after the Reform, the urban growth rate in 

the northeastern region fell behind that of other regions. Although the core cities almost 

doubled in area over this period, in most cases the urban growth rates in the northeastern 

region were below 10%, even for city-objects of a relatively small area (1-5, 5-10 and 

10-20 km2). This illustrates a major regional difference in the growth trend across China. 

 

Figure 2.4 Trajectories of the urban growth rates of core cities and their surrounding 

city-objects (based on the average growth rate in each size group). 

a1-a3 are cities located in the central region, b1-b2 are cities located in the northeastern 

region, c1-c3 are cities located in the western region, d1-d5 are cities located in the 

eastern region. 

Unlike the northeastern region, most city-objects in the western region occupied a 
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relatively small land area in the early 1990s (c1-c3 in Fig. 3.3; yellow region in Fig. 

3.1). The exception is Xi’an, whose core urban area was nearly 200 km2 in 1992. Urban 

expansion in this region was not as apparent in the 1990s, but started increasing rapidly 

after 2000 (c1-c3 in Fig. 3.4). Xi’an and Kunming share a similar growth trend during 

this period. Their growth rate was greatest in the early 2000s and decreased afterwards. 

By comparison, Urumqi had two growth peaks around 2001 and 2005 and sustained a 

higher growth rate compared with Xi’an and Kunming after 2005. Although the western 

region is considered less developed than other regions of China, this region experienced 

the highest growth rate after 2000, and this growth was highly synchronized.  

In the central region (a1-a3 in Fig. 3.3 and Fig. 3.4; blue region in Fig. 3.1), the core 

city areas show a similar growth trend to core cities in the western region, with a slight 

expansion in the 1990s, rapid expansion in the early 2000s, and relatively low and stable 

growth afterwards. The only exception is Zhengzhou, which grew rapidly around 2006. 

The core cities of both Wuhan and Zhengzhou had a relatively lower growth rate 

compared with the western region, but Changsha expanded significantly in the early 

2000s, synchronously with growth in the Western region.  

Finally, turning to the eastern region (d1-d3 in Fig. 3.3 and Fig. 3.4; red region in Fig. 

3.1), we found that urban expansion was unique in the 1990s when most cities grew 

more rapidly than cities in the other regions of China. For example, the Guangzhou core 

city area (this core area covers another large city, Shenzhen), increased by 500 km2 in 

the 1990s, far beyond the growth of other core cities. In the early 2000s, urban land in 
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eastern China grew at an unprecedented rate, with the highest level between 2001 to 

2005, mirroring the synchronous growth reported above in the western and central 

regions. The notable exception is Shanghai, which reached its highest growth rate only 

after 2005 and which maintained a high growth rate afterwards. The core city area of 

Nanjing maintained rapid growth longer than Fuzhou and Guangzhou whose growth 

rates decreased to less than 5% per year after 2005. As one of the largest urban 

agglomerations in China, the Guangzhou core city area increased by nearly 2,500 km2 

over the study period. The national capital Beijing, one of the largest urban 

agglomerations in China, showed a similar growth trend to that of Guangzhou, but with 

a lower growth rate for the core city area. Beijing increased by 1000 km2 over the study 

period. 

Interestingly, most surrounding city-objects followed the growth trend of the core city. 

A rapid expansion of the core city usually coincided with significant growth of the 

surrounding city-objects, especially for city-objects of area >100 km2 and 50-100 km2. 

The growth rates of surrounding city-objects in the smaller size categories exhibited 

similar growth trends to the core city area, but with greater variability. For example, the 

expansion by 5.31 km2 (from 9.18 km2 in 2000 to 14.49 km2 in 2001) of the urban area 

surrounding Urumqi represents a growth rate of 57.8%.  

A 1-to-2-year time lag in the growth of city-objects in the small-sized category was 

observed in some cases, which may imply spillover effects from the growth of larger 

city-objects. Moreover, variation exists in the rate of growth between the core and 
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surrounding city-objects. Taking the mega-urban agglomeration of Beijing as an 

example, the growth rate of the surrounding city-objects was greater than the growth 

rate of the core city. This trend was also observed in the Zhengzhou, Xi’an and Wuhan 

regions. In contrast, the growth rates of the surrounding city-objects in the Changsha 

area, for example, were smaller than that of the core city. This difference may imply 

different regional growth trajectories. 

3.3.2 Dynamics of regional urban spatial patterns 

Figure 3.5 illustrates the expansion of core cities and the rapid growth of surrounding 

city-objects in the buffer zone of four selected cities at the regional level across China. 

All four cities grew rapidly in both the size and number of their constituent city-objects. 

The expansion of the core city area (black areas in Fig. 3.5) caused some surrounding 

small urban areas to become part of the core (our method is robust to this occurrence; 

see Methods). In some cases, as the core city area continued growing some nearby city-

objects joined the core creating a mega-agglomeration. For example, in the mega-

agglomeration of Guangzhou, the contiguous core city area is composed of Guangzhou 

and several nearby cities including Foshan, Dongguan and Shenzhen. Physically, these 

core cities grew into large contiguous urban areas consisting of several different 

administrative regions extending out towards the 100 km buffer zone.  
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Figure 2.5 Maps of four core cities and the locations of their surrounding city-objects 

in different area categories in 1992, 2002 and 2014 (from left to right). 

The rings are the 50 km, 100 km and 150 km buffers from the urban core. a. Guangzhou, 

b. Beijing, c. Nanjing, d. Xi’an. The black areas represent urban land within the 2014 

core city boundary for each year. Urban areas smaller than 5 km2 are not shown. 

Figure 3.5 illustrates that the number of medium and large-sized (>20 km2) cities 

increased significantly in the four cases. The maps show how many city-objects grew 

into the large-sized category (>100 km2) between 1992 and 2012. For example, in the 

buffer zone around the Nanjing core area, several city-objects in the large category 

distributed in the 50-150 km buffer area such as Maanshan, Wuhu and Yangzhou, grew 

from a medium size (20-50 and 50-100 km2) (map a in Fig. 3.3). This trend suggests 

that, at the regional level, the urban spatial pattern transformed from a monocentric to 

a polycentric form allowing the surrounding cities to serve as subcenters.  

3.4 Discussion 

This research quantified the unprecedented urban growth that occurred across China 

between 1992 and 2014. Over the study period, the growth of cities (i.e., city-objects) 

of all sizes across China was extraordinary. Across the 13 provincial capital city buffer 
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zones analysed, Guangzhou, Nanjing and Beijing experienced the most extensive urban 

expansion, increasing by 4,540 km2, 3,953 km2 and 2,074 km2, respectively. Most core 

city areas doubled or even tripled in size. For Beijing and Guangzhou, the core city area 

experienced the most extensive growth with more than half of the new urban land 

occupied by the core area. Cities in western China also witnessed rapid urban growth. 

Even Urumqi, whose buffer zone experienced the smallest increase in urban land, 

increased by 490 km2 in urban area. This extraordinary transformation has potential 

influence on the environment, food security and eco-systems, especially in the western 

region, which contains particularly vulnerable ecological systems and environments 

(Zhou et al., 2015; Xing et al., 2021).  

3.4.1 Analysis of the results in a policy context 

In urban growth studies different theories have been applied to explore why cities grow 

over time. It has been suggested that urban growth could be attributed to numerous 

endogenous and exogenous factors such as economic growth, population growth and 

proximity to transportation hubs (Eaton & Eckstein, 1997; González-Val, 2023). 

Additionally, some researchers have modelled urban growth as a function of its inherent 

attributes such as its initial size (Fragkias & Seto, 2009; Batty, 2023). When considering 

these two theories together, urban growth should be stable if all other affecting factors 

are stable. For example, if the endogenous and exogenous factors are consistent, the 

urban growth trend, which is modelled as a function of them, should also be stable. 

Therefore, any changes in growth trends could reveal changes in potential influencing 
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factors. In the present research, the influencing factors are themselves potentially 

dependent on a background of a series of reform policies. Thus, changes in growth rate 

might suggest changes in policy since these policies can lead to changes in related 

influencing factors. For example, the household registration reform allowed large 

population migration from rural to urban areas which increased the urban population. 

A series of reforms aiming to boost economic growth increased income in cities which 

contributed to attracting more people to cities which further led to urban growth. 

Meanwhile, economic growth itself is also a key factor influencing urban growth. 

Therefore, identifying the changes in the trends and characteristics of urban growth 

could help to infer the underlying effects of reform policies.  

We observed a remarkably synchronous growth pattern (increase and subsequent 

decrease in growth rate) in several cities, which suggests a strong link between national 

policies and urban growth since it implies synchronous changes in the underlying 

influencing factors. Such national-level synchronous changes are likely to be linked 

with national-level policy changes given their ability to strongly influence the overall 

dynamics of the underlying factors. For example, from 2000 to 2004, Zhengzhou, 

Wuhan, Changsha, Shenyang, Urumqi, Xi’an, Kunming, Nanjing, Fuzhou, Guangzhou 

and Beijing all witnessed significant urban growth. This synchronous behaviour 

suggests that national policy is likely to have influenced all these provincial capital 

cities to respond simultaneously. It provides strong evidence for the efficacy of changes 

in national policies in driving significant urban growth. In contrast, some provincial 

capital cities grew asynchronously to this main response, for example, the 
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asynchronous rapid urban growth from 1992 to 1995 in Guangzhou and the delayed 

urban growth in Shanghai after 2005. From the perspective of modelling, which treats 

urban growth as a function of various influencing factors, urban growth can be regarded 

as the result of decision-making at different levels which can affect the dynamics of the 

underlying factors both nationally and regionally. Specifically, urban growth dynamics 

may be affected by both top-down behaviours such as national-level reforms and 

bottom-up behaviours such as regional policies and the decision of local governments 

and local land use entities (Li & Wu, 2018). At the micro level, individual decision-

making may also contribute to the dynamics of growth trends although its magnitude is 

likely to be marginal compared to national and regional policies. From this perspective, 

national policies can be regarded as a global effect that influences the underlying factors 

everywhere in the same way and leads to a spatially consistent changes in the growth 

trend. At the regional and city levels, local factors could cause deviations spatially from 

the overall growth trend. Therefore, comparing changes in the growth trends between 

regions can help to understand the potential effects of regional policies and how they 

have shaped urban growth in different regions. In our results, the observed 

asynchronous urban growth patterns, relative to an overall synchronous pattern, suggest 

a deviation from the overall trend which is likely to reflect the influence of local factors, 

such as regional-level policies and local conditions.  

We further take Guangzhou and Xi’an (Fig. 3.6) as examples to illustrate how national 

and regional policies affect the growth trends of cities since they are located in different 

regions in China and have experienced different regional policies. The marketization 
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and opening in the early stages of Reform (in the 1980s and 1990s), which targeted 

coastal areas, stimulated growth in the Guangzhou buffer zone in the early 1990s, 

especially for the core city area including Shenzhen which reached a very high annual 

growth rate of around 8%. The ensuing reforms in the 1990s, such as the housing reform, 

tax reform and relaxation of population migration, contributed to maintaining a high 

growth rate above 5% in the 1990s, especially for cities in the medium and small-sized 

groups. By contrast, even though development zones were established in the 1990s to 

attract foreign investment into some inland provincial capital cities such as Xi’an, the 

urban growth rate remained lower (mostly below 5%) over this period compared to 

Guangzhou. This is because many small- and medium-sized cities in the coastal 

provinces benefited from Reform especially in the early stages, while in the west, 

opening policies and investment were focused on provincial capital cities. 

After 2000, the city-objects in both Guangzhou and Xi’an experienced significant 

growth. City-objects in the small-sized category also witnessed this trend, but reached 

their largest growth rates one-to-three years later than the core cities. Considering this 

time lag, the combination of the marketization of the economy including land, housing 

and tax reforms, increasing openness, and population migration in the 1990s may help 

to explain the significant urban expansion in the early 2000s. The growth rates of cities 

in the Xi’an buffer zone are greater than those of cities in the Guangzhou buffer zone, 

especially those in the large and medium-sized categories. This significant growth may 

have been accelerated by the West Development Drive, which aimed at boosting 

development in the western region and narrowing the gap between west and east.  
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Figure 2.6 Urban growth rates for cities of different sizes in the a. Guangzhou and b. 

Xi’an regions. 

The dashed lines indicate the timing of the relevant reform policies (see Table 3.1).  

3.4.2 Analysis of differences by size and across regions 

Our results demonstrate how urban form has transformed at the regional level (i.e., 

within the 150 km buffer zones) as well as at the city level (i.e., each city-object) over 

the period 1992-to-2014 (Fig. 3.5). This allows us to consider the relationships between 

core city areas and their surrounding city-objects, and the regional differences in these 

relationships. First, at the 50 km scale (i.e., within a 50 km buffer), the number of city-

objects in the small-sized group increased significantly. City-objects in the small-sized 

category appeared clustered around the core city. Some city-objects in the small-sized 

category transitioned into the larger-sized category. This trend was observed in both 

coastal cities and inland cities. These small city-objects in the 50 km buffer zone were 

close to the fringe area of the core city. Their growth may be due to spillover effects 
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from the core city area. The expansion of the core city area is likely to have promoted 

urbanization in the periphery, for example, through the “diffusion” and “coalescence” 

processes of urban growth (Dietzel, et al., 2005a). Our approach also contributes to 

greater understanding of urban growth theory, especially at the regional level. The 

emerging small-sized city-objects around the core city-object, as seen in figure 3.5, can 

be regarded as the result of the diffusion of urban growth from the core city-object. 

Meanwhile, with the expansion of core city-objects, several urban objects finally 

connected with each other and coalesced to become one large object. This is especially 

obvious as shown for Guangzhou which gradually became a continuous metropolitan 

area. 

Within the 50-150 km buffers in the eastern region, the growth of city-objects in both 

the small-sized and large-sized categories was observed. For large city-objects, one 

should note not only their expansion, but also the increasing number of these city-

objects over the period. The city-level polycentric or multi-nucleated spatial pattern has 

been studied for some large cities in China (Liu & Wang, 2016). Our results identified 

a transformation towards a morphological polycentric or multi-nucleated pattern at the 

regional level. However, the degree of polycentricity differs across China. Most eastern 

regions exhibit a greater degree of polycentricism compared to western regions. For 

example, in the Nanjing area, even in the 100 km buffer zone, four large cities 

(Yangzhou, Zhenjiang, Wuhu and Maanshan; represented as city-objects) had a 

population larger than 1 million in 2014. In Guangzhou, this mega-urban core area 

consists of several large urban agglomerations, including Guangzhou and Shenzhen, 
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each with a population of more than 10 million. Nanjing and Guangzhou exhibit 

different regional spatial patterns. Nanjing is a core city area surrounded by several 

rapidly growing large city-objects, and Guangzhou is one continuous core city-object 

consisting of several cities, respectively.  

In contrast to the above, the provincial capital cities in western China exhibited a 

dominant centric pattern at the regional level. For example, in the Xi’an area, the core 

city is surrounded by only one large city-object (Xianyang) and several small or 

medium city-objects. Even though the growth of small and medium city-objects in this 

region is significant, the number of large city-objects in the region is limited. The core 

city, Xi’an, continues to play a dominant role in the region. The relatively lower levels 

of integration to global trade, combined with natural and social conditions such as lower 

population density, population migration to the east, challenging terrain, arid climate 

and lack of water in some western provinces may constrain the development of small- 

and medium-sized city-objects. The “Belt and Road” initiative may provide 

opportunities for the western region to become increasingly integrated into international 

trade, which could boost its economic growth since the Silk Road Economic Belt in 

China covers most western provinces. With further development, whether cities in the 

west will follow the regional urban pattern in the east remains unknown. 

3.4.3 Rethinking the object-based method from the results 

We proposed an object-based method and the city-object concept to characterise the 

urban growth trends in China and further explore how the growth relates to reform 
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policies. Most urban growth studies either focus on overall growth at the single-city 

level or utilize a raster-based method to study the changing urban growth pattern over 

time. Some research further developed growth metrics such as urban growth modes 

(Shi et al., 2012; Li et al., 2013) which classify urban growth into different types based 

on the spatial relationship between new urban land and existing urban land; and urban 

sprawl metrics (Sahana et al., 2018) which delineate the spatial pattern of urban 

expansion. However, these methods lack consistency in measurement. They can 

characterise the overall growth and map the spatial pattern of urban growth, but changes 

to urban objects cannot be represented in a consistent manner by these raster-based 

methods. Urban objects represent directly urban entities allowing consistent 

measurement and characterization of their dynamics, which is key to studying urban 

growth. Our object-based method consistently measures the growth trends of city-

objects and the results are comparable between different regions and different-sized 

objects. The similarities and differences in the growth characteristics of city-objects 

across different regions and for different object sizes suggest how underlying policy 

changes shaped them and, thus, reveal the underlying effects of reform policies. The 

approach could be further applied in other regions or countries to explore their urban 

growth trends.  

