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Abstract

Urbanization has accelerated globally in recent decades, producing dramatic urban land
expansion. With cities attracting attention from scientists from different fields, urban growth
is a key topic, commonly studied using remotely sensed raster imagery. Urban entities such
as cities are more readily thought of as spatial objects. Despite this, object-based methods
are rarely applied in research on urban growth. This research utilized newly available
remotely sensed annual land cover time-series data coupled with a novel object-based
approach involving (i) raster-to-vector conversion, (ii) careful temporal linking of objects,
(ii1)) comprehensive specification of the possible urban growth states (introduction,
establishment, coalescence and no change) and (iv) the creation of a spatial graph structure
linking neighbouring objects, to study urban growth. The stated object-based graph structure
facilitated analysis of the state of urban objects based on previous states of the object and its
neighbours, and the spatial-temporal links between them. First, the unprecedented scale of
urban expansion between 1992 and 2014 was quantified across 13 regional capitals and their
surrounding cities in China. By characterizing urban growth based on urban objects in
different buffers at the regional level, the results suggested that core cities doubled or tripled
in size, with synchronized growth patterns at specific times potentially driven by national
and regional policies. Regional disparities were also observed which highlight the impacts
of regional governance and local policy interventions. Second, a conceptual framework
characterizing urban growth events was proposed including introduction (including through
dispersal), establishment, coalescence and no change. Applying a rule-based approach to
identify these events and quantifying their spatial-temporal changes, synchronous temporal
trends in growth events in the core and buffer regions at the landscape level were observed.
However, a specific logical sequence of these events at the population (or landscape) level

was not obvious. The results show concurrent events with shifting dominance of specific



events over time, thus, providing insights into urban growth processes and reflecting the
complexity of urban growth processes. Third, a Bayesian linear mixed-effects model was
integrated with a spatial-temporal graph of urban objects to model the states of urban objects.
It was found that the coalescence state of urban objects is influenced by their prior object
states, proximity to neighbouring objects, and the states of neighbouring objects in a defined
small buffer. The growth state (i.e., growth or unchanged) is related to its previous state and
the dynamics of neighbouring objects. The area of objects that have grown was found to be
influenced by the largest interactions with neighbouring objects, with the magnitude of these
effects varying by object size. By modelling explicitly the relationships between urban
objects on a graph, the developed object-based approach provides valuable insights into the
dynamics of urban objects and their relationships within megacities, using cities in China as

examples.

This research advances the understanding of urban growth by quantifying spatial-temporal
patterns, building spatial-temporal links between urban objects, and explicitly modelling the
relationships between objects. It provides a new perspective for studying urban dynamics
and may contribute to better urban development, governance strategies and sustainable

environment management in future.
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1 Introduction

Urbanization is one of the most significant processes experienced globally, especially in recent
decades (Bloom et al., 2008; Batty, 2020). It promotes economic growth, urban population
increase and the transformation of the landscape (Marshall, 2007; Bloom et al., 2008; Clemente,
2021). Take China as an example, whose urbanisation level calculated by urban population
increased from 17.9% in 1978 to over 60% by 2018 from Chinese National Statistics Bureau.
Such rapid urban growth is usually accompanied by significant urban land expansion, with
profound implications for related economic, social, and environmental systems(Chan, 1994;
Deng et al., 2010; Dai et al., 2018; Chen et al., 2022). In general, the transformation to urban
land cover is irreversible, fundamentally reshaping landscapes and creating new opportunities
as well as considerable challenges. While urbanization has provided better lives for people
around the world, it has also led to substantial problems such as environmental pollution, social
inequalities, and loss of biodiversity(Robinson et al., 2012; Seto, Giineralp, et al., 2012; Li et
al., 2023). For example, urban expansion, typically at the expense of agricultural and forest
land cover, 1 leads to soil degradation, habitat loss and climate change (DeFries et al., 2010;
d’Amour et al., 2017; Zhu & Yuan, 2023). This effect is not restricted to the region where
urbanization occurs but influences global change in the long term which threatens sustainable
development worldwide (Entwisle et al., 2008; Meyfroidt et al., 2009). To understand the
implications of urbanization and address these emerging issues, the first step is to understand
the dynamics of urban growth. This can lead to a better understanding of how it affects other
systems and processes which could further contribute to providing management strategies and

sustainable urban planning.

1.1 Urban Growth Studies

Urban growth has been measured using a variety of approaches, including the increase in the
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transformation of land cover to urban land, migration of population to cities and development
of the economy (Anderson & Ge, 2004; Berling-Wolff & Wu, 2004; Marshall, 2007; Ding &
Li, 2019; Mahtta et al., 2022). Thus, to learn about urban growth, the first crucial step is to
determine how best to represent it. Different representations provide different data that leads
to different methods to be utilized to study urban growth. Urban growth studies have developed
significantly over the past century, from focusing on quantifying urban growth of an area or its
population (Feng et al., 2002; Lin, 2002; Anderson & Ge, 2004) to monitoring spatial urban
change and analysing the spatial pattern of urban growth (Cheng & Masser, 2003a; Aguilera et
al., 2011; Liu et al., 2016) by analysing urban areas within land cover data generated from
remote sensing data and Geographic Information System (GIS) methods; and to further
predicting urban growth with the development of computational techniques by incorporating
data representing different aspects of cities (Castells, 2010; Meerow et al., 2019; Burghardt et
al., 2022). The availability of remote sensing data significantly promotes the development of
urban growth studies since they provide consistent, frequent and complete land cover data that
are ideally suited to analysis of change in space and time. Meanwhile, urban growth studies
have also evolved to incorporate approaches from other disciplines such as economics, social
science, landscape ecology and computer science (Aguilera-Benavente et al., 2014; Cottineau

et al., 2018; Zhai et al., 2020).

1.1.1 Characterizing urban growth

Early studies on urbanization were largely descriptive and focused on quantifying the growth
of cities, identifying drivers of urbanization (Yue et al.,, 2013; Wu et al.,, 2019) and
understanding the basic patterns of urbanization (Capello & Camagni, 2000; Luo & Wei, 2009;
Aguilera et al., 2011) due to data availability and limitation of analysis techniques. Typically,
using statistical data such as urban area or urban population, they sought to understand how

cities expand over time and investigate the consequences of such growth. Such approaches
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were helpful for examining growth rates over time across different cities. Some studies examine
urban growth from a different perspective, using concepts from fractal geometry and
complexity science (Shen, 2002; Tan et al., 2021). These studies suggest that urban growth
exhibits similar characteristics at different levels of magnification, much like the growth
patterns observed in the growth of organisms in biological systems. Studies use this concept to
characterize growth patterns over time or compare the growth trends in different cities.
Similarly, some studies have utilized rank-size methods to analyse how cities grow over time
with the assumption that there is a relationship between the rank of the city and its size
(Fragkias & Seto, 2009; Huang et al., 2015). This kind of research provides insights into the
overall structural change of cities. Other studies have combined demographic, social, and
economic data and utilize statistical methods to understand factors and processes that drive
urban growth and model the relationship between urban growth and its underlying drivers

(Goodkind & West, 2002; Kuang et al., 2016; Wu et al., 2019).

With the availability of fine-resolution remote sensing data in recent decades, urban growth
has been intensively studied especially for its spatial-temporal patterns using various spatial
metrics. Within this framework, cities have been represented as raster data extracted from
remote sensing data. This approach allows for a detailed exploration of the spatial aspect of
urban growth, such as how urban growth differs at within city level (Cheng & Masser, 2003b;
Li et al., 2013), and how the spatial form and patterns change as urban areas expand (Burger
& Meijers, 2012; He et al., 2017). For example, a variety of landscape metrics have been
developed to analyse the spatial characteristics of urban land over space and time (Seto &
Fragkias, 2005; Aguilera et al., 2011). Based on spatial patterns, various metrics relating to
density, compactness and spatial form have also been developed to characterize the detailed
inter or intra-city level patterns (Jiao, 2015; Dibble et al., 2017; Luan & Fuller, 2022). These

methods provide insights into the spatial-temporal dynamics of urban growth. From studying
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how urban spatial structure and morphology change over time, researchers can infer related

processes that contribute to observed urban growth patterns.

Some researchers have proposed urban growth theories relating to growth phases (Dietzel, et
al., 2005a, 2005b; He et al., 2017). They identified different growth phases including dispersal
and coalescence representing the introduction of new urban land into the space and the
connection of existing urban land, and suggested that urban growth shifts between dispersal
and coalescence (Dietzel, et al., 2005b). This study implies that on the city level, different
growth stages could be inferred through the analysis of spatial patterns using landscape metrics.
Meanwhile, some studies distinguished different growth types based on the spatial
relationships between new and existing urban land (Li et al., 2013; Jiao et al., 2015; Glockmann
et al., 2022), such as identifying infilling development, edge expansion and leapfrogging
growth at the patch level (Li et al., 2013). When mapped, these different growth types can
provide deeper insights into related processes. These studies suggest that urban growth studies,
which had previously been more conceptual, became increasingly sophisticated and able to
examine the spatial-temporal change in patterns and forms of cities by incorporating spatial
patterns analysis. The key contribution is that they provided a perspective to link the pattern

change to underlying processes.

1.1.2 Modelling urban growth

However, these are all static methods but cities are essentially dynamic systems that evolve.
Urban systems exhibit continuous dynamics both spatially and temporally. This is why the
cellular automata (CA) models were introduced into urban studies. CA models can simulate
urban growth by representing a landscape as a lattice of grid cells, each of which can be either
urban or non-urban. It follows predefined transition rules to determine the states of grid cells,
so each cell is updated at every timestep. This method can be used to simulate how urban cells

spread over time at the micro level and therefore capture the spatial-temporal evolution of
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urban growth. Since it allows for continuous updating of urban cells and non-linear
relationships, and incorporates many other aspects, such as population density, economic
activities, land availability, infrastructure conditions and interaction between lands, it provides

a more flexible way to model urban growth compared to other approaches.

In CA models, cities are often treated as self-organizing systems. They are viewed as complex
systems consisting of different aspects interacting with each other and evolving continuously
driven by both internal dynamics and external forces. Since in CA models, urban land is
represented by cells, one of the major advantages is that it can incorporate spatial interactions
between cells in the model. In the transition rules, the state of cells is determined by the state
of the cell itself and its neighbours. Therefore, the interaction term is represented in the model

which is crucial in geographic processes.

CA models have been intensively studied and widely applied in urban growth modelling due
to their simplicity, flexibility, and intuitive representation of spatial dynamics. They have also
evolved and been integrated with other methods as well. For example, parcel-based CA models
have also been applied to urban growth (Abolhasani et al., 2016; Guan et al., 2023). They
represent cities as parcels which overcome the cell-size sensitivity in traditional CA and define
a neighbourhood effect based on parcel characters and geometric parameters. With the
development of artificial intelligence algorithms, related methods have also been integrated
with CA models, such as AI-CA, neural network with CA and machine learning with CA
(Shafizadeh-Moghadam et al., 2017; Zhai et al., 2020). These newly developed CA models

have contributed to improving the model accuracy and power of simulations.

1.2 Object-based methods

Despite these advancements in urban growth research, there is still a need for a more explicit
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representation of urban entities to study their dynamics and the spatial-temporal relationships
between them, since cities are not just collections of individual cells but are complex systems
of interconnected components that interact with each other over time and space (Benenson &
Torrens, 2004; Batty, 2020). In the real world, cities are urban objects with various activities
located on them and interacting with each other, which influences the dynamic change of
objects. Urban objects also evolve over time by expanding in area and merging with other
objects to become new objects which suggests that urban object have their own “lead” objects
unless newly introduced into the space. It implies that urban objects have a potential temporal
link between them and could be defined through this expansion or merging behaviour. Overall,

cities are urban objects interacting with each other through spatial-temporal links.

Object-based approaches, which have emerged from disciplines like landscape ecology and
remote sensing, focus on the analysis of land cover as individual "objects"(Cantwell & Forman,
1993; Fall et al., 2007; de la Barra et al., 2022). For example, some researchers have used
object-based methods to study the land cover change over time and the dynamics of habitat and
its connectivity (Minor & Urban, 2008; Zou et al., 2023). By representing different land cover
as objects, these studies explicitly track how land objects evolve. Some researchers have
attempted to build spatial and temporal links among objects and study their dynamics with
graph-based methods. These prove that object-based methods can be used to explicitly
characterise how land objects change over time (Zou et al., 2023) and provide insights into how
objects relate to each other both spatially and temporally. However, object-based methods are
rarely applied in urban studies and currently, most studies concentrate on characterising the
dynamics of land objects. Even though the object-based methods provide a perspective to study
the relationship between objects, most studies focus on the network structure and the
interactions between objects are not explicitly studied. Therefore, object-based methods are

employed to represent urban land to characterize urban growth and explore the relationships

17



between objects by building spatial-temporal links in this research. At this stage, the object-
based data is obtained by extracting objects from remote sensing data. In this research, the
object-based data is extracted from land cover products generated by the European Space
Agency which have global coverage for multiple years and relatively high accuracy of land

cover classes, including the urban class.

1.3 Research Aims and Objectives

This research aims to analyse and model the spatial-temporal patterns and processes of urban
growth by treating individual urban patches as geospatial objects and building spatial and

temporal links among them.

In this study, traditional concepts of urban growth phase, including dispersal and coalescence,
are replaced by four definitive, measurable types of growth event: introduction, establishment,
dispersal and coalescence, and a fifth inactivity event, stability. These events are attributable at
the object level hence are measurable directly once each individual city is represented as a
geospatial object. Spatial links are also constructed between objects to derive spatial-temporal
networks that can be used to study spatial-temporal interactions between objects. In this context,

the research aim is achieved through addressing the following objectives.

1. Developing an object-based representation of urban areas from a time-series of high-

quality land cover data.
2. Characterizing urban growth over space and time from the perspective of urban objects.

3. Expanding traditional concepts of urban growth theory to incorporate additional states for

urban objects by linking urban objects through time.

4. Exploring urban growth processes by analysing the spatial-temporal dynamics of the

states of urban objects.

18



5. Exploring spatial-temporal interactions between these objects by building spatial-

temporal networks between urban objects.

6. Predicting the dynamics of urban land at the object level.

The specific research questions are listed as follows:

1. What are the temporal trajectories and spatial patterns of urban growth in the study region,
especially for the growth characteristics of different-sized objects across cities and what

can be inferred from their temporal trajectories and differences between cities?

2. How do urban growth states in different study areas change over time? What underlying
urban growth processes can be inferred when accumulating the characters of urban growth
states at the city level? Compared to current key urban theories, what evidence and

references can be made from the results?

3. What is the relationship between the object states of coalescence, establishment and
unchanged and the dynamics of other neighbouring objects and can these states be predicted
through Bayesian linear mixed effects models? How do the interactions between objects

affect the area of grown objects and how does this effect differ across different-sized objects?

1.4 Thesis structure

This thesis consists of six chapters with an introduction chapter and a literature review chapter;
three chapters on analysing and addressing the aims and objectives respectively, and a
discussion and conclusion chapter on the overall findings and suggestions for future research.

The details for each chapter are as follows:

Chapter 1. Introduction
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This chapter first introduces the research background and provides a brief review of urban
growth studies. It then explains the importance of urban growth studies and why object-based

methods is used to study urban growth. Finally, it introduces the research aims and objectives.

Chapter 2. Literature review

This chapter first reviews the urbanization process in China and how urban spatial patterns
change in China. It then introduces related definitions and different measurements of cities in
related research. It follows with reviews of urban growth studies including characterising urban
growth with landscape metrics, fractal analysis, rank-size analysis and related geostatistical
models; models for predicting urban growth; dynamic models including Cellular Automatic
models and Agent-Based models used in urban growth study and forecasting in urban growth
studies. Finally, it summarises the related gaps in the literature and suggests direction for future

study.

Chapter 3. Revealing the scale and synchronicity of rapid urban growth in China in the 2000s
in response to reform and regional policies by treating provincial capital cities as sets of spatial

objects

This chapter quantifies the temporal trajectories and spatial patterns of urban growth in China
post-Reform based on urban objects. It examines how cities of different sizes and across
various regions have experienced distinct growth patterns to provide insights into the factors
driving urban growth in different regions. This study was submitted to the journal Applied

Geography (2024) and has been accepted subject to major revision.

Chapter 4. Analysing the Growth of Megacities Using an Object-based Method

This chapter quantifies changes in different growth events based on the urban objects method
and makes references to the urbanization processes across different cities. This study was
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published in the journal Geographical Analysis (2024).

Chapter 5. Modelling urban objects through Bayesian linear mixed effect models

This chapter models the states of urban objects through their relationships with neighbouring
objects and predicts their states using Bayesian linear mixed effect models. It also explores the
relationships between the area of grown objects and their interactions with neighbouring

objects. This study will be submitted to an appropriate journal later this year.

Chapter 6. Discussion and conclusion

This chapter discusses the results and findings of chapters 3 to 5; and makes references to the

main contribution of this research, as well as the limitations and suggestions for future research.
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2 Literature Review

2.1 Introduction

2.1.1 Research background

More than half of the global population now lives in urban areas (United Nations, Department
of Economic and Social Affairs). Population growth and urbanization are projected to continue,
especially in developing countries, with more than two thirds of world population projected to
live in urban areas by 2050 (United nations, 2022). The rate of urban growth in Africa and Asia
is higher than in other regions (United Nations, 2022). Furthermore, medium- and small-sized
cities have experienced more urbanisation than large cities or metropolitan areas in recent
decades (UNDESA, 2014) with rapid urbanization resulting in increasing numbers of people
living in cities. Urban areas influence on the environment and biochemistry process from local
to global scales, such as carbon cycle, air quality, and climate change (Kalnay & Ming, 2003;
Seto et al., 2010; Li et al., 2023; Tu et al., 2023). The impact of urbanization is not constrained
to its surrounding area, and can extend far away from the “source” area through teleconnection
(Seto, Reenberg, et al., 2012; Yu et al., 2013). For example, importing construction materials
such as wood from other countries directly influences forest patterns in the country of origin
with impacts on the local climate and related environmental processes. Furthermore, the
dynamics of the urbanized area have a direct and close relationship with the quality of people’s
lives (Parr, 2007; Huang & Wong, 2016). Different urban forms can lead to different patterns
of commuting and transportation of goods and services. Overall, the study of urban growth not
only gives us insights into the urban dynamics and contributes to sustainable urban landscape
planning and management, but is also essential to understand global change and make

strategies and adaptations to these changes.
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2.1.2 Urbanization in China

2.1.21 Historical period of urbanization in China

The urbanization process in China can be classified into two major periods: the pre-Reform
period and the post-Reform period. Urban growth, urban size, and urban spatial form have
shown different characteristics before and after the Reform and Opening-up in 1979 (Plan,
2014; Schneider et al., 2015; Wang et al., 2022). China experienced a relatively low rate of
urbanization before the Reform, but relatively high rates of urbanization after the Reform,

especially in recent years (Gaughan et al., 2016; Wang et al., 2022).

Before the Reform and Opening-up which took place in 1979, state control and planning
economics played an important role in the urbanization process (Lin, 2002). During this period,
city forms were strongly impacted by planning economics. The state emphasized industrial
production in cities while their consumption and commercial sectors were weakened (Chan,
1992). Concentrating on industrial production and planning economics, ‘work units’ played an
important role in shaping urban spatial form. These units were self-contained spaces that
provides not only spaces for working, but also people’s daily services, such as housing,
education, and food for its residents (Schneider et al., 2015). Widely implemented across China,
these work units resulted in cities taking on highly standardised, lower density forms during

this period (Abramson, 2006).

Migration to cities was under strict control. Before the Reform. The state adopted a ‘hukou’
system (a national household registration system) to divide residents into two groups: the
agricultural population and the non-agricultural population (Chan, 1994; Cheng & Selden,
1994). The state was concerned that a large number of the population migrating to cities might

put pressure on the provision of food and urban services. This hukou system widened the urban-
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rural gap and contributed to the creation of a dual urban-rural structure at this time (Lin, 2002).

Before the Reform, both the growth of existing cities and the creation of new cities were limited
with levels of urbanization increasing from 10.64% in 1949 to 18.96% in 1979 (based on the
percentage of urban population in total population) (Chan, 1992). The number of cities
increased from 132 to 193 during the same period (Lin, 2002). Geographically, the state
focused on a different location in different periods (Abramson, 2006). Initially, the state
focused on Northeast and North China where energy and resources were relatively abundant;
then, the state concentrated on Southwest and interior China (which is called the Third Front

project) in the 1960s and early 1970s due to national security and defence concerns.

During this period, large cities experienced significant growth while the development and
growth of small cities were limited (Chan, 1992). Most of these large cities are provincial
capitals or special municipalities. They were regarded as important political and critical

economic centres which had better infrastructure and more state investment.

After the Reform, the economy gradually shifted to a more market-led economy (Chan, 1994;
Lin, 2002; Power, 2018). In the meanwhile, decision-making became more decentralized,
giving local government more power. In accordance with the Reform, there were several

policies that had significant impacts on urbanization.

First, migration policy was gradually relaxed even though migration (to get a “hukou”) to large
cities was maintained (Chan, 1994; Gaughan et al., 2016). A shift in power of decision-making
to individual agricultural households significantly boosted agricultural productivity and
efficiency resulting in the release of a large amount of the agricultural population (Lin, 2002;
Schneider & Mertes, 2014). This change in policy has allowed large numbers of surplus labours
in the agricultural population to migrate to nearby small towns and small cities. This in turn

helped boost the economic growth of both large and small cities. The amount of urban
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population and size of cities has grown tremendously since then.

Second, the housing reforms enacted in 1982. This allowed foreign and domestic capital to
build houses in cities which had a direct impact on the urban spatial form and commuting
patterns. In addition, urban land use value and the urban land market were introduced in 1987.
Since then, urban land value has played an essential role in shaping urban spatial patterns. This
has helped to make Chinese cities exhibit spatial gradients based on land rent (Seto & Fragkias,
2005; Yue et al., 2013). Urban land sales and leasing have accounted for a large percentage of
local government budgets in recent years. This money has been used to boost economic growth
such as infrastructure construction, education, and medical services which in turn has led to

more significant urban growth.