3.4.4 Future urban development 

After the unprecedented urban expansion in the early 2000s, urban growth rates in 

China remained relatively stable and positive, albeit at lower levels than before. Growth 
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is likely to continue in the future, since the National Population Development Plan 

(2016-2030) issued by the State Council, projects that urbanization will reach 70% by 

2030, which means that nearly 140 million people will migrate to cities in the next 

decade. Together with this projected rapid urban growth, China will aim to achieve the 

United Nations Development Programme Sustainable Development Goals (UNDP 

SDGs) by 2030. This commitment presents an opportunity to achieve social, economic 

and environment sustainable development, but also a huge challenge. Significant urban 

growth places great pressure on environmental, ecological and social systems through 

increased demand for a variety of natural resources and social welfare provision 

(Kalnay & Cai, 2003; Alberti, 2005). The supply of more public services such as 

education, medical services and sports and leisure activities require effective urban 

planning and governance. Moreover, our defined buffer is essentially at the city-region 

scale and the results indicate that some synchronous behaviour was observed within the 

buffer. The given observed and continuing growth in both the core and surrounding 

cities implies that cooperation amongst cities in planning, economic activities, 

mitigating pollution, infrastructure construction and social welfare provision is 

becoming increasingly important. For example, recently, Beijing transferred some of 

its industry to nearby cities, especially those in Hebei province (Wang et al., 2016), to 

both mitigate congestion in Beijing and promote development in surrounding areas. At 

the national level, an initiative in underway that aims to transfer industrial activities, 

especially labour-intensive industries, to the central and western regions further 

contributing to achieving sustainable development and reducing the gap between 
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different regions (Liu & Zhang, 2022). These initiatives require cooperation between 

local governments. 

3.5 Conclusion 

We quantified the temporal and spatial patterns of urban growth across China in 13 

provincial capital city regions between 1992 and 2014, a period of rapid urban 

transformation with only a few parallels in human history. To do this we developed a 

reliable and consistent object-based GIS analysis method that treated each provincial 

capital city region as a set of spatial urban objects including the large core area and 

100s of surrounding city-objects. This conceptualization of provincial capital cities as 

sets of objects allowed, for the first time, a comprehensive analysis of the growth of 

both the 13 core city areas and their surrounding city-objects. The urban growth rate 

was found to be exceptionally large for core cities and city-objects of all sizes for all 

regions across China throughout period from 1992 to 2014, especially from 2000 to 

2005. For most core cities, urban land area doubled or even tripled.  

A major finding is that the majority of cities and their associated city-objects 

experienced rapid, synchronized growth in the early 2000s, implying the influence of a 

series of changes to national-level policy. However, some city regions such as 

Guangzhou and Shanghai developed asynchronously, which implies the additional 

influence of regional policy or local conditions. A further regional difference was 

observed in that the western region experienced growth of the dominant core cities with 

fast-growing small- or medium-sized surrounding city-objects, while cities in the 
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eastern region transformed into large, polycentric patterns.  

The rapid growth trends and morphological changes revealed here pose significant 

challenges for both coordinated regional urban planning and urban governance. 

Moreover, attention needs to be given to how to address the environmental and social 

issues caused by the scale of this growth. These insights may be useful in developing 

future national and regional level strategies for further urbanization of the major 

Chinese cities. 
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4 The Geographical Analysis of Megacities 

Through Changes in Their Individual 

Urban Objects 

 

Abstract  

This research utilized global coverage, annual, high-quality land cover time-series data 

to explore the urban growth process in the core area, and in several buffer zones, of 

Beijing, Guangzhou, Shanghai, and Tokyo. We developed a conceptual model in which 

growth is characterized at the per-object level by four active growth events: introduction, 

establishment, dispersal, and coalescence, with a fifth inactivity event, stability. We 

developed a rule-base which allowed the direct measurement of establishment, 

dispersal and coalescence from observed inter-annual changes in the urban objects over 

time. By aggregating the object-level events to the landscape level we showed that these 

three events generally followed a synchronous temporal trend in terms of magnitude 

within the core area and within each buffer zone. There was no evidence for a logical 

sequence of events through time. The identified events dominated alternately over time, 

although synchronicity in magnitude far outweighed any differences in proportion 

between them. This points to a single underlying urbanization process: urban growth 

with a specific dynamic rate. Interestingly, synchronicity was not generally observed 

between the core and buffer zones. This proposed object-based method provides 

insights into the underlying urban growth process and could be used to build new urban 

growth models. 

 

4.1 Introduction 

The world has witnessed extraordinary and continuing urban growth since the 
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beginning of the 20th century, with urbanized areas expanding rapidly and the 

population increasing at an astonishing rate (Schneider & Woodcock, 2008; Jenerette 

& Potere, 2010). The acceleration of population has been accompanied by rapid 

urbanization. Moreover, there were 548 cities with a population of more than 1 million 

in 2018, and this is projected to rise to 706 cities by 2030 (UNDESA, 2014). Cities 

provide pivotal habitats for human populations since they promote economic growth 

and technological innovation (Bettencourt et al., 2007). Moreover, they support the 

interaction of population, information and capital flow (Krings et al., 2009; Matsumoto 

et al., 2016).  

Rapid urban growth has had a profound influence on the world’s ecological and 

socioeconomic processes from local to global scales (Wilson et al., 2003; Grimm et al., 

2008; Zhou et al., 2015; Li et al., 2017; Suel et al., 2019). Urban expansion is linked 

closely with carbon emissions (Seto, Güneralp, et al., 2012), natural resource 

consumption (Wu et al., 2010), biochemical cycles, air pollution (Alberti, 2005; Riitters 

et al., 2016), social injustice and spatial inequality (Lin, 2001; Robinson et al., 2012). 

Thus, in an era of rapid urbanization it is essential to mitigate the negative impacts of 

urban growth to achieve sustainable development. Crucial steps to achieving this goal 

are to: (i) quantify urban growth trajectories and evolving urban spatial patterns and (ii) 

use this information to infer the urban growth processes that underlie these trends. 

There exists a long tradition of geographers characterizing and modelling the dynamics 

of urban growth. Early theories characterizing urban spatial form such as bid-rent 
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theory (von Thünen, 1826), central place theory (ChristallerW, 1933) and the sector 

model laid the foundation for subsequent research. More recently, efforts were made to 

analyze changing urban forms (Fleischmann et al., 2022) and the relations between the 

observed dynamics of urban patterns and the underlying processes (Lin, 2001; Kontgis 

et al., 2014; Li et al., 2017). In the urban form studies, some research focused on 

defining the urban shape and developing urban shape index (Medda et al., 1998; Wentz, 

2000).  

To study urban dynamics, some research explored the urban evolution from the city 

systems perspective, such as analysing the dynamics of metropolitan regions using a 

set of variables (Salvati & Serra, 2016) and studying change of city size and growth 

rate distribution incorporating spatial interaction and innovation cycles (Favaro & 

Pumain, 2011). These studies explored urban growth in the context of urban systems 

other than focusing on a single city. In order to express the dynamics of urban objects 

in the urban systems in a spatially explicit way, the concept of urban growth phases was 

also developed to characterize and model urban growth processes. In particular, the 

‘early wave’ analogue, subsequent ‘urban expansion’ phases and ‘urban cycles’ were 

introduced (Clark, 1951; Blumenfeld, 1954). It was later suggested that the growth of 

cities could be described as diffusion-limited aggregation and fractal growth processes 

(Batty, 1986; Makse, Andrade Jr., et al., 1998; Benguigui & Czamanski, 2004). More 

recently, the process phases of diffusion and coalescence of urban systems were 

developed and examined based on empirical observations (Dietzel, et al., 2005a). In the 

context of urban systems, diffusion refers to the spread of an urban area from an origin 
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or an urban seed area (usually the core urban area) into its surrounding area. In this 

phase, through the expansion of the urban seed area, the city spreads to new land. With 

continued diffusion of an urban area, some urban areas become connected (i.e., the 

coalescence phase).  

A major branch of the quantitative study of urban spatial dynamics in the last two 

decades has been the application of landscape metrics to characterize urban dynamic 

patterns and, thus, infer urban growth processes (Luck & Wu, 2002; Angel et al., 2012; 

Jiao et al., 2015). For example, a series of landscape metrics were used to explore and 

project the urban growth dynamics in California’s central valley (Dietzel, et al., 2005a). 

The analysis confirmed the diffusion and coalescence phases and reported cycles of 

these two phases with changing spatial extents. Similar wave-like diffusion and 

coalescence phases were demonstrated in the Houston metropolitan area and Dubai 

with the application of a series of landscape metrics (Nassar et al., 2014). The results 

suggested that oscillation between the diffusion and coalescence phases could occur 

over a short period. In contrast, when applied in Phoenix and Las Vegas, only one 

landscape metric exhibited a wave-like pattern; others metrics revealed a monotonic 

behaviour (Wu et al., 2011). A diffusion-coalescence phase was also observed around 

Guangzhou using metrics calculated within buffer zones (Liu et al., 2012). Jenerette 

analysed 120 cities around the world and argued that diffusion and coalescence were 

not two alternative processes of urban growth, but that cities were on a continuum of 

diffusion and coalescence (Jenerette & Potere, 2010). These processes were also 

observed in cities in the Yangtze river delta region in China (Li et al., 2013). These 
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empirical observations provide valuable information and evidence which can be 

compared against hypothesized processes and theories to improve the modelling, and 

increase our understanding, of the dynamics of urban systems.  

In this research, we replace the above concept of growth phases with four definite, 

measurable growth events: introduction, establishment, dispersal and coalescence, 

borrowing from ecological theory (Turner and Gardner, 2001). Importantly, these 

events are attributable at the individual object level and, thus, are measurable directly 

once each individual city is represented appropriately as a geospatial object.  

We define introduction as occurring when an urban object is first introduced into the 

landscape. From a geographical analysis point of view this equates to a nonurban pixel 

(or contiguous pixels) changing into an urban pixel (or contiguous pixels) that is 

identifiable as a separate urban object (i.e., it is bounded spatially by non-urban pixels). 

After the introduction of an urban seed into the landscape, the urban area expands 

causing an establishment event. From a spatial analysis point of view establishment 

equates to an urban object in the present year being larger in spatial area than itself in 

the previous year. With continued growth of the urban area, a dispersal event may 

eventually occur introducing a new, separate urban seed as a function of the nearby 

established or establishing city or cities. This is equivalent to introduction, but through 

proximity to neighbouring urban objects, dispersal can be inferred. Such inference is 

not undertaken here. Rather, due to the proximity of the core mega-city area in each 

region, all cases of introduction and dispersal are classed together as dispersal. With 



92 

 

continued urban growth, some urban areas may become connected and merge to form 

one contiguous urban object in a coalescence event. From a geographical analysis point 

of view this event is identified by the appearance of more objects with the same ID in 

the previous year than the single object in the present year. This identification is only 

possible by allocating the object ID in the final year and working backwards. Viewed 

from a graph perspective, the final year single urban object has historical roots that 

bifurcate going backwards through time. Note that since introduction represents the 

initiation of the core city and most existing cities will currently be experiencing the 

establishment, dispersal or coalescence events, we focus mainly on analysing urban 

growth based on these three measurable “ecological” events. The null event is stability 

(i.e., unchanged). These four events and the null event cover the full space of possibility, 

and no other events are possible at the per-object level. From a formal perspective this 

means that measurement of these events characterizes the system fully in the two 

dimensions of existence (introduction and dispersal, with coalescence as loss; 

null = stability) and growth (introduction, dispersal, establishment, coalescence; 

null = stability). 

Direct analysis of urban growth process phases at the object-level is limited. Most 

studies were conducted at the landscape level using landscape metrics. The landscape 

metrics approach measures urban pattern change through time and, thus, attempts to 

infer the underlying urban growth events and processes indirectly. However, since the 

relations of processes and patterns is complicated, different growth events could lead 

to similar urban patterns. Thus, a direct measure of dynamics of urban growth events 
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as proposed here is advantageous for studying urban growth process.  

Empirical observations of megacities could potentially increase our understanding of 

urban growth processes and contribute to advancing urban growth theories. However, 

previous research has focused mainly on a single metropolitan area (Xu et al., 2007; Yu 

& Ng, 2007; Li et al., 2013) and only a few studies have analysed the urban growth 

dynamics of megacities. Megacities not only cover a larger land surface area, but also 

consume more energy and materials and have a greater influence on surrounding urban 

and rural areas (Gurjar et al., 2008, Baklanov et al., 2016). In the context of the 

hypothesis of urban growth phases, the character of megacities and the regional 

behaviour of urban growth processes remain to be studied. Furthermore, inter-city 

comparisons, and especially cross-country comparisons, of urban growth processes in 

megacities, are rare. Thus, in this research, we selected and studied four megacities in 

East and Southeast Asia: Beijing, Shanghai, Guangzhou and Tokyo, using a carefully 

designed, object-based methodology applied to a high quality, coarse spatial resolution, 

standardized remotely sensed urban land cover dataset from 1992 to 2018.  

A key issue quantitative geography, and particularly when studying the evolution of 

urban systems is scale. This is especially relevant where the dynamics of urban patterns 

are analysed to explore the potential urban growth process. First, urban patterns are 

scale-dependent (Li et al., 2013; Wu et al., 2014). Urban patterns exhibit different 

characteristics at different spatial scales. Second, processes influence the dynamics of 

urban patterns at varying degrees at different spatial scales (Sexton et al., 2013). For 
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example, a process that influences street-level patterns significantly may play only a 

small role in influencing regional urban patterns. Thus, characterizing urban growth 

patterns at different levels is essential for understanding urban growth processes. At the 

per-urban object level, urban growth will manifest as one type of growth event at a time 

and follow a sequence of such events. However, when analysing at the population level, 

based on the set of growth events of all urban objects at a given time, the whole region 

may experience several events simultaneously, with one dominant event type. 

Therefore, we analysed urban growth patterns at both the per-object and population 

levels to provide a deeper understanding of the evolution of urban systems. 

In urban growth theory, it is also suggested that growth phases are scale-dependent 

(Dietzel, et al., 2005a). It is hypothesized that when urban areas join together (i.e., the 

coalescence phase), the new urban form becomes a new urban seed area at larger scales 

(Dietzel, et al., 2005b). In the next phase, the new urban seed area expands (i.e., 

establishment) and the dispersal of urban land occurs at a coarser scale because the new 

urban growth process operates at the coarser scale. This suggests that the urban seed 

area and its surrounding areas may exhibit different growth characteristics. Thus, to 

increase understanding of the growth characteristics of megacity regions, we analysed 

the development of urban patterns across large regions around four core cities, 

specifically the core area and three buffer rings (zones), and linked the evolving patterns 

of objects and events to the underlying urban growth process, as introduced above. 

The main contributions of this research were, thus:  
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1. A rigorous object-based GIS methodology was introduced for defining and 

analysing individual urban objects through time. 

2. Borrowing from ecology, a new paradigm was suggested for analysing urban 

growth via the time-series of change events occurring per-object (the change 

events are: introduction, establishment, dispersal, coalescence, stability). 

3. Based on this methodology a very large time-series database of urban objects 

and their events was created for each of four mega-city regions (Beijing, Pearl 

River Delta, Shanghai and Tokyo). 

4. From this database, for the first time, it was possible to analyse the time-series 

of individual urban object events at the population level for each mega-city 

region and (a) compare between each mega-city region and analyse their 

differences and (b) compare between each mega-city core area and three buffer 

zones. 

5. The time-series analysis included for each mega-city and buffer zone: (a) a 

count of each object-level change event type, (b) a count, at the population-level, 

of dispersal, loss and net change, and (c) the relative proportion of each event 

type. 

6. We used the evidence from our proposed per-object methodology and the results 

to suggest a re-evaluation of the key geographical theories of urban growth. 
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4.2 Study area, data, and method 

4.2.1 Study area 

We selected four megacities in east Asia selected for this research (Beijing, Guangzhou, 

Shanghai and Tokyo) (Fig. 4.1). They are all identified as megacities by the United 

Nations. This selection covers megacities in both developed and developing countries 

and, thus, potentially provides suitable examples with which to examine urban growth 

in cities at different stages of development. In Guangzhou and Tokyo, the core urban 

area is connected to several surrounding cities. In this case, we treated the continuous 

urban core area as the core urban patch. Thus, in Guangzhou, the core area is the urban 

agglomeration in the Pearl River Delta region, and we use the term Pearl River Delta 

to refer to this study area in the following analysis. 

 

Figure 4.1 Location of the four megacities investigated in this research. 

The 60 km buffer zone around each core urban area was used to define the surrounding 

region within which to analyse urban growth characteristics. Urban land in 2018 is 

shown in black in the four study areas. 
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4.2.2 Data 

We used global land cover data produced by the European Space Agency (ESA) 

Climate Change Initiative Land Cover (CCI-LC) project, available at 

http://maps.elie.ucl.ac.be/CCI/viewer/index.php. With an annual temporal resolution 

and spatial resolution of 300 m, data are available from 1992 to 2018. The CCI-LC 

dataset was then obtained through back- and up-dated change detection using a 

combination of several remote sensing data sources including the full archive of 

Advanced Very-High-resolution Radiometer (AVHRR) (1992-1999), SPOT-Vegetation 

(1998-2012), Medium Resolution Imaging Spectrometer (MERIS) (2003-2012), 

PROBA-Vegetation and Sentinel-3 OLCI time-series (2013-2018). These land cover 

data consist of 37 land cover classes based on six groups corresponding to the United 

Nations Land Cover Classification System (Di Gregorio, 2005). The quality of the land 

cover product was assessed by external parties using independent reference data. The 

weighted-area overall accuracy of the urban class in the 2015 map was reported as 86%, 

which is very high for a global product.  

4.2.3 Methods 

We first extracted the urban land in the raster data model from the ESA dataset for 1992 

to 2018. All contiguous urban pixels were combined into urban ‘objects’, thus, invoking 

the object-based model. The contiguous urban land areas in the core centre of Beijing, 

Pearl River Delta, Shanghai and Tokyo in 2018 were defined as the core extents for 

each city. Since each city itself may extend beyond its administrative boundary and 

http://maps.elie.ucl.ac.be/CCI/viewer/index.php
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become physically contiguous with its surrounding urban areas, our approach treated 

these connected parts as one urban object and, in this case, as the core urban area. A 

series of 20, 40 and 60 km buffer rings around the core extent was generated for each 

city to facilitate analysis of the surrounding cities in addition to the core city. The core 

extent and each buffer ring were then intersected with the urban land objects from 1992 

to 2018.  

Per-object level analysis 

In contrast to quantitative approaches based on landscape metrics, which are generally 

spatially aggregate representations at the population level, we propose a methodology 

to infer directly the urban growth event occurring for each urban object and for each 

annual time increment. Using the GIS, we assigned each urban object a unique ID 

annually from 1993 to 2018. A key modeling decision from a geographical analysis 

perspective is that given an urban patch Pi,j in year i, all the urban patches Pi-1,k within 

patch Pi,j's boundary in year i − 1 were labelled with the same ID of Pi,j. This process 

was repeated for all urban objects going backwards annually in time from 2017 to 1992. 

Given this coding scheme, when comparing the IDs of urban patches in year i − 1 and 

year i and their corresponding area, the following logic holds true. First, for 

Coalescence; all IDs that exist repeatedly in year i − 1, identify separate urban objects 

that coalesce from year i − 1 to year i, becoming one urban object. Second, for 

Establishment; all IDs appearing uniquely at time i − 1 and with a larger urban land area 

in year i than in year i − 1 are urban objects that are subject to an establishment event 
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as their area grows. Third, for Introduction (and Dispersal); all IDs that appear for the 

first time in year i, and which did not exist previously, represent either the introduction 

or dispersal events since they are new urban objects in the landscape. Dispersal implies 

that the introduction is related to a seeding object and, thus, dispersal is used here where 

the core city object dominates the landscape. 

Fig. 4.2 illustrates the above system of coding and its importance for characterising 

urban growth dynamics. The following processes are illustrated. First, Urban object 

labelled with ID 1, in year 0 (i.e., P0,1), appeared only once in year 0 and its area grew 

from year 0 (i.e., i = 0) to year 1 (i.e., i = 1), representing the process of establishment. 

Second, urban objects labelled with ID 2 (i.e., P0,2) appeared twice in year 0 indicating 

that these two urban objects eventually coalesced to one urban object (P1,2) in year 1. 

Third, urban objects labelled with ID 3 (P1,3) and 4 (P1,4) appeared only in year 1, 

indicating that they were introduced (or dispersed) into the landscape and did not exist 

in the previous year. Finally, urban object labeled with ID 5 (i.e., P0,5) appeared only 

once in year 0 and its area remained the same in year 1 (Area(P0,5) = Area(P1,5)), 

indicating that this urban object was stable (i.e., dormant or established). 
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Figure 4.2 Illustration of measurement of urban growth events from time 0 (T0) to time 

1 (T1). 

1=establishment; 2=coalescence; 3 and 4= introduction; 5=stable. Linked IDs are 

necessary to support measurement of these events. 

It should be noted that in some cases, when the newly introduced urban object is close 

to another large urban object, it could be labelled as coalescence (not establishment) in 

the next year. This is because under rapid urban growth, first, the one-year time period 

may be too long for the establishment event to be observed and, second, our object data 

are generated from raster data and in some cases, the pixel size may be too coarse to 

detect the establishment event. 

The above coding system applied within a GIS allowed the inference and attribution of 

growth events to the inter-annual changes observed, per-object, from 1992 to 2018. This 

process is fulfilled using ArcGIS. It is important to understand that once the time-series 

graph of objects is established within the GIS, the above coding system is automatic 

and comprehensive. It is automatic because each event type is identified directly by 

comparing the present state of an object to its previous state, such that per-object events 

arise with zero ambiguity in the differences between years. No thresholds are needed; 

the events either happen or they do not. It is comprehensive because the set of all four 
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events (and the null-event) cover the space of possibility completely. No other 

alternatives are possible. These are key advantages of the approach. 

After acquiring the growth event of each urban object annually over the study period, 

we further calculated the total number of objects that experienced the establishment, 

coalescence and dispersal events, as well as the total number of stable objects, inter-

annually from 1992 to 2018, in the core area and buffer zones of the four megacities. 

Through this per-object calculation, it was possible to analyse inter-annual urban 

growth events at the population level. At the population level, the spatial and temporal 

dynamics of the dominant growth event(s) were analysed, thus, allowing inferences on 

the underlying urban growth process. Fig. 4.3 illustrates the differences between 

measuring urban growth events at the per object level (in which case a finite set of 

possible events exists) and at the population level (where distributions are produced 

across all events).  
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Figure 4.3 Illustration of (left) urban growth events at the per-object level and (right) 

dominant events at the population level during the urbanization process. 

The blue ovals represent urban objects. 

4.3 Results 

4.3.1 General urban growth trends 

We examined the overall urban growth for each megacity over the 26-year period. All 

four megacity regions experienced rapid urban growth (Fig. 4.4). Fig. 4.4 shows the 

extent of growth by mapping urban extent in 1992 and 2018. The core area is shown in 

black, while other urban objects are shown in grey. The three buffer rings are 
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superimposed over each area. It is surprising to see the enormous urban growth in 

Tokyo over this period since the urban population in Japan has maintained a relatively 

constant level since the 1970s. Tokyo’s core urban land area increased by around 1000 

km2 over this period.  

The three megacities in China all witnessed tremendous urban growth in both the core 

area and buffer areas. Their core areas almost doubled in size. In terms of urban growth 

in the buffer rings, the 20 km buffer ring included a larger area of urban land over time, 

except for Shanghai where the 60 km buffer covered the largest urban land area. The 

core city in the Pearl River Delta region maintained rapid urban growth over time, while 

the core area in Beijing experienced its most rapid urban growth from 1997 to 2008 and 

the core area in Shanghai grew most rapidly from 2007 to 2018.  

Urban growth in the buffer rings for Shanghai and Tokyo followed the growth trends 

of their core areas. In Beijing, the urban land in the buffer rings witnessed rapid growth 

since 2002. In the Pearl River Delta, urban growth in the 40 and 60 km buffer rings 

showed a slower growth trend compared to the same buffer rings around Beijing and 

Shanghai. 
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Figure 4.4 Maps of urban extent for the four megacity regions in 1992 and 2018. 

The core urban area is shown in black and peripheral urban areas in the buffer rings are 

shown in grey. 

4.3.2 Urban events and inference on the growth process 

Using the rule-set established above, and specifically because we adopted an object-

based methodology, we were able to measure directly the prevalence of the three growth 

events in each of the core and buffer zones through time. This was achieved by applying 

the rule-set to each urban object annually, such as to infer growth events through time 

at the per-object level. Fig. 4.5 shows the number of objects allocated to each event 

over the 26-year period.  

The results show that all core and buffer zones for the four megacities experienced all 

three events almost consistently over time. Fig. 4.5 captures the detail of the dynamics 

of the urban growth events over time. The magnitude (i.e., total number) of these urban 

growth events fluctuated over time. However, in Shanghai and Tokyo, general 



105 

 

synchrony is observed among the three growth events. In Shanghai, the total number of 

urban objects experiencing the growth events grew significantly from 2004 and 2005, 

reaching a peak around 2010, and then decreased afterwards and increased again in 

2017. This trend is observed in the core urban area and buffer zones, suggesting a 

synchronous urban growth process in the region over time. It should also be noticed 

that the peak level of coalescence was reached roughly two or three years later than the 

peak level of dispersal and establishment. This implies that, at the landscape level, a 

mass coalescence of urban objects occurred after the intensive introduction and 

expansion of urban objects. In Tokyo, the overall trend in growth events is similar in 

three buffer zones, with a high prevalence of the three events around the late 2000s and 

early 2010s. This trend is not observed in the core urban area where the magnitude of 

dispersal and establishment in the late 2000s and early 2010s was similar to the early 

1990s.  

In Beijing, the total number of urban objects involved in these events was smaller 

compared to the other three core urban areas, with a peak level around 2003. In the 

buffer zones, the total number of dispersal and establishment events showed a general 

increasing trend before 2016 and a high level in the 2010s. Unlike Shanghai and Tokyo, 

the total number of coalescence events was smaller compared to the other two events. 

This suggests that introduction and establishment are the main urban growth events, 

outstripping coalescence.  

In the Pearl River Delta region, the core urban area showed a relatively greater number 
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of urban objects experiencing dispersal and establishment in the 1990s compared to the 

other three megacities. The three events exhibited a peak around 2003 and decreased 

afterwards. This trend is also observed in the 20 and 40 km buffer zones, while in the 

60 km buffer zones, there is greater fluctuation. This suggests that the urban growth 

process is complex and dynamic here. Local drivers could influence the growth process 

and lead to differences in the growth events. 

 

Figure 4.5 The number (i.e., count) of urban patches experiencing the coalescence, 
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dispersal and establishment events and stable patches in (top to bottom) the four 

megacity regions for each year from 1992 to 2018. 

The data of 1993 suggests the changes from 1992 to 1993 and so on). Time-series plots 

are shown for (left to right) the core area and buffer zones.  

We plotted the number of new urban patches (i.e., dispersal events), the loss of urban 

patches (the total number of coalescing urban patches minus the number of urban 

patches that they coalesced into in the subsequent year), and the net change in urban 

patches (the total number of new patches minus the lost patches) against time (Fig. 4.6). 

This shows the overall urban dynamics and details the gains and losses of urban patches 

in the landscape over time.  

For the core urban area, Beijing, Pearl River Delta and Tokyo gained urban objects in 

the 1990s and early 2000s. Shanghai continued gaining urban objects in the 2000s until 

2007. The net flux was negative in the four megacities in the 2010s, indicating 

continuous merging of urban objects. In the buffer areas, Beijing and Tokyo gained 

urban objects for most of the period. In Beijing, the increase in the net flux was much 

greater than in the other megacities, suggesting intensive and increasing urban 

complexity in the landscape related to a more fragmented landscape pattern.  

In the Pearl River Delta, the 20 and 40 km buffer zones gained urban objects until 2016 

and experienced a loss in urban objects in more recent years suggesting the dominance 

of coalescence. In Shanghai, the only net loss in urban objects is observed in more 

recent years in the 40 and 60 km buffer zones. The 20 km buffer zone gained a large 

number of urban objects in recent years, indicating the intensive introduction of urban 

objects around its core urban area. 
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Figure 4.6 The dispersal, loss and net change in the number of urban patches in the core 

area and buffer zones in the four megacities. 

To better capture the relative dynamics of the urban growth events, we normalised the 

number of objects falling into each growth event by dividing each by the total number 

of objects and then plotted the relative proportions through time (Fig. 4.7). In the core 

urban area, the coalescence event is dominant for most of the period. In Beijing and 

Tokyo, the establishment event accounted for a large number of changed urban objects 

in the late 2000s and early 2010s. In the Pearl River Delta, dispersal and establishment 

accounted for a similar proportion for most of the period. In Shanghai, dispersal 



109 

 

increased notably and occupied a relatively large proportion in the 1990s and late 2000s. 

In Shanghai, Tokyo and Pearl River Delta, the overall dynamics and proportion of 

unchanged objects was similar in the three buffer zones, suggesting that the urban 

patterns changed synchronously in the periphery. In Beijing, the 20 km buffer zone 

showed a different overall trend. In all three buffer zones of Beijing and Pearl River 

Delta, dispersal and establishment occupied a larger proportion than coalescence, 

indicating that coalescence is still limited in the periphery compared to other events. In 

contrast, in the buffer zones of Shanghai, the proportion of dispersal events was larger 

than for the other megacities, especially in the 2000s. In the 40 and 60 km buffer zones, 

the proportion of coalescence events is greater than for the other megacities, probably 

due to the relatively larger size of the satellite cities located in this area and the merger 

of urban objects clustering around these satellite cites. Lastly, in the buffer zones of 

Tokyo, the proportions of each event are similar in the late 2000s.  
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Figure 4.7 The proportion of urban objects experiencing the three urban growth events 
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(and no change) in these four megacities in the core area and buffer zones over time. 

4.4 Discussion 

This research explored the urban growth process over a 26-year period in four megacity 

regions in South-East Asia (Beijing, Pearl River Delta, Shanghai and Tokyo). For these 

four megacities, a rule base was established from which to measure directly the 

occurrence of growth events on an inter-annual basis at the per-object level over time.  

4.4.1 Inference on underlying growth processes and phases 

Urban growth is the result of multiple factors interacting at different scales, such as 

population increase, economic growth, planning strategy, and development policies. 

Changes in the level of each event type through time could potentially be used to 

inversely infer changes in the underlying growth process because these events 

necessarily occur due to growth drivers, and collectively they define the overall areal 

growth rate. Therefore, changes in the counts of the change events through time can 

potentially be interpreted as implying a physical amplification, constraint or 

“disturbance” in the underlying urban growth process. For, example, if growth increases 

as a function of a change in policy, then this should be observed in increases in the 

numbers of all types of change events per object. 

However, some caution should be exercised over the above interpretation because 

changes in the level of each event are also a function of the availability of space. Given 

a fixed space, one might expect the number of events observed to be eventually 
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conditioned by the space left available to fill, in addition to the policy. Thus, while 

changes in the counts of change event types necessarily reflect changes in the overall 

areal growth rate, and that growth rate may be due to policy and other drivers, the ability 

to infer changes in the underlying growth process is conditional upon the relation 

between the urban pattern and the proportion of the space that it fills. Related to this, it 

should also be noted that our analysis of urban growth focused on spatial expansion and 

we did not measure the intensification of urban land use, and vertical expansion in 

particular. The dynamics of these other dimensions of urban growth, especially during 

decreasing trends in the growth rate, should be considered in future research. 

Of course, the space available need not be regarded as fixed, and as a mega-city grows 

so too can the definition of its spatial extent. Such an interpretation invokes the 

geographical concepts of fractality and scale-invariance and, consequently, in this 

interpretation overall differences in the count of each event may not be observed as the 

city grows to occupy new space. 

For a fixed space, the dominance of the different object-level change events may be 

expected to vary through time as the space is increasingly filled. Indeed, this thinking 

underlies much of the earlier work on urban growth phases: introduction events 

dominate in the early phases, establishment/dispersal dominates in the middle phase 

and coalescence dominates in the final phase as the space is increasingly filled. In this 

paper, we defined fixed buffer zones around each mega-city core area and tested the 

hypothesis that as a city expands within a fixed space, the predominance of each event 
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type should change depending on proximity to the core area. The assumption 

underlying this experimental approach is that space (distance from core) can be 

exchanged for time (phase of growth). Through the object-based approach, we were 

also able to explore whether there exists any geographical variation across regions in 

the event types and whether the event types change synchronously with each other 

through time. In this paper, we explored these questions through a geographical analysis 

of the pattern of changes in the event types within, and between, regions, and through 

time. 

4.4.2 Temporal changes in the number of growth events per mega-

city and policy interpretation 

In Tokyo, growth events occurred at a relatively lower level in the early 2000s, 

suggesting urban growth slowed or entered a stable state: after years of rapid 

urbanization, a relatively high level of urban development was reached and the 

possibility space for urban transition was limited. The growth that was observed 

subsequently, especially in the buffer zones, may have arisen because in 1999 planning 

promoted the development of nearby cities in the periphery. 

In Shanghai, the core area witnessed a decrease in the magnitude of growth events 

around 2000, probably because in the 1990s, with a series of opening policies and the 

construction of the Pudong district, the urban areas experienced a relatively rapid 

increase and remained relatively stable in the late 1990s. The area experienced 

significant growth around 2003 and afterwards, probably due to the enforcement of the 
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Shanghai Master Plan (1999-2020) and further opening, which promoted further rapid 

urban growth.  

In the buffer zones of Beijing, especially the 40 and 60 km buffers, the magnitude of 

growth events increased steadily, indicating a stable urban growth process. In the Pearl 

River Delta, the growth trend in the number of objects experiencing growth events 

slowed around 2005 and decreased thereafter, suggesting that after the rapid 

development of the 1990s, such as within the special economic zone in Shenzhen, the 

opening policies and foreign direct investment in the region, urban growth entered a 

new state, with a general decreasing trend in the magnitude of growth events. This was 

also observed in the early 2010s in Shanghai as mentioned above. After years of 

intensive urban growth (i.e., an increasing trend in the magnitude of growth events), 

the rate of urban growth slowed.  

4.4.3 Geographical analysis of event sequencing and synchronicity 

across the core-buffer, across buffers and across mega-cities 

A general synchronous trend in the three growth events is observed among the various 

buffer zones, which suggests that urban growth drivers have similar effects on the 

dynamics of the different events and leads to similar behaviour of these events at the 

population level. It implies a general similar urban growth process for the core urban 

area and its hinterland. For example, in all three buffer zones of Shanghai, the 

magnitude of all events experienced rapid growth in the 2000s and decreased thereafter, 

suggesting factors that influence all the buffer areas.  
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However, the observed growth events and patterns differ in some cases between the 

core urban area and buffer zones. For example, the buffer zones of Beijing exhibited a 

different pattern of growth events from the core area. This suggests that the factors 

influencing urban growth in these regions affect the core urban area and buffer zones 

differently. This may be because Beijing is the capital city of China: the core urban area 

experienced rapid urban growth and economic development with a weaker connection 

to its hinterland compared to the other megacities, revealed as different growth trends. 