Last but not least, after the Reform, several different kinds of development zones were
established, with the aim of attracting investment and boosting economic growth. In 1979, four
Special Economic Zones were established in Shenzhen which proved successful. In 1984, 14
coastal cities were opened to foreign investment. Economic Technology Development Zones
were also built in many open cities. After that, large areas were opened as Coastal Open
Economic Zones and these areas were ultimately extended to all coastal provinces. These
development zones have successfully boosted economic growth in coastal areas. To balance
the development between eastern and western regions, High-Technology Industrial
Development Zones were set up in provincial capitals in inland China in 1991. Due to the
success of national development zones, local governments started to build provincial-level
development zones. These development zones (both national and provincial level) have played
a crucial role in the urbanization process (Seto & Fragkias, 2005; Schneider et al., 2015). On
the one hand, these areas have made a significant contribution to economic growth in these

areas. On the other hand, these areas were established near urban fringes which were mostly
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formerly agricultural land or green land and affected the urban spatial pattern. During this
period, the development was concentrated in coastal areas which led to a higher urbanization
level in coastal areas. Since 2000, the state has set up a series of policies to balance this spatial
inequality of urbanization, aiming to stimulate economic growth in interior China. Central
governmental investment has played an important role in urban growth in Western China and
Foreign Direct Investment (FDI) played an important role in Eastern China (Schneider et al.,

2005, 2015).

2.1.2.2 Urban spatial pattern in China

Urban spatial form can also be characterized by two periods: pre-Reform and post-Reform.
The spatial form of cities was relatively compact and monocentric before the Reform (Lin,
2002). While after the Reform, cities have witnessed rapid growth in both urban population
and urban land use amount (Gaubatz, 1999; Schneider & Mertes, 2014; Montero et al., 2021;
He & Zhou, 2024). The relaxation of rural-urban migration policy has contributed to simulating
urban growth, especially in small cities and urban fringe areas (Lin, 2002). The rapid growth
of small towns or cities especially those near large cities has led to the emergence of polycentric
characteristics in large cities (Schneider et al., 2015; Liu & Wang, 2016). There are some other
phenomena related to this such as semi-urbanization, suburbanization, and urban clusters. All
of these have emphasized the decentralization of urban population and function and the
development of surrounding urban areas. However, most research on polycentric cities has
been based on urban land data or population or employment data to identify the polycentric
morphological characteristics (Burger & Meijers, 2012; Liu & Wang, 2016). Studies on the
functional characteristics of polycentric cities, and levels of connectivity between them, are
largely limited. In the meantime, large metropolitan areas have formed in some areas, such as

Shanghai (the Yangtze River Delta), Beijing, and Guangzhou (the Pearl River Delta). The
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housing reform and development zones made a significant contribution to shaping urban form
during this rapid urbanization period. The pursuit of land rent has potentially accelerated the
transformation of agricultural land close to cities to urban land (Wu et al., 2015). Research has
shown the urban edge area to be fragmented at the micro level (Liu, Li, Chen, et al., 2010a).
Most development zones are located in urban fringe areas, leading to dispersed urban growth.

It is argued that this is often followed by an infill process.

2.2 Definition

2.2.1 Land cover and land use

Land cover and land use are two commonly used terms in geography and other related
disciplines such as urban planning and resource management. Land cover and land use have
distinct definitions. Land cover describes the physical surface of the earth, such as forest,
grassland, river, and concrete. In contrast, land use refers to the purpose the land serves, for
example, road, park, and agriculture. Land cover only describes the surface on the ground
regardless of its usage. Land use is a function-based concept that indicates how people use the
land. The same land cover type can be used for different purposes (uses), for instance, grassland
land cover can be used for pasture, leisure, and environmental protection. Conversely, the same
land use type can consist of different types of land cover, for example, land for leisure activities

could include grassland, water, and forest.

Land cover data can be derived from a variety of different sources, including aerial
photography and remote sensing data, which provide data at the pixel level. Land cover data is
dependent on the classification and interpretation of raw data. The classification system
determines the land cover data extracted from the original data (Schneider et al., 2005). The
classification systems are hierarchical since the land cover itself is hierarchical. The

classification starts at a broad level and divides each class into more detailed sub-classes. It is
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mutually exclusive at each level. In contrast, land use data is usually hierarchically aggregated
from land cover data. It is inferred from land cover data based on other related knowledge, such
as urban planning and environmental protection documents, and is usually, object-based. Land
cover and land use data provide useful information across a variety of fields including
ecological conservation, land management, urban planning, and resource management. Land
use and land cover data can be analysed to highlight changes over time. Such information is
not only useful for governments and agencies, but also for researchers in a variety of fields,

including climatologists, ecologists, and urban planners.

2.2.2 Urban area and rural area

Urban land and rural land are land use-based definitions. They describe how people are using
this land and potentially whether this land is used for urban-related purposes or non-urban-
related purposes. Both urban and rural land can be composed of a variety of different land cover
types. For example, in an urban area, asphalt and concrete can be treated as urban land; grass
can also be treated as urban land when it is used for leisure and climate mitigation. When
defining urban land, it is important to distinguish this from other similar land cover or land use
definitions, such as built area, settled area, and impervious area. Built area or built-up area is
strongly related to the urban space. The criteria (minimum population or population density)
may be slightly different in different countries, but it is usually defined as a well-urbanized
area, used for urban functions, such as work, residence, and industrial production, with basic
infrastructure (Parr, 2005, 2007). In a monocentric city, the built-up area is usually a large
continuous area; while in a polycentric city, the built-up area may be composed of several
contiguous areas (Burger & Meijers, 2012). The settled area is another land use-based
definition. It refers to land used for settlement. An urban area encompasses not only a settled

area. Impervious areas are closely related to human activities. They are defined as artificial
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surfaces covered by impenetrable materials such as asphalt and concrete. For instance,

pavement, industrial construction, and buildings are regarded as impervious areas.

When studying urban-related topics, researchers with different backgrounds focus on different
aspects of cities and use different definitions based on the research topic. Spatially, an urban
area can be treated as a physical entity (Parr, 2007). From this perspective, the urban spatial
pattern can help to define the city and characterize its features, such as landscape metrics and
geostatistical models. However, it is not only a spatial entity, but it is also a centre for economic
activities, consumption, employment, and workforce (Parr, 2007; Huang & Wong, 2016; Fang
& Yu, 2017). It is not a sum of these activities, rather, it is a hierarchical, dynamic, adaptive
system, with all these activities which are the behaviour of individuals and groups interacting
with each other (Bettencourt et al., 2007; Batty, 2008; Sultana & Weber, 2014). Scholars
emphasize the importance of connections and networks in cities (Vasanen, 2012). Rather than
considering the city as a top-down entity (control with policies and planning), it is argued that
these interactions and networks directly relate to the nature of cities and urban patterns from
the bottom up (Batty & Longley, 1994; Batty, 2012, 2013a). Both physical and social networks
connect people in cities and allow the flow of goods, energy, and information. As the node or
centre for connection, cities attract more people which leads to more connections and flows,
eventually causing the growth of cities. Furthermore, urban land is also connected with other
urban areas or different land use types through teleconnection (Seto, Reenberg, et al., 2012; Yu
et al., 2013). This teleconnection also has a link to urban pattern change and urban growth. The
contemporary world has made this connection even more complex and dynamic. To better
understand these interactions and connections, dynamic models have been used to simulate

urban systems.
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2.2.3 Representations: raster-based and object-based model

Raster-based and object-based models are two ways of representing specific objects or
phenomena in geography. Unlike modelling in other disciplines, modelling in geography
describes not only the characters of objects or phenomena but also their spatial location (Lloyd
et al., 2017). When representing phenomena or objects in space, there are two approaches to
modelling them: the entity approach and the continuous field approach. In Geographical
Information Systems (GIS), the continuous field approach relates to gridded data or raster data,
which equates to a set of pixels (the size is the spatial resolution), with each pixel having an
(x,y) value representing its location in space and a value representing the value of specific
phenomena (e.g., land cover, elevation) at that location. The entity approach relates to an object
or vector data, which consists of a set of points, lines, or polygons with an (x,y) value
representing its location and associated attributes held in attribute tables (e.g., name of zone,

area of zone)

2.3 Measurement

2.3.1 Remote sensing data

Remote sensing data has been widely used in many aspects, such as urban planning, agriculture
management, environmental protection, natural hazards monitoring, and geology (Schneider
& Woodcock, 2008; Sexton et al., 2013; Taubenbock et al., 2017; Wu et al., 2019; Zou et al.,
2023). It provides long-term, consistent data for large spatial extents and has been used in
numerous studies regarding monitoring urban change, including changes of size, shape,
location and pattern (urban spatial characteristics) in recent decades (Anderson et al., 1976;
Decker et al., 2007; Schneider, 2012). Raw remote sensing data records land surface radiation
(reflected radiation or emitted radiation) in different wavebands as grid cells. The size of grid

cells or pixels is the resolution of remote sensing data and this can vary from 1km to less than
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Im depending on the satellite sensors. Before being used for analysis, raw remote sensing data
needs to be pre-processed, for example, to correct for any atmospheric effects, and
geometrically registered to a coordinate system. These processes occur before any
interpretation of remote sensing data. After image classification, the accuracy of classification

is usually checked. The classified product can then be interpreted or analysed accordingly.

Remote sensing data is a major source for quantifying urban change and spatial patterns. After
being classified, remote sensing data provide basic land cover or land use information. When
used in quantifying urban spatial patterns, it is crucial to take spatial resolution into
consideration, to ensure that the resolution is sufficient to capture the dynamics of the land

surface under investigation.

2.3.2 Population data and economic data

Population data is frequently used when studying urban-related topics. For example, population
is widely used to classify cities (large, medium, or small cities) and calculate levels of
urbanization; the spatial distribution of population also provides useful information when
studying urban form and spatial structure (DeFries et al., 2010; Hernando et al., 2013; Gaughan
et al., 2016). Population data is often obtained from government census data. Since the data
collection process is usually based on administration units, population data is often available
at aggregate level, e.g., county, city, and province level. When used spatially, this type of
population data is usually displayed in vector format with polygons representing administrative
boundaries and population data assigned as an attribute of corresponding polygons. However,
this level of aggregation can be quite coarse when researching at local scales, especially when
used in conjunction with land cover or land use data which is usually available at much finer
resolution. Thus, researchers have utilized a variety of approaches to generate raster population

data at finer spatial resolution. The Gridded Population of the World (GPW) series is an openly
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available gridded global dataset which models the spatial distribution of population on land
surfaces with grid-type data. This is now in the fourth version (Doxsey-Whitfield et al., 2015).
This data set utilizes an area-weighting method which disaggregates population from
administrative units into raster cells. The GPW v4 is available at a resolution of 30 arc-seconds
(approximately 1 km) for 2000, 2005, 2010, and 2020. Recently, the WorldPop Project has
produced an open-access population dataset at a finer resolution with higher accuracy (Lloyd
etal., 2017). This dataset utilised a variety of spatial datasets such as nightlight data, land cover
data, Open Street Map, and elevation, to generate gridded population data at 3 arc-second
spatial resolution (approximately 100m). These finer-resolution population datasets provide
essential support to measure a variety of population-related research topics, for example, urban

growth, urban planning, impacts of population growth, and epidemic modelling.

Economic data is another widely used data when studying urban-related topics, especially
urban economic activities. Usually, economic data can be obtained from official census data.
When studying urban growth, economic data is usually used in combination with other data to

measure the growth rate and amount (Bloom et al., 2008).

2.3.3 Other types of data

There are some other ways to measure urban patterns in urban studies. Scholars have used
nighttime lights to measure the urban extent and urban growth, which usually refers to the
Defence Meteorological Satellite Program/Operational Line-scan System (DMSP/OLS)
nighttime stable light (Zhou et al., 2015). Some efforts have been made to use this nighttime
light data alone or with data such as population data to measure urban extent nationally or even
globally and identify urban clusters (Yu et al., 2014; Gao et al., 2016). In recent years, an
increasing number of researchers have used social network data and other types of big data

such as mobile phone signal and transportation data to study urban growth and urban activity
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patterns(Chen et al., 2022; Dong et al., 2024). This type of data is usually individual as opposed
to aggregate, making it useful in modelling urban evolution, the pattern of activities, and
connections within a city or among cities (Batty, 2013a; Huang et al., 2016; Huang & Wong,
2016). For example, population flow is considered as a useful tool to study urban growth in
recent years since cites are becoming more connected as networks through the flow of goods,

technologies and information (Xia et al., 2019; Xu et al., 2021; Xu et al., 2023; Hu et al., 2024).

2.4 Statistical Model: Characterization Model

2.4.1 Landscape metrics analysis, fractal analysis, and rank-size analysis

24.1.1 Landscape metrics in analysing urban pattern dynamics

Landscape metrics are effective ways to characterise urban patterns and configurations at
multiple scales over time. Landscape metrics can be patch-based (e.g., patch density, patch
shape, patch size, and fractal dimension) and pixel-based (e.g., contagion). These metrics can
be used to describes the size, complexity, shape, and other aspects of urban areas at different
scales (Schneider et al., 2005; Torres et al., 2016; Bosch et al., 2020). For example, frequently
used landscape metrics such as patch density, mean patch size, and edge density can be used to
measure the continuous fragmentation of urban land whilst the contagion index can be used to
measure the heterogeneity of landscape (Luck & Wu, 2002; Von Der Dunk et al., 2011; Fan &
Myint, 2014). Landscape metrics can be classified by quantifying the composition or
configuration of the landscape (Berling-Wolff & Wu, 2004a; Yu et al., 2014). No single metric
can adequately measure or describe complex urban patterns and their changes over time.
However, many landscape metrics are correlated. Thus, the metrics selected for research should
not be highly correlated and can be used to capture essential and meaningful landscape

information. Another critical issue that needs to be considered when using landscape metrics
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is scale. Since the landscape itself exhibits different characteristics at different scales of
investigation, no single scale can provide full information on the landscape. Therefore, it is

essential to calculate metrics at multi-scales.

Scholars have utilized landscape metrics to characterize spatial-temporal urban patterns within
a single city, in several cities in a region, or even globally (Berling-Wolff & Wu, 2004a;
Schneider & Woodcock, 2008; Schneider et al., 2015). Landscape metrics have been used to
calculate changes in urban form within different buffer zones to better understand urban growth
both spatially and temporally, indicating that common patterns exist in the size, shape, and
growth of urban land across cities in a region and that disconnected urban land converges to a
continuous urban fabric (Schneider et al., 2005, 2015). Landscape metrics have also been used
to assess policy and planning outcomes, and how policies have driven urban growth, which
supports planning and management in the future (Schneider et al., 2005). Another benefit of
landscape metrics is that they provide a series of consistent measures which can be applied to
different cities to make comparisons across cities. Researchers have used metrics to measure
urban growth characteristics and urban form within countries, such as comparison among
coastal cities and inland cities in China, and globally, to contribute to understanding of urban
sprawl among countries (Schneider & Woodcock, 2008; Gao et al., 2016). Researchers have
used landscape metrics to link empirical observations to urban growth theory. For example, a
case study in California’s Central Valley was used to identify diffusion and coalescence process
and link to relating theory (Dietzel, et al., 2005a). In addition to these classical landscape
metrics, researchers have introduced new indexes based on landscape pattern characteristics to
better quantify landscape pattern dynamics. For instance, the Landscape Expansion Index (LEI)
was used to identify different urban growth patterns, i.e., infilling, edge expansion, and outlying
(Liuetal., 2014; He & Zhou, 2024). Unlike most landscape metrics that measure characteristics

for one period of time, the LEI identify and quantifies urban growth types and characters for
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two or more periods of time (Liu, Li, Chen, et al., 2010a) which essentially provides insights

into urban growth process at the micro level.

2.4.1.2 Fractal analysis

The concept of fractal refers to spatial objects exhibiting self-similarity, scale-independent, and
irregularity characteristics (Falconer, 1986; Batty, 2013b). When a fractal object is subdivided
into parts, each part looks similar to the whole object (Frankhauser, 2009). Many natural spatial
objects have been found to exhibit fractal characteristics, including coastlines and plants. Many
artificial spatial objects have also been shown to exhibit fractal characteristics, including urban
areas and transportation infrastructure (Batty & Longley, 1988; Wong & Fotheringham, 1990;
Lu & Tang, 2004; Mohajeri et al., 2012; Batty, 2013b). The fractal dimension has been widely
used to measure how the detail in the fractal changes with scale. The most commonly used
methods for calculating fractal dimension include box-counting analysis (Benguigui et al.,
2000; Shen, 2002), area-radius scaling (Chen, 2010), and area-perimeter scaling (Wang et al.,
2005). It is suggested that the box-counting approach works best when analysing the spatial
distribution of built-up objects, while the area-radius scaling approach works best when
analysing the fractal dimension of the urban growth process due to its consistency with urban
areas and urban peripheries (Chen, 2013). Since being introduced into geographical research,
fractal analysis has been applied to analyses of urban form, urban growth, urban systems, and
inner urban structure (e.g., transportation, infrastructure, and population density) (Wong &
Fotheringham, 1990; Chen, 2010; Tannier & Thomas, 2013; Chen et al., 2014). Fractal theory
provides new perspectives with which to understand cities (Batty, 2013b; Bosch et al., 2020;

Lagarias & Prastacos, 2020; Tan et al., 2021).

Using fractal simulation techniques, researchers have explored the fractal dimension of urban

form, urban growth, and urban structure for individual or multiple periods in time. For instance,
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empirical analysis of the fractal dimension of urban growth in London was consistent with that
of urban growth in Cardiff (Batty & Longley, 1994). Extensive research has also been
conducted for cities across the world, studying urban form, urban agglomeration, and a specific
inner urban characteristics (Wong & Fotheringham, 1990; Chen, 2010; Thomas et al., 2012;
Tannier & Thomas, 2013). To better compare the fractal characteristics among different cities,
the top 20 cities ranked by population in the US were selected using a box-counting algorithm
to calculate their fractal dimension for urbanized areas and examined to determine the statistical
relationship between fractal dimension and population density using a log-linear function
(Shen, 2002). The results indicated that different urban forms could share similar dimension
values, and that cities with the same dimension values and urbanised areas could have very
different population sizes. This suggests that the fractal dimension worked as an aggregate
measure of the whole urban form rather than its specific configuration, and the fractal
dimension alone was not a good indicator of population density. To investigate the reasonable
range of fractal dimension value and explore the relationship among various urban fractal
indicators, scholars have integrated the scaling analysis, spectral analysis, and spatial
correlation analysis to generate a set of fractal parameters linked with each other based on the
density-radius scaling method (Chen, 2013). The results revealed that the appropriate range of
dimension value is between 1.5 to 2.0. This approach could be applied as a useful tool to
understand urban evolution. The morphological similarities of the built-up area have been
explored across countries. Researchers utilized fractal indices to calculate the morphological
similarities of 97 towns located in 18 European urban agglomerations (Thomas et al., 2012).
The results indicated that the morphological characteristics resembled each other more strongly
across cities (or countries) than within cities. This research has provided many empirical cases,
advanced analysis techniques, and enhanced fractal theories. In addition to that, researchers

have also developed a multifractal method to study the spatial form and growth and cities. It is
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argued that the monofractal methods lack self-comparability, has limited ability to conduct
analysis at a local scale to provide more details, and cannot provide multiple perspectives (Chen
& Wang, 2013). Thus, the multifractal method was developed and has been used to study
different components of urban systems, such as the spatial distribution of population, the rank-
size distribution of cities, and the morphological characters of cities (Haag, 1994; Appleby,
1996; Chen & Zhou, 2004). Based on the box-counting method, the research utilized the
multifractal method to study the multifractal characters in Beijing, China (Chen & Wang, 2013).
The results indicated that the growth pattern of this city exhibited multifractal characteristics.
The high-density city centre area was degenerated due to space over filling and the fringe low-
density area exhibited a disordered character. These two areas are where urban problems mainly
occur such as traffic congestion, inefficient land use, and high population density. This
approach is effective in helping to understand the urban evolution process from a different
perspective. Recently, it has also been suggested that fractal analysis could be used to transform
the study urban systems from the perspective of complex networks (Zhang et al., 2020) since
recent rapid developments in technology and the availability of data make it possible for

researchers to conduct more complex analyses from different perspectives.

24.1.3 Rank-size analysis

Some research has focused on the intra-city relationship, the spatial distribution, spatial layouts
of cities, and the morphology of urban clusters (Brakman et al., 1999; Reed, 2002; Fragkias &
Seto, 2009; Xu & Harriss, 2010; Peris et al., 2021; Wang et al., 2024). The rank-size
distribution research has explored the distribution of some elements of cities, such as city size,
city population, and economic activities (Berry, 1961; Haag, 1994; Guérin-Pace, 1995; Reed,
2002; Fragkias & Seto, 2009). One widely used power law to characterize the distribution is

Zipf’s law. Zipf discovered that the frequency of some events and their rank were connected
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through a power law function. This was later called Zipf’s law (Brakman et al., 1999). Zipf’s
law has been extensively applied to various elements of the urban system, providing much
empirical research on the rank-size distribution (Gabaix, 1999; Decker et al., 2007; Marshall,
2007). For example, the rank-size distribution was conducted based on multiple time series
remote sensing data to study the urban cluster evolution in a metropolitan area (Fragkias &
Seto, 2009). This research revealed the intra-city variation of urban form and the oscillating
behaviour in the rank-size distribution. This research also provided an empirical study of the
birth-growth-coalescence urban growth process. These laws have also been combined to reveal
the overall evolution of urban systems (Xu et al., 2025). Overall, the rank-size analysis could
help to understand the distribution of urban clusters at regional or national scales and reflect
the evolution process of urban clusters, but it could not adequately capture the spatial pattern

of urban areas, especially the multiple scales pattern.

2.4.2 Geostatistical Model in Characterizing

It is recognized that in geostatistics two things need to be considered unlike in traditional
statistics. The first one is the sampling framework. The spatial data obtained is the function of
the sampling framework and its spatial variation. The sampling framework determines the
resolution of spatial data which directly influences the analysis results since the resolution is
crucial in capturing the spatial variation (Atkinson, 1999). The second one is that in traditional
statistics, data is assumed to be independent. While in geography, the spatial data is spatially
dependent and exhibits an auto-dependent behaviour (Tobler, 1979; Overmars et al., 2003).

Usually, the closer the two data are located, the more similar the two data are.

Geostatistics is usually applied to spatial variables which exhibit spatially dependent
characteristics. It is widely used in remote sensing image analysis (e.g., texture classification

and smooth classification) and for characterizing spatial patterns (Woodcock et al., 1988;
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Atkinson & Lewis, 2000; Atkinson & Tate, 2000; van der Meer, 2012).