The number of coalescence events was also smaller than for other megacities in the 

buffer zones, suggesting a more dispersed pattern. 

The hypothesized sequence of the three urban growth events was not observed at the 

landscape level. Unlike the suggested cycles of diffusion and coalescence or the 

oscillation behaviour of urban growth reported in previous studies (Dietzel, et al., 2005b; 

Martellozzo & Clarke, 2011) our results indicate that, in reality, the establishment, 

dispersal and coalescence events are realised concurrently as a result of a single growth 

process of given intensity occurring in the urban landscape, and they dominate 

alternately.   

In contrast, at the patch (object) level, the hypothesised dispersal, establishment and 

coalescence events were observed to follow a sequence as expected. This is axiomatic: 

first, a new urban object is introduced (or dispersed) into the landscape. Then, it may 

remain stable or grow in area (i.e., establishment). When it is close enough to another 

urban object, as it continues growing, it merges to form a new urban object (i.e., 

coalescence). This new urban object may experience the same establishment-



116 

 

coalescence phase sequence or another coalescence event.  

When accumulating the object-level events at the landscape or population level, the 

hypothesized sequence is not generally observable. In real urban systems, the factors 

influencing urban growth are dynamic and complex. When a set of factors promotes 

rapid urban growth, as urban land expands the number and size of urban objects are 

both likely to increase, shown as an increase in both introduction/dispersal and 

establishment events, and with this urban expansion coalescence may also increase. 

This leads to a synchronous behaviour of the events and hides the sequence occurring 

at the per-object level, as observed in this research. This is a key contribution from this 

study—that from a geographical analysis perspective it is more precise to identify and 

analyse change events at the object level first and then aggregate them to represent more 

comprehensively the urban system at the population level. 

In future research, the sequence analysis of growth events at the per-object level could 

help to provide valuable information for understanding the evolution of urban systems 

and, thus, building urban growth models. The object-based method provides a way to 

trace the growth process at the per-object level. Fig. 4.8 represents succinctly the urban 

object-level growth process and demonstrates the effectiveness of our method in 

capturing the spatial–temporal links between urban patches. It shows how urban object 

8911 grew from several small urban objects into one larger urban object from 2005 to 

2011. According to our method, all the objects from 2005 to 2010 are located within 

the boundary of object 8911. From 2005 to 2008, the objects are quite small and most 

of them remain unchanged. 

https://onlinelibrary.wiley.com/doi/full/10.1111/gean.12386?msockid=014cfadfc7bf661330bdee79c66d67c6#gean12386-fig-0008
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Figure 4.8 An illustration of the urban object growth process from 2005 to 2011. 

Object 8911 is an urban patch in Shanghai. Each circle in the figure represents an urban 

object, with its colour referring to different events and its size proportional to its area. 

To avoid confusion, it should be noted that the labelled IDs do not correspond to the 

IDs used in the calculation of events. Each circle has one unique ID, with the last two 

digits in the labelled ID referring to the respective year. All the objects in 2005 are 

coloured black since in this example they are treated as initial patches which do not 

inherit any of the four events. 

From 2008 to 2011, the patches grew rapidly and coalescence became the dominant 

process. By identifying the events associated to each urban object, it was then possible 

to build the spatial–temporal links between them. For example, objects 8909 and 9509 
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are two isolated urban objects in 2009, but they merged into one urban object (9310) in 

2010, thus, defining the underlying link between them. In future research, the well-

defined temporal links among urban patches could be further expanded into a spatial–

temporal graph structure of urban patches by adding specific spatial links between the 

urban patches. Such a graph could help to further study inter-urban interactions and the 

evolution of urban systems. Moreover, most urban growth models are based on raster 

data which are commonly spatial scale-dependent. The object-based method can be 

used to overcome this dependency to some extent. 

4.4.4 Policy interpretation 

Research on the dynamic spatial patterns arising from urban growth processes not only 

benefits our understanding of the evolution of urban systems and their interactions but 

also provides supporting information for policy-makers and decision-makers planning 

growth and managing the effects caused by urban growth. Urban growth influences 

profoundly the environment and ecological processes from local to global scales. 

Mitigating the negative effects of urban growth is crucial to achieving sustainable 

development. At the regional level, we observed a large number of dispersal and 

establishment events for most of the time in the buffer areas in the four megacities. This 

suggests that in the periphery, there exist strong drivers, and a consequent high rate, of 

urban growth. An increasing number of urban objects is usually associated with 

increasing fragmentation which will further influence ecological processes and social 

processes. For example, these new urban land areas are usually gained from agricultural 
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land, forest or grassland. The loss of these areas may lead to habitat fragmentation 

(Riitters et al., 2016), local climate change (Zhou et al., 2015) and the loss of benefits 

for local stakeholders (Robinson et al., 2012). With a compact core urban area, the 

buffer areas usually have a dispersed pattern, which influences different ecological 

processes. Thus, in these megacities, effective regional planning and environmental 

management are essential to mitigate the negative ecological and social impacts of 

urban growth, both in the core and the periphery areas. 

4.5 Conclusion  

We analysed the spatiotemporal urban growth patterns in the urban core and buffer 

zones of four megacity regions in South-East Asia. An object-based analysis was 

undertaken at the per-object level and four change events were defined, borrowed from 

ecology, at the per-object level. We analysed the object-based time-series data to 

analyse changes in urban growth events at the per-object level and, by aggregation, at 

the whole region level. By specifying a logical rule base for application at the per-object 

level we were able to measure the establishment, dispersal and coalescence growth 

events. This approach was effective in providing the per-object level data necessary to 

analyse and quantify changes in the composition of these events (i.e., growth phases) at 

the regional level through time. Subsequently, the time-series of these compositional 

changes at the regional level was used to make reasonable inferences about the 

underlying growth process. As such, the insights provided here, cut through existing 

theory and approaches to characterizing changes in urban patterns. 
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At the population level, the establishment, dispersal and coalescence events were found 

to be generally present and concurrent over time, albeit dominating at different times. 

The growth events exhibited a general synchronous trend in each buffer zone over time 

rather than following a specific logical sequence (as must occur at the object level). In 

the buffer zones of Shanghai and Tokyo, the magnitudes of the different growth events 

were generally similar especially after 2000, whereas in Beijing and the Pearl River 

Delta, the magnitude of the dispersal and establishment events was much greater than 

for coalescence. The same was not always observed between the buffer zones and the 

core area. A general synchronous trend was observed only in the core and buffer zones 

of Shanghai. Our results also suggested that in the buffer zones, dispersal and 

establishment were dominant most of the time, indicating a highly active growth 

process that leads to a more fragmented spatial pattern of urban objects, which is indeed 

realized in reality. 

The object-level rule-based approach developed here for the first time revealed new 

insights into the dynamics of urban growth events, thus, providing potentially increased 

understanding of the underlying urban growth process and the urban systems 

themselves. This new approach and information should be developed further so that it 

can support effective regional urban planning and environmental management which 

are both essential to achieve environmentally sustainable levels of urban development 

and landscape patterns. 
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5 Modelling urban objects through Bayesian 

linear mixed-effects models 

 

Abstract 

At the macro-level, urban systems consist of urban entities interacting with each other. 

Exploring the dynamics of such urban systems requires the definition of urban spatial 

objects, a comprehensive definition of the possible change states that such objects can 

take, and the systematic linking of these objects through time with unique identifiers. 

Here, such a data model is extended, for the first time, via a spatial-temporal graph-

based structure to facilitate model-based exploration of how the relationships between 

neighbouring urban objects affect the dynamics of urban entities, leading to better 

understanding of urban system dynamics. A linear mixed-effects model, fitted through 

an approximate Bayesian inference framework in Integrated Nested Laplace 

Approximation (INLA), was applied to the created graph-based dataset to model the 

coalescence, growth and unchanged states of urban spatial objects based on the previous 

states of the objects themselves and of their neighbouring objects. The findings reveal 

that the coalescence state of urban objects in the present year is influenced by their state, 

proximity to neighbours and the states of neighbouring objects in a defined buffer in the 

previous year. The growth state of urban objects in the present year is associated with 

their previous state, the state of the largest neighbouring object and the states of objects 

within a close buffer in the previous year. Additionally, the area of objects that grew 
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was investigated and found to be related to the largest interaction with neighbouring 

objects, with varying effects for different-sized objects. This research contributes to 

studies of urban growth by modelling explicitly the relationships between the states of 

urban spatial objects in the present year and their states, and those of neighbouring 

objects, in the previous year. The results offer new insights into the evolution of urban 

systems. 

 

5.1 Introduction 

As the most dynamic and rapidly evolving system on Earth, the urban system has 

attracted the interest of scientists and researchers across various disciplines (DeFries et 

al., 2010; Derudder et al., 2010; Arribas-Bel et al., 2011; D. Li et al., 2022; Lengyel et 

al., 2023). Within urban studies, urban growth is a central topic as it relates to a variety 

of issues such as global environmental change, social equity, public health and food 

security (Galea and Vlahov, 2005; Grimm et al., 2008; Hatab et al., 2019; Meerow et 

al., 2019). Understanding how urban systems have changed, why they have changed 

and the consequences of the changes could help to increase understanding of 

interconnections with related processes, and ultimately contribute to sustainable 

development (Derudder et al., 2010; Lengyel et al., 2023). In this context, modelling 

urban growth is a critical issue and it has been studied intensively. 

Urban growth studies generally use one of two main approaches. The first measures 
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how much cities have grown over time. This could be at the individual city level or 

sometimes across broader scales ranging from regional to global levels. Urban growth 

is modelled over time with parametric or nonparametric models, or a combination of 

both (Hoffhine Wilson et al., 2003; Li and Gong, 2016; Angel et al., 2021; González-

Val, 2023). These models represent urban growth by the magnitude of some property 

such as land area or population, and are mainly based on two underlying theories. The 

first is that urban growth is a function of various endogenous or exogenous drivers, 

such as economic growth, population growth, policy effects and accessibility to hubs 

or resources (Fujita, 1976; Eaton and Eckstein, 1997; Feng et al., 2002; Ding, 2004;  

González-Val, 2023). Researchers have explored the relationship of urban growth with 

these drivers through a variety of statistical models (Yue et al., 2013). The other theory 

treats cities as systems and argues that city growth is random and is a function of its 

initial size (González-Val, 2023). This approach generally explores urban growth 

through scaling laws or fractal dimensions within a defined region over a long period 

(Benguigui and Czamanski, 2004; Arcaute et al., 2015; Lagarias and Prastacos, 2020; 

Molinero and Thurner, 2021).  

The second approach studies how urban growth changes both spatially and temporally. 

Such studies focus typically on changes in spatial pattern over time, representing cities 

using raster (i.e., image) data. A classic approach is to utilize landscape metrics to 

explore the dynamics of urban spatial patterns. Within this framework, some growth 

types such as dispersal-coalescence, infill, edge-expansion and leapfrog, and indices 

such as the Landscape Expansion Index (LEI), have been developed to characterize 
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urban growth from a process-based perspective (Liu, et al., 2010; Aguilera et al., 2011; 

Li et al., 2013; Jiao et al., 2015). Another widely studied approach adopted cellular 

automata (CA). CA is a dynamic method that simulates urban growth from a micro 

level (i.e., pixel-level) based on location, geographical and socioeconomic conditions, 

and interaction with surrounding neighbours through a defined transition rule. It 

includes different growth drivers and spatial effects to study urban growth from a self-

organization view. The CA approach has been developed into a variety of different 

branches such as object-based CA, ABM-CA and AI-CA (Liu et al., 2008; Liu, et al., 

2010; Liu et al., 2013a, 2013b; Abolhasani et al., 2016). Another interesting approach 

represents cities using raster data, but studies urban growth from a percolation 

perspective. It treats urban growth as a process where the city diffuses from the seed or 

the core to the surrounding space over time. Usually combined with fractal dimension, 

some researchers have utilized this approach to study the dynamics and evolution of 

urban systems from city level to regional level (Makse, et al., 1998; Arcaute et al., 2016; 

Sarkar et al., 2020). 

Among the above studies, a significant common element is the representation of cities 

from the perspective of the growth process by incorporating relationships between 

urban lands. This is because during the urban growth processes, urban lands interact 

with each other and are affected by each other, suggesting that interactions are crucial 

in understanding urban land dynamics. For example, dispersal-coalescence, infilling 

and leapfrog essentially represent cities through different relations between new and 

existing urban lands (Dietzel et al., 2005a; Li et al., 2013; Dahal et al., 2017). 
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Percolation theory is also based on an assumption about the growth process.  

While the above approaches study urban growth processes by incorporating the 

relationships between urban lands, urban systems comprise urban entities which 

include a variety of activities interacting with each other located on urban land. This 

suggests that the raster representation of urban land (i.e., based on pixels) could not 

explicitly and adequately capture the relationship between urban entities (e.g., cities, 

towns, villages). While studies have incorporated spatial or temporal relationships, or 

both, most are based on the relationships between raster pixels, while studies with an 

explicit spatial-temporal link between urban entities and their relationships are still 

limited. Therefore, to fill this gap, this research represents urban entities as spatial 

objects and explores the relationship between these objects. 

Some research on land cover change and landscape ecology has developed network or 

graph-based methods by representing land cover or habitat as objects to study their 

spatial-temporal evolution (Cantwell and Forman, 1993; Urban et al., 2009; De Cola, 

2010; Cheung et al., 2015; Wu et al., 2021). For example, studies have built spatial 

graphs based on landscape habitat objects to study connectivity and its implication for 

conservation (Fall et al., 2007; Urban et al., 2009). This general approach has been 

further developed into a spatial-temporal graph, incorporating temporal transitions 

between objects, to study the land cover evolution over time (Wu et al., 2021; Zou et 

al., 2023). Such methods provide detailed insights into the spatial-temporal relations of 

land objects tracing their transitions over time. In urban studies, the object-based 
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method has been applied rarely.  

In previous research, we represented cities as objects and characterized them by four 

states based on the urban growth process, including introduction (commonly through 

dispersal), establishment (or growth), coalescence and ‘unchanged’, which essentially 

necessitates a temporal link among objects (Fan et al., 2024). However, urban objects 

exhibit not only temporal links, but also spatial links through interactions with each 

other across space. Their direct spatial-temporal relationships have yet to be studied 

explicitly. Therefore, based on the aforementioned states of urban objects, we here 

introduce spatial links to allow exploration of the spatial-temporal relationships 

between objects and how these affect likely future state transitions. Specifically, we 

build graph networks among urban objects and integrate them with the states of objects 

to establish spatial-temporal links and, thereby, study the states of objects and their 

relationships with other objects, especially their surrounding neighbours. For the four 

states (introduction/dispersal, establishment, coalescence and ‘unchanged’), we 

concentrate on creating an integrated model for the establishment, coalescence and 

unchanged states while excluding introduction (and dispersal). Introduction is a 

separate process which relates to whether an object exists, whereas the establishment, 

coalescence and unchanged states relate to the fate of an object once it exists. To 

achieve this, taking Shanghai as an example, we fit models for these different states to 

explore how its future state is related to the dynamics of itself and other objects.  

For the coalescence state which refers to urban objects merging with other objects, we 
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introduce a set of variables characterizing the dynamics of objects that help to model 

the state of coalescence (i.e., the likelihood of coalescing) and its relationship with the 

dynamics of surrounding objects. For the establishment and unchanged states, we treat 

them collectively within a single growth model since they represent whether an object 

grows or not. Similarly, a set of variables characterizing the dynamics of objects is also 

introduced to model the growth state of objects (i.e., the likelihood of growth) and their 

relationship with surrounding objects.  

Finally, we predict the coalescence, growth and unchanged future states of urban 

objects through the relationships among objects obtained by our model. For objects in 

the growth state, we further explore how their area is related to surrounding objects. 

This research, thus, models explicitly the well-defined state transitions of urban spatial 

objects through extensive characterization of the spatial-temporal relationships among 

neighbouring urban spatial objects. 

5.2 Data and method 

5.2.1 Data 

The land cover data were acquired from the European Space Agency (ESA) Climate 

Change Initiative (CCI) Land Cover time-series Product (Defourny et al., 2023). The 

CCI is a global, annually consistent land cover dataset with a spatial resolution of 300 

m. It covers the period since 1992 and is still updated with the latest plan being to 

release the 2021 land cover data. The data are derived from a combination of multiple 
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satellite sensor datasets including Advanced Very-High-resolution Radiometer 

(AVHRR), SPOT-Vegetation, Medium Resolution Imaging Spectrometer (MERIS), 

PROBA-Vegetation and Sentinel-3 OLCI time-series data. The CCI classification 

system used is the Land Cover Classification System (LCCS) developed by the United 

Nations (UN) Food and Agriculture Organization (FAO). In addition to this system, the 

identification of urban areas also relies on the Global Human Settlement Layer in the 

Global Urban Footprint dataset. The overall accuracy of urban areas reaches 86% to 

88%. We extracted urban areas for Shanghai from 1992 to 2018 with a 60 km buffer 

from the boundary of its centre object defined in 2018 using the CCI dataset. This 

original raster-based urban dataset was then transformed into an object-based dataset 

for the present analysis. 

5.2.2 Labelling ID for objects 

To model and explore the relationship between the state of urban objects and the 

dynamics of their surrounding neighbours, it is necessary to identify whether an urban 

object has coalesced or grown. The coalescence state occurs when an object merges 

with another object. The growth state arises when an object increases in area.  