Among these techniques, variogram analysis has been extensively used in remote sensing
research, to characterize image structure, estimate image texture, classify texture, map land use
and identify spatial patterns and land cover change (Curran, 1988; Garrigues et al., 2007,
Millward, 2011; Balaguer-Beser et al., 2013). Variograms could reflect the spatial variation of
a specific variable. Its shape and properties could provide information on the spatial pattern of
specified elements (Woodcock et al., 1988). For example, semivariogram indices were used to
study the spatial distribution and spatial pattern of trees (Balaguer-Beser et al., 2013). This
approach considered a limited number of directions and could be applied to other elements to
understand their spatial heterogeneity pattern. It has also been used to characterise the spatial

heterogeneity of vegetation cover and land cover (Garrigues et al., 2007).

2.5 Statistical Model: Prediction Model

2.5.1 Geostatistics and classification of remote sensing data

The classification of remote sensing data could be treated as a prediction process since it is
essentially a process that could provide the most likely value of a variable at one location (Stein,
1999). Classification of remote sensing data is an important procedure since it deals with the
raw remote sensing inputs and produces outputs for further analysis. The method and accuracy
of classification directly influence the analysis results. Various algorithms have been developed
and applied to classify the image for both pixel-based classification and object-based
classification (Atkinson & Lewis, 2000; Stefanov, 2001; Zhang, 2001; Berberoglu et al., 2007).
The most widely used classification methods are unsupervised classification methods such as
the K-means algorithm and supervised classification methods such as the maximum likelihood

algorithm. Both of these methods are pixel-based and generate pixel-level data, while object-
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based methods create objects that consist of homogenous pixels.

2.5.2 Regression model

Traditional statistical methods have been used in geography for quite a long time. Among these,
urban growth-related topics such as urban growth mechanisms, urban growth patterns, and
urban growth impacts have been explored utilizing a variety of geostatistical methods (Cheng
& Masser, 2003a; Stoebner & Lant, 2014; Zhao et al., 2017; Wang et al., 2020; Gielen et al.,
2021). Various regression models have been applied at the local, regional, or even national
level to study urban growth-related topics (Cheng & Masser, 2003a; Yu, 2006; Riitters et al.,
2017). For example, the regression model has long been used to study the relationship between
urban growth and population growth or between urban growth and economic growth (Hsu,
1996). Logistic regression has also been widely used in studying determinants of urban growth
or urban spatial patterns and has proved its effectiveness in addressing this sort of problem

(Zhao et al., 2017).

The regression model has been employed in the study of urban patterns. This geostatistical
model is effective in describing the spatial characteristics of urban patterns, reflecting the
heterogeneity of spatial patterns, and revealing the determinant of variation in such patterns
(Aspinall, 2004; Stoebner & Lant, 2014; Liu & Wang, 2016). Since space is not homogenous,
global statistical models may have a weakness in characterizing local variations. To address
such problems, some localized statistic models have been developed to characterize local
variation, such as Local Indicators of Spatial Analysis (LISA) (i.e., the local Moran’s I index)
(Anselin, 1995) and Geographically Weighted Regression (GWR) (Brunsdon et al., 1996). This
type of model has been successfully applied to some regions and proved to be effective in
revealing local change and its influencing factors (Wheeler & Tiefelsdorf, 2005; Bitter et al.,

2007; Huang et al., 2015).
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These regression methods have been combined with other statistical methods to model urban
land use from an economic perspective. For example, a regression model was employed with
a Granger causality analysis based on economic, demographic, and land use data to analyse the
drivers of urban land use change in the Pearl River Delta in China (Seto & Kaufmann, 2003).
This research was conducted at a macro-level to reveal macro-level socioeconomic factors that
drive urban land change. The results indicated that at a macro level, the urban land conversion
was primarily caused by exogenous factors such as Foreign Direct Investment (FDI). The
relative ratio of agricultural land, industrial land, and urban land productivity was identified as
the main drivers of natural and agricultural land conversion to urban land. This method
provided a better understanding of the macroeconomic drivers of urban land change and

supported further research on identifying the drivers of urban land change at different levels.

The logistic regression model has been used to detect the influencing factors of urban growth
and urban patterns. For instance, the logistic model was used to study and compare the
influencing factors of urban patterns between two border cities in the US and Mexico (Zhao et
al., 2017). These two adjacent cities provided an excellent case to explore and compare the
underlying factors influencing urban patterns such as transportation, population, and
economics. This research characterized the historical urban growth in these two cities first.
Then a logistic regression model was utilized to evaluate the effects of a variety of factors on
the urban pattern and compare the differences in driving mechanisms. The results suggested
that different economic and development backgrounds were underlying the different urban
growth patterns and that some local factors were the main determinants of this growth. The
results indicated that the city in the US exhibited a more dispersed pattern, and population and

highway density showed different effects in these two cross-border cities.

A spatial logistic model has been used to explore the determinants of urban growth in Wuhan
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(Cheng & Masser, 2003b). Unlike most research-based study areas in coastal or large cities,
this research studied the urban growth pattern in Wuhan, a central medium-sized city which
provided a unique case to compare with other large coastal cities and western cities. This
research first performed an exploratory data analysis to make a hypothesis. Then a logistical
regression model was used as a confirmatory analysis. To deal with the spatial dependence, this
research designed a spatial sampling scheme to reduce its effect on the analysis. The result
suggested that after the land reform and before 2000, major urban infrastructure and newly
developed zones played an essential role in promoting urban growth during this period, while
the role of local government’s role and master planning was weakened. This method has
provided a useful approach to studying the influencing factors in urban growth. The results

could be further used in the dynamic model of urban growth.

A logistic GWR has been applied in Nanjing city in China (Luo & Wei, 2009). This large city
remains compact in form in the rapidly urbanizing context of contemporary China, which
makes it a good case to study how the impacts of factors influencing urban patterns vary among
different cities. Both the global logistic regression model and GWR were applied to this city.
The results indicated that the GWR fitted better than the global regression model and performed
better at revealing the determinants of spatial variation. The GWR allows the variation of
parameters across space. This approach could provide a better understanding of variations of
urban patterns and the different impacts of determinants. GWR has also been applied at a
regional scale to identify the spatial non-stationarity characters in regional development
mechanisms (Yu, 2006). This model was applied in the Greater Beijing Area which consisted
of 13 cities to investigate the spatial variation of mechanisms in regional development. The
results indicated that the regional development mechanism produced significantly different
local characteristics and that spatial non-stationarity played a crucial role in the regional

development. This method provides a useful tool for understanding regional development
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mechanisms and their spatial variation. Apart from that, GWR has also been used to study the
urban sprawl and landscape fragmentation multi-scale relationships (Torres et al., 2016).
Scholars employed both the global regression model and GWR together with landscape metrics
to explore the mismatches between urban sprawl and landscape fragmentation across scales.
Based on the quantification of the urban sprawl and landscape fragmentation spatially, this
research performed the global regression model first, then used GWR to explore the spatial
variation of this urban sprawl and landscape fragmentation relationship and its scale-dependent
behaviour. The results indicated that the relationship between urban sprawl and landscape
fragmentation does not prevail. It is rather non-stationary, and scale-dependent. This research

provided support for better land conservation and management.

LISA have been applied to measure inter-building distances when studying local urbanisation
patterns in Southern Brussels (Caruso et al., 2017). This method first employed the Minimum
Spanning Tree (MST) to build a connected urban and suburban graph and utilized this inter-
building distance as a direct measure of built land. LISA were then used to calculate this
distance to measure urban patterns at a fine scale. Together with LISA, this method is based on
fine-scale inter-building distance and measured local scale spatial pattern which supports better

planning and management.

The regression method has also been used to study the urban growth pattern at multiple scales
(Cheng & Masser, 2003a). Treating the city as a self-organized hierarchical system, this
research constructed a logistical regression model to study the determinants of urban growth at
different scales. Since studying microscale determinants requires fine resolution of land
cover/use data and more social, economic, and other factors, this research only focused on
macro and meso levels (the probability of change and the density of change respectively). The

results suggested that the urban growth pattern was scale-dependent. This multiple-scale
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analysis helped to provide a deeper understanding of urban growth patterns, as well as a better
understanding of the temporal process of urban growth. Given increasing study of urban
dynamics from a network perspective, network weight matrices have been incorporated into
regression models to study the processes driving urban growth. This approach seems to produce
more accurate results, is better at revealing underlying process (He et al., 2023), and suggests

that the network perspective should be given more attention in future studies.

Since urban dynamics involves a variety of processes at different temporal and spatial scales,
research conducted at one single scale, a pure bottom-up, or top-down method cannot fully
capture the drivers of urban land change and reveal its complicated growth mechanisms. For
instance, regional scale methods usually reveal that macro-scale urban growth is influencing
factors such as population, economy, and land market. While the local-level method usually
reveals micro-level driving factors such as infrastructure, biophysical factors, and individual
or group behaviours (Cheng & Masser, 2003a; Fragkias & Seto, 2009). To incorporate factors
at multiple scales scholars developed a coupled system dynamics spatial logit (CSDSL) model
which coupled both a local scale logistic regression model and a regional scale system dynamic
model (Giineralp et al., 2012). This model not only incorporates both regional and local level
factors but also allows interactions between local and regional scales of land change. This
model was utilized to analyse and forecast the amount of urban land change and the urban land
pattern change. The results indicated that the integrated model performed better at analysing
and forecasting both the change in the amount of urban land and its pattern. This method
captures spatial complexity and variation of the urban land better. This research indicated that
local urban land change is tightly linked with regional-scale processes. However, this method
showed its limitation in forecasting isolated urban land change and had a weakness in capturing

development projects.

44



It is argued that these regression models usually have a low degree of explanation and small
sample size (Irwin et al., 2009; Luo & Wei, 2009). Even though statistical methods could not
fully capture the dynamics of urban land change and the characteristics of the urban growth
process, and have weaknesses in modelling urban growth process and multiple scale
relationships and feedback, they have still provided much useful information in identifying the
determinants of urban growth at different levels. They have illustrated the complexity of urban
dynamics, the multi-scale characteristics of urban land change, as well as the multi-scale
relationships among urban land change and its driving process (Yu, 2006; Torres et al., 2016;
Zhao et al., 2017). Statistical methods also work as a crucial component of dynamic models to
provide useful information such as selecting factors, setting parameters, and helping to

determine the transition rule in dynamic models.

2.6 Dynamic Model

2.6.1 Complexity in modelling urban systems

Urban systems are a complex, dynamic and hierarchical. They involve a variety of interactions
and feedback among different kinds of individuals, groups, and different levels of government
at different levels. Their interaction and feedbacks are also cross-scale (Irwin et al., 2009).
Individual and group behaviour shapes the city from the bottom up, for instance, individuals’
choices of residence location and transportation have an impact on the urban spatial structure,
urban form, and intra-city flow. In contrast, the government usually impose urban dynamics
from the top down, for example, the government’s policy and planning contribute to shaping

the urban form and influence the location choice of individuals and groups.
2.6.2 Cellular Automata models

Cellular Automata (CA) Models have been widely used to model complex systems. CA models
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are typically cell-based, with the model simulating the change in state of each cell at each time
point following a defined transition rule. In a CA model, all cells are assigned with an initial
state (Santé et al., 2010). The state of each cell depends on the state of its neighbourhood cells
and the transition rules (Syphard et al., 2005). Time is considered discrete. The model updates
each cell’s state-based transition rule at each time interval and repeats this calculation process

iteratively. At each time interval, the model generates the new state of all cells.

CA were first introduced in the late 1940s and further developed by Wolfram who demonstrated
that they could be used to model complex natural phenomena (Wolfram, 1984). CA models
were initially used in modelling physical processes and natural processes. In 1979, Tobler
introduced the CA model in geography and discussed the neighbourhood and transition rules
in the CA model. In the discussion, Tobler introduced the first law of geography: “Everything
is related to everything else, only near things are more related than distant things™ (Tobler,
1979). Based on this theory, the land use at a location is dependent on the land use of its
neighbourhood locations, which laid the foundation of the CA model’s application in geography.
He stated that in geographical space, the state of a cell, e.g., the representation of land use in
the model, is the function of the size, shape, orientation of the cell, and other characters of its

neighbourhood and transition rules (Tobler, 1979).

Later, with the development of computers and increasing discussion of CA theory, a variety of
CA models have been applied in geographical and ecological research, including research on
landscape pattern change, land use and land cover change, forest fire diffusion, urban expansion,
rural-urban land transition, risk assessment, agricultural or grassland protection, and ecological
security. Research has been conducted at both local and regional scales (Fang et al., 2005;

Hagoort et al., 2008; Santé¢ et al., 2010; Liu et al., 2013a).

Among this research, the application of the CA model in urban dynamics is the most
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extensively studied. CA models have been applied to simulate urban spatial dynamics, and
various CA models were built to simulate urban growth. Built based on self-organization, the
CA model views urbanisation to be the product of complex, self-organizing dynamic systems
(Wolfram, 1984; Chen et al., 2014; Montero et al., 2021; Guan et al., 2023; Lin et al., 2023;
Yao et al., 2024). Application of the CA model in urban dynamics is based on the assumption
that the previous state of the urban land pixel has an impact on future urban dynamics through
the interaction of the land pixel and its surrounding land pixels (Tobler, 1979; Clarke & Gaydos,
1998; Li et al., 2017). In these examples, the spatial resolution of land cells varied from 30m
to 1km. The state of the land cell also varied from urban and non-urban to several types of land
use. Regarding neighbourhood, researchers usually select the Moore rule, or a radius or a
square of a selected number (usually 2 to 9) of cells (Santé et al., 2010). For transition rules,
some models use strict transition rules while others use transition rules based on transition
potential (growth potential) or probability (Wu, 1998a; de Almeida et al., 2003). Some
researchers even use transition rules based on artificial intelligence or fuzzy logic (Wu, 1998b;
Li & Yeh, 2002). For example, researchers have integrated Markov chain analysis with the CA
model to simulate urban growth under different scenarios and used landscape metrics to analyse
and compare simulation under different scenarios (Dietzel, et al., 2005a; Zhang et al., 2011).
The integration approach has been proven to be effective in representing, simulating, and
forecasting urban evolution over space and time. Some CA models have been used to analyse
the influencing factors of urban land change, while others have been used to forecast urban
change in the future which is followed by a model validation and a comparison of simulated
urban patterns and real urban patterns (Aguilera-Benavente et al., 2014; Fang et al., 2005; Han

et al., 2009; Zhang et al., 2023).

It is recognized that urban growth and its spatial-temporal pattern are the results of multiple

factors interacting with each other at multiple scales and across scales. Thus, some researchers
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stated that as a bottom-up model, CA models emphasise the interaction and state of individual
cells at the local scale, and lack adequate information regarding policy, economic, and other
influencing factors at higher levels. For instance, urban growth is not only spatially constrained
by topology and related policy (e.g., urban planning, natural resources management practice,
and preservation zones) but is also impacted by regional economic development and population
flows (He et al., 2008; Chen et al., 2014). To overcome this shortcoming and better incorporate
influencing factors at multiple scales, some researchers have integrated the CA model with
other exogenous models which usually reflect the population, economic, and other factors at a
higher level to simulate urban growth patterns (Santé et al., 2010). For example, some
researchers utilized an Urban Expansion Dynamic (UED) model which incorporated a CA
model based on urban transition potential to simulate urban growth patterns and forecast future
expansion in Beijing city (He et al., 2008). This model integrated the spatial distribution of
Gross Domestic Product (GDP) and population at the macro-scale and overall urban spatial
pattern to provide transition potential. The results indicated that the simulation without
transition potential underestimated the agglomeration effect of the urban core area and sub-
central urban areas. To better understand and model urban dynamics, researchers have
integrated the CA model with the system dynamics model to incorporate urban growth driving
forces at macro scales (Chen et al., 2014). The results showed that the integrated model
performed well at both simulating urban growth and future expansion forecasting. Through this
integrative method, macro-level urban growth driving forces such as population migration,
policy, economic growth influence and their interactions are considered in the simulation.
Furthermore, the CA model has also been integrated with Multi-Agent Systems (MAS) to
simulate the transition of rural settlements to townlands (Liu et al., 2013). This integration
facilitated both the behaviour of agents and their interactions with the environment in the

simulation. This method builds transition rules based on both the neighbourhood state and
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agents’ behaviour. The application of this method in three fast-developing towns in China
indicated that this simulation method is effective in analysing micro-interactions between the

environment and multi-agents and their influence on land conversion.

In the modelling of urban expansion, most CA models utilize transition rules based on the
weighted sum which is calculated from logistic regression or fuzzy approaches which allow
uncertainty in the simulation. Both of these approaches are based on adjacent urban transition
which assumes that the non-urban pixel adjacent to an urban pixel has more probability to
transit to an urban pixel. However, previous research has revealed that urban growth occurs at
both non-urban pixels adjacent to urban pixels and non-urban pixels away from urban pixels
(Liu, et al., 2010a). The former can be classified into two categories: i.e., infilling and edge
growth, which refers to growth at a non-urban pixel surrounded by urban pixels and growth at
a non-urban pixel at the edge of urban patches respectively. The latter one is outlying growth
which refers to urban growth at non-urban pixels adjacent to non-urban pixels. This type of
growth usually occurs at a location away from urban patches. In the disperse-coalescence urban
growth theory, this is viewed as the early stage of urban growth. Since most CA models are
based on neighbourhood transition rules, they have proven their ability to capture urban growth
near urban pixels in a variety of research settings (i.e., the infilling and edge growth). However,
these neighbourhood transition rules cannot capture outlying growth (Liu et al., 2014). To
incorporate urban growth that occurs away from the urban patch, some researchers have used
t the SLEUTH urban growth model which selects new urban cells that deviate from the urban
patch randomly (Clarke & Gaydos, 1998); some scholars proposed a LEI-CA model which
integrates the CA model with LEI landscape index. In the LEI-CA model, scholars utilize
different rules to simulate the adjacent growth and outlying growth (Liu et al., 2014). The
model was applied in the Dongguan city in China and has successfully simulated urban

expansion patterns. The comparison between the LEI-CA model and the logistic-based model
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has proven that the LEI-CA model could better simulate outlying urban growth.

However, some scholars have argued that cell-based methods have limitations in simulating
future urban land patterns since they cannot adequately reflect the evolution of urban land
patches (in the real world, urban growth usually occurs as land parcels increase in size or
amount), and especially in China where most urban growth is spontaneous which is not fully
reflected in cell-based models (Chen et al., 2014). Thus, patch-based CA models have been
proposed to simulate urban growth using patch-based methods (Chen et al., 2014; Yang et al.,
2023; Yao et al., 2024). For example, a Patch-Logistic-CA model and a patch-based CA model
using the patch-growing algorithm. A patch-based logistic CA model has been used to simulate
the urban growth pattern in Guangzhou city and compared with the results of a cell-based CA
model. The results indicated that the patch-based CA model worked better for simulating
realistic urban growth, and the cell-based CA model could only simulate new urban cells

connected to urban cells initially.

Apart from these efforts to advance the technical aspects of CA models in simulation spatial
dynamics, some researchers have focused on the central neighbourhood rules and the model
fitness of the real world. For instance, research has been concentrated on explicitly revealing
the neighbourhood interactions by incorporating the spatial externality in simulating urban
dynamics (Hagoort et al., 2008). More specifically, how the land use change in the
neighbourhood influences the land use change at one location and how this impact varies with
distance. Furthermore, the single neighbourhood rule ignores the intraregional and
interregional differences which may influence the simulation results. Based on this
consideration, one researcher incorporated spatial externality in a CA simulation and generated
a set of neighbourhood rules (Geertman et al., 2007). The regionalized rules and a general rule

were then used to simulate urban dynamics. The comparison and validation of the results
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indicated that a better-founded neighbourhood rule and regional-specific rules could support

the CA model to produce a better-fitted simulation and better practical use.

2.6.3 Agent-Based model

Another dynamic model that has been widely used in modelling urban dynamics is the Agent-
Based Model (ABM). Unlike most CA models that are based on cells, ABM models simulate
urban dynamics based on agents which could be land parcels, individuals, or groups
(Rounsevell et al., 2012; Filatova et al., 2013). In the CA model, most transition rules are spatial
based which reflects the interaction and relationship among cells. In ABM, the transition rule
is more varied. It could be spatial, such as distance to the city centre, or reflect an individual’s
decision-making, or interactions between individuals and space (Matthews et al., 2007; Walsh

etal., 2013).

ABM’s ability to represent adaptive and interactive agents makes it useful in simulating
processes which involve multiple agents interacting with each other. For example, in the
simulation of land use change, ABM could capture the behaviour of different agents, e.g.,
individuals, households, companies, and local governments, and their interaction which is
usually nonlinear (Crooks et al., 2008; An et al., 2014). In an ABM, the behaviour of agents
could be passive or proactive, and the agents may have different types, e.g., individuals, groups,
and some influencing environmental or economic factors. These characteristics make ABM
widely applied in environmental and geographical research since they can capture the features
and dynamics of a variety of related agents. However, this also increases the complexity and
uncertainty in simulation due to the complex behaviour of different agents and the nonlinear

relationship among those agents (An et al., 2005; Walsh et al., 2008).

In an urban system, urban dynamics and evolution processes involve various agents’ decision-
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making. The behaviour of one agent could impact other agents’ decision-making directly or
indirectly. The choice of these agents plays a crucial role in influencing the urban dynamic, and
their spatial preferences have an important impact on the resulting spatial pattern. Therefore,
as a dynamic model which could simulate the adaptive behaviour of multiple agents, ABM has
been widely used in modelling various geographical processes, such as urban growth,
population mobility, land use and land cover change, agricultural dynamics, crime spatial
dynamics, land or housing market, and epidemics (Filatova et al., 2013; Magliocca et al., 2015;
Fu & Hao, 2018). Unlike static models, ABM can be used to simulate urban systems dynamics
at the level where the system’s components are interacting with each other. Modelling the
process could also help to reveal how the decision-making of different agents influences urban

dynamics.

Researchers have built ABM to analyse how the heterogeneity of residential preferences affects
urban sprawl in southeastern Michigan (Brown & Robinson, 2006). This research utilized
social survey data as source data to simulate the behaviour of agents in the ABM. This model
has defined two different types of heterogeneity in terms of agent preferences, i.e., variability
and categorization which assume agent characters are independent and correlated respectively.
The results of this simulation suggested that the urban sprawl could be viewed as a process

driven by various preferences to some extent.

Most ABMs have been applied at a local scale since when applied to a large scale, the
complexity and diversity of adaptive systems may increase substantially which increases the
difficulty and uncertainty to simulate, and large-scale modelling may require large data which
limits the simulation. Efforts are still being made to apply ABM at regional scales. Scholars
have proposed a conceptual framework to apply ABM at a regional scale to analyse land use

and land cover change and apply this model in the Netherlands (Valbuena et al., 2010). This
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research defined the internal and external factors that influence the decision-making of agents
and linked the environmental factors with agents’ actions. Combining individuals, an agent
typology, and a probabilistic decision-making method could simplify the variability of decision
making which helps to fulfil this simulation at the regional scale. The results suggested that
this integrated approach is flexible and generic and could be applied in different regions to

simulate the land use and land cover change process.

ABM has been used to study what factors influence the land use decision-making of
landowners. For instance, an ABM model was built to study to what extent land suitability,
land use preferences, and spatial externalities influence landowners’ decision-making (Kelley
& Evans, 2011). This model built a household-based spatially explicitly land portfolio ABM
and revealed that land suitability and spatial externality played a more critical role in
determining land use change than preferences. These results could contribute to support policy

management, especially in forest or agricultural management.

ABM has been integrated with other theories or models to simulate the various spatial
processes. Researchers have integrated economic models with ABM to build an economic
ABM to study the dispersed urban pattern and its influencing factors in the urban fringe area
(Magliocca et al., 2014). This method simulated the behaviour of agents based on basic
microeconomic decision making which is agent optimisation and market price and allowed
more heterogeneity in agents. This simulation could help to reveal the fundamental economic

features of the urban dispersal process and its influencing factors.

2.7 Forecasting

Forecasting urban dynamics is an important topic in urban studies since forecasting could

provide essential information for supporting urban planning, assessing urban growth impacts,
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policy making, and land and resources management. However, due to the inherent complexity
of urban systems, the variety of urban systems components, the complicated interaction and
feedback among components, as well as the existence of external shocks, the forecasting of
urban growth and urban dynamics remains difficult (Syphard et al., 2005; Seto, Giineralp, et
al., 2012). The forecasting results may vary due to factors such as data quality and data quantity,
the resolution of spatial or temporal data, a different understanding of urban systems, and model
fitness (Pijanowski et al., 2002; Seto, Giineralp, et al., 2012). Various methods have been
employed to model urban growth and urban dynamics, such as statistical methods, scenario-
based modelling, Markov transition matrix, and dynamic simulation methods (Guan et al., 2011;
Wang & Li, 2011; Pijanowski et al., 2014). Forecasting related to urban dynamics has mainly
focused on urban land change and urban land growth since urban land change is one of the
most fundamental changes and most influencing aspects of urban growth (e.g., the amount,
location, and spatial pattern of urban growth), urban population growth which put heavy
pressure on both urban and environment, urban economic growth, and urban impacts (Li &
Yeh, 2002; Herold et al., 2003). With the advance of technology (both the development of
remote sensing to provide higher resolution data to obtain more detailed topological and
morphological features of spatial objects and the advance of modelling technique) and more
in-depth understanding of urban systems, more sophisticated methods have been developed to

simulate and forecast urban dynamics.

For example, the CA model has been recognized as a useful tool in both simulating and
forecasting urban growth. Researchers have built an Urban Growth Model based on the CA
model to forecast the spatial extent of the urban area in southern California and its impact on
habitat patterns based on three scenarios from 2000 to 2050 (Syphard et al., 2005). A statistical
method was used to test the model's fitness with the comparison of the forecasting results for

past years and data for those years. A comparison was also made between the forecasting results
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and the results of a GIS overlay model using landscape metrics. The results suggested that all
scenarios produced an increasing cluster of urbanized areas separating the main mountain area,
and more significant habitat loss would occur in the scenario in which urban growth is located
on steeper slopes. The CA model produced a similar future urban growth patch as the GIS
overlay method and forecasted more patches and edges than the GIS overlay model. This
method performed well at producing spatially explicit results and capturing local interactions
and non-linear behaviour in forecasting urban growth. A similar method has also been applied
in the Algarve region in Portugal to forecast urban growth in 2020 (Aguilera-Benavente et al.,
2014). This research also built three scenarios based on different socioeconomic pathways
representing variations in socioeconomic drivers of urban growth. Other developed CA models
such as the SLEUTH model have also been applied to forecast the spatial and temporal form
of urban growth to 2030 (Wu et al., 2010). The results indicated that the forecasting of the
amount and location of the new urban area still needed to be improved. It is also suggested that
landscape metrics might be used as constraints in the simulation of urban growth patterns to
improve the forecasting results. Apart from that, the Markov model has also been integrated
with the CA model to simulate and forecast urban land change. A Markov-CA model was used
to analyse the spatial distribution and temporal change of land use and forecast the land use
change from 2015 to 2042 (Guan et al., 2011). This method incorporated both natural and
socioeconomic data to conduct the simulation. In this method, the transition probability matrix
from the Markov method could help to determine the number of transition cells in the CA

forecasting.

A basic urban growth forecast could be conducted using the growth rates of population and
GDP with a regression model, especially at a large scale to make a comparison and produce
overall urban growth trends. Scenarios have been widely used in forecasting representing

different growth paths (Wu et al., 2010).
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Some other methods have been applied to forecast land change. For instance, a neural network
was used to forecast land use change combined with GIS. A Land Transformation Model was
built based on these two techniques at both regional and national scales. Utilizing High-
Performance Computing (HPC) and big data, the simulation and forecasting of national urban
growth was conducted in the US (Pijanowski et al., 2014). This method has provided a useful

tool for a large-scale approach to model and forecast land use change.

2.8 Summary

Urban systems are not only the aggregation of subsystems involving various activities such as
individual activities, economic, ecological, and political activities but also the result of
interactions and feedback between these activities. These activities also take place at different
levels which lead to urban systems exhibiting hierarchical behaviour. The urban system is also
a spatial entity that exhibits spatial dynamics and spatial heterogeneity at multiple scales. The
spatial patterns and characteristics of the urban system reflect the impacts and interactions of
local, regional, national, and even global activities. To understand the dynamics of urban
systems, both spatially explicit methods and process-based methods are important in providing
information on spatial pattern change and the underlying driving processes. For example,
geostatistical methods, landscape metrics, and fractal methods may be used to reflect the
physical characteristics and processes of urban systems. They characterize the spatial form,
spatial distribution, and spatial pattern of urban systems. In contrast, process-based models can
reveal the underlying process such as an individuals’ behaviour and socioeconomic processes
that drive urban growth and changes in urban pattern. Incorporating processes at multiple levels
is also essential in urban modelling. The process at a lower level could influence higher-level

spatial patterns and higher-level system dynamics.

A variety of approaches have been adopted to study patterns of urbanisation, urban growth
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processes, and their relationships. Studies provide lots of empirical examples of the
characteristics of urban growth, urban growth process and their driving forces; have advanced
theories on urban growth and urban pattern change; and contributed to developing better
methods of urban study. For example, research on the single-city growth patterns has revealed
urban growth trajectories and provided empirical examples to advance the development of
dispersal-growth-coalescence-growth theories. Similarly, research on both the inter- and intra-
city levels of urban growth patterns have contributed to a better understanding of urban
evolution and underlying processes. However, few researchers have utilized object-based
methods to study urban growth. Urban entities are not just an accumulation of urban pixels, but
systems, comprising various activities and both internal and external interactions. Object-based
methods could be used to represent urban entities directly, allowing for explicit analysis of
urban growth patterns and growth processes at the patch level by studying per-object dynamics

and at the city level by accumulating object dynamics.

The dynamics of urban entities are not fully considered in the current urban growth literature.
Relationships between urban entities during phases of urban growth can only be inferred
through the analysis of raster data. Object-based methods could address this gap by explicitly
modelling relationships between objects, providing new perspectives on growth patterns and
processes. This research will employ an object-based method to study spatial and temporal
patterns of urban growth. It will first characterize urban growth by treating urban land as urban
objects and explore its advantages compared to existing methods. It will then explicitly analyse
urban growth processes at object and city level by building temporal connections between
objects, and reflect on the additional insights this approach offers over previous studies. Finally,
by treating urban objects as parts of a system that are spatially and temporally connected, the

dynamics of urban objects will be predicted at object level.
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3  Revealing the scale and synchronicity of
rapid urban growth in China in the 2000s
in response to reform and regional policies
by treating provincial capital cities as sets

of spatial objects

Abstract

While urbanization in China has accelerated since the ‘Reform and Opening-up’ policy
of 1978, little is known about the precise trajectories and patterns of per-city urban
growth, and the relation of these patterns of growth to national and regional policies.
We used a reliable annual time-series dataset of land cover and a logically consistent
object-based approach to reveal the scale and patterns of growth from 1992 to 2014 in
13 provincial capital cities, treated as sets of 100s of spatial objects. The results provide
precise quantification of the space-time distribution of per-object urban growth between
and, importantly, within the 13 provincial capitals of China. The urban area of most
core cities doubled, and in some cases tripled, over the 23 years. Most surrounding
smaller cities also experienced rapid growth, following expansion of the core city. The
growth was surprisingly synchronous across most cities, but asynchronous in a few
notable others. We demonstrate how this extraordinary synchronous and asynchronous
growth was related to the timeline of key national and regional government policies,
respectively. The results provide a new evidence base with which to consider urban
growth in China, its impacts on society and environment, and future government policy

interventions.
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3.1 Introduction

China, as one of the largest developing countries in the world, has experienced rapid
urbanization, especially since the ‘Reform and Opening-up’ policy in 1978 (Schneider
& Mertes, 2014). According to the Chinese National Statistical Bureau, the level of
urbanization (the percentage of the population classed as urban) was 17.9% in 1978,
36% in 2000 and 59.6% in 2018. Since 1978, the high level of rural-to-urban population
migration in China has brought around 640 million people into cities. This represents
an extraordinary growth rate when placed in the long-run history of civilization. This
rapid urban expansion has had significant impacts on the environment, such as
increased air pollution, reduced biodiversity and carbon pools, and climatic change
(Kalnay & Cai, 2003; Seto, Guneralp, & Hutyra, 2012; Silva et al., 2013; Zhou et al.,
2015). It has also influenced social and political systems, for example, linked to social
inequality, social welfare and urban governance (Wu, 2002; Liu & Diamond, 2005;
Meng, Gregory, & Wang, 2005; Acuto, Parnell, & Seto, 2018; Weiss et al., 2018; Suel
et al., 2019). Here, as a crucial step towards better understanding and mitigation of the
impacts of rapid urbanization in China, we analyze the temporal trajectories and spatial
patterns of urban growth in China, post-Reform, with a focus on a period of rapid

transformation in the mid-2000s.

Since 1978, the Reform has had a profound influence on the Chinese economy and
society as a whole, with China shifting gradually from a central planning economy
towards a market-oriented economy (Lin, 2002). Accompanied by remarkable
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economic growth, cities in China have expanded rapidly, and increased productivity in
agriculture after the Reform has allowed surplus labor to be re-employed in industrial
and service activities in cities (Lin, 2001). Population migration policy has also
loosened gradually, leading to a significant increase in urban population (Lin, 2007).
Concurrent with this population increase, urban land cover has expanded, particularly
because land and urban housing Reforms introduced value to land and boosted the real
estate industry, which has accelerated urban expansion (Ding, 2003; Wei & Zhao, 2009;
Chen, Guo, & Wu, 2011). Meanwhile, decentralization of decision-making and fiscal
power has stimulated regional governments to lease land use rights to acquire more
local revenue (Schneider, Chang, & Paulsen, 2015). Furthermore, several types of
special development zone have been established, initially in the coastal regions and then
across China more widely, to attract more Foreign Direct Investment and boost
economic growth (Schneider, Seto, & Webster, 2005). Usually located in suburban
areas, these development zones have had an important impact, not only on economic
growth, but also on urban form and urban expansion (Schneider, Chang, & Paulsen,
2015). Understanding the combined impacts of these national and regional policies on
the temporal and spatial characteristics of urban growth across China is a pre-requisite
to building effective urban development strategies for the future and ensuring

sustainability.

In 2019, the population of China reached 1.4 billion, nearly one-fifth of the global
population. Thus, ongoing urbanization in China is significantly impacting

environmental, economic and ecological dynamics, not only within China, but globally.
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Since the Reform and Opening-up in 1978, urbanization in China has accelerated (Fei
& Zhao, 2019). However, while urban land and the urban population are known to have
increased on a massive scale, this growth, including the rates of growth and the timings
of growth, have not been quantified adequately per-city. Moreover, the relationships
between the rates and timings of growth in different cities have not been explored.
Finally, the relationship between growth in specific cities and related national and
regional policies has not been established, not least because of the lack of a consistent

method of quantifying per-city urban growth over this period.

To address the above gaps, this research used a consistent dataset to quantify urban
growth rates for 13 capital cities and their surrounding urban areas across China over
23 years. In this research, the term “city-object” is used for convenience to represent
distinct urban spatial objects that may be found inside cities and their surrounding
regions. We focused here on the growth characteristics of the different-sized city-
objects that can be found inside cities, rather than the growth of a single city. This
allowed the evaluation of differences in growth characteristics with distance from the
city centre, and differences between the 13 capital city regions across China. We
focused specifically on urban transformation in the 2000s as specific policies were in
place to support rapid urban growth during this period. By disentangling the growth
characteristics of cities by city-object, it was possible to relate this growth to a series of
policies at the national and regional level after the Reform, with synchronicity of

growth rate being a strong indicator of national policy.
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To achieve the above aims, we first extracted the urban class for selected cities from a
well-established and high accuracy annual time-series of land cover data spanning 1992
to 2014. We calculated the magnitude of growth and annual growth rate of each of
1000s of city-objects over this period. We then classified the city-objects according to
their total area and compared the growth characteristics of these as constituents of the
13 different capital cities across China. We further characterized the growth trajectories
of the 13 sets of 100s of city-objects at the regional level and explored how these relate

to key national and regional policies.

3.2 Data and Methods

Most previous research on urban change utilized the raster data model and, thus, raster-
based approaches to characterize urban spatial patterns (Liu et al., 2010). Raster-based
methods can be used to monitor detailed spatial patterns of change in selected areas.
While applied much less commonly, object-based methods provide an alternative that
have the capability to capture directly and consistently the time-series dynamics of each
urban city-object (i.e., urban city patch), where each city is comprised of the set of all
such city-objects. Hence, we used an object-based approach to analyze city growth
characteristics in China, where each city is considered as a set of spatial objects, based
on an annual time-series of land cover data. This object-based approach provides a clear
and consistent way to measure the time-series growth of each urban city, considered as

a set of objects.
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3.2.1 Data

Our study used the global land cover data produced under the Climate Change Initiative
Land Cover (CCI-LC) project (ESA, 2017). With an annual temporal resolution, and a
spatial resolution of 300 m, data were available for 1992 to 2015. The CCI-LC data
were acquired through the processing of several remote sensing data sources which
included the full archive of Advanced Very-High-resolution Radiometer (AVHRR)
(1992-1999), SPOT-Vegetation (1999-2013), Medium Resolution Imaging
Spectrometer (MERIS) (2003-2012) and PROBA-Vegetation (2013-2015). The quality
of the land cover product was assessed by external parties using independent reference
data. The weighted-area overall accuracy of the 2015 map is 71.7%. The urban class
has a larger accuracy (86%) (ESA, 2017). These land cover data consist of 37 land
cover classes based on six groups corresponding to the United Nations Land Cover
Classification System (Di Gregorio, 2005). Change in the urban class from 2014 to
2015 is not included in the CCI-LC dataset. Hence, we used urban land cover data of

mainland China from 1992 to 2014 for this research.

3.2.2 Method

Previous research has been conducted mainly on the characteristics and dynamics of
urban growth, its drivers, and its impacts on China (Seto & Fragkias, 2005; Yue, et al.,
2013; Tong et al., 2017). Of the research that focused on cities, rather than urban area
more generally, most focused on a single or several large cities to explore or compare

changing spatial form (Luo & Wei, 2009; Zhang et al., 2011; Chen, Gao, & Yuan, 2016).
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Studies that compared the growth characteristics of different-sized cities are still limited.
When analyzing urban growth, most studies used administrative boundaries to define
the study areas (Luo & Wei, 2009). However, in many cases, urban areas have expanded
beyond their administrative boundaries, especially in some metropolitan areas where
several urban areas have become spatially connected with each other. Thus, for many
large cities, the use of administrative boundaries to define the study area results in an

underestimation of growth.

To detect urban growth, we employed an object-based method. Each contiguous urban
land parcel was treated as one urban city-object, which in almost all cases will map to
a named city or town. Importantly, we used the end year (i.e., 2014) as the baseline to
monitor the growth of each urban city-object over the 1992-to-2014 period. Each
contiguous urban city-object in 2014 was assigned a unique ID. Then, for each year
before 2014, all the urban land within the 2014 boundary was labelled with the same
ID. This specific approach was carefully designed to bring the specific benefit of being

able to track urban city-objects through time.

Figure 3.1 illustrates the measurement of urban land for three time points. The urban
land boundary of an urban land parcel (U1 in Fig. 3.1) at time T3 is used as the boundary
to measure the total area of urban land in T1 and T2. The total area of urban land within
the dashed line at T1 and T2 is calculated as the area of urban land at times T1 and T2,
respectively. This measurement means that in previous years, one ID may represent
several urban land parcels. That is, they existed as independent urban land parcels and
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became connected before 2014, or in 2014, as one contiguous urban area. All the urban
land growth that occurred within this boundary is included in the growth statistic for

this urban area and treated as one city-object.

We calculated the total area of urban land and the growth rate for each city-object ID
from 1992 to 2014. This approach ensured that per-object urban land growth was
measured based on spatial extent rather than an administrative boundary. In some cases,
the urban area consisted of several spatially interconnected city areas. In such cases, we
treated them as one urban object and assigned them the same ID. Thus, this method
provides a simple and logically consistent approach to measure how each urban city-

object existing at the end of the study period has developed over time.

- T T3

Figure 2.1 Illustration of the method used to measure urban growth over time.
From the first time point (T1) to the last (T3).

To examine the variation in urban growth trajectories across China, we sampled 13
cities based on their populations (larger than 1 million in 2014), per capita GDP (ranked
relatively high in the region), and location (distributed across the country) (Fig. 3.2).
They are the national capital city (Beijing) and the provincial capital cities. The capital

cities are usually regional centres and, thus, represent regional urban growth. These 13
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cities are distributed across the northeastern, eastern, central and western regions of

China.
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Figure 2.2 The location of the 13 provincial capital cities investigated in this research.
The circles reflect each 150 km buffer zone used in the analysis of urban growth.

We used a 150 km buffer zone around each of the 13 provincial capital cities to analyse
the growth trajectory of all urban area objects within these buffers. The largest
contiguous urban area within each buffer was defined as the core city. An exception
occurs when a river runs through the core city and divides it into two parts. We treated
these parts as one urban area and used the sum of these two parts as the total urban land
of the core city. The core city approach allowed us to link the growth trajectories of
major cities with those of surrounding urban area objects and permitted analysis of

urban growth characteristics at the regional, rather than the city level.
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To characterize the growth trajectories of cities of different sizes, we categorized them
according to the total area of urban land cover in 2014. Specifically, we categorized
cities into those larger than 100 km?, and between 50-100 km?, 20-50 km?, 10-20 km?,
5-10 km?, and 1-5 km?. Since these categories are based on the area of each city in 2014
only, the same city may previously have belonged to different, smaller categories as its
total area is likely to have been smaller in earlier years. For each size category, the
average increase in the urban area and the growth rate was calculated for each of the 13
regions from 1992 to 2014.

3.3 Results

3.3.1 Temporal growth trends and regional differences

According to the Ministry of Housing and Urban-rural Development of the People’s
Republic of China (2016), urban area in China expanded nearly 2.5 times from 40,625
km? in 1992 to 139,304 km? in 2014. Over the same period the proportion of the

population that is urban doubled, from 27% to 54%.

For the 13 regions selected, we found that city-objects in all size groups across China
experienced unprecedented growth from 1992 to 2014 (Fig. 3.3). This is most obviously
pronounced for the 13 core cities (i.e., core city-objects; black lines in Fig. 3.3). For
example, for Guangzhou the core city increased by 2,300 km?, an increase of almost
1.5 times compared to 1992. For smaller city-objects, the absolute increase in area was
smaller. However, considering the initial area of urban land, the growth rate was
significant. For example, in the Guangzhou buffer zone, the average area of city-objects
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in the 5-10 km? category increased from 1.27 km? in 1992 to 6.82 km? in 2014, which
is five times larger than the initial area. Figure 3.3 shows that most city-objects
expanded rapidly during the period 2000 to 2005. This phase of intensive urban
expansion is seen across all of China, from coastal cities to inland cities of all size
categories. From 2005 onwards, most city-objects continued to grow, but at a relatively

lower and more stable rate.
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Figure 2.3 Trajectories of the areas of core cities and their surrounding city-objects
(based on the average area in each size group).
al-a3 are cities located in the central region, b1-b2 are cities located in the northeastern
region, cl-¢3 are cities located in the western region, d1-dS are cities located in the

eastern region.

To explore variation in the growth patterns of cities across China, we first examined the
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Growth rate (%)

northeastern region (b1-b2 in Fig. 3.3 and Fig. 3.4; green region in Fig. 3.1). Here, the
core city and city-objects with an area of 50-100 km? already occupied large areas in
the early 1990s. This is likely due to earlier economic development compared to other
regions due to abundant natural resources and the role of the northeast as an industrial
base in China before the Reform. However, after the Reform, the urban growth rate in
the northeastern region fell behind that of other regions. Although the core cities almost
doubled in area over this period, in most cases the urban growth rates in the northeastern

region were below 10%, even for city-objects of a relatively small area (1-5, 5-10 and

10-20 km?). This illustrates a major regional difference in the growth trend across China.
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Figure 2.4 Trajectories of the urban growth rates of core cities and their surrounding
city-objects (based on the average growth rate in each size group).

al-a3 are cities located in the central region, b1-b2 are cities located in the northeastern
region, cl-¢3 are cities located in the western region, d1-dS are cities located in the
eastern region.

Unlike the northeastern region, most city-objects in the western region occupied a
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relatively small land area in the early 1990s (c1-c3 in Fig. 3.3; yellow region in Fig.
3.1). The exception is Xi’an, whose core urban area was nearly 200 km? in 1992. Urban
expansion in this region was not as apparent in the 1990s, but started increasing rapidly
after 2000 (c1-c3 in Fig. 3.4). Xi’an and Kunming share a similar growth trend during
this period. Their growth rate was greatest in the early 2000s and decreased afterwards.
By comparison, Urumgqi had two growth peaks around 2001 and 2005 and sustained a
higher growth rate compared with Xi’an and Kunming after 2005. Although the western
region is considered less developed than other regions of China, this region experienced

the highest growth rate after 2000, and this growth was highly synchronized.