When modelling changes in the area of objects, a pre-requisite is to identify the 

continuous object that is changing, but if one object coalesces with others, it will cause 

a change in object identity and a sudden and, in some cases, great change in area. 

Coalescence can, thus, cause confusion and difficulty in identifying a continuous urban 

object and modelling changes in its area. For example, if several objects merge into one 
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object, the increase in area is clear, but to which object the increase should be attributed 

is not. Thus, we introduce "birth" and "death" processes for urban objects to deal with 

the identification of the individual objects before considering changes in their areas.  

At the initial time point, there are a variety of different-sized urban objects in the space 

of interest. Influenced by a variety of urban growth drivers, an urban object will tend to 

expand outwards. Through its expansion, an object could be connected with other 

objects and merged into one object. At this time point, we treat the several connected 

objects as "dead”, and the new coalescence object as "born". Based on this concept, if 

an urban object exists from time i to i+n and coalesces or is “dead” at time i+n+1, we 

will treat it as a continuous object from time i to i+n, and if its area at i+1 is larger than 

that at time i, it will be labelled “growth”.  

To label the coalescence and growth state for each object, we assign each urban object 

with a unique ID. First, to detect the "death" and “birth” processes, we utilize a 

backward method by labelling urban objects starting from the last year. We first 

intersect layer i+n with layer i+n-1. For all the objects in year i+n-1, when conducting 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖+𝑛−1
𝑗

∩ 𝑜𝑏𝑗𝑒𝑐𝑡𝑖+𝑛
𝑘 , 𝑜𝑏𝑗𝑒𝑐𝑡𝑖+𝑛−1

𝑗
 acquires the ID of 𝑜𝑏𝑗𝑒𝑐𝑡𝑖+𝑛

𝑘 , which is 

𝐼𝐷𝑖+𝑛
𝑘 . We then check the appearance frequency of 𝐼𝐷𝑖+𝑛

𝑘  in year i+n-1. If the 

frequency equals 1, suggesting that it is a continuous object, the object will retain this 

ID; if the frequency is larger than 1, then new IDs are assigned to all the objects that 

have 𝐼𝐷𝑖+𝑛
𝑘 .  

The details of this process are illustrated in Figure 5.1. In the example, at time i+3, the 
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object is labelled as a. Then at time i+2, all the objects within the boundary of object a 

are first labelled as a (shown in the bracket). We then check the frequency of this 

labelled ID, that is, a. If its frequency equals 1, this suggests that within this boundary 

there is only one object and it is a continuous object. If its frequency is larger than 1, 

this suggests that a coalescing process exists from time i+2 to i+3. In this case, new IDs 

are then assigned to these objects. At time i+2, there are two objects within the boundary 

of object a. So new IDs, b and c respectively, are given to them. Because of the 

coalescence of objects b and c, we treat them as coalesced or "dead" at time i+3 and a 

new object, a is "born" at time i+3. This process is repeated every year. In the given 

example, at time i+1, within objects b and c, there is only one object labelled as b and 

c, respectively. So, they are still labelled as b and c, indicating that they are continuous 

objects from time i+1 to time i+2. At the time i, the frequency of b equals 1 suggesting 

that it is a continuous object, but within object c, there are several isolated objects. In 

this case, object d, e, f, g is "dead" at time i+1 and object c is “born” at time i+1.  

From the above unique labelling process, we acquire IDs that can help to trace the state 

of urban objects through time. For example, from time i to time i+3, object b is a 

continuous object from time i to time i+2 and object c is a continuous object from time 

i+1 and time i+2. According to the frequency of IDs, we can obtain coalesced objects 

and continuous objects (i.e., non-coalesced objects). Then for a continuous object, if 

the area at one time point is larger than that at the previous time point, it will be labelled 

as growth, otherwise, it will be labelled as unchanged. We, therefore, acquire all the 

coalescence, growth and unchanged states of all objects.  



131 

 

 

Figure 5.1 An illustration of the ID labelling process for objects. 

The red arrow represents the temporal sequence of urban growth while the blue arrow 

represents the sequence of the labelling process.  

5.2.3 Neighbouring objects 

The second step is to calculate the influence of other objects on the state of the core 

object (i.e., the object of interest). In this research, we concentrate on urban objects that 

are defined as neighbouring objects by building a graph or network structure. To 

acquire the neighbouring objects around one core object, we first transform all objects 

into points using the centroid point, and then a triangulated irregular network (TIN) is 

generated from these points for every year. The Delaunay triangulation is used to create 

the TIN. The Delaunay triangulation is associated with Voronoi polygons. In the 

Delaunay triangulation, points are linked by an edge of the Delaunay triangulation. A 

triangle is then formed by connecting three points whose corresponding circumscribing 

circle contains no other points within it. This process results in all points being 

connected through a set of triangles. Due to the nature of Delaunay triangulation, for 

one point, all the points directly connected to it through the edges of the Delaunay 

triangulation are regarded as its neighbours. Consequently, a set of neighbouring points 
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is established for each point in the dataset. An example is given in Figure 5.2. It is part 

of the Delaunay triangulation we generated for the year 2010 showing the link among 

objects. The size of each point is shown as proportional to the area of its corresponding 

object. The red arrow labels the core object and there are 5 neighbouring objects from 

A to E around it. It is important to note that since urban objects are essentially polygons 

other than points which we used to generate the network, there could be some cases in 

which neighbouring objects are not included in the resultant set of neighbouring objects. 

However, considering the irregular shape of urban objects and the complexity involved 

in generating a set of close neighbouring objects among polygons, our method can 

generally assist in identifying neighbouring objects, thereby fulfilling the requirements 

for the present analysis. 

 

Figure 5.2 Illustration of a set of neighbouring objects for a core object. 

The red arrow refers to the core object. A to E represent its neighbouring objects. 
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5.2.4 Covariates 

Based on the generated network, we identify a series of influencing factors or covariates 

that represent the dynamics of neighbouring objects which could potentially influence 

the states of the core objects and, thus, could be further used in our model. We assume 

that each year’s state is dependent on its previous year’s state and influenced by its 

neighbours’ dynamics in previous years. Consequently, all the covariates used are based 

on data from the previous year. When we treat urban objects as nodes and establish 

links among them, factors such as the distance between nodes, and the weight and 

dynamics of other nodes, play a crucial role in influencing the dynamics of the core 

node. Therefore, when we study the dynamic of urban objects from this node-link 

perspective, the question is how the distance, area and interaction of neighbouring 

objects influence the state of the core objects. To further explore this, a variety of 

covariates related to distance, area and interactions were explored in the models.  

Table 5.1 The list of covariates for the coalescence and growth model 

Covariates The 

coalescence 

model 

The 

growth 

model 

The 

area 

model 

core_changed_preyear √ √  

nearest_changed_preyear √ √  

nearest_500_changed_preyear √   

nearest_500_1000_changed_preyear √   

percentage_changed_preyear √ √  

largest_change_preyear √ √  

nearest_distance_preyear √   

percentage_nearest_500_changed_preyear  √  

percentage_nearest_500_1000_changed_preyear  √  

time   √ 

largest_interaction_preyear   √ 

second_largest_interaction_preyear   √ 

third_largest_interaction_preyear   √ 
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largest_area_preyear   √ 

second_largest_area_preyear   √ 

third_largest_area_preyear   √ 

nearest_area_preyear   √ 

nearest_interaction_preyear   √ 

largest_object_interaction_preyear   √ 

second_largest_object_interaction_preyear   √ 

third_largest_object_interaction_preyear   √ 

A list of all the covariates for the three models is shown in Table 5.1. First, in the 

coalescence model, for coalescence to occur, objects should expand and be close 

enough to be connected. This growth could be either of the core object itself or of the 

surrounding objects. Thus, distance and growth are two crucial factors. We first include 

a distance factor (i.e., the nearest distance) in the model. Then, the state of the core 

object is also included in the model since we assume that if the object changed in the 

previous year, it is more likely to change this year and increase the possibility of 

coalescence. Last, the set of states of neighbouring objects is also included. If the 

neighbouring objects changed in the previous year, they are more likely to change this 

year with a greater chance to coalesce. We plotted a sample core object and its 

neighbours in Figure 5.3 to help to explain these covariates. A detailed definition of 

each factor in the coalescence model is as follows: 

1. core_changed_preyear: whether the core object changed in the previous year. 1 for 

changed and 0 for unchanged.  

2. nearest_changed_preyear: whether the nearest object changed in the previous year. 

1 for changed and 0 for unchanged. This is included because we assume that 
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coalescence is likely to occur with the nearest object. In Figure 5.3, the nearest 

object is D. 

3. nearest_500_changed_preyear: whether there is an object that has changed within 

a buffer of ‘nearest distance plus 500 m’ in the previous year. 1 for changed and 0 

for unchanged. In Figure 5.3, the buffer is depicted in green. We first calculated the 

nearest distance between the boundary of two objects. Any distance exceeding the 

nearest distance and less than the nearest distance plus 500 m will be classified in 

this category. This buffer-based approach helps to avoid duplication of the covariate 

information from the nearest object. Therefore, only objects C and E are considered. 

We chose this buffer since 500 m ensures coverage of two pixels outwards in all 

directions, considering that the original raster has a size of 300 m. This factor 

recognizes that coalescence must occur close to the core object, but not necessarily 

with the nearest neighbour.  

4. nearest_500_1000_changed_preyear: whether there is an object that has changed 

within a buffer of ‘nearest distance plus 500 m to 1000 m’ in the previous year. 1 

for changed and 0 for unchanged. A similar calculation of the nearest distance 

between objects is conducted to avoid duplication. In Figure 5.3, the buffer is shown 

in purple and the objects considered are A and B. This buffer ensures coverage of 

four pixels outwards in all directions. 

5. percentage_changed_preyear: the percentage of changed objects of all 

neighbouring objects in the previous year. The unit is %. In Figure 5.3, this covariate 

represents the percentage of changed objects among objects A to E. This factor 
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provides information on the amount of change amongst neighbours and represents 

local dynamics. The larger the value, the more dynamic this local area is, and this 

could influence the dynamics of the core object. 

6. largest_change_preyear: whether the largest object changed in the previous year. 1 

for changed and 0 for unchanged. In Figure 5.3, this object is A. This factor is 

included due to the assumption that large objects may grow more and then are more 

likely to coalesce.  

7. nearest_distance_preyear: the nearest distance between two objects. The unit is km. 

This distance is calculated as the smallest between object boundaries, shown as a 

blue double-sided arrow in Figure 5.3. 

For the growth model, we assume that it is impacted by the state of the core object itself 

and the dynamics of its neighbours in the previous year. Thus, covariates 1, 2, 5 and 6 

in the coalescence model are also included in the growth model. Factor 1 is the growth 

state of the core object itself in the previous year. Factor 2 represents that the present 

growth state is likely to be affected by the nearest object’s previous growth state. Factor 

3 represents a local dynamic suggesting that the growth of local objects is linked to the 

growth of the core. Factor 6 implies that the growth state is likely to be affected by the 

state of the largest object. We further include two more factors that represent the local 

dynamic as follows: 

8. percentage_nearest_500_changed_preyear: the percentage of changed objects 

within the buffer of ‘nearest distance plus 500 m’ in the previous year. The unit is %. 
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9. percentage_nearest_500_1000_changed_preyear: the percentage of changed 

objects within the buffer of ‘nearest distance plus 500 m to 1000 m’ in the previous 

year. The unit is %. 

These two factors have similar meanings to factors 3 and 4. The difference is that 

they represent the percentage of changed objects rather than whether they changed. 

They, thus, provide more detailed information on local dynamics. It is also 

important to note that when we refer to ‘changed in the previous year’ in the above 

covariates, we not only refer to objects that increased in area. Any objects that are 

newly introduced into the space or experienced coalescence in the previous year are 

also classified in this category, as they all represent change. 

 

Figure 5.3 Definition of covariates in a set of neighbouring objects. 

The green objects are neighbouring objects. The grey lines connecting objects represent 

the TIN.  
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For the area model, we assume first that it is influenced by time as area will increase 

over time. Then we introduce an interaction term which borrows from the well-known 

gravity model calculated as  
𝑎0 × 𝑎𝑖

𝑑0𝑖
2 , where 𝑎0 is the area of the core object, 𝑎𝑖 is the 

area of the ith neighbouring object and 𝑑0𝑖
2  is the square of the distance between the 

core object and the ith neighbouring object. The distance is calculated using the nearest 

distance between boundaries. The interaction term suggests that area is influenced by 

the interaction between itself and the neighbouring object represented by their areas 

and a decay with distance. In this context, the interaction is larger when two objects are 

larger and closer. We use this interaction to represent the link between the core and the 

neighbour. It is not merely the neighbour’s effect on the core, but a two-way effect, 

which mirrors the connections between urban objects in reality. As two urban objects 

are larger, the interactions such as population or information exchange between them is 

also more intensive which will further affect their respective states. We, therefore, select 

several different interaction terms for the model. Ultimately, we will check whether the 

area of the core object is related directly to the area of its neighbours, leading to several 

area factors also being included in the model. 

The detailed definition of covariates for the area model is as follows: 

1. Time: represents the temporal effect. We assume that time has a linear effect on 

the area of the object. 

2. largest_interaction_preyear: the largest interaction of all interactions in the 

previous year.  
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3. second_largest_interaction_preyear: the second-largest interaction of all 

interactions in the previous year.  

4. third_largest_interaction_preyear: the third largest interaction of all interactions in 

the previous year. Factors 2 to 4 represent area being likely to be affected by larger 

interactions.  

5. largest_area_preyear: the area of the largest object in the previous year.  

6. second_largest_area_preyear: the area of the second-largest object in the previous 

year. 

7. third_largest_area_preyear: the area of the third largest object in the previous year. 

Factors 5 to 7 represent area being likely to be influenced by the area of larger objects. 

8. nearest_area_preyear: the area of the nearest object in the previous year. This 

represents the assumption that area is likely to be affected by the area of the nearest 

object. 

9. nearest_interaction_preyear: the interaction between the core and the nearest 

object in the previous year. This represents the assumption that the area is likely to be 

affected by the interaction between the core and the nearest object. 

10. largest_object_interaction_preyear: the interaction between the core and the 

largest object in the previous year. 

11. second_largest_object_interaction_preyear: the interaction between the core and 

the second-largest object in the previous year. 
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12. third_largest_object_interaction_preyear: the interaction between the core and the 

third largest object in the previous year. Factors 10 to 12 represent the area being likely 

to be affected by the interaction of larger objects. 

Considering a same interaction could have a different effect on different-sized objects. 

For example, if the interaction is between a large and a small object, the same 

interaction could have different effects on the small object (such as 2 km2) and the large 

object (such as 20 km2). Thus, we classified the core objects into different groups based 

on their areas in the final year of their continuous period of existence, which could 

ensure that the object is classified in the same group over time. Also since there is a 

very limited number of large continuous objects, which increases the uncertainty in 

estimation, we run the area model only for objects smaller than 9 km2. Therefore, the 

group is as follows: A: area < 1 km2, represents very small objects; B: area between 1 

km2 and 3 km2; C: area between 3 km2 and 5 km2; D: area between 5 km2 and 7 km2; 

E: area between 7 km2 and 9 km2 with a 2 km2 interval for further modelling. We will 

explore how the interaction term affects different-size core objects differently. 

All these covariates are calculated for all objects over time. So, each core object has its 

own covariates over time. All aspects of the ID labelling process and the calculation of 

covariates were conducted using R 4.3.0. 

 5.2.5 Models 

Since we model the coalescence, growth and area of objects over time, the state of a 
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continuous object could be inherently related over time. Thus, a linear mixed model 

was conducted with a within-group structure, termed the random effects component. 

This allows for correlation within groups and variability between groups. In our model, 

each continuous object is treated as a group. Its state at different time points is treated 

as a different observation within this group. Considering that for the coalescence and 

growth model, we have a binary response variable (whether the state of an object is 

changed or not), a generalized linear mixed model (GLMM) was selected to fit to the 

data. A GLMM with binary response uses a default logit link to transform probability 

to the linear predictor and also includes a random structure. In this model, 𝑌𝑖𝑗  follows 

a Bernoulli distribution 𝑌𝑖𝑗  ~ 𝐵(1, 𝑃𝑖𝑗) with probability 𝑃𝑖𝑗(𝑌𝑖𝑗 = 1) for success, and 

the model is written as  

logit (𝑃𝑖𝑗) =  𝛼 +  𝛃𝐗𝑖𝑗 +  𝜇𝑖,  

where 𝑖 = 1, 2, 3 … , 𝑛  represents the nth group, 𝑗 = 1, 2, 3 … , 𝑚  represents mth 

observation in a group, 𝑃𝑖𝑗 is the probability of success for observation ij, 𝛼 is the 

fixed intercept, 𝛃𝐗𝑖𝑗 is a set of fixed effects and 𝜇𝑖 is the random effects for group i 

accounting for variability between groups. Let 𝜂𝑖𝑗 to be the log odds. Then 𝑃𝑖𝑗(𝑌𝑖𝑗 =

1) is acquired by 
𝑒

𝜂𝑖𝑗

1+𝑒
𝜂𝑖𝑗

. 

For the coalescence model, the function is further written as  

𝑙𝑜𝑔𝑖𝑡(𝑃𝑖𝑡)  = α  + β1core_changed_preyear + β2nearest_changed_preyear + 

β3nearest_500_changed_preyear + β4nearest_500_1000_changed_preyear + 
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β5percentage_changed_preyear + β6largest_change_preyear + 

β7nearest_distance_preyear + 𝜇𝑖.  