In the central region (al-a3 in Fig. 3.3 and Fig. 3.4; blue region in Fig. 3.1), the core
city areas show a similar growth trend to core cities in the western region, with a slight
expansion in the 1990s, rapid expansion in the early 2000s, and relatively low and stable
growth afterwards. The only exception is Zhengzhou, which grew rapidly around 2006.
The core cities of both Wuhan and Zhengzhou had a relatively lower growth rate
compared with the western region, but Changsha expanded significantly in the early

2000s, synchronously with growth in the Western region.

Finally, turning to the eastern region (d1-d3 in Fig. 3.3 and Fig. 3.4; red region in Fig.
3.1), we found that urban expansion was unique in the 1990s when most cities grew
more rapidly than cities in the other regions of China. For example, the Guangzhou core
city area (this core area covers another large city, Shenzhen), increased by 500 km? in
the 1990s, far beyond the growth of other core cities. In the early 2000s, urban land in
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eastern China grew at an unprecedented rate, with the highest level between 2001 to
2005, mirroring the synchronous growth reported above in the western and central
regions. The notable exception is Shanghai, which reached its highest growth rate only
after 2005 and which maintained a high growth rate afterwards. The core city area of
Nanjing maintained rapid growth longer than Fuzhou and Guangzhou whose growth
rates decreased to less than 5% per year after 2005. As one of the largest urban
agglomerations in China, the Guangzhou core city area increased by nearly 2,500 km?
over the study period. The national capital Beijing, one of the largest urban
agglomerations in China, showed a similar growth trend to that of Guangzhou, but with
a lower growth rate for the core city area. Beijing increased by 1000 km? over the study

period.

Interestingly, most surrounding city-objects followed the growth trend of the core city.
A rapid expansion of the core city usually coincided with significant growth of the
surrounding city-objects, especially for city-objects of area >100 km? and 50-100 km?.
The growth rates of surrounding city-objects in the smaller size categories exhibited
similar growth trends to the core city area, but with greater variability. For example, the
expansion by 5.31 km? (from 9.18 km? in 2000 to 14.49 km? in 2001) of the urban area

surrounding Urumgqi represents a growth rate of 57.8%.

A 1-to-2-year time lag in the growth of city-objects in the small-sized category was
observed in some cases, which may imply spillover effects from the growth of larger

city-objects. Moreover, variation exists in the rate of growth between the core and
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surrounding city-objects. Taking the mega-urban agglomeration of Beijing as an
example, the growth rate of the surrounding city-objects was greater than the growth
rate of the core city. This trend was also observed in the Zhengzhou, Xi’an and Wuhan
regions. In contrast, the growth rates of the surrounding city-objects in the Changsha
area, for example, were smaller than that of the core city. This difference may imply

different regional growth trajectories.

3.3.2 Dynamics of regional urban spatial patterns

Figure 3.5 illustrates the expansion of core cities and the rapid growth of surrounding
city-objects in the buffer zone of four selected cities at the regional level across China.
All four cities grew rapidly in both the size and number of their constituent city-objects.
The expansion of the core city area (black areas in Fig. 3.5) caused some surrounding
small urban areas to become part of the core (our method is robust to this occurrence;
see Methods). In some cases, as the core city area continued growing some nearby city-
objects joined the core creating a mega-agglomeration. For example, in the mega-
agglomeration of Guangzhou, the contiguous core city area is composed of Guangzhou
and several nearby cities including Foshan, Dongguan and Shenzhen. Physically, these
core cities grew into large contiguous urban areas consisting of several different

administrative regions extending out towards the 100 km buffer zone.
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Figure 2.5 Maps of four core cities and the locations of their surrounding city-objects
in different area categories in 1992, 2002 and 2014 (from left to right).

The rings are the 50 km, 100 km and 150 km buffers from the urban core. a. Guangzhou,
b. Beijing, ¢. Nanjing, d. Xi’an. The black areas represent urban land within the 2014
core city boundary for each year. Urban areas smaller than 5 km? are not shown.

Figure 3.5 illustrates that the number of medium and large-sized (>20 km?) cities
increased significantly in the four cases. The maps show how many city-objects grew
into the large-sized category (>100 km?) between 1992 and 2012. For example, in the
buffer zone around the Nanjing core area, several city-objects in the large category
distributed in the 50-150 km buffer area such as Maanshan, Wuhu and Yangzhou, grew
from a medium size (20-50 and 50-100 km?) (map a in Fig. 3.3). This trend suggests
that, at the regional level, the urban spatial pattern transformed from a monocentric to

a polycentric form allowing the surrounding cities to serve as subcenters.

3.4 Discussion

This research quantified the unprecedented urban growth that occurred across China
between 1992 and 2014. Over the study period, the growth of cities (i.e., city-objects)

of all sizes across China was extraordinary. Across the 13 provincial capital city buffer
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zones analysed, Guangzhou, Nanjing and Beijing experienced the most extensive urban
expansion, increasing by 4,540 km?, 3,953 km? and 2,074 km?, respectively. Most core
city areas doubled or even tripled in size. For Beijing and Guangzhou, the core city area
experienced the most extensive growth with more than half of the new urban land
occupied by the core area. Cities in western China also witnessed rapid urban growth.
Even Urumgqi, whose buffer zone experienced the smallest increase in urban land,
increased by 490 km? in urban area. This extraordinary transformation has potential
influence on the environment, food security and eco-systems, especially in the western
region, which contains particularly vulnerable ecological systems and environments

(Zhou et al., 2015; Xing et al., 2021).

3.4.1 Analysis of the results in a policy context

In urban growth studies different theories have been applied to explore why cities grow
over time. It has been suggested that urban growth could be attributed to numerous
endogenous and exogenous factors such as economic growth, population growth and
proximity to transportation hubs (Eaton & Eckstein, 1997; Gonzalez-Val, 2023).
Additionally, some researchers have modelled urban growth as a function of its inherent
attributes such as its initial size (Fragkias & Seto, 2009; Batty, 2023). When considering
these two theories together, urban growth should be stable if all other affecting factors
are stable. For example, if the endogenous and exogenous factors are consistent, the
urban growth trend, which is modelled as a function of them, should also be stable.

Therefore, any changes in growth trends could reveal changes in potential influencing
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factors. In the present research, the influencing factors are themselves potentially
dependent on a background of a series of reform policies. Thus, changes in growth rate
might suggest changes in policy since these policies can lead to changes in related
influencing factors. For example, the household registration reform allowed large
population migration from rural to urban areas which increased the urban population.
A series of reforms aiming to boost economic growth increased income in cities which
contributed to attracting more people to cities which further led to urban growth.
Meanwhile, economic growth itself is also a key factor influencing urban growth.
Therefore, identifying the changes in the trends and characteristics of urban growth

could help to infer the underlying effects of reform policies.

We observed a remarkably synchronous growth pattern (increase and subsequent
decrease in growth rate) in several cities, which suggests a strong link between national
policies and urban growth since it implies synchronous changes in the underlying
influencing factors. Such national-level synchronous changes are likely to be linked
with national-level policy changes given their ability to strongly influence the overall
dynamics of the underlying factors. For example, from 2000 to 2004, Zhengzhou,
Wuhan, Changsha, Shenyang, Urumgi, Xi’an, Kunming, Nanjing, Fuzhou, Guangzhou
and Beijing all witnessed significant urban growth. This synchronous behaviour
suggests that national policy is likely to have influenced all these provincial capital
cities to respond simultaneously. It provides strong evidence for the efficacy of changes
in national policies in driving significant urban growth. In contrast, some provincial

capital cities grew asynchronously to this main response, for example, the
77



asynchronous rapid urban growth from 1992 to 1995 in Guangzhou and the delayed
urban growth in Shanghai after 2005. From the perspective of modelling, which treats
urban growth as a function of various influencing factors, urban growth can be regarded
as the result of decision-making at different levels which can affect the dynamics of the
underlying factors both nationally and regionally. Specifically, urban growth dynamics
may be affected by both top-down behaviours such as national-level reforms and
bottom-up behaviours such as regional policies and the decision of local governments
and local land use entities (Li & Wu, 2018). At the micro level, individual decision-
making may also contribute to the dynamics of growth trends although its magnitude is
likely to be marginal compared to national and regional policies. From this perspective,
national policies can be regarded as a global effect that influences the underlying factors
everywhere in the same way and leads to a spatially consistent changes in the growth
trend. At the regional and city levels, local factors could cause deviations spatially from
the overall growth trend. Therefore, comparing changes in the growth trends between
regions can help to understand the potential effects of regional policies and how they
have shaped urban growth in different regions. In our results, the observed
asynchronous urban growth patterns, relative to an overall synchronous pattern, suggest
a deviation from the overall trend which is likely to reflect the influence of local factors,

such as regional-level policies and local conditions.

We further take Guangzhou and Xi’an (Fig. 3.6) as examples to illustrate how national
and regional policies affect the growth trends of cities since they are located in different

regions in China and have experienced different regional policies. The marketization
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and opening in the early stages of Reform (in the 1980s and 1990s), which targeted
coastal areas, stimulated growth in the Guangzhou buffer zone in the early 1990s,
especially for the core city area including Shenzhen which reached a very high annual
growth rate of around 8%. The ensuing reforms in the 1990s, such as the housing reform,
tax reform and relaxation of population migration, contributed to maintaining a high
growth rate above 5% in the 1990s, especially for cities in the medium and small-sized
groups. By contrast, even though development zones were established in the 1990s to
attract foreign investment into some inland provincial capital cities such as Xi’an, the
urban growth rate remained lower (mostly below 5%) over this period compared to
Guangzhou. This is because many small- and medium-sized cities in the coastal
provinces benefited from Reform especially in the early stages, while in the west,

opening policies and investment were focused on provincial capital cities.

After 2000, the city-objects in both Guangzhou and Xi’an experienced significant
growth. City-objects in the small-sized category also witnessed this trend, but reached
their largest growth rates one-to-three years later than the core cities. Considering this
time lag, the combination of the marketization of the economy including land, housing
and tax reforms, increasing openness, and population migration in the 1990s may help
to explain the significant urban expansion in the early 2000s. The growth rates of cities
in the X1’an buffer zone are greater than those of cities in the Guangzhou buffer zone,
especially those in the large and medium-sized categories. This significant growth may
have been accelerated by the West Development Drive, which aimed at boosting

development in the western region and narrowing the gap between west and east.
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Figure 2.6 Urban growth rates for cities of different sizes in the a. Guangzhou and b.
Xi’an regions.

The dashed lines indicate the timing of the relevant reform policies (see Table 3.1).

3.4.2 Analysis of differences by size and across regions

Our results demonstrate how urban form has transformed at the regional level (i.e.,
within the 150 km buffer zones) as well as at the city level (i.e., each city-object) over
the period 1992-t0-2014 (Fig. 3.5). This allows us to consider the relationships between
core city areas and their surrounding city-objects, and the regional differences in these
relationships. First, at the 50 km scale (i.e., within a 50 km buffer), the number of city-
objects in the small-sized group increased significantly. City-objects in the small-sized
category appeared clustered around the core city. Some city-objects in the small-sized
category transitioned into the larger-sized category. This trend was observed in both
coastal cities and inland cities. These small city-objects in the 50 km buffer zone were

close to the fringe area of the core city. Their growth may be due to spillover effects
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from the core city area. The expansion of the core city area is likely to have promoted
urbanization in the periphery, for example, through the “diffusion” and “coalescence”
processes of urban growth (Dietzel, et al., 2005a). Our approach also contributes to
greater understanding of urban growth theory, especially at the regional level. The
emerging small-sized city-objects around the core city-object, as seen in figure 3.5, can
be regarded as the result of the diffusion of urban growth from the core city-object.
Meanwhile, with the expansion of core city-objects, several urban objects finally
connected with each other and coalesced to become one large object. This is especially
obvious as shown for Guangzhou which gradually became a continuous metropolitan

arca.

Within the 50-150 km buffers in the eastern region, the growth of city-objects in both
the small-sized and large-sized categories was observed. For large city-objects, one
should note not only their expansion, but also the increasing number of these city-
objects over the period. The city-level polycentric or multi-nucleated spatial pattern has
been studied for some large cities in China (Liu & Wang, 2016). Our results identified
a transformation towards a morphological polycentric or multi-nucleated pattern at the
regional level. However, the degree of polycentricity differs across China. Most eastern
regions exhibit a greater degree of polycentricism compared to western regions. For
example, in the Nanjing area, even in the 100 km buffer zone, four large cities
(Yangzhou, Zhenjiang, Wuhu and Maanshan; represented as city-objects) had a
population larger than 1 million in 2014. In Guangzhou, this mega-urban core area

consists of several large urban agglomerations, including Guangzhou and Shenzhen,
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each with a population of more than 10 million. Nanjing and Guangzhou exhibit
different regional spatial patterns. Nanjing is a core city area surrounded by several
rapidly growing large city-objects, and Guangzhou is one continuous core city-object

consisting of several cities, respectively.

In contrast to the above, the provincial capital cities in western China exhibited a
dominant centric pattern at the regional level. For example, in the Xi’an area, the core
city is surrounded by only one large city-object (Xianyang) and several small or
medium city-objects. Even though the growth of small and medium city-objects in this
region is significant, the number of large city-objects in the region is limited. The core
city, Xi’an, continues to play a dominant role in the region. The relatively lower levels
of integration to global trade, combined with natural and social conditions such as lower
population density, population migration to the east, challenging terrain, arid climate
and lack of water in some western provinces may constrain the development of small-
and medium-sized city-objects. The “Belt and Road” initiative may provide
opportunities for the western region to become increasingly integrated into international
trade, which could boost its economic growth since the Silk Road Economic Belt in
China covers most western provinces. With further development, whether cities in the

west will follow the regional urban pattern in the east remains unknown.

3.4.3 Rethinking the object-based method from the results

We proposed an object-based method and the city-object concept to characterise the

urban growth trends in China and further explore how the growth relates to reform
82



policies. Most urban growth studies either focus on overall growth at the single-city
level or utilize a raster-based method to study the changing urban growth pattern over
time. Some research further developed growth metrics such as urban growth modes
(Shi et al., 2012; Li et al., 2013) which classify urban growth into different types based
on the spatial relationship between new urban land and existing urban land; and urban
sprawl metrics (Sahana et al., 2018) which delineate the spatial pattern of urban
expansion. However, these methods lack consistency in measurement. They can
characterise the overall growth and map the spatial pattern of urban growth, but changes
to urban objects cannot be represented in a consistent manner by these raster-based
methods. Urban objects represent directly urban entities allowing consistent
measurement and characterization of their dynamics, which is key to studying urban
growth. Our object-based method consistently measures the growth trends of city-
objects and the results are comparable between different regions and different-sized
objects. The similarities and differences in the growth characteristics of city-objects
across different regions and for different object sizes suggest how underlying policy
changes shaped them and, thus, reveal the underlying effects of reform policies. The
approach could be further applied in other regions or countries to explore their urban

growth trends.

3.4.4 Future urban development

After the unprecedented urban expansion in the early 2000s, urban growth rates in

China remained relatively stable and positive, albeit at lower levels than before. Growth
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is likely to continue in the future, since the National Population Development Plan
(2016-2030) issued by the State Council, projects that urbanization will reach 70% by
2030, which means that nearly 140 million people will migrate to cities in the next
decade. Together with this projected rapid urban growth, China will aim to achieve the
United Nations Development Programme Sustainable Development Goals (UNDP
SDGs) by 2030. This commitment presents an opportunity to achieve social, economic
and environment sustainable development, but also a huge challenge. Significant urban
growth places great pressure on environmental, ecological and social systems through
increased demand for a variety of natural resources and social welfare provision
(Kalnay & Cai, 2003; Alberti, 2005). The supply of more public services such as
education, medical services and sports and leisure activities require effective urban
planning and governance. Moreover, our defined buffer is essentially at the city-region
scale and the results indicate that some synchronous behaviour was observed within the
buffer. The given observed and continuing growth in both the core and surrounding
cities implies that cooperation amongst cities in planning, economic activities,
mitigating pollution, infrastructure construction and social welfare provision is
becoming increasingly important. For example, recently, Beijing transferred some of
its industry to nearby cities, especially those in Hebei province (Wang et al., 2016), to
both mitigate congestion in Beijing and promote development in surrounding areas. At
the national level, an initiative in underway that aims to transfer industrial activities,
especially labour-intensive industries, to the central and western regions further

contributing to achieving sustainable development and reducing the gap between
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different regions (Liu & Zhang, 2022). These initiatives require cooperation between

local governments.

3.5 Conclusion

We quantified the temporal and spatial patterns of urban growth across China in 13
provincial capital city regions between 1992 and 2014, a period of rapid urban
transformation with only a few parallels in human history. To do this we developed a
reliable and consistent object-based GIS analysis method that treated each provincial
capital city region as a set of spatial urban objects including the large core area and
100s of surrounding city-objects. This conceptualization of provincial capital cities as
sets of objects allowed, for the first time, a comprehensive analysis of the growth of
both the 13 core city areas and their surrounding city-objects. The urban growth rate
was found to be exceptionally large for core cities and city-objects of all sizes for all
regions across China throughout period from 1992 to 2014, especially from 2000 to

2005. For most core cities, urban land area doubled or even tripled.

A major finding is that the majority of cities and their associated city-objects
experienced rapid, synchronized growth in the early 2000s, implying the influence of a
series of changes to national-level policy. However, some city regions such as
Guangzhou and Shanghai developed asynchronously, which implies the additional
influence of regional policy or local conditions. A further regional difference was
observed in that the western region experienced growth of the dominant core cities with

fast-growing small- or medium-sized surrounding city-objects, while cities in the
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eastern region transformed into large, polycentric patterns.

The rapid growth trends and morphological changes revealed here pose significant
challenges for both coordinated regional urban planning and urban governance.
Moreover, attention needs to be given to how to address the environmental and social
issues caused by the scale of this growth. These insights may be useful in developing
future national and regional level strategies for further urbanization of the major

Chinese cities.
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4 The Geographical Analysis of Megacities
Through Changes in Their Individual
Urban Objects

Abstract

This research utilized global coverage, annual, high-quality land cover time-series data
to explore the urban growth process in the core area, and in several buffer zones, of
Beijing, Guangzhou, Shanghai, and Tokyo. We developed a conceptual model in which
growth is characterized at the per-object level by four active growth events: introduction,
establishment, dispersal, and coalescence, with a fifth inactivity event, stability. We
developed a rule-base which allowed the direct measurement of establishment,
dispersal and coalescence from observed inter-annual changes in the urban objects over
time. By aggregating the object-level events to the landscape level we showed that these
three events generally followed a synchronous temporal trend in terms of magnitude
within the core area and within each buffer zone. There was no evidence for a logical
sequence of events through time. The identified events dominated alternately over time,
although synchronicity in magnitude far outweighed any differences in proportion
between them. This points to a single underlying urbanization process: urban growth
with a specific dynamic rate. Interestingly, synchronicity was not generally observed
between the core and buffer zones. This proposed object-based method provides
insights into the underlying urban growth process and could be used to build new urban

growth models.

4.1 Introduction

The world has witnessed extraordinary and continuing urban growth since the
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beginning of the 20" century, with urbanized areas expanding rapidly and the
population increasing at an astonishing rate (Schneider & Woodcock, 2008; Jenerette
& Potere, 2010). The acceleration of population has been accompanied by rapid
urbanization. Moreover, there were 548 cities with a population of more than 1 million
in 2018, and this is projected to rise to 706 cities by 2030 (UNDESA, 2014). Cities
provide pivotal habitats for human populations since they promote economic growth
and technological innovation (Bettencourt et al., 2007). Moreover, they support the
interaction of population, information and capital flow (Krings et al., 2009; Matsumoto

et al., 2016).

Rapid urban growth has had a profound influence on the world’s ecological and
socioeconomic processes from local to global scales (Wilson et al., 2003; Grimm et al.,
2008; Zhou et al., 2015; Li et al., 2017; Suel et al., 2019). Urban expansion is linked
closely with carbon emissions (Seto, Giineralp, et al., 2012), natural resource
consumption (Wu et al., 2010), biochemical cycles, air pollution (Alberti, 2005; Riitters
et al., 2016), social injustice and spatial inequality (Lin, 2001; Robinson et al., 2012).
Thus, in an era of rapid urbanization it is essential to mitigate the negative impacts of
urban growth to achieve sustainable development. Crucial steps to achieving this goal
are to: (i) quantify urban growth trajectories and evolving urban spatial patterns and (i1)

use this information to infer the urban growth processes that underlie these trends.

There exists a long tradition of geographers characterizing and modelling the dynamics
of urban growth. Early theories characterizing urban spatial form such as bid-rent
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theory (von Thiinen, 1826), central place theory (ChristallerW, 1933) and the sector
model laid the foundation for subsequent research. More recently, efforts were made to
analyze changing urban forms (Fleischmann et al., 2022) and the relations between the
observed dynamics of urban patterns and the underlying processes (Lin, 2001; Kontgis
et al.,, 2014; Li et al., 2017). In the urban form studies, some research focused on
defining the urban shape and developing urban shape index (Medda et al., 1998; Wentz,

2000).

To study urban dynamics, some research explored the urban evolution from the city
systems perspective, such as analysing the dynamics of metropolitan regions using a
set of variables (Salvati & Serra, 2016) and studying change of city size and growth
rate distribution incorporating spatial interaction and innovation cycles (Favaro &
Pumain, 2011). These studies explored urban growth in the context of urban systems
other than focusing on a single city. In order to express the dynamics of urban objects
in the urban systems in a spatially explicit way, the concept of urban growth phases was
also developed to characterize and model urban growth processes. In particular, the
‘early wave’ analogue, subsequent ‘urban expansion’ phases and ‘urban cycles’ were
introduced (Clark, 1951; Blumenfeld, 1954). It was later suggested that the growth of
cities could be described as diffusion-limited aggregation and fractal growth processes
(Batty, 1986; Makse, Andrade Jr., et al., 1998; Benguigui & Czamanski, 2004). More
recently, the process phases of diffusion and coalescence of urban systems were
developed and examined based on empirical observations (Dietzel, et al., 2005a). In the

context of urban systems, diffusion refers to the spread of an urban area from an origin
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or an urban seed area (usually the core urban area) into its surrounding area. In this
phase, through the expansion of the urban seed area, the city spreads to new land. With
continued diffusion of an urban arca, some urban arcas become connected (i.c., the

coalescence phase).