𝑃𝑖𝑡 is the probability of coalescence of an object in group i at time t. When 𝑃𝑖𝑡 is 1, it 

indicates that the object will coalesce with others. α is the fixed intercept, β1-β7 are the 

coefficients for the corresponding covariates and 𝜇𝑖 is the random effect for group i.  

For the growth model, the function is written as: 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑖𝑡)  = α  + β1core_changed_preyear + β2nearest_changed_preyear + 

β3percentage_changed_preyear + β4largest_change_preyear + 

β5percentage_nearest_500_changed_preyear + 

β6percentage__500_1000_changed_preyear + 𝜇𝑖.  

This model is similar to the coalescence model albeit that 𝑃𝑖𝑡 represents the probability 

of growth of object i at time t. The differences are that nearest_distance_preyear is 

removed and two percentage factors are included, as described above. 

In terms of the area model, since there are more small-sized objects in our dataset (i.e., 

the object sizes have a skewed distribution), a Gamma distribution GLMM is employed. 

The model using a default log-link including a random structure is written as:  

log[𝐸(𝑌𝑖𝑗)] =  𝛼 +  𝛃𝐗𝑖𝑗 +  𝜇𝑖 +  𝜀𝑖𝑗,  

where the expected value of observation is linked with the linear function through a 

log-link. 𝑌𝑖𝑗 is the value of observation j in group i, 𝛼 is the fixed intercept, 𝛃𝐗𝑖𝑗 is 
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a set of fixed effects, 𝜇𝑖  is the random effect for group i that follows a Gaussian 

distribution 𝜇𝑖~𝑁(0, 𝜎𝜇
2) and 𝜀𝑖𝑗 is the error term for each observation j in group i 

that follows a Gaussian distribution 𝜀𝑖𝑗~𝑁(0, 𝜎𝜀
2). 

The model can be further written as: 

log[𝐸(𝑐𝑜𝑟𝑒_𝑎𝑟𝑒𝑎𝑖𝑡)]  = α + β0time + β1largest_interaction_preyear + 

β2second_largest_interaction_preyear + β3third_largest_interaction_preyear + 

β4largest_area_preyear + β5second_largest_area_preyear + 

β6third_largest_area_preyear + β7nearest_area_preyear + 

β8nearest_interaction_preyear + β9largest_object_interaction_preyear  + 

β10second_largest_object_interaction_preyear + β11 

third_largest_object_interaction_preyear + 𝜇𝑖 + 𝜀𝑖𝑡  

Time is treated as a fixed linear effect and α is the fixed intercept. β0-β11 is the 

coefficient for each covariate, 𝑐𝑜𝑟𝑒_𝑎𝑟𝑒𝑎𝑖𝑡 is the area of the core object in group i at 

time t and 𝜇𝑖 is the random effect. In the model, we include a random intercept which 

means each group has an independent baseline level. 𝜀𝑖𝑡 is the error term for each 

observation i at time t that follows a Gaussian distribution 𝜀𝑖𝑡~𝑁(0, 𝜎𝜀
2), representing 

any remaining unexplained part after fitting.  

Due to the complexity of our models, we undertake inference using an approximate 

Bayesian framework through the Integrated Nested Laplace Approximation (INLA) 

package. Unlike traditional Bayesian inference methods such as Markov Chain Monte 
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Carlo (MCMC), INLA is less computationally expensive and more flexible. A Bayesian 

framework specifies a prior distribution of model parameters and estimates the 

posterior distribution of each parameter. The precision for 𝜎𝜇 and 𝜎𝜀 is 𝜏𝜇 and 𝜏𝜀 

are assigned default vague prior distributions, which follows a log Gamma distribution, 

log (𝜏) ~ logGamma (1,10-5). For each fixed effect parameter 𝛽, a default prior is also 

assigned with 𝛽 ~ N (0,106). 

We first applied the coalescence, growth and area models separately. For the 

coalescence and growth models, the number of coalescence and non-coalescence 

objects are unbalanced, and this is true also of the number of growth and unchanged 

objects. Specifically, the number of non-coalescence and unchanged objects far 

exceeds those of coalescence and growth objects. To mitigate bias and uncertainty in 

predicting the minority group, we implemented a combination of oversampling and 

undersampling techniques to create a balanced dataset, ensuring similar numbers of 

coalescence and non-coalescence objects, as well as growth and unchanged objects. 

The oversampling method randomly replicates the data in the minority group to 

increase their number and the undersampling method randomly excludes the data in 

the majority group. The process stops when the two groups are balanced. We conducted 

this sampling process to acquire a balanced coalescence and non-coalescence dataset. 

Then for the non-coalescence dataset, which is the continuous dataset, the sampling 

process was also conducted to obtain a balanced set of growth and unchanged objects. 

After the sampling process, the coalescence and growth objects can be represented 

more evenly in the modelling. The coalescence and growth models were applied to the 
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balanced datasets separately.  

The Deviance Information Criterion (DIC) was employed to select the best-fit model. 

It is a measure of the goodness-of-fit allowing fair comparison between models. DIC 

is analogous to the Akaike Information Criterion (AIC) but is especially suitable for 

the Bayesian context. As for the AIC, a smaller DIC suggests a better model fit. We 

first include all the covariates in the model and then remove insignificant covariates to 

obtain a model with only significant covariates. Then the DIC is used to select from 

the remaining covariates. Since the coalescence and growth models have binary 

dependent variables, The AUC (Area Under the Receiver Operating Characteristic 

(ROC) Curve) was used to evaluate how well the model distinguishes between 0 and 

1. The AUC value is obtained by sweeping the threshold between 0 and 1 and 

displaying the specificity and sensitivity. The closer the AUC to 1, the better the model 

performs at classifying between groups. A k-fold cross-validation was also conducted 

to evaluate the performance of the models. This splits the dataset into k equal-sized 

subsets, with k-1 folds as a training dataset and 1-fold as a validation dataset. The model 

was first applied to the training dataset and then fitted to the validation dataset. This 

process was repeated k times so each fold is treated as a validation dataset once. After 

iteration, the average value of the evaluation metrics is calculated. In our case, the 

average accuracy was calculated which evaluates the percentage of correctly predicted 

state events of the total events.  

The area model was applied exclusively to grown objects to focus on how the change 
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of interaction terms influences the area of the core. It is worth mentioning that the 

coalescence of objects can sometimes lead to a sudden and significant change in the 

interaction. We, therefore, examined the increase in interaction terms between two-time 

points. The distribution of the increase of interaction term was checked and any 

increase larger than 10 was removed as an outlier. These outliers accounted for less 

than 0.3% of the total observations and do not affect the performance of the area model. 

Finally, we integrated the coalescence and growth models together to evaluate their 

combined effectiveness in predicting the state of objects. Since essentially these three 

states are mutually exclusive, an object could only have one state at one-time point. 

The state of an object can be assessed through the process illustrated in Figure 5.4. First, 

if an object is coalesced with others, it is classified as a coalescence object; otherwise, 

it is considered as a continuous object. Second, if the object's area increases, it is 

identified as a grown object; if there is no change, it is considered an unchanged object. 

Through this process, it is possible to predict the states of all objects in space. Therefore, 

first, the coalescence model was applied to the entire dataset, through which it was 

possible to label coalescence and non-coalescence objects. Subsequently, all the non-

coalescence objects were extracted, upon which the growth model was applied to 

distinguish between grown and unchanged objects.  
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Figure 5.4 The integrated process for predicting the coalescence, growth and unchanged 

states of objects. 

5.3  Results 

5.3.1 Coalescence model 

5.3.1.1 Model selection and validation 

To acquire the best-fit model, we first applied our model with all covariates plus the 

random structure and checked the posterior distribution of each coefficient. The 

posterior distribution intervals for nearest_change_preyear, 

nearest_500_1000_change_preyear and largest _change were not all positive or 

negative, so they were removed from the model. We then ran the model with the 

remaining four covariates plus the random structure and checked the posterior 

distribution again, with all four covariates remaining significant. To further obtain the 

best-fit model, we used a backward stepwise elimination method to select from these 

four covariates. We first removed the percentage_changed_preyear which has the least 
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effect. When comparing the DIC of the model with four covariates and the model 

excluding the percentage_changed_preyear, the DIC of the latter one decreased slightly 

from 25647.86 to 25615.29, suggesting that excluding percentage_changed_preyear 

could increase the goodness-of-fit of the model. Thus, it was removed from the model. 

We then removed core_change_preyear since it had the least effect. The DIC of the 

model without core_change_preyear dramatically increased to 44339.17, suggesting 

that it should be kept in the model. We also excluded the random structure and 

compared the DIC with the model including the random structure. The DIC without the 

random structure dramatically increased to 56817.21. Therefore, finally, the best-fit 

model containing three covariates was identified: core_changed_preyear, 

nearest_500_changed_preyear and nearest_distance, plus the random structure.  

Since we extracted a balanced sub-data-set to fit this model, to further validate how 

well the model predicts the coalescence of objects, we first fitted the model to all objects 

in the original dataset and then cross-validation was applied. A 50% probability was 

used as the threshold to determine whether the objects coalesce or not. If the probability 

is larger than 50%, object states are classified as coalescence and if smaller than 50% 

as non-coalescence. By using this 50% threshold, we transformed the mean posterior 

probability from the model to binary data indicating coalescence or non-coalescence 

for each object. Then by comparing the predicted value and original value in the dataset, 

the accuracy of the model was calculated. For the original unsampled dataset, the 

accuracy reached 91%, indicating an excellent performance. The AUC value was 0.92 

which also suggests excellent model performance in terms of distinguishing between 0 
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and 1. We also checked the integer thresholds between 45% and 55% and compared the 

AUC and accuracy, but both were outperformed by the 50% threshold. Therefore, a 50% 

threshold for coalescence was finally selected.  

Cross-validation was conducted to further validate the performance of the model. We 

randomly grouped the original unbalanced dataset into five folds for training (80%) and 

validation (20%). The model was fitted to the training data and then predicted the 

validation data. This process was repeated five times. The accuracy was calculated with 

an average of 86% for the validation data, and the AUC value was 0.84 demonstrating 

very good performance of the model.  

5.3.1.2 Parameter interpretation 

The final best-fit model includes an unstructured independent and identical random 

structure that accounts for variabilities between groups. The precision of this random 

effect has a mean value of 0.187 with a narrow interval from 0.17 to 0.205, which 

corresponds to a variance of 5.35 and low uncertainty in estimation. This relatively high 

variance suggests that between-group variation is relatively high and plays an important 

role in predicting coalescence. A summary of the fixed intercept and the other three 

fixed covariates is given in Table 5.2. Since we used a binomial model and a logit link 

to estimate the probabilities of the observed binary response through a linear 

combination, the intercept represents the baseline of the log odds when other variables 

are zero. In the logit model, a positive intercept indicates the baseline probability of the 

occurrence of predicted events is larger than 50%. In our case, the posterior mean of 
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the intercept is 1.340, suggesting that the baseline probability of the coalescence of an 

object is greater than 50%. When converting this log odds into probability, it equals 

79.2% (
𝑒1.340

1+ 𝑒1.340), implying that the default state of an object is that it is likely to coalesce.  

Table 5.2 Summary of the fixed effects of the best-fit coalescence model 

parameter Mean sd 0.025quant 0.5quant 0.975quant 

α 1.340 0.067 1.210 1.340 1.472 

β1 0.367 0.048 0.273 0.367 0.461 

β3 0.738 0.046 0.648  0.738 0.829 

β7 -6.808 0.156 -7.118 -6.807 -6.506 

The posterior mean of β1 and β3, the coefficients of core_changed_preyear and 

nearest_500_changed_preyear are positive, suggesting that if the core object changed 

in the previous year and if there are changed neighbouring objects within the 

surrounding ‘nearest distance plus 500 m’ zone, the probability of coalescence of the 

core object will also increase. Nearest_500_changed_preyear has greater influence with 

a posterior mean of 0.738, which means that if there are changed neighbouring objects 

within the buffer, the log odds increase by 0.738, holding other variables unchanged. 

The log ratio for nearest_500_changed_preyear is 𝑒0.738= 2.09, indicating that when 

holding other covariates fixed, the odds increase by 109%. If we use the baseline 

probability, when nearest_500_changed_preyear equals 1, the probability of 

coalescence increases to 88.9%. For core_changed_preyear, the posterior mean is 0.367, 

indicating a log ratio of 𝑒0.367=1.443, suggesting that when holding other variables 

fixed, if the core object changed the previous year, the odds will increase by 44.4%. 
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Similarly, using the baseline probability and converting it into a probability, the 

probability of coalescence increases by around 5.4%.  

The posterior mean of β7, the coefficient of nearest_distance, is negative but the most 

significant, indicating that if the nearest distance between the core object and the 

neighbouring objects increases the probability of coalescence will decrease, and the 

coalescence of objects is strongly affected by nearest_distance. The negative value is 

not surprising since if the distance increases, the objects need to grow more to be close 

enough to another object to coalesce within one time period. It should be noted that the 

credible interval for β6 is wider compared to others, indicating greater uncertainty in 

estimating the effect of the nearest distance.  

5.3.2 Growth model 

5.3.2.1 Model selection and validation 

Similar to the coalescence model, we first applied our model with all six covariates to 

extract balanced non-coalescence objects. The posterior distribution intervals of 

percentage__500_1000_changed_preyear and nearest_changed_preyear were not all 

positive or negative. So, they were excluded from the model. We then ran the model 

with the remaining four covariates plus the random structure and checked the posterior 

distribution again, and all these four covariates were significant. Then a backward 

stepwise method was used to select from these four covariates. 

Percentage_nearest_500_changed_preyear was excluded first since it was the least 

significant. The DIC slightly increased to 28305.13 from 28296.47. Therefore, all four 
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covariates including core_changed_preyear, percentage_changed_preyear, 

largest_change_preyear and percentage_nearest_500_changed_preyear were kept for 

the final best-fit model. We also removed the random structure, but the DIC 

dramatically increased to 35695.88. Therefore, the random structure was kept in the 

model. A 50% threshold was also used to determine whether an object had grown or 

not. If the probability is larger than 50%, the object is treated as grown, otherwise, it is 

labelled as unchanged. 

We fitted the final model to all non-coalescence objects in the whole dataset. The AUC 

value was 0.897 suggesting a good discrimination between grown and unchanged 

objects. The accuracy was also calculated at 88.8%, slightly smaller than that of the 

coalescence model, but still indicating an excellent performance overall. 40% and 60% 

thresholds were also used to compare with the 50% threshold, but the accuracies were 

slightly lower than for the 50% threshold. Therefore, the 50% threshold was finally 

used to determine whether an object had grown or not. Cross-validation was also 

conducted in a similar way as for the coalescence model. The average accuracy was 

86.9%, which shows that the growth model accurately predicts the object states of 

grown and unchanged. 

5.3.2.2 Parameter interpretation 

Table 5.3 Summary of the fixed effects of the best-fit growth model 

parameter Mean sd 0.025quant 0.5quant 0.975quant 

α -1.484 0.058 -1.598 -1.484 -1.371 
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β1 0.316 0.042 0.233 0.316 0.398 

β3 0.014 0.001 0.012 0.014 0.016 

β4 0.295 0.048 0.200 0.295 0.389 

β5 0.006 0.002 0.002 0.006 0.009 

The random effects account for heterogeneity within groups, with a mean precision of 

0.137 and an interval from 0.124 to 0.150. Compared to the coalescence model, this 

indicates a larger variance among groups. Unlike the coalescence model, the posterior 

mean of the intercept is negative, suggesting that for the growth model, the base state 

is unchanged with a baseline probability of 18.4%. This low probability implies that 

objects are unlikely to change by default and other covariates must contribute 

significantly to increase the probability to achieve a growth state. 

All other fixed effects are shown in Table 5.3 which are all positive, indicating that all 

these covariates play a positive role in the probability of growth. 

Core_changed_preyear (β1) has the largest log odds of 0.316, suggesting that if the core 

object changed in the previous year, the probability increases to 23.8% from the 

baseline probability. Percentage_changed_preyear (β3) and 

percentage_nearest_500_changed_preyear (β5) have a small effect on the log odds, 

contributing marginal increases. These increases are small, but it should be noted that 

one unit is only 1% suggesting that the accumulated increase should not be neglected. 

For example, a 50% percentage_changed_preyear will increase the probability to 31.3% 

from the baseline. Lastly, Largest_change_preyear (β4) has a slightly smaller effect than 
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core_changed_preyear, with a 4.9% increase in the probability.  

5.3.3 Area model 

5.3.3.1 Model selection and validation 

Before running the model with all covariates for the grown objects, we first checked 

the correlation between the largest interaction and the interaction between the core and 

the largest object, the second-largest interaction and interaction with the second-largest 

object, the third-largest interaction and interaction with the third-largest object. The 

results show that these three pairs have large correlations of 88.6%, 76.1% and 71.5%, 

respectively. Therefore, we included only the largest interaction, the second largest 

interaction and the third largest interaction, and removed β9 to β11 in the model. We then 

applied the model including β0 to β8 first. The third_largest_interaction_preyear, 

largest_area_preyear, second_largest_area_preyear, third_largest_area_preyear and 

nearest_area_preyear, had intervals crossing zero. Thus, they were excluded from the 

model. Then a model including β0, β1, β2 and β8 was applied. They were all significant 

and so a backward stepwise selection process was conducted. 

Second_largest_interaction_preyear was removed first since it was the least significant 

variable. The DIC slightly decreased from -2730.76 to -2743.60, suggesting that the 

model without second_largest_interaction_preyear is better fitting. We then removed 

the nearest_interaction_preyear and the DIC decreased to -2756.81. We further 

removed year and the DIC significantly increased to -1229.96. Therefore, the final 

model included only year and largest_interaction_preyear. We then added the sized-
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group factor for largest_interaction_preyear, and the DIC decreased to -2769.35. Thus, 

the final model includes year as a linear temporal effect and the size-class varying 

largest_interaction_preyear.  

5.3.3.2 Parameter interpretation 

The posterior fixed effect is shown in Table 5.5. The area model has a fixed intercept 

that has a posterior mean of -1.823 with a standard deviation of 0.040. Since we used a 

Gamma distribution, the value of the intercept needs to be log-transformed to represent 

the area of core objects. Thus, the overall mean baseline of the core area is 𝑒−1.823 = 

0.161 km2. For the fixed temporal effects, one unit (i.e., a one-year increase) 

corresponds to a 5.2% increase. Time also has an extremely small standard deviation, 

implying a low uncertainty relating to the effect of time. 

For the interaction effects, as shown in Table 5.4, the parameters are positive for all five 

groups, suggesting that if the interaction increases, the area of core objects also 

increases. Among the five groups, group E has the least effect with a mean posterior 

probability of 0.052 and group D has the largest effect with a mean posterior of 0.186. 

Converting these to the original scale suggests that if the interaction increases by 1 unit, 

and holding other parts fixed, the area of the core object increases by 5.3% (𝑒0.052 =

1.053) and 20.4% (𝑒0.186 = 1.204), respectively. The credible interval for group D is 

very wide, as shown in Figure 5.4, indicating that the interaction effect for this group 

has a larger estimation uncertainty compared to other groups. This is probably due to 

the limited number of objects in this group. In contrast, groups A, B, C and E have much 
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narrower intervals, suggesting low uncertainty of estimation. Apart from group D, the 

effect of interaction decreases as the area increases. With a one unit increase in 

interaction, the area increases by 9.5%, 8.4%, 6.4% and 5.3% for groups A, B, C and E, 

respectively. 

Table 5.4 Summary of fixed effects of the best-fit area model 

parameter Mean sd 0.025quant 0.5quant 0.975quant 

α -1.823 0.040 -1.901 -1.823 -1.745 

β0 0.051 0.002 0.048 0.051 0.055 

β1A 0.091 0.008 0.076 0.091 0.106 

β1B 0.081 0.009 0.063 0.081 0.098 

β1C 0.062 0.011 0.041 0.062 0.084 

β1D 0.186 0.063 0.063 0.186 0.310 

β1E 0.052 0.013 0.026 0.052 0.078 
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Figure 5.5 The posterior distribution of fixed interaction effect for each sized group. 

5.3.3.3  Model hyperparameters 

The model includes an unstructured identical and independent random effect to account 

for between-group variation. Its precision 𝜎𝜇
2 has a posterior mean value of 1.42 and 

a relatively narrow interval, indicating a variance of 0.704 for between-group variation, 

implying that there is moderate heterogeneity between groups. Finally, the precision for 

the Gamma observation 𝜎𝜀
2 has a high posterior mean value of 19.46 and a narrow 

interval, representing a low variance of 0.05 implying a narrow interval for each object. 

Table 5.5 Summary of the hyper-parameters in the best-fit growth model 

parameter Mean sd 0.025quant 0.5quant 0.975quant 

𝝉𝝁 1.42 0.067 1.29 1.42 1.56 

𝝉𝜺 19.46 0.759 18.00 19.44 20.99 
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 5.3.4 Combination of coalescence and growth models  

We combined the coalescence and growth models together to predict comprehensively 

the state of all objects, following the process illustrated in Figure 5.3. First, the 

coalescence model was fitted to the entire dataset. Then the 50% threshold was used to 

distinguish between coalescence and non-coalescence objects. Second, the growth 

model was fitted to all the non-coalescence objects. Similarly, the 50% threshold was 

used to distinguish between grown and unchanged objects. We then acquired the 

predicted state of coalescence, growth and unchanged for all objects. The accuracy for 

the coalescence and growth models was also calculated for each year. Overall, both 

models demonstrated high accuracies, mostly larger than 80%. The only exceptions 

were 2017 for coalescence and 1993 for the growth model which both have accuracy 

over 75%.  

We also used 2010 as an example to illustrate the model’s prediction of the state of 

objects. The observed state of each object and the predicted state are mapped in Figure 

5.6. The spatial distribution of covariates in 2010 is shown in Figure A1. The mean, 

lower and upper bound of posterior probabilities for the coalescence and growth models 

are also mapped (Figures 5.7 and 5.8). The colour scheme is the same in figure 5.7 and 

5.8 respectively for lower, mean, and upper maps and it can be seen in the figures that 

the lower and upper limits generally reflect lower and higher probabilities. It should be 

noted that the accuracy is calculated based on the number of objects not considering 

their area. The large coalescence objects in the map are notable, but they account for 
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only a small number of the whole set of objects. It could be seen from the map that most 

large objects experienced coalescence this year. This trend is also shown in the 

probability map where large objects have a larger mean probability. Some variability is 

shown in the small objects, while growth exhibits more variability.  

 

Figure 5.6 Observed and predicted objects in 2010. 
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Figure 5.7 The posterior (a) lower, (b) mean and (c) upper limits of the 95% credible 

intervals of the predicted probability of coalescence in 2010. 
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Figure 5.8 The posterior (a) lower, (b) mean and (c) upper limits of the 95% credible 

intervals of the predicted probability of growth in 2010. 

The grey objects represent coalesced objects which are not included in the modelling. 

5.4 Discussion 

We proposed a novel object-based approach to explore the states of core urban spatial 

objects and their association with the dynamics of neighbouring urban objects. Utilizing 
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generalized linear mixed models, fitted in an approximate Bayesian inference 

framework via INLA, we were able to effectively model binary data and skewed data 

with a within-group structure. Our results demonstrate how changes in the states of 

neighbouring objects influence the state of urban objects. Specifically, the fitted models 

suggest that the coalescence state of urban objects is strongly affected by the distance 

to its nearest neighbouring object in the previous year. Intuitively, this makes sense, 

since coalescence requires proximate distance to collapse to zero. Additionally, the 

coalescence state is related to the states of the urban object itself and neighbouring 

objects located within a buffer around the core object, with a buffer width of the nearest 

distance from the core object to the neighbours plus 500 m.  

The fitted models suggest that the growth state is related to the state of the core object 

itself as well as that of its largest neighbour in the previous year. Furthermore, it is also 

associated with the dynamics of local neighbours represented by the percentage of 

grown objects amongst its neighbours and the percentage of grown neighbours in a 

defined buffer. We found that the area of grown objects has a relation with the largest 

interaction between the core object and its neighbours which affects core objects of 

varying sizes in different ways. 

For the coalescence state, an increase in the nearest distance from the core object to its 

neighbours significantly reduces the probability of coalescing. This is not surprising as 

for coalescence to occur, objects have to be close enough to be connected. However, 

when we analysed our findings further if the nearest distance is only 300 m (i.e., one 
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pixel side) while keeping the baseline probability and the other two covariates to 1, the 

probability of coalescence rises to 60.1%. While if the distance extends to 600 m (i.e., 

two-pixel sides), with other variables remaining unchanged, the probability decreases 

to 16.3%. At the same time, whether the nearest object changed in the previous year is 

insignificant. Taken together, these results suggest that the core does not necessarily 

coalesce with its closest object, but nevertheless is likely to coalesce with objects within 

a two-pixel plus the nearest distance radius around the core boundary, which 

corresponds to 600 m plus the nearest distance around the core object. This aligns with 

the observed significance of covariates nearest_500_changed_preyear and the 

insignificance of nearest_500_1000_changed_preyear. 

For the growth model, our results indicate that the growth state of the core is 

significantly influenced by both the core itself in the previous year and its local 

dynamics in the previous year, represented by two relevant covariates (in percentage 

units). Similar to the coalescence model, the growth state does not correlate directly 

with the state of the nearest object; instead, it tends to be associated with the state of 

nearby neighbours. This implies a potential spatial autocorrelation in the growth state. 

In reality, a local space may share similar local growth drivers, causing objects within 

a neighbourhood to undergo similar changes. Furthermore, this could also explain why 

the state of the largest object has the second-largest effect: the largest object can act as 

a "source" and diffuse the "growth" outwards within a local space, thereby affecting the 

surrounding objects.  
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Both the coalescence and growth states were found to be related to the state of the core 

object itself in the previous year. However, it is important to note that when we 

incorporated an autoregressive correlation structure with order 1, namely the AR1 

structure, into the growth model the estimated autocorrelation coefficient (rho) was 

minimal, with a mean value of 0.21 and a credible interval of [−0.163,0.568] as 

illustrated in Figure A2. This interval includes negative, positive and zero values, 

indicating that the temporal autocorrelation could be negative, positive and non-existent. 

This implies that although the growth state relates to its previous state, overall, it cannot 

be regarded simply through temporal autocorrelation. While most of the objects have a 

positive rho value, there remains the possibility of no temporal autocorrelation. This 

might be attributed to the complexity of urban systems that exhibit complex 

characteristics. It could also be due to local variation in the underlying processes. We 

included a random structure to allow for random deviation for each group (i.e., each 

continuous object with the same ID). However, there might be spatial heterogeneity 

that leads to non-consistent behaviour of urban objects and which cannot be captured 

fully by random deviation. Thus, the temporal relation appears to be complex for urban 

objects which requires further exploration, accounting for spatial variation. 

For the area model, we focused mainly on the relationship between the area of the core 

object and its interaction with neighbouring objects. The findings indicate a positive 

relation between the size of the core and its largest interaction, with this relationship 

varying slightly depending on the size of the core object. Generally, smaller core objects 

exhibited a larger correlation with their neighbours, suggesting that the same interaction 
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could have a greater influence on smaller objects compared to larger ones. This 

observation aligns with our original hypothesis that the interaction could have different 

effects on different-sized objects. When rethinking the relationship between objects 

from a network perspective, where objects are treated as nodes and interactions as link 

weights in the network, larger nodes tend to have greater centrality and connectivity, 

thereby influencing the dynamics of surrounding nodes. In contrast, smaller nodes are 

more susceptible to being influenced by others. We examined this relationship at the 

patch level, and other studies have shown that it applies on a larger scale. For example, 

within an urban region, small cities are likely to be influenced by the core city that 

serves as a regional centre through flows and interactions occurring between them. Due 

to the limitations of our data, we were unable to check whether this relationship (larger 

objects tend to exhibit more coalescence and a shorter continuous period of existence) 

remains true for objects larger than 9 km², although the general behaviour is clearly 

driven by underlying geometrical laws. This could be investigated in future for the 

specific case of China through the collection of more data across different cities. Lastly, 

it is also worth mentioning that since the area model modelled only the area of grown 

objects which could not be continuous over time, we were not able to include an AR1 

structure to examine the temporal autocorrelation in the model. 

Models fitted using a Bayesian inference framework have been applied in various fields, 

including epidemiology, environmental science and crime geography (Cai and Dunson, 

2006; Aguilera et al., 2011, 2011; Smith et al., 2017; Zheng et al., 2024), due to their 

ability to handle complex structures and spatial-temporal processes. To the best of our 
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knowledge, this is the first study to combine a mixed model fitted in an approximate 

Bayesian inference framework with an object-based approach to explicitly model the 

relationship between urban spatial objects and their neighbours. The fitted models 

handled efficiently the complex binary skewed data with a random structure. They 

reveal that the state of the urban spatial objects is associated with both their states in 

the previous year and the dynamics within a local neighbour in the previous year. The 

package used for approximate Bayesian inference, INLA, offers several spatial 

autocorrelation structures such as the commonly used ICAR (Intrinsic Conditional 

Autoregressive) and SPDE (Stochastic Partial Differential Equation) terms. However, 

since our goal extends beyond merely predicting the state of objects, to explicitly 

exploring how the dynamics of neighbouring objects affect the states of core urban 

objects we did not include a spatial autocorrelation structure in our model. While the 

need for such autocorrelation terms is diminished by the good fit of our models and the 

resulting small residuals, this could be explored further in future research alongside our 

findings. We also used a weakly informative prior in the Bayesian fitting. When 

applying the proposed models to other cities in the future, the information gained here 

from analysing the megacity of Shanghai could serve to provide more informative 

priors. 

Our models predicted the state of coalescence with high accuracy. Amongst the 

predicted coalescence states, 93.1% were real coalescence events. 89.4% of all actual 

coalescence events were predicted as coalescence. In contrast, the growth model 

displayed greater uncertainty, with 67.9% of predicted growth events being actual 
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growth events and 61.3% of actual growth events being identified by the model. This 

lower accuracy can be partially explained by the fact that the growth model is applied 

only to non-coalescence data and 91.1% of the predicted non-coalescence objects are 

actual non-coalescence objects. Therefore, taking these two results together (non-

coalescence and growth) the result can be seen as acceptable overall. The uncertainty 

may also be attributed to the complexities of the growth process. As discussed earlier 

the temporal autocorrelation in growth is complicated. Additionally, there may be social, 

economic and other activities not incorporated in the model apart from the inherent 

characteristics of urban objects. The underlying assumption of this model is that urban 

growth is systematic and exhibits simple characteristics, but temporal or spatial 

variation in the underlying processes could increase uncertainty in the models. 

Therefore, future research could include other types of data representing underlying 

processes and more complex spatial-temporal structures to increase model accuracy. 

Our models generated a probability map for coalescence and growth, along with a 

predicted state map (Figures 5.7 and 5.8). Taking 2010 as an example, as can be seen 

from Figure 5.7, most large objects are predicted to coalesce and exhibit a high 

coalescence probability in 2010. From a network perspective, the changing state of 

these objects suggests these key nodes experience changes in their weights and 

connectivity, which subsequently influence the dynamics of the entire network. 

Consequently, identifying the states of these objects is important for understanding the 

dynamics of the entire network. Our labelling process does not directly label continuous 

coalescing objects, but our data suggest that larger objects, particularly those larger than 
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20 km², tend to show continuous coalescence. This can also be explained by our model, 

in which coalescence in the previous year, classified as changed, increases their 

probability of coalescing in the present year. 

The selected region covered Suzhou, represented as the second largest object on the 

map, to the west of Shanghai which is the largest object (Figures 5.6-5.8). From the 

given example map, it could be seen that around the close neighbours of the largest core 

urban objects in Shanghai and Suzhou, objects tend to exhibit a greater probability of 

coalescence and growth. This implies changes of states in close neighbours around large 

objects, which further increases their probability of coalescence or growth in 

subsequent years. Interestingly a few urban objects around such large objects have a 

low estimated coalescence or growth probability. The potential reasons based on the 

fitted model could be (i) the object did not undergo any changes in the previous year, 

which would lower the probability of coalescence since the state of the core itself has 

an important role in its state in the following year, (ii) the network generated does not 

fully capture changes in the neighbours around these objects and (iii) as discussed 

earlier, the growth state is complicated and exhibits greater uncertainty. Identifying 

these low-probability objects located amongst neighbouring objects that are rich with 

changing states could help to increase model performance in the future. 

Compared to traditional raster-based methods, our object-based approach provides 

insights into the explicit relationships among objects, as well as a framework for 

modelling the states of urban objects over time. First, commensurate with an increasing 
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focus on network studies in urban science, such as networks of cities, human activities 

and urban transportation, our research provides a way to build a spatial-temporal 

network of urban objects at the patch level (Cvetojevic and Hochmair, 2021; Mussone 

and Notari, 2021; Gu and Wang, 2022; Marin et al., 2022). Rather than concentrating 

solely on transitions in the objects themselves, we studied the dynamics of these urban 

objects from a relationship perspective. In the real world, urban objects evolve through 

growth and coalescence and interact with each other through the various activities 

located in objects, which leads to the dynamics of urban objects. We establish graph-

based spatial-temporal connections amongst urban objects to represent, at an abstract 

level, their real-world evolution and interactions allowing us to study urban dynamics 

directly. Furthermore, this node-link perspective contributes to the study of patterns and 

processes in the evolution of urban systems. A central issue in studying urban growth 

is to link the spatial-temporal data gathered with relevant processes to uncover the 

underlying processes, and how they affect the dynamics of patterns. Our method 

incorporates interactions into the study of urban growth, which represent key processes 

that influence the dynamics of urban objects. This approach offers a novel perspective 

in urban growth studies that could integrate other real-world processes with urban 

object change.  