A major branch of the quantitative study of urban spatial dynamics in the last two
decades has been the application of landscape metrics to characterize urban dynamic
patterns and, thus, infer urban growth processes (Luck & Wu, 2002; Angel et al., 2012;
Jiao et al., 2015). For example, a series of landscape metrics were used to explore and
project the urban growth dynamics in California’s central valley (Dietzel, et al., 2005a).
The analysis confirmed the diffusion and coalescence phases and reported cycles of
these two phases with changing spatial extents. Similar wave-like diffusion and
coalescence phases were demonstrated in the Houston metropolitan area and Dubai
with the application of a series of landscape metrics (Nassar et al., 2014). The results
suggested that oscillation between the diffusion and coalescence phases could occur
over a short period. In contrast, when applied in Phoenix and Las Vegas, only one
landscape metric exhibited a wave-like pattern; others metrics revealed a monotonic
behaviour (Wu et al., 2011). A diffusion-coalescence phase was also observed around
Guangzhou using metrics calculated within buffer zones (Liu et al., 2012). Jenerette
analysed 120 cities around the world and argued that diffusion and coalescence were
not two alternative processes of urban growth, but that cities were on a continuum of
diffusion and coalescence (Jenerette & Potere, 2010). These processes were also

observed in cities in the Yangtze river delta region in China (Li et al., 2013). These
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empirical observations provide valuable information and evidence which can be
compared against hypothesized processes and theories to improve the modelling, and

increase our understanding, of the dynamics of urban systems.

In this research, we replace the above concept of growth phases with four definite,
measurable growth events: introduction, establishment, dispersal and coalescence,
borrowing from ecological theory (Turner and Gardner, 2001). Importantly, these
events are attributable at the individual object level and, thus, are measurable directly

once each individual city is represented appropriately as a geospatial object.

We define introduction as occurring when an urban object is first introduced into the
landscape. From a geographical analysis point of view this equates to a nonurban pixel
(or contiguous pixels) changing into an urban pixel (or contiguous pixels) that is
identifiable as a separate urban object (i.e., it is bounded spatially by non-urban pixels).
After the introduction of an urban seed into the landscape, the urban area expands
causing an establishment event. From a spatial analysis point of view establishment
equates to an urban object in the present year being larger in spatial area than itself in
the previous year. With continued growth of the urban area, a dispersal event may
eventually occur introducing a new, separate urban seed as a function of the nearby
established or establishing city or cities. This is equivalent to introduction, but through
proximity to neighbouring urban objects, dispersal can be inferred. Such inference is
not undertaken here. Rather, due to the proximity of the core mega-city area in each

region, all cases of introduction and dispersal are classed together as dispersal. With
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continued urban growth, some urban areas may become connected and merge to form
one contiguous urban object in a coalescence event. From a geographical analysis point
of view this event is identified by the appearance of more objects with the same ID in
the previous year than the single object in the present year. This identification is only
possible by allocating the object ID in the final year and working backwards. Viewed
from a graph perspective, the final year single urban object has historical roots that
bifurcate going backwards through time. Note that since introduction represents the
initiation of the core city and most existing cities will currently be experiencing the
establishment, dispersal or coalescence events, we focus mainly on analysing urban
growth based on these three measurable “ecological” events. The null event is stability
(i.e., unchanged). These four events and the null event cover the full space of possibility,
and no other events are possible at the per-object level. From a formal perspective this
means that measurement of these events characterizes the system fully in the two
dimensions of existence (introduction and dispersal, with coalescence as loss;
null = stability) and growth (introduction, dispersal, establishment, coalescence;

null = stability).

Direct analysis of urban growth process phases at the object-level is limited. Most
studies were conducted at the landscape level using landscape metrics. The landscape
metrics approach measures urban pattern change through time and, thus, attempts to
infer the underlying urban growth events and processes indirectly. However, since the
relations of processes and patterns is complicated, different growth events could lead

to similar urban patterns. Thus, a direct measure of dynamics of urban growth events
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as proposed here is advantageous for studying urban growth process.

Empirical observations of megacities could potentially increase our understanding of
urban growth processes and contribute to advancing urban growth theories. However,
previous research has focused mainly on a single metropolitan area (Xu et al., 2007; Yu
& Ng, 2007; Li et al., 2013) and only a few studies have analysed the urban growth
dynamics of megacities. Megacities not only cover a larger land surface area, but also
consume more energy and materials and have a greater influence on surrounding urban
and rural areas (Gurjar et al., 2008, Baklanov et al., 2016). In the context of the
hypothesis of urban growth phases, the character of megacities and the regional
behaviour of urban growth processes remain to be studied. Furthermore, inter-city
comparisons, and especially cross-country comparisons, of urban growth processes in
megacities, are rare. Thus, in this research, we selected and studied four megacities in
East and Southeast Asia: Beijing, Shanghai, Guangzhou and Tokyo, using a carefully
designed, object-based methodology applied to a high quality, coarse spatial resolution,

standardized remotely sensed urban land cover dataset from 1992 to 2018.

A key issue quantitative geography, and particularly when studying the evolution of
urban systems is scale. This is especially relevant where the dynamics of urban patterns
are analysed to explore the potential urban growth process. First, urban patterns are
scale-dependent (Li et al., 2013; Wu et al., 2014). Urban patterns exhibit different
characteristics at different spatial scales. Second, processes influence the dynamics of

urban patterns at varying degrees at different spatial scales (Sexton et al., 2013). For
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example, a process that influences street-level patterns significantly may play only a
small role in influencing regional urban patterns. Thus, characterizing urban growth
patterns at different levels is essential for understanding urban growth processes. At the
per-urban object level, urban growth will manifest as one type of growth event at a time
and follow a sequence of such events. However, when analysing at the population level,
based on the set of growth events of all urban objects at a given time, the whole region
may experience several events simultaneously, with one dominant event type.
Therefore, we analysed urban growth patterns at both the per-object and population

levels to provide a deeper understanding of the evolution of urban systems.

In urban growth theory, it is also suggested that growth phases are scale-dependent
(Dietzel, et al., 2005a). It is hypothesized that when urban areas join together (i.e., the
coalescence phase), the new urban form becomes a new urban seed area at larger scales
(Dietzel, et al., 2005b). In the next phase, the new urban seed area expands (i.e.,
establishment) and the dispersal of urban land occurs at a coarser scale because the new
urban growth process operates at the coarser scale. This suggests that the urban seed
area and its surrounding areas may exhibit different growth characteristics. Thus, to
increase understanding of the growth characteristics of megacity regions, we analysed
the development of urban patterns across large regions around four core cities,
specifically the core area and three buffer rings (zones), and linked the evolving patterns

of objects and events to the underlying urban growth process, as introduced above.

The main contributions of this research were, thus:
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A rigorous object-based GIS methodology was introduced for defining and

analysing individual urban objects through time.

Borrowing from ecology, a new paradigm was suggested for analysing urban
growth via the time-series of change events occurring per-object (the change

events are: introduction, establishment, dispersal, coalescence, stability).

Based on this methodology a very large time-series database of urban objects
and their events was created for each of four mega-city regions (Beijing, Pearl

River Delta, Shanghai and Tokyo).

From this database, for the first time, it was possible to analyse the time-series
of individual urban object events at the population level for each mega-city
region and (a) compare between each mega-city region and analyse their
differences and (b) compare between each mega-city core area and three buffer

zones.

The time-series analysis included for each mega-city and buffer zone: (a) a
count of each object-level change event type, (b) a count, at the population-level,
of dispersal, loss and net change, and (c) the relative proportion of each event
type.

We used the evidence from our proposed per-object methodology and the results

to suggest a re-evaluation of the key geographical theories of urban growth.
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4.2 Study area, data, and method

4.2.1 Study area

We selected four megacities in east Asia selected for this research (Beijing, Guangzhou,
Shanghai and Tokyo) (Fig. 4.1). They are all identified as megacities by the United
Nations. This selection covers megacities in both developed and developing countries
and, thus, potentially provides suitable examples with which to examine urban growth
in cities at different stages of development. In Guangzhou and Tokyo, the core urban
area is connected to several surrounding cities. In this case, we treated the continuous
urban core area as the core urban patch. Thus, in Guangzhou, the core area is the urban
agglomeration in the Pearl River Delta region, and we use the term Pearl River Delta

to refer to this study area in the following analysis.
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Figure 4.1 Location of the four megacities investigated in this research.

The 60 km buffer zone around each core urban area was used to define the surrounding
region within which to analyse urban growth characteristics. Urban land in 2018 is
shown in black in the four study areas.
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4.2.2 Data
We used global land cover data produced by the European Space Agency (ESA)
Climate Change Initiative Land Cover (CCI-LC) project, available at

http://maps.elie.ucl.ac.be/CCl/viewer/index.php. With an annual temporal resolution

and spatial resolution of 300 m, data are available from 1992 to 2018. The CCI-LC
dataset was then obtained through back- and up-dated change detection using a
combination of several remote sensing data sources including the full archive of
Advanced Very-High-resolution Radiometer (AVHRR) (1992-1999), SPOT-Vegetation
(1998-2012), Medium Resolution Imaging Spectrometer (MERIS) (2003-2012),
PROBA-Vegetation and Sentinel-3 OLCI time-series (2013-2018). These land cover
data consist of 37 land cover classes based on six groups corresponding to the United
Nations Land Cover Classification System (Di Gregorio, 2005). The quality of the land
cover product was assessed by external parties using independent reference data. The
weighted-area overall accuracy of the urban class in the 2015 map was reported as 86%,

which is very high for a global product.

4.2.3 Methods

We first extracted the urban land in the raster data model from the ESA dataset for 1992
to 2018. All contiguous urban pixels were combined into urban ‘objects’, thus, invoking
the object-based model. The contiguous urban land areas in the core centre of Beijing,
Pearl River Delta, Shanghai and Tokyo in 2018 were defined as the core extents for

each city. Since each city itself may extend beyond its administrative boundary and
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become physically contiguous with its surrounding urban areas, our approach treated
these connected parts as one urban object and, in this case, as the core urban area. A
series of 20, 40 and 60 km buffer rings around the core extent was generated for each
city to facilitate analysis of the surrounding cities in addition to the core city. The core
extent and each buffer ring were then intersected with the urban land objects from 1992

to 2018.

Per-object level analysis

In contrast to quantitative approaches based on landscape metrics, which are generally
spatially aggregate representations at the population level, we propose a methodology
to infer directly the urban growth event occurring for each urban object and for each
annual time increment. Using the GIS, we assigned each urban object a unique ID
annually from 1993 to 2018. A key modeling decision from a geographical analysis
perspective is that given an urban patch P;; in year i, all the urban patches Pi.1x within
patch P;;'s boundary in year i — 1 were labelled with the same ID of P;;. This process
was repeated for all urban objects going backwards annually in time from 2017 to 1992.
Given this coding scheme, when comparing the IDs of urban patches in year i — 1 and
year i and their corresponding area, the following logic holds true. First, for
Coalescence; all IDs that exist repeatedly in year i — 1, identify separate urban objects
that coalesce from year i—1 to year i, becoming one urban object. Second, for
Establishment; all IDs appearing uniquely at time i — 1 and with a larger urban land area
in year i than in year i — 1 are urban objects that are subject to an establishment event
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as their area grows. Third, for Introduction (and Dispersal); all IDs that appear for the
first time in year i, and which did not exist previously, represent either the introduction
or dispersal events since they are new urban objects in the landscape. Dispersal implies
that the introduction is related to a seeding object and, thus, dispersal is used here where

the core city object dominates the landscape.

Fig. 4.2 illustrates the above system of coding and its importance for characterising
urban growth dynamics. The following processes are illustrated. First, Urban object
labelled with ID 1, in year O (i.e., Po,1), appeared only once in year 0 and its area grew
from year O (i.e., i =0) to year 1 (i.e., i = 1), representing the process of establishment.
Second, urban objects labelled with ID 2 (i.e., Po2) appeared twice in year 0 indicating
that these two urban objects eventually coalesced to one urban object (P12) in year 1.
Third, urban objects labelled with ID 3 (Pi3) and 4 (P14) appeared only in year 1,
indicating that they were introduced (or dispersed) into the landscape and did not exist
in the previous year. Finally, urban object labeled with ID 5 (i.e., Po,5) appeared only
once in year 0 and its area remained the same in year 1 (Area(Pos)= Area(P15)),

indicating that this urban object was stable (i.e., dormant or established).
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Figure 4.2 Illustration of measurement of urban growth events from time 0 (T0) to time
1 (T1).

1=establishment; 2=coalescence; 3 and 4= introduction; 5=stable. Linked IDs are
necessary to support measurement of these events.

It should be noted that in some cases, when the newly introduced urban object is close
to another large urban object, it could be labelled as coalescence (not establishment) in
the next year. This is because under rapid urban growth, first, the one-year time period
may be too long for the establishment event to be observed and, second, our object data
are generated from raster data and in some cases, the pixel size may be too coarse to

detect the establishment event.

The above coding system applied within a GIS allowed the inference and attribution of
growth events to the inter-annual changes observed, per-object, from 1992 to 2018. This
process is fulfilled using ArcGIS. It is important to understand that once the time-series
graph of objects is established within the GIS, the above coding system is automatic
and comprehensive. It is automatic because each event type is identified directly by
comparing the present state of an object to its previous state, such that per-object events
arise with zero ambiguity in the differences between years. No thresholds are needed;

the events either happen or they do not. It is comprehensive because the set of all four
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events (and the null-event) cover the space of possibility completely. No other

alternatives are possible. These are key advantages of the approach.

After acquiring the growth event of each urban object annually over the study period,
we further calculated the total number of objects that experienced the establishment,
coalescence and dispersal events, as well as the total number of stable objects, inter-
annually from 1992 to 2018, in the core area and buffer zones of the four megacities.
Through this per-object calculation, it was possible to analyse inter-annual urban
growth events at the population level. At the population level, the spatial and temporal
dynamics of the dominant growth event(s) were analysed, thus, allowing inferences on
the underlying urban growth process. Fig. 4.3 illustrates the differences between
measuring urban growth events at the per object level (in which case a finite set of
possible events exists) and at the population level (where distributions are produced

across all events).
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Figure 4.3 Illustration of (left) urban growth events at the per-object level and (right)
dominant events at the population level during the urbanization process.

The blue ovals represent urban objects.

4.3 Results

4.3.1 General urban growth trends

We examined the overall urban growth for each megacity over the 26-year period. All

four megacity regions experienced rapid urban growth (Fig. 4.4). Fig. 4.4 shows the

extent of growth by mapping urban extent in 1992 and 2018. The core area is shown in

black, while other urban objects are shown in grey. The three buffer rings are
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superimposed over each area. It is surprising to see the enormous urban growth in
Tokyo over this period since the urban population in Japan has maintained a relatively
constant level since the 1970s. Tokyo’s core urban land area increased by around 1000

km? over this period.

The three megacities in China all witnessed tremendous urban growth in both the core
area and buffer areas. Their core areas almost doubled in size. In terms of urban growth
in the buffer rings, the 20 km buffer ring included a larger area of urban land over time,
except for Shanghai where the 60 km buffer covered the largest urban land area. The
core city in the Pearl River Delta region maintained rapid urban growth over time, while
the core area in Beijing experienced its most rapid urban growth from 1997 to 2008 and

the core area in Shanghai grew most rapidly from 2007 to 2018.

Urban growth in the buffer rings for Shanghai and Tokyo followed the growth trends
of their core areas. In Beijing, the urban land in the buffer rings witnessed rapid growth
since 2002. In the Pearl River Delta, urban growth in the 40 and 60 km buffer rings
showed a slower growth trend compared to the same buffer rings around Beijing and

Shanghai.
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Figure 4.4 Maps of urban extent for the four megacity regions in 1992 and 2018.
The core urban area is shown in black and peripheral urban areas in the buffer rings are
shown in grey.

4.3.2 Urban events and inference on the growth process

Using the rule-set established above, and specifically because we adopted an object-
based methodology, we were able to measure directly the prevalence of the three growth
events in each of the core and buffer zones through time. This was achieved by applying
the rule-set to each urban object annually, such as to infer growth events through time
at the per-object level. Fig. 4.5 shows the number of objects allocated to each event

over the 26-year period.

The results show that all core and buffer zones for the four megacities experienced all
three events almost consistently over time. Fig. 4.5 captures the detail of the dynamics
of the urban growth events over time. The magnitude (i.e., total number) of these urban

growth events fluctuated over time. However, in Shanghai and Tokyo, general
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synchrony is observed among the three growth events. In Shanghai, the total number of
urban objects experiencing the growth events grew significantly from 2004 and 2005,
reaching a peak around 2010, and then decreased afterwards and increased again in
2017. This trend is observed in the core urban area and buffer zones, suggesting a
synchronous urban growth process in the region over time. It should also be noticed
that the peak level of coalescence was reached roughly two or three years later than the
peak level of dispersal and establishment. This implies that, at the landscape level, a
mass coalescence of urban objects occurred after the intensive introduction and
expansion of urban objects. In Tokyo, the overall trend in growth events is similar in
three buffer zones, with a high prevalence of the three events around the late 2000s and
early 2010s. This trend is not observed in the core urban area where the magnitude of
dispersal and establishment in the late 2000s and early 2010s was similar to the early

1990s.

In Beijing, the total number of urban objects involved in these events was smaller
compared to the other three core urban areas, with a peak level around 2003. In the
buffer zones, the total number of dispersal and establishment events showed a general
increasing trend before 2016 and a high level in the 2010s. Unlike Shanghai and Tokyo,
the total number of coalescence events was smaller compared to the other two events.
This suggests that introduction and establishment are the main urban growth events,

outstripping coalescence.

In the Pearl River Delta region, the core urban area showed a relatively greater number
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of urban objects experiencing dispersal and establishment in the 1990s compared to the

other three megacities. The three events exhibited a peak around 2003 and decreased

afterwards. This trend is also observed in the 20 and 40 km buffer zones, while in the

60 km buffer zones, there is greater fluctuation. This suggests that the urban growth

process is complex and dynamic here. Local drivers could influence the growth process

and lead to differences in the growth events.
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Figure 4.5 The number (i.e., count) of urban patches experiencing the coalescence,
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dispersal and establishment events and stable patches in (top to bottom) the four
megacity regions for each year from 1992 to 2018.

The data of 1993 suggests the changes from 1992 to 1993 and so on). Time-series plots
are shown for (left to right) the core area and buffer zones.

We plotted the number of new urban patches (i.e., dispersal events), the loss of urban
patches (the total number of coalescing urban patches minus the number of urban
patches that they coalesced into in the subsequent year), and the net change in urban
patches (the total number of new patches minus the lost patches) against time (Fig. 4.6).
This shows the overall urban dynamics and details the gains and losses of urban patches

in the landscape over time.

For the core urban area, Beijing, Pearl River Delta and Tokyo gained urban objects in
the 1990s and early 2000s. Shanghai continued gaining urban objects in the 2000s until
2007. The net flux was negative in the four megacities in the 2010s, indicating
continuous merging of urban objects. In the buffer areas, Beijing and Tokyo gained
urban objects for most of the period. In Beijing, the increase in the net flux was much
greater than in the other megacities, suggesting intensive and increasing urban

complexity in the landscape related to a more fragmented landscape pattern.

In the Pearl River Delta, the 20 and 40 km buffer zones gained urban objects until 2016
and experienced a loss in urban objects in more recent years suggesting the dominance
of coalescence. In Shanghai, the only net loss in urban objects is observed in more
recent years in the 40 and 60 km buffer zones. The 20 km buffer zone gained a large
number of urban objects in recent years, indicating the intensive introduction of urban

objects around its core urban area.
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Figure 4.6 The dispersal, loss and net change in the number of urban patches in the core
area and buffer zones in the four megacities.

To better capture the relative dynamics of the urban growth events, we normalised the

number of objects falling into each growth event by dividing each by the total number

of objects and then plotted the relative proportions through time (Fig. 4.7). In the core

urban area, the coalescence event is dominant for most of the period. In Beijing and

Tokyo, the establishment event accounted for a large number of changed urban objects

in the late 2000s and early 2010s. In the Pearl River Delta, dispersal and establishment

accounted for a similar proportion for most of the period. In Shanghai, dispersal
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increased notably and occupied a relatively large proportion in the 1990s and late 2000s.
In Shanghai, Tokyo and Pearl River Delta, the overall dynamics and proportion of
unchanged objects was similar in the three buffer zones, suggesting that the urban
patterns changed synchronously in the periphery. In Beijing, the 20 km buffer zone
showed a different overall trend. In all three buffer zones of Beijing and Pearl River
Delta, dispersal and establishment occupied a larger proportion than coalescence,
indicating that coalescence is still limited in the periphery compared to other events. In
contrast, in the buffer zones of Shanghai, the proportion of dispersal events was larger
than for the other megacities, especially in the 2000s. In the 40 and 60 km buffer zones,
the proportion of coalescence events is greater than for the other megacities, probably
due to the relatively larger size of the satellite cities located in this area and the merger
of urban objects clustering around these satellite cites. Lastly, in the buffer zones of

Tokyo, the proportions of each event are similar in the late 2000s.
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Figure 4.7 The proportion of urban objects experiencing the three urban growth events
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(and no change) in these four megacities in the core area and buffer zones over time.

4.4 Discussion

This research explored the urban growth process over a 26-year period in four megacity
regions in South-East Asia (Beijing, Pearl River Delta, Shanghai and Tokyo). For these
four megacities, a rule base was established from which to measure directly the

occurrence of growth events on an inter-annual basis at the per-object level over time.

4.4.1 Inference on underlying growth processes and phases

Urban growth is the result of multiple factors interacting at different scales, such as
population increase, economic growth, planning strategy, and development policies.
Changes in the level of each event type through time could potentially be used to
inversely infer changes in the underlying growth process because these events
necessarily occur due to growth drivers, and collectively they define the overall areal
growth rate. Therefore, changes in the counts of the change events through time can
potentially be interpreted as implying a physical amplification, constraint or
“disturbance” in the underlying urban growth process. For, example, if growth increases
as a function of a change in policy, then this should be observed in increases in the

numbers of all types of change events per object.

However, some caution should be exercised over the above interpretation because
changes in the level of each event are also a function of the availability of space. Given

a fixed space, one might expect the number of events observed to be eventually
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conditioned by the space left available to fill, in addition to the policy. Thus, while
changes in the counts of change event types necessarily reflect changes in the overall
areal growth rate, and that growth rate may be due to policy and other drivers, the ability
to infer changes in the underlying growth process is conditional upon the relation
between the urban pattern and the proportion of the space that it fills. Related to this, it
should also be noted that our analysis of urban growth focused on spatial expansion and
we did not measure the intensification of urban land use, and vertical expansion in
particular. The dynamics of these other dimensions of urban growth, especially during

decreasing trends in the growth rate, should be considered in future research.

Of course, the space available need not be regarded as fixed, and as a mega-city grows
so too can the definition of its spatial extent. Such an interpretation invokes the
geographical concepts of fractality and scale-invariance and, consequently, in this
interpretation overall differences in the count of each event may not be observed as the

city grows to occupy new space.

For a fixed space, the dominance of the different object-level change events may be
expected to vary through time as the space is increasingly filled. Indeed, this thinking
underlies much of the earlier work on urban growth phases: introduction events
dominate in the early phases, establishment/dispersal dominates in the middle phase
and coalescence dominates in the final phase as the space is increasingly filled. In this
paper, we defined fixed buffer zones around each mega-city core area and tested the

hypothesis that as a city expands within a fixed space, the predominance of each event
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type should change depending on proximity to the core area. The assumption
underlying this experimental approach is that space (distance from core) can be
exchanged for time (phase of growth). Through the object-based approach, we were
also able to explore whether there exists any geographical variation across regions in
the event types and whether the event types change synchronously with each other
through time. In this paper, we explored these questions through a geographical analysis
of the pattern of changes in the event types within, and between, regions, and through

time.

4.4.2 Temporal changes in the number of growth events per mega-

city and policy interpretation

In Tokyo, growth events occurred at a relatively lower level in the early 2000s,
suggesting urban growth slowed or entered a stable state: after years of rapid
urbanization, a relatively high level of urban development was reached and the
possibility space for urban transition was limited. The growth that was observed
subsequently, especially in the buffer zones, may have arisen because in 1999 planning

promoted the development of nearby cities in the periphery.

In Shanghai, the core area witnessed a decrease in the magnitude of growth events
around 2000, probably because in the 1990s, with a series of opening policies and the
construction of the Pudong district, the urban areas experienced a relatively rapid
increase and remained relatively stable in the late 1990s. The area experienced

significant growth around 2003 and afterwards, probably due to the enforcement of the
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Shanghai Master Plan (1999-2020) and further opening, which promoted further rapid

urban growth.

In the buffer zones of Beijing, especially the 40 and 60 km buffers, the magnitude of
growth events increased steadily, indicating a stable urban growth process. In the Pearl
River Delta, the growth trend in the number of objects experiencing growth events
slowed around 2005 and decreased thereafter, suggesting that after the rapid
development of the 1990s, such as within the special economic zone in Shenzhen, the
opening policies and foreign direct investment in the region, urban growth entered a
new state, with a general decreasing trend in the magnitude of growth events. This was
also observed in the early 2010s in Shanghai as mentioned above. After years of
intensive urban growth (i.e., an increasing trend in the magnitude of growth events),

the rate of urban growth slowed.

4.4.3 Geographical analysis of event sequencing and synchronicity

across the core-buffer, across buffers and across mega-cities

A general synchronous trend in the three growth events is observed among the various
buffer zones, which suggests that urban growth drivers have similar effects on the
dynamics of the different events and leads to similar behaviour of these events at the
population level. It implies a general similar urban growth process for the core urban
area and its hinterland. For example, in all three buffer zones of Shanghai, the
magnitude of all events experienced rapid growth in the 2000s and decreased thereafter,

suggesting factors that influence all the buffer areas.
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However, the observed growth events and patterns differ in some cases between the
core urban area and buffer zones. For example, the buffer zones of Beijing exhibited a
different pattern of growth events from the core area. This suggests that the factors
influencing urban growth in these regions affect the core urban area and buffer zones
differently. This may be because Beijing is the capital city of China: the core urban area
experienced rapid urban growth and economic development with a weaker connection
to its hinterland compared to the other megacities, revealed as different growth trends.
The number of coalescence events was also smaller than for other megacities in the

buffer zones, suggesting a more dispersed pattern.

The hypothesized sequence of the three urban growth events was not observed at the
landscape level. Unlike the suggested cycles of diffusion and coalescence or the
oscillation behaviour of urban growth reported in previous studies (Dietzel, et al., 2005b;
Martellozzo & Clarke, 2011) our results indicate that, in reality, the establishment,
dispersal and coalescence events are realised concurrently as a result of a single growth
process of given intensity occurring in the urban landscape, and they dominate

alternately.

In contrast, at the patch (object) level, the hypothesised dispersal, establishment and
coalescence events were observed to follow a sequence as expected. This is axiomatic:
first, a new urban object is introduced (or dispersed) into the landscape. Then, it may
remain stable or grow in area (i.e., establishment). When it is close enough to another
urban object, as it continues growing, it merges to form a new urban object (i.e.,

coalescence). This new urban object may experience the same establishment-
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coalescence phase sequence or another coalescence event.

When accumulating the object-level events at the landscape or population level, the
hypothesized sequence is not generally observable. In real urban systems, the factors
influencing urban growth are dynamic and complex. When a set of factors promotes
rapid urban growth, as urban land expands the number and size of urban objects are
both likely to increase, shown as an increase in both introduction/dispersal and
establishment events, and with this urban expansion coalescence may also increase.
This leads to a synchronous behaviour of the events and hides the sequence occurring
at the per-object level, as observed in this research. This is a key contribution from this
study—that from a geographical analysis perspective it is more precise to identify and
analyse change events at the object level first and then aggregate them to represent more

comprehensively the urban system at the population level.

In future research, the sequence analysis of growth events at the per-object level could
help to provide valuable information for understanding the evolution of urban systems
and, thus, building urban growth models. The object-based method provides a way to
trace the growth process at the per-object level. Fig. 4.8 represents succinctly the urban
object-level growth process and demonstrates the effectiveness of our method in
capturing the spatial-temporal links between urban patches. It shows how urban object
8911 grew from several small urban objects into one larger urban object from 2005 to
2011. According to our method, all the objects from 2005 to 2010 are located within
the boundary of object 8911. From 2005 to 2008, the objects are quite small and most

of them remain unchanged.
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Figure 4.8 An illustration of the urban object growth process from 2005 to 2011.
Object 8911 is an urban patch in Shanghai. Each circle in the figure represents an urban
object, with its colour referring to different events and its size proportional to its area.
To avoid confusion, it should be noted that the labelled IDs do not correspond to the
IDs used in the calculation of events. Each circle has one unique ID, with the last two
digits in the labelled ID referring to the respective year. All the objects in 2005 are
coloured black since in this example they are treated as initial patches which do not
inherit any of the four events.

From 2008 to 2011, the patches grew rapidly and coalescence became the dominant
process. By identifying the events associated to each urban object, it was then possible

to build the spatial-temporal links between them. For example, objects 8909 and 9509
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are two isolated urban objects in 2009, but they merged into one urban object (9310) in
2010, thus, defining the underlying link between them. In future research, the well-
defined temporal links among urban patches could be further expanded into a spatial—
temporal graph structure of urban patches by adding specific spatial links between the
urban patches. Such a graph could help to further study inter-urban interactions and the
evolution of urban systems. Moreover, most urban growth models are based on raster
data which are commonly spatial scale-dependent. The object-based method can be

used to overcome this dependency to some extent.

4.4.4 Policy interpretation

Research on the dynamic spatial patterns arising from urban growth processes not only
benefits our understanding of the evolution of urban systems and their interactions but
also provides supporting information for policy-makers and decision-makers planning
growth and managing the effects caused by urban growth. Urban growth influences
profoundly the environment and ecological processes from local to global scales.
Mitigating the negative effects of urban growth is crucial to achieving sustainable
development. At the regional level, we observed a large number of dispersal and
establishment events for most of the time in the buffer areas in the four megacities. This
suggests that in the periphery, there exist strong drivers, and a consequent high rate, of
urban growth. An increasing number of urban objects is usually associated with
increasing fragmentation which will further influence ecological processes and social

processes. For example, these new urban land areas are usually gained from agricultural

118



land, forest or grassland. The loss of these areas may lead to habitat fragmentation
(Riitters et al., 2016), local climate change (Zhou et al., 2015) and the loss of benefits
for local stakeholders (Robinson et al., 2012). With a compact core urban area, the
buffer areas usually have a dispersed pattern, which influences different ecological
processes. Thus, in these megacities, effective regional planning and environmental
management are essential to mitigate the negative ecological and social impacts of

urban growth, both in the core and the periphery areas.

4.5 Conclusion

We analysed the spatiotemporal urban growth patterns in the urban core and buffer
zones of four megacity regions in South-East Asia. An object-based analysis was
undertaken at the per-object level and four change events were defined, borrowed from
ecology, at the per-object level. We analysed the object-based time-series data to
analyse changes in urban growth events at the per-object level and, by aggregation, at
the whole region level. By specifying a logical rule base for application at the per-object
level we were able to measure the establishment, dispersal and coalescence growth
events. This approach was effective in providing the per-object level data necessary to
analyse and quantify changes in the composition of these events (i.e., growth phases) at
the regional level through time. Subsequently, the time-series of these compositional
changes at the regional level was used to make reasonable inferences about the
underlying growth process. As such, the insights provided here, cut through existing

theory and approaches to characterizing changes in urban patterns.
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At the population level, the establishment, dispersal and coalescence events were found
to be generally present and concurrent over time, albeit dominating at different times.
The growth events exhibited a general synchronous trend in each buffer zone over time
rather than following a specific logical sequence (as must occur at the object level). In
the buffer zones of Shanghai and Tokyo, the magnitudes of the different growth events
were generally similar especially after 2000, whereas in Beijing and the Pearl River
Delta, the magnitude of the dispersal and establishment events was much greater than
for coalescence. The same was not always observed between the buffer zones and the
core area. A general synchronous trend was observed only in the core and buffer zones
of Shanghai. Our results also suggested that in the buffer zones, dispersal and
establishment were dominant most of the time, indicating a highly active growth
process that leads to a more fragmented spatial pattern of urban objects, which is indeed

realized in reality.

The object-level rule-based approach developed here for the first time revealed new
insights into the dynamics of urban growth events, thus, providing potentially increased
understanding of the underlying urban growth process and the urban systems
themselves. This new approach and information should be developed further so that it
can support effective regional urban planning and environmental management which
are both essential to achieve environmentally sustainable levels of urban development

and landscape patterns.
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S Modelling urban objects through Bayesian

linear mixed-effects models

Abstract

At the macro-level, urban systems consist of urban entities interacting with each other.
Exploring the dynamics of such urban systems requires the definition of urban spatial
objects, a comprehensive definition of the possible change states that such objects can
take, and the systematic linking of these objects through time with unique identifiers.
Here, such a data model is extended, for the first time, via a spatial-temporal graph-
based structure to facilitate model-based exploration of how the relationships between
neighbouring urban objects affect the dynamics of urban entities, leading to better
understanding of urban system dynamics. A linear mixed-effects model, fitted through
an approximate Bayesian inference framework in Integrated Nested Laplace
Approximation (INLA), was applied to the created graph-based dataset to model the
coalescence, growth and unchanged states of urban spatial objects based on the previous
states of the objects themselves and of their neighbouring objects. The findings reveal
that the coalescence state of urban objects in the present year is influenced by their state,
proximity to neighbours and the states of neighbouring objects in a defined buffer in the
previous year. The growth state of urban objects in the present year is associated with
their previous state, the state of the largest neighbouring object and the states of objects

within a close buffer in the previous year. Additionally, the area of objects that grew
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was investigated and found to be related to the largest interaction with neighbouring
objects, with varying effects for different-sized objects. This research contributes to
studies of urban growth by modelling explicitly the relationships between the states of
urban spatial objects in the present year and their states, and those of neighbouring
objects, in the previous year. The results offer new insights into the evolution of urban

systems.

5.1 Introduction

As the most dynamic and rapidly evolving system on Earth, the urban system has
attracted the interest of scientists and researchers across various disciplines (DeFries et
al., 2010; Derudder et al., 2010; Arribas-Bel et al., 2011; D. Li et al., 2022; Lengyel et
al., 2023). Within urban studies, urban growth is a central topic as it relates to a variety
of issues such as global environmental change, social equity, public health and food
security (Galea and Vlahov, 2005; Grimm et al., 2008; Hatab et al., 2019; Meerow et
al., 2019). Understanding how urban systems have changed, why they have changed
and the consequences of the changes could help to increase understanding of
interconnections with related processes, and ultimately contribute to sustainable
development (Derudder et al., 2010; Lengyel et al., 2023). In this context, modelling

urban growth is a critical issue and it has been studied intensively.

Urban growth studies generally use one of two main approaches. The first measures
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how much cities have grown over time. This could be at the individual city level or
sometimes across broader scales ranging from regional to global levels. Urban growth
is modelled over time with parametric or nonparametric models, or a combination of
both (Hoffhine Wilson et al., 2003; Li and Gong, 2016; Angel et al., 2021; Gonzalez-
Val, 2023). These models represent urban growth by the magnitude of some property
such as land area or population, and are mainly based on two underlying theories. The
first is that urban growth is a function of various endogenous or exogenous drivers,
such as economic growth, population growth, policy effects and accessibility to hubs
or resources (Fujita, 1976; Eaton and Eckstein, 1997; Feng et al., 2002; Ding, 2004;
Gonzalez-Val, 2023). Researchers have explored the relationship of urban growth with
these drivers through a variety of statistical models (Yue et al., 2013). The other theory
treats cities as systems and argues that city growth is random and is a function of its
initial size (Gonzalez-Val, 2023). This approach generally explores urban growth
through scaling laws or fractal dimensions within a defined region over a long period
(Benguigui and Czamanski, 2004; Arcaute et al., 2015; Lagarias and Prastacos, 2020;

Molinero and Thurner, 2021).

The second approach studies how urban growth changes both spatially and temporally.
Such studies focus typically on changes in spatial pattern over time, representing cities
using raster (i.e., image) data. A classic approach is to utilize landscape metrics to
explore the dynamics of urban spatial patterns. Within this framework, some growth
types such as dispersal-coalescence, infill, edge-expansion and leapfrog, and indices

such as the Landscape Expansion Index (LEI), have been developed to characterize
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urban growth from a process-based perspective (Liu, et al., 2010; Aguilera et al., 2011;
Li et al., 2013; Jiao et al., 2015). Another widely studied approach adopted cellular
automata (CA). CA is a dynamic method that simulates urban growth from a micro
level (i.e., pixel-level) based on location, geographical and socioeconomic conditions,
and interaction with surrounding neighbours through a defined transition rule. It
includes different growth drivers and spatial effects to study urban growth from a self-
organization view. The CA approach has been developed into a variety of different
branches such as object-based CA, ABM-CA and AI-CA (Liu et al., 2008; Liu, et al.,
2010; Liu et al., 2013a, 2013b; Abolhasani et al., 2016). Another interesting approach
represents cities using raster data, but studies urban growth from a percolation
perspective. It treats urban growth as a process where the city diffuses from the seed or
the core to the surrounding space over time. Usually combined with fractal dimension,
some researchers have utilized this approach to study the dynamics and evolution of
urban systems from city level to regional level (Makse, et al., 1998; Arcaute et al., 2016;

Sarkar et al., 2020).

Among the above studies, a significant common element is the representation of cities
from the perspective of the growth process by incorporating relationships between
urban lands. This is because during the urban growth processes, urban lands interact
with each other and are affected by each other, suggesting that interactions are crucial
in understanding urban land dynamics. For example, dispersal-coalescence, infilling
and leapfrog essentially represent cities through different relations between new and

existing urban lands (Dietzel et al., 2005a; Li et al., 2013; Dahal et al., 2017).
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Percolation theory is also based on an assumption about the growth process.

While the above approaches study urban growth processes by incorporating the
relationships between urban lands, urban systems comprise urban entities which
include a variety of activities interacting with each other located on urban land. This
suggests that the raster representation of urban land (i.e., based on pixels) could not
explicitly and adequately capture the relationship between urban entities (e.g., cities,
towns, villages). While studies have incorporated spatial or temporal relationships, or
both, most are based on the relationships between raster pixels, while studies with an
explicit spatial-temporal link between urban entities and their relationships are still
limited. Therefore, to fill this gap, this research represents urban entities as spatial

objects and explores the relationship between these objects.

Some research on land cover change and landscape ecology has developed network or
graph-based methods by representing land cover or habitat as objects to study their
spatial-temporal evolution (Cantwell and Forman, 1993; Urban et al., 2009; De Cola,
2010; Cheung et al., 2015; Wu et al., 2021). For example, studies have built spatial
graphs based on landscape habitat objects to study connectivity and its implication for
conservation (Fall et al., 2007; Urban et al., 2009). This general approach has been
further developed into a spatial-temporal graph, incorporating temporal transitions
between objects, to study the land cover evolution over time (Wu et al., 2021; Zou et
al., 2023). Such methods provide detailed insights into the spatial-temporal relations of
land objects tracing their transitions over time. In urban studies, the object-based
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method has been applied rarely.

In previous research, we represented cities as objects and characterized them by four
states based on the urban growth process, including introduction (commonly through
dispersal), establishment (or growth), coalescence and ‘unchanged’, which essentially
necessitates a temporal link among objects (Fan et al., 2024). However, urban objects
exhibit not only temporal links, but also spatial links through interactions with each
other across space. Their direct spatial-temporal relationships have yet to be studied
explicitly. Therefore, based on the aforementioned states of urban objects, we here
introduce spatial links to allow exploration of the spatial-temporal relationships
between objects and how these affect likely future state transitions. Specifically, we
build graph networks among urban objects and integrate them with the states of objects
to establish spatial-temporal links and, thereby, study the states of objects and their
relationships with other objects, especially their surrounding neighbours. For the four
states (introduction/dispersal, establishment, coalescence and ‘unchanged’), we
concentrate on creating an integrated model for the establishment, coalescence and
unchanged states while excluding introduction (and dispersal). Introduction is a
separate process which relates to whether an object exists, whereas the establishment,
coalescence and unchanged states relate to the fate of an object once it exists. To
achieve this, taking Shanghai as an example, we fit models for these different states to

explore how its future state is related to the dynamics of itself and other objects.

For the coalescence state which refers to urban objects merging with other objects, we

126



introduce a set of variables characterizing the dynamics of objects that help to model
the state of coalescence (i.e., the likelihood of coalescing) and its relationship with the
dynamics of surrounding objects. For the establishment and unchanged states, we treat
them collectively within a single growth model since they represent whether an object
grows or not. Similarly, a set of variables characterizing the dynamics of objects is also
introduced to model the growth state of objects (i.e., the likelihood of growth) and their

relationship with surrounding objects.

Finally, we predict the coalescence, growth and unchanged future states of urban
objects through the relationships among objects obtained by our model. For objects in
the growth state, we further explore how their area is related to surrounding objects.
This research, thus, models explicitly the well-defined state transitions of urban spatial
objects through extensive characterization of the spatial-temporal relationships among

neighbouring urban spatial objects.

5.2 Data and method

5.2.1 Data

The land cover data were acquired from the European Space Agency (ESA) Climate
Change Initiative (CCI) Land Cover time-series Product (Defourny et al., 2023). The
CCl is a global, annually consistent land cover dataset with a spatial resolution of 300
m. It covers the period since 1992 and is still updated with the latest plan being to

release the 2021 land cover data. The data are derived from a combination of multiple
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satellite sensor datasets including Advanced Very-High-resolution Radiometer
(AVHRR), SPOT-Vegetation, Medium Resolution Imaging Spectrometer (MERIS),
PROBA-Vegetation and Sentinel-3 OLCI time-series data. The CCI classification
system used is the Land Cover Classification System (LCCS) developed by the United
Nations (UN) Food and Agriculture Organization (FAO). In addition to this system, the
identification of urban areas also relies on the Global Human Settlement Layer in the
Global Urban Footprint dataset. The overall accuracy of urban areas reaches 86% to
88%. We extracted urban areas for Shanghai from 1992 to 2018 with a 60 km buffer
from the boundary of its centre object defined in 2018 using the CCI dataset. This
original raster-based urban dataset was then transformed into an object-based dataset

for the present analysis.

5.2.2 Labelling ID for objects

To model and explore the relationship between the state of urban objects and the
dynamics of their surrounding neighbours, it is necessary to identify whether an urban
object has coalesced or grown. The coalescence state occurs when an object merges

with another object. The growth state arises when an object increases in area.

When modelling changes in the area of objects, a pre-requisite is to identify the
continuous object that is changing, but if one object coalesces with others, it will cause
a change in object identity and a sudden and, in some cases, great change in area.
Coalescence can, thus, cause confusion and difficulty in identifying a continuous urban

object and modelling changes in its area. For example, if several objects merge into one
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object, the increase in area is clear, but to which object the increase should be attributed
is not. Thus, we introduce "birth" and "death" processes for urban objects to deal with

the identification of the individual objects before considering changes in their areas.

At the initial time point, there are a variety of different-sized urban objects in the space
of interest. Influenced by a variety of urban growth drivers, an urban object will tend to
expand outwards. Through its expansion, an object could be connected with other
objects and merged into one object. At this time point, we treat the several connected
objects as "dead”, and the new coalescence object as "born". Based on this concept, if
an urban object exists from time 7 to i+n and coalesces or is “dead” at time i+n+1, we
will treat it as a continuous object from time i to i+n, and if its area at i+1 is larger than

that at time 7, it will be labelled “growth”.