This research can be extended in future by considering the following. First, we built 

graph-based links amongst urban objects based solely on proximity through a triangular 

irregular network (TIN) and, thus, modelled directly only the relationships with close 

neighbouring objects. However, within the network, some important nodes might 



170 

 

influence more distant nodes through direct links. Specifically, the impact of large 

urban objects on other objects may not be fully represented in the model. Second, our 

analysis focused on the dynamics of the objects themselves. Our implicit assumption 

was that urban growth is a systemic phenomenon and, thus, it can be modelled as a 

function of the inherent characteristics of the urban objects themselves. However, there 

exist many complex interactions in reality, such as population and transportation flows, 

occurring within and between the urban objects which may influence urban object 

dynamics. These exogenous and ingenuous drivers are not included in the present 

model, but integrating different types of data could help to extend the scope of this 

research in future. Third, in this research, we focused solely on the relations between 

the core urban object and its neighbouring objects. However, the constructed network 

structure allows the exploration of more dimensions, such as how the network structure 

evolves, including how its connectivity, node attributes and fractal dimensions change 

over time. Recently, networks have gained significant attention within urban studies 

due to the increasing availability of diverse data types and advances in network analysis 

methods. Nevertheless, many of them focus on the city level or the micro level of 

specific activities within a city (Castells, 2010; Esch et al., 2014; Inostroza, 2021; Jia 

et al., 2021). Patch-level study of objects in urban dynamics is still limited. Future 

research could, thus, explore the dynamics of urban object networks from spatial-

temporal perspectives. Finally, this research examined only the linear relationships 

between the core urban object and neighbouring objects. Their relationships might be 

nonlinear which remains to be further explored.  
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5.5 Conclusion  

In this research, we built spatial links amongst urban spatial objects and integrated them 

with the states of objects to model the states of urban objects and how they relate to the 

dynamics of other objects. Our method essentially creates spatial-temporal links among 

urban spatial objects which allows further exploration of the spatial-temporal 

relationships among objects. The fitted Bayesian linear mixed-effects model suggests 

that the coalescence state is related to the previous state of the object itself, the nearest 

distance to other objects and the state of neighbouring objects within a specified close 

buffer. The model suggests that the growth state is related to the previous state of the 

object itself, the state of the largest neighbouring object and the states of objects within 

a close buffer. The area of growth objects is affected by the largest interaction between 

the core object and its neighbours, with this effect varying for different-sized objects. 

The key contribution of our research is not merely to predict the states of urban objects 

but more importantly, to build spatial-temporal links among objects to explicitly model 

their relationships, which could help to a better understand urban dynamics and its 

associated processes. The research provides valuable insights into the evolution of 

spatial-temporal networks of urban objects and presents a novel perspective within 

urban growth studies.  
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6 Discussion 

Chapters 3 to 5 analysed urban growth based on a comprehensive object-based 

method emphasizing different aspects including growth characteristics, growth 

processes, and the relationships between urban objects. This research suggests that 

an object-based approach is suitable as a means to capture the spatial-temporal 

pattern of urban growth across megacities, depict urban processes both at the patch 

level and the city level and explicitly represent the relationships between urban 

objects. Collectively, the research provides a new perspective with which to model 

and understand the patterns and interactions of urbanization both spatially and 

temporally. 

6.1 Research Findings and Contribution 

Chapter 3 analysed urban growth trajectories from an object-based perspective. It 

highlighted the unprecedented urban expansion in China from 1992 to 2014, driven 

by national reform policies, economic development and population migration. This 

expansion also exhibited disparities across China, with coastal regions experiencing 

faster and earlier growth due to policy benefits. By comparing the growth trends in 

different spatial buffers, urban growth characteristics at different levels were further 

explored. This provided insights into the relationships between core cities and their 

surrounding cities within megacity areas, and how the relationships differ across 

regions.  
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The results also identified synchronous growth trends across regions during certain 

periods, suggesting that national policies influenced overall urban growth dynamics. 

However, asynchronous patterns were also exhibited, which suggests the role of local 

factors such as geographic constraints and regional governance strategies in shaping 

urban growth trajectories. The general growth trends and disparities in the growth 

patterns of different regions imply that China’s urban growth trajectory is the result 

of the interaction between national policies, local governance and geographic 

constraints. Understanding the influence of national and regional policies on urban 

growth trends and regional patterns could help design future development strategies 

as well as maintain future sustainability. 

The inherent definition of urban objects determines that the object-based method 

provides a temporally-continuous measurement of urban growth. Therefore, it can 

directly reveal the evolution of urban objects that is difficult to achieve through other 

methods. The results suggests that the object-based method is highly effective at 

capturing spatial and temporal urban dynamics. It is scale-independent and, thus, is 

comparable across space and time, which makes it particularly useful for inferring 

underlying urban growth processes.  

Chapter 4 focused on characterizing different urban growth events including 

dispersal, establishment and coalescence, representing different growth phases in the 

defined zones in four megacities. It provides a framework to measure urban growth 

events at the per-object level as well as the city level, which could further infer how 
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urban objects emerge, stabilize and merge, and how cities grow over time. Ideally, 

dispersal, establishment and coalescence should change at a stable rate if the 

underlying growth process remains constant. However, the results show variation in 

the growth rate of events for four cities, revealing the influence of “disturbances” 

such as the effects and interactions of spatial, economic and policy factors on urban 

growth.  

By accumulating the occurrence of different events in different defined zones, 

synchronous trends in the events within the core areas and buffer zones were 

observed, which suggests that urban growth drivers have similar effects on the 

dynamics of the different events and, therefore, lead to similar behaviours of these 

events at the population level. Previous studies suggest that urban growth would 

follow a typical sequence of dispersal, establishment and coalescence. At the patch 

level, the proposed sequence is observed. However, varying sequences of dispersal, 

establishment and coalescence were observed across four cities at the population 

level. This suggests that the states are concurrent, with a dominant state arising 

alternately through time. The concurrent and varying sequences of the dominant 

events indicate that urban systems are complex and dynamic, influenced by various 

factors.  

Object-based measurement enables us to track directly the evolution of each urban 

object for the first time. Through building temporal links, different states which 

correspond to different growth processes are assigned to urban objects. It then reveals 
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the urban growth process at the per-object level. When accumulating at the city level, 

the overall urban growth process could be further analysed. Through building 

temporal links among urban objects, the research findings contribute a 

comprehensive understanding of urban growth events at both the patch level and city 

level by quantifying changes in different events, which provide valuable insights into 

the underlying micro urban growth process and the overall evolution of urban 

systems.  

Chapter 5 introduced a novel object-based approach to modelling urban growth with 

an emphasis on the interactions between urban objects. Using Bayesian linear mixed 

effects models and building spatial-temporal links between objects, the research 

examined how the states of coalescence, growth and ‘unchanged’ are related to the 

dynamics of urban objects and how the area of grown objects is related to the 

interaction between objects.  

The coalescence state is influenced by the previous state of the objects, the state of 

objects in a defined close buffer and the nearest distance between the object in focus 

and other objects. Among these, the nearest distance plays a significant role with the 

probability of coalescence decreasing significantly as the nearest distance increases. 

According to the results, the urban object does not have to coalesce with the nearest 

object, but it is likely to coalesce with objects within a buffer of ‘two-pixel radius 

plus the nearest distance between the core and neighbouring objects around the core 

boundary’. Since coalescence changes the overall urban pattern structure and urban 



176 

 

land connectivity, this suggests that the spatial proximity of objects plays a pivotal 

role in influencing urban growth patterns. 

The growth state is heavily influenced by the previous state of the object in focus as 

well as the dynamics of its neighbouring objects. The temporal autocorrelation of the 

growth state is non-consistent, but the results imply an underlying spatial 

autocorrelation. The changes in the objects located in a defined neighbourhood 

contribute to increasing the probability of growth of the core urban object, which 

indicates that dynamic neighbours are potentially related to the growth of the core 

object. This highlights the importance of understanding local interactions in studying 

urban growth, as these micro-level dynamics can be accumulated to affect regional 

urban growth. 

For the model predicting the area of objects that have grown, the result suggests varying 

relationships between the size of urban objects and their interactions with neighbouring 

objects depending on their size. In general, smaller objects have a greater relationship 

with the interaction terms especially for objects smaller than 9 km2.  

Combining the coalescence and growth models, an overall state of urban objects was 

calculated with high accuracy for the coalescence state and moderate accuracy for the 

growth state. In general, this suggests that the coalescence and growth states of urban 

objects can be predicted from their previous states and the dynamics of their defined 

neighbours. Taking the results of the three models together imply that smaller objects 

are more susceptible to object interactions while larger ones tend to affect the states of 
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their neighbours, especially for the growth state and their corresponding areas. This 

aligns with network theories, where larger nodes have greater influence within a system. 

In general, the results provide a novel framework with which to analyse the dynamics 

of urban objects and their relationships through the spatial-temporal links between 

objects.  

Based on the temporal links between urban objects, additional spatial-temporal links 

are created. This approach is novel, demonstrating how the dynamics of urban objects 

can be viewed in the form of a spatial-temporal network. In this generated network, 

interactions between objects are represented as links and objects are treated as nodes. 

This means that the dynamics of urban objects can be modelled to analyse how they are 

influenced by the attributes of urban objects (nodes) and interactions between objects.  

Chapters 3 to 5 demonstrate that urban land can be represented as urban objects which 

can be further analysed to study urban growth dynamics. These objects can be used to 

characterise urban growth continuously. This research is novel because it builds links 

between objects which allows their evolution and their potential interaction with other 

objects to be tracked. Through building temporal links between urban objects, urban 

growth processes are measured directly at both the patch level and population level, 

providing valuable insights into urban growth theory. The generation of spatial-

temporal links between urban objects provides a way to model urban dynamics through 

the perspective of spatial-temporal network of urban objects. The results suggest that 

urban objects could be treated as an evolving system and the dynamics of objects could 
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be modelled by its inherent attributes.  

Overall, the results suggest that the object-based method performs well at capturing 

urban growth processes at both patch-level and city-level. The key advantage of the 

object-based method is that it can represent urban entities directly and, therefore, 

analyse explicitly the relationships and interactions between urban entities. In contrast, 

in the raster-based method, the relationships between urban land are usually measured 

at the pixel level and such relationships are inferred from the analysis of raster data. 

The object-based method makes it possible to build spatial-temporal links of urban 

objects, which facilitates modelling their relationships directly, which is hard to achieve 

using a raster-based method. The temporal link provides an approach to tracking the 

dynamics of each urban object to study its evolution characteristics. The spatial link 

mirrors the interaction between objects. It not only allows for explicit modelling of the 

relationships between objects, but also provides a new perspective for studying the 

interplay between urban objects and the underlying processes.  

6.2 Limitations and Future Research 

While this research provides valuable insights into urban growth, several limitations 

should be noted. First, the measurement of urban growth focuses on spatial expansion, 

while urban entities are 3D in reality. Thus, the intensification of urban land use and 

vertical expansion should be considered as an important aspect when evaluating urban 

growth (Lin et al., 2014; Xia et al., 2020; Yang and Zhao, 2022; Yang et al., 2022). In 

future research, such vertical height data could be incorporated along with the land 
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cover data as a factor representing intensity to fully characterize urban growth. Also, 

the land use data used to represent cities necessitates that urban objects can only expand 

or be unchanged. However, although much less common, in the real world cities can 

also experience a decreasing area, for example, commensurate with a decrease in the 

population or economy (Mallach et al., 2017; Vinci et al., 2023). How to represent this 

phenomenon remains a further consideration. Another issue is that although the ESA 

data generally has a very high accuracy of land cover classification and this was 

evaluated through various means in this thesis. Nevertheless, some uncertainty remains, 

especially for specific outcomes such as the very high rates of growth reported 

synchronously across China in some years. Ideally, possible errors in the data and the 

classification process should be further examined through additional validation 

procedures. Moreover, the developed object-based methods should be applied to other 

data or the combination of multiple data in future research. 

When building spatial links amongst urban objects to study their relationships, only the 

intrinsic attributes of the objects themselves are included, such as the area and the state 

of objects to represent their potential connections. In reality, the relationships between 

objects could be defined in multiple dimensions, and described by different types of 

activities, such as population flows, economic interactions and wireless connections 

(Sultana and Weber, 2014; Gibbons et al., 2018; Yang et al., 2022). These activities also 

contribute to the dynamics of urban growth patterns. In this research, the underlying 

processes are inferred through the analysis of the dynamics of urban objects. Some 

studies focused solely on the interactions of activities within cities, but how to integrate 
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these activities with the dynamics of urban spatial objects to study urban growth 

remains an open question for further investigation. Linking such data to urban objects 

could provide a more comprehensive understanding of the interactions between the 

related processes and urban growth patterns.   

Although urban land is represented as objects in this research, the object data are 

extracted from raster data. The object-based method is scale-independent, but whether 

changing the spatial resolution of the raw data would affect the results of the analysis 

remains a topic for further research. For example, in the coalescence model, the results 

suggest that coalescence is likely to occur with objects located two pixels (i.e., 600 m) 

outwards from the core. Whether changing the spatial resolution of the raw data would 

influence the result should be further explored to evaluate the sensitivity of the model 

to such scale effects.  

A key feature of the geographical phenomenon is spatial heterogeneity (Balaguer-Beser 

et al., 2013; Brelsford et al., 2017; Reia et al., 2022). Spatial heterogeneity is the 

fundamental basis of geographical models, but it also presents challenges in 

generalizing model results and applying models across different regions. The models in 

Chapter 5 focus on a specific city while whether the findings can be applied to other 

cities with differing contexts should be further examined to confirm the model's 

generalizability and robustness. Application to other cities could also reveal similarities 

and disparities among cities. Another issue with spatial heterogeneity is that it could 

also occur at the within-city level which increases the uncertainty of the models. The 
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model used implies a similar relationship between objects while there could be spatial 

variation in the relationships in practice. Local effects and geographical constraints 

could lead to differences in the interactions between objects. Future research could 

examine the spatial-temporal heterogeneity to obtain a deeper understanding of urban 

dynamics. 

Last but not least, since there is limited research on exploring the relationships between 

objects, this research uses simple linear models that serve as a starting point for future 

research. Linear models are relatively straightforward to interpret which could provide 

general insights into the relationships to further exploration. However, the interactions 

between objects could be more complicated and non-linear. More advanced and 

sophisticated methods should be applied to acquire a deeper understanding of these 

complex relationships and more accurate predictions. Similarly in the area model, the 

temporal effect is simplified as a linear effect. It is modelled that time has a fixed linear 

effect on the area of urban objects suggesting that the growth rate is the same over time, 

but there could be short-term fluctuations in the growth of the area. In this research, we 

mainly focused on the interaction term, and more complicated structures could be 

included to increase model performance. 

In this research, a set of spatial-temporal links between objects is constructed which 

generates a spatial-temporal network. The network of objects suggests a variety of 

aspects that could be further studied, such as the attributes of important nodes, the flow 

in the network and network evolution (Castells, 2010; Agryzkov et al., 2019; Maduako 
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and Wachowicz, 2019; Mussone and Notari, 2021). Some network studies have been 

applied at the city level to study the dynamics of cities at the regional level. Such 

methods could also be applied at the patch level to study inter-city dynamics. For 

example, some research defines city clusters through urban networks (Yu et al., 2014; 

Jia et al., 2021). This could also be applied at the patch level to identify inter-city 

structures.  

The application of rank-size, fractal dimension and scaling law have been studied 

intensively in urban growth research, especially at the city level (Batty, 2012, 2023; 

Huang et al., 2015). These studies help to understand city evolution from a hierarchical 

perspective, and based on the morphology and spatial complexity of urban patterns. 

Based on object-based methods, these approaches could also be applied at the patch 

level to reveal the dynamics of objects over time from a unique perspective. 
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7 Conclusion  

This thesis utilized a novel object-based method to characterize urban growth 

trajectories and infer the potential processes underlying them; propose urban growth 

events based on temporal links between objects and examine how these events differ 

spatial-temporally to rethink urban growth theories; explicitly model the 

relationships between urban objects through the spatial-temporal links and predict 

the states of objects based on model results. The main conclusions are as follows: 

1. The object-based method captured the significant growth rate of megacities 

across China which each comprise individual cities and urban areas of various 

sizes. Synchronized growth behaviour of the majority of cities was observed in 

the early 2000s and these were shown to be correlated with national policy 

interventions. The regional differences across the selected megacities implied the 

effects of regional policies and local governance. At the regional level, different 

morphological trends were identified. The results provide insights into how 

policies could affect urban growth trends across different regions and cities of 

different sizes. 

2. The results of the analysis of object events demonstrated that the establishment, 

dispersal and coalescence growth events can be measured directly at the per-

object level. At the population (or landscape) level they exhibited concurrence, 

but with varying dominance over time, rather than following a specific logical 

sequence (e.g., introduction then growth then coalescence). The research 
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quantifies the dynamics of urban growth events and provides new insights into 

urban growth processes. A general synchronous trend of growth was observed in 

buffer zones where other states exhibit more dynamics. 

3. The developed spatial-temporal network model of urban objects facilitated 

exploration of the dependence of the state of an urban object on its previous state 

and the previous states of its close neighbours. Coalescence was found to be 

related to the object’s previous state and the distance to its nearest neighbour and 

neighbouring states in the previous year, and likely to occur with other objects 

within a buffer of ‘two-pixel radius plus the nearest distance between the core 

and neighbouring objects around the core boundary’. The growth state was found 

to be related to the previous state and the dynamics of objects in a defined close 

neighbourhood and exhibited greater uncertainty. The area of objects that had 

grown was related to the largest interaction between the core object and its 

neighbours which varied for different-sized objects. 

Overall, this research advances the understanding of urban growth patterns and 

processes, offering new insights into urban growth, especially for megacities that 

comprise 100s of individual urban cities and other urban areas. The results highlight 

the importance of spatial-temporal links in urban growth dynamics. This new 

approach should be further explored to better understand the dynamics of urban 

systems and promote resilient urban and environmental systems.  
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Figure A.9 The spatial distribution of core_changed_preyear (a), 

nearest_500_changed_preyear (b), nearest_500_1000_changed_preyear (c), 

largest_change_preyear (d), percentage_changed_preyear (e) and 

log(nearest_distance_preyear) (f) in 2010. 

 

Figure A.10 The posterior distribution of Rho in the growth model includes an AR1 

structure. 
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