To label the coalescence and growth state for each object, we assign each urban object
with a unique ID. First, to detect the "death" and “birth” processes, we utilize a
backward method by labelling urban objects starting from the last year. We first

intersect layer i+n with layer i+n-1. For all the objects in year i+#n-1, when conducting

object], . N objectt.,, object!, . acquires the ID of objectk,,, which is
IDE.,.. We then check the appearance frequency of IDf,, in year i+n-1. If the

frequency equals 1, suggesting that it is a continuous object, the object will retain this
ID; if the frequency is larger than 1, then new IDs are assigned to all the objects that

have IDX

+n-

The details of this process are illustrated in Figure 5.1. In the example, at time i+3, the
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object is labelled as a. Then at time i+2, all the objects within the boundary of object a
are first labelled as a (shown in the bracket). We then check the frequency of this
labelled ID, that is, a. If its frequency equals 1, this suggests that within this boundary
there is only one object and it is a continuous object. If its frequency is larger than 1,
this suggests that a coalescing process exists from time i+2 to i+3. In this case, new IDs
are then assigned to these objects. At time i+2, there are two objects within the boundary
of object a. So new IDs, b and c respectively, are given to them. Because of the
coalescence of objects b and ¢, we treat them as coalesced or "dead" at time i+3 and a
new object, a is "born" at time i+3. This process is repeated every year. In the given
example, at time i+1, within objects b and ¢, there is only one object labelled as » and
¢, respectively. So, they are still labelled as b and ¢, indicating that they are continuous
objects from time i+1 to time i+2. At the time 7, the frequency of b equals 1 suggesting
that it is a continuous object, but within object ¢, there are several isolated objects. In

this case, object d, e, f, g is "dead" at time i+1 and object c 1s “born” at time i+1.

From the above unique labelling process, we acquire IDs that can help to trace the state
of urban objects through time. For example, from time i to time i+3, object b is a
continuous object from time 7 to time i+2 and object c is a continuous object from time
i+1 and time i+2. According to the frequency of IDs, we can obtain coalesced objects
and continuous objects (i.e., non-coalesced objects). Then for a continuous object, if
the area at one time point is larger than that at the previous time point, it will be labelled
as growth, otherwise, it will be labelled as unchanged. We, therefore, acquire all the

coalescence, growth and unchanged states of all objects.
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Figure 5.1 An illustration of the ID labelling process for objects.
The red arrow represents the temporal sequence of urban growth while the blue arrow
represents the sequence of the labelling process.

5.2.3 Neighbouring objects

The second step is to calculate the influence of other objects on the state of the core
object (i.e., the object of interest). In this research, we concentrate on urban objects that
are defined as neighbouring objects by building a graph or network structure. To
acquire the neighbouring objects around one core object, we first transform all objects
into points using the centroid point, and then a triangulated irregular network (TIN) is
generated from these points for every year. The Delaunay triangulation is used to create
the TIN. The Delaunay triangulation is associated with Voronoi polygons. In the
Delaunay triangulation, points are linked by an edge of the Delaunay triangulation. A
triangle is then formed by connecting three points whose corresponding circumscribing
circle contains no other points within it. This process results in all points being
connected through a set of triangles. Due to the nature of Delaunay triangulation, for
one point, all the points directly connected to it through the edges of the Delaunay

triangulation are regarded as its neighbours. Consequently, a set of neighbouring points
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is established for each point in the dataset. An example is given in Figure 5.2. It is part
of the Delaunay triangulation we generated for the year 2010 showing the link among
objects. The size of each point is shown as proportional to the area of its corresponding
object. The red arrow labels the core object and there are 5 neighbouring objects from
A to E around it. It is important to note that since urban objects are essentially polygons
other than points which we used to generate the network, there could be some cases in
which neighbouring objects are not included in the resultant set of neighbouring objects.
However, considering the irregular shape of urban objects and the complexity involved
in generating a set of close neighbouring objects among polygons, our method can
generally assist in identifying neighbouring objects, thereby fulfilling the requirements

for the present analysis.
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Figure 5.2 Illustration of a set of neighbouring objects for a core object.
The red arrow refers to the core object. A to E represent its neighbouring objects.
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5.2.4 Covariates

Based on the generated network, we identify a series of influencing factors or covariates
that represent the dynamics of neighbouring objects which could potentially influence
the states of the core objects and, thus, could be further used in our model. We assume
that each year’s state is dependent on its previous year’s state and influenced by its
neighbours’ dynamics in previous years. Consequently, all the covariates used are based
on data from the previous year. When we treat urban objects as nodes and establish
links among them, factors such as the distance between nodes, and the weight and
dynamics of other nodes, play a crucial role in influencing the dynamics of the core
node. Therefore, when we study the dynamic of urban objects from this node-link
perspective, the question is how the distance, area and interaction of neighbouring
objects influence the state of the core objects. To further explore this, a variety of

covariates related to distance, area and interactions were explored in the models.

Table 5.1 The list of covariates for the coalescence and growth model

Covariates The The The
coalescence growth area
model model  model

core_changed_preyear v v

nearest_changed_preyear v v

nearest_S00_changed_preyear v

nearest_S00_1000_changed_preyear v

percentage changed preyear v v

largest_change preyear v v

nearest_distance preyear v

percentage nearest 500 changed preyear v

percentage nearest 500 1000 changed preyear v

time

largest_interaction_preyear
second_largest_interaction_preyear
third_largest_interaction_preyear

<L L <<
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largest_area_preyear
second_largest_area_preyear

third largest area_ preyear
nearest_area_preyear
nearest_interaction_preyear
largest_object_interaction_preyear
second_largest_object_interaction_preyear
third_largest _object_interaction_preyear

< <

A list of all the covariates for the three models is shown in Table 5.1. First, in the
coalescence model, for coalescence to occur, objects should expand and be close
enough to be connected. This growth could be either of the core object itself or of the
surrounding objects. Thus, distance and growth are two crucial factors. We first include
a distance factor (i.e., the nearest distance) in the model. Then, the state of the core
object is also included in the model since we assume that if the object changed in the
previous year, it is more likely to change this year and increase the possibility of
coalescence. Last, the set of states of neighbouring objects is also included. If the
neighbouring objects changed in the previous year, they are more likely to change this
year with a greater chance to coalesce. We plotted a sample core object and its
neighbours in Figure 5.3 to help to explain these covariates. A detailed definition of

each factor in the coalescence model is as follows:

1. core changed preyear: whether the core object changed in the previous year. 1 for
changed and 0 for unchanged.
2. nearest changed preyear: whether the nearest object changed in the previous year.

1 for changed and 0 for unchanged. This is included because we assume that
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coalescence is likely to occur with the nearest object. In Figure 5.3, the nearest
object is D.

. nearest 500 changed preyear: whether there is an object that has changed within
a buffer of ‘nearest distance plus 500 m’ in the previous year. 1 for changed and 0
for unchanged. In Figure 5.3, the buffer is depicted in green. We first calculated the
nearest distance between the boundary of two objects. Any distance exceeding the
nearest distance and less than the nearest distance plus 500 m will be classified in
this category. This buffer-based approach helps to avoid duplication of the covariate
information from the nearest object. Therefore, only objects C and E are considered.
We chose this buffer since 500 m ensures coverage of two pixels outwards in all
directions, considering that the original raster has a size of 300 m. This factor
recognizes that coalescence must occur close to the core object, but not necessarily
with the nearest neighbour.

. nearest 500 1000 changed preyear: whether there is an object that has changed
within a buffer of ‘nearest distance plus 500 m to 1000 m’ in the previous year. 1
for changed and 0 for unchanged. A similar calculation of the nearest distance
between objects is conducted to avoid duplication. In Figure 5.3, the buffer is shown
in purple and the objects considered are A and B. This buffer ensures coverage of
four pixels outwards in all directions.

. percentage changed preyear: the percentage of changed objects of all
neighbouring objects in the previous year. The unit is %. In Figure 5.3, this covariate
represents the percentage of changed objects among objects A to E. This factor
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provides information on the amount of change amongst neighbours and represents
local dynamics. The larger the value, the more dynamic this local area is, and this
could influence the dynamics of the core object.

6. largest change preyear: whether the largest object changed in the previous year. 1
for changed and 0 for unchanged. In Figure 5.3, this object is A. This factor is
included due to the assumption that large objects may grow more and then are more
likely to coalesce.

7. nearest distance preyear: the nearest distance between two objects. The unit is km.
This distance is calculated as the smallest between object boundaries, shown as a

blue double-sided arrow in Figure 5.3.

For the growth model, we assume that it is impacted by the state of the core object itself
and the dynamics of its neighbours in the previous year. Thus, covariates 1, 2, 5 and 6
in the coalescence model are also included in the growth model. Factor 1 is the growth
state of the core object itself in the previous year. Factor 2 represents that the present
growth state is likely to be affected by the nearest object’s previous growth state. Factor
3 represents a local dynamic suggesting that the growth of local objects is linked to the
growth of the core. Factor 6 implies that the growth state is likely to be affected by the
state of the largest object. We further include two more factors that represent the local

dynamic as follows:

8. percentage nearest 500 changed preyear: the percentage of changed objects

within the buffer of ‘nearest distance plus 500 m’ in the previous year. The unit is %.
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9. percentage nearest 500 1000 changed preyear: the percentage of changed
objects within the buffer of ‘nearest distance plus 500 m to 1000 m’ in the previous

year. The unit is %.

These two factors have similar meanings to factors 3 and 4. The difference is that
they represent the percentage of changed objects rather than whether they changed.
They, thus, provide more detailed information on local dynamics. It is also
important to note that when we refer to ‘changed in the previous year’ in the above
covariates, we not only refer to objects that increased in area. Any objects that are
newly introduced into the space or experienced coalescence in the previous year are

also classified in this category, as they all represent change.
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Figure 5.3 Definition of covariates in a set of neighbouring objects.
The green objects are neighbouring objects. The grey lines connecting objects represent
the TIN.
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For the area model, we assume first that it is influenced by time as area will increase

over time. Then we introduce an interaction term which borrows from the well-known

gravity model calculated as a°d>; % where a, is the area of the core object, a; isthe
oi

area of the ith neighbouring object and d§; is the square of the distance between the
core object and the ith neighbouring object. The distance is calculated using the nearest
distance between boundaries. The interaction term suggests that area is influenced by
the interaction between itself and the neighbouring object represented by their areas
and a decay with distance. In this context, the interaction is larger when two objects are
larger and closer. We use this interaction to represent the link between the core and the
neighbour. It is not merely the neighbour’s effect on the core, but a two-way effect,
which mirrors the connections between urban objects in reality. As two urban objects
are larger, the interactions such as population or information exchange between them is
also more intensive which will further affect their respective states. We, therefore, select
several different interaction terms for the model. Ultimately, we will check whether the
area of the core object is related directly to the area of its neighbours, leading to several

area factors also being included in the model.

The detailed definition of covariates for the area model is as follows:

1. Time: represents the temporal effect. We assume that time has a linear effect on
the area of the object.

2. largest interaction preyear: the largest interaction of all interactions in the
previous year.
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3. second largest interaction preyear: the second-largest interaction of all
interactions in the previous year.

4. third largest interaction preyear: the third largest interaction of all interactions in
the previous year. Factors 2 to 4 represent area being likely to be affected by larger
interactions.

5. largest area preyear: the area of the largest object in the previous year.

6. second largest area preyear: the area of the second-largest object in the previous
year.

7. third largest area preyear: the area of the third largest object in the previous year.
Factors 5 to 7 represent area being likely to be influenced by the area of larger objects.
8. nearest area preyear: the area of the nearest object in the previous year. This
represents the assumption that area is likely to be affected by the area of the nearest
object.

9. nearest interaction preyear: the interaction between the core and the nearest
object in the previous year. This represents the assumption that the area is likely to be
affected by the interaction between the core and the nearest object.

10. largest object interaction preyear: the interaction between the core and the
largest object in the previous year.

11. second largest object interaction preyear: the interaction between the core and

the second-largest object in the previous year.
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12. third largest object interaction preyear: the interaction between the core and the
third largest object in the previous year. Factors 10 to 12 represent the area being likely

to be affected by the interaction of larger objects.

Considering a same interaction could have a different effect on different-sized objects.
For example, if the interaction is between a large and a small object, the same
interaction could have different effects on the small object (such as 2 km?) and the large
object (such as 20 km?). Thus, we classified the core objects into different groups based
on their areas in the final year of their continuous period of existence, which could
ensure that the object is classified in the same group over time. Also since there is a
very limited number of large continuous objects, which increases the uncertainty in
estimation, we run the area model only for objects smaller than 9 km?. Therefore, the
group is as follows: A: area < 1 km?, represents very small objects; B: area between 1
km? and 3 km?; C: area between 3 km? and 5 km?; D: area between 5 km? and 7 km?;
E: area between 7 km? and 9 km? with a 2 km? interval for further modelling. We will

explore how the interaction term affects different-size core objects differently.

All these covariates are calculated for all objects over time. So, each core object has its
own covariates over time. All aspects of the ID labelling process and the calculation of

covariates were conducted using R 4.3.0.

5.2.5 Models

Since we model the coalescence, growth and area of objects over time, the state of a

140



continuous object could be inherently related over time. Thus, a linear mixed model
was conducted with a within-group structure, termed the random effects component.
This allows for correlation within groups and variability between groups. In our model,
each continuous object is treated as a group. Its state at different time points is treated
as a different observation within this group. Considering that for the coalescence and
growth model, we have a binary response variable (whether the state of an object is
changed or not), a generalized linear mixed model (GLMM) was selected to fit to the
data. A GLMM with binary response uses a default logit link to transform probability
to the linear predictor and also includes a random structure. In this model, Y;; follows
a Bernoulli distribution Y;; ~ B(1, P;j) with probability P;;(Y;; = 1) for success, and

the model is written as

logit (P;;) = a + BX; + 1,

where i =1,2,3..,n represents the nth group, j=1,2,3..,m represents mth
observation in a group, P;; is the probability of success for observation ij, a is the
fixed intercept, BX;; is a set of fixed effects and y; is the random effects for group i

accounting for variability between groups. Let 7;; to be the log odds. Then P;;(V;; =

elij
14+e’i’

1) is acquired by

For the coalescence model, the function is further written as

logit(P;;) = «a + picore changed preyear + fhnearest changed preyear +
pinearest 500 changed preyear +  fsnearest 500 1000 changed preyear  +
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fspercentage changed preyear + Pslargest _change preyear +

pmearest_distance preyear + u;.

P;; 1s the probability of coalescence of an object in group i at time . When P;; is 1, it

indicates that the object will coalesce with others. « 1is the fixed intercept, f1-f7 are the

coefficients for the corresponding covariates and y; is the random effect for group i.

For the growth model, the function is written as:

logit(Py) = a + picore changed preyear + ponearest changed preyear +
[spercentage changed preyear + falargest _change preyear +
fspercentage nearest 500 changed preyear +

Pepercentage 500 1000 changed preyear + u;.

This model is similar to the coalescence model albeit that P;; represents the probability
of growth of object i at time ¢. The differences are that nearest distance preyear is

removed and two percentage factors are included, as described above.

In terms of the area model, since there are more small-sized objects in our dataset (i.e.,
the object sizes have a skewed distribution), a Gamma distribution GLMM is employed.

The model using a default log-link including a random structure is written as:
log[E(Yij)] = a+ BX;; + w + &,
where the expected value of observation is linked with the linear function through a

log-link. Y;; is the value of observation j in group i, a is the fixed intercept, BX;; is
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a set of fixed effects, y; is the random effect for group i that follows a Gaussian
distribution w;~N (O, G,f) and g;; is the error term for each observation j in group i

that follows a Gaussian distribution &;;~N (0, a?).

The model can be further written as:

log[E(core_area;;)] = a + fotime + Pilargest interaction preyear +

[osecond largest interaction preyear +  fsthird largest interaction preyear +

[alargest_area preyear + fssecond largest area preyear +
Bsthird largest area preyear + [f7nearest_area preyear +
fsnearest_interaction preyear +  folargest object interaction preyear +
LSiosecond largest object interaction preyear + B

third largest object interaction preyear + u; + &;

Time is treated as a fixed linear effect and « is the fixed intercept. fo-f11 is the
coefficient for each covariate, core_area;; is the area of the core object in group i at
time # and p; is the random effect. In the model, we include a random intercept which
means each group has an independent baseline level. &;; is the error term for each
observation i at time # that follows a Gaussian distribution &;;~N (0, 0Z), representing

any remaining unexplained part after fitting.

Due to the complexity of our models, we undertake inference using an approximate
Bayesian framework through the Integrated Nested Laplace Approximation (INLA)

package. Unlike traditional Bayesian inference methods such as Markov Chain Monte
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Carlo (MCMC), INLA is less computationally expensive and more flexible. A Bayesian
framework specifies a prior distribution of model parameters and estimates the
posterior distribution of each parameter. The precision for o, and o, is 7, and 7,
are assigned default vague prior distributions, which follows a log Gamma distribution,
log (t) ~ logGamma (1,107). For each fixed effect parameter S, a default prior is also

assigned with 8 ~ N (0,10%).

We first applied the coalescence, growth and area models separately. For the
coalescence and growth models, the number of coalescence and non-coalescence
objects are unbalanced, and this is true also of the number of growth and unchanged
objects. Specifically, the number of non-coalescence and unchanged objects far
exceeds those of coalescence and growth objects. To mitigate bias and uncertainty in
predicting the minority group, we implemented a combination of oversampling and
undersampling techniques to create a balanced dataset, ensuring similar numbers of
coalescence and non-coalescence objects, as well as growth and unchanged objects.
The oversampling method randomly replicates the data in the minority group to
increase their number and the undersampling method randomly excludes the data in
the majority group. The process stops when the two groups are balanced. We conducted
this sampling process to acquire a balanced coalescence and non-coalescence dataset.
Then for the non-coalescence dataset, which is the continuous dataset, the sampling
process was also conducted to obtain a balanced set of growth and unchanged objects.
After the sampling process, the coalescence and growth objects can be represented

more evenly in the modelling. The coalescence and growth models were applied to the
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balanced datasets separately.

The Deviance Information Criterion (DIC) was employed to select the best-fit model.
It is a measure of the goodness-of-fit allowing fair comparison between models. DIC
is analogous to the Akaike Information Criterion (AIC) but is especially suitable for
the Bayesian context. As for the AIC, a smaller DIC suggests a better model fit. We
first include all the covariates in the model and then remove insignificant covariates to
obtain a model with only significant covariates. Then the DIC is used to select from
the remaining covariates. Since the coalescence and growth models have binary
dependent variables, The AUC (Area Under the Receiver Operating Characteristic
(ROC) Curve) was used to evaluate how well the model distinguishes between 0 and
1. The AUC value is obtained by sweeping the threshold between 0 and 1 and
displaying the specificity and sensitivity. The closer the AUC to 1, the better the model
performs at classifying between groups. A k-fold cross-validation was also conducted
to evaluate the performance of the models. This splits the dataset into £ equal-sized
subsets, with &-1 folds as a training dataset and 1-fold as a validation dataset. The model
was first applied to the training dataset and then fitted to the validation dataset. This
process was repeated k times so each fold is treated as a validation dataset once. After
iteration, the average value of the evaluation metrics is calculated. In our case, the
average accuracy was calculated which evaluates the percentage of correctly predicted

state events of the total events.

The area model was applied exclusively to grown objects to focus on how the change
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of interaction terms influences the area of the core. It is worth mentioning that the
coalescence of objects can sometimes lead to a sudden and significant change in the
interaction. We, therefore, examined the increase in interaction terms between two-time
points. The distribution of the increase of interaction term was checked and any
increase larger than 10 was removed as an outlier. These outliers accounted for less

than 0.3% of the total observations and do not affect the performance of the area model.

Finally, we integrated the coalescence and growth models together to evaluate their
combined effectiveness in predicting the state of objects. Since essentially these three
states are mutually exclusive, an object could only have one state at one-time point.
The state of an object can be assessed through the process illustrated in Figure 5.4. First,
if an object is coalesced with others, it is classified as a coalescence object; otherwise,
it 1s considered as a continuous object. Second, if the object's area increases, it is
identified as a grown object; if there is no change, it is considered an unchanged object.
Through this process, it is possible to predict the states of all objects in space. Therefore,
first, the coalescence model was applied to the entire dataset, through which it was
possible to label coalescence and non-coalescence objects. Subsequently, all the non-
coalescence objects were extracted, upon which the growth model was applied to

distinguish between grown and unchanged objects.
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Figure 5.4 The integrated process for predicting the coalescence, growth and unchanged
states of objects.

5.3 Results

5.3.1 Coalescence model

5.3.1.1 Model selection and validation

To acquire the best-fit model, we first applied our model with all covariates plus the
random structure and checked the posterior distribution of each coefficient. The
posterior distribution intervals for nearest_change preyear,
nearest 500 1000 change preyear and largest change were not all positive or
negative, so they were removed from the model. We then ran the model with the
remaining four covariates plus the random structure and checked the posterior
distribution again, with all four covariates remaining significant. To further obtain the
best-fit model, we used a backward stepwise elimination method to select from these

four covariates. We first removed the percentage changed preyear which has the least
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effect. When comparing the DIC of the model with four covariates and the model
excluding the percentage changed preyear, the DIC of the latter one decreased slightly
from 25647.86 to 25615.29, suggesting that excluding percentage changed preyear
could increase the goodness-of-fit of the model. Thus, it was removed from the model.
We then removed core change preyear since it had the least effect. The DIC of the
model without core change preyear dramatically increased to 44339.17, suggesting
that it should be kept in the model. We also excluded the random structure and
compared the DIC with the model including the random structure. The DIC without the
random structure dramatically increased to 56817.21. Therefore, finally, the best-fit
model containing three covariates was identified: core changed preyear,

nearest 500 changed preyear and nearest distance, plus the random structure.

Since we extracted a balanced sub-data-set to fit this model, to further validate how
well the model predicts the coalescence of objects, we first fitted the model to all objects
in the original dataset and then cross-validation was applied. A 50% probability was
used as the threshold to determine whether the objects coalesce or not. If the probability
is larger than 50%, object states are classified as coalescence and if smaller than 50%
as non-coalescence. By using this 50% threshold, we transformed the mean posterior
probability from the model to binary data indicating coalescence or non-coalescence
for each object. Then by comparing the predicted value and original value in the dataset,
the accuracy of the model was calculated. For the original unsampled dataset, the
accuracy reached 91%, indicating an excellent performance. The AUC value was 0.92

which also suggests excellent model performance in terms of distinguishing between 0
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and 1. We also checked the integer thresholds between 45% and 55% and compared the
AUC and accuracy, but both were outperformed by the 50% threshold. Therefore, a 50%

threshold for coalescence was finally selected.

Cross-validation was conducted to further validate the performance of the model. We
randomly grouped the original unbalanced dataset into five folds for training (80%) and
validation (20%). The model was fitted to the training data and then predicted the
validation data. This process was repeated five times. The accuracy was calculated with
an average of 86% for the validation data, and the AUC value was 0.84 demonstrating

very good performance of the model.

5.3.1.2 Parameter interpretation

The final best-fit model includes an unstructured independent and identical random
structure that accounts for variabilities between groups. The precision of this random
effect has a mean value of 0.187 with a narrow interval from 0.17 to 0.205, which
corresponds to a variance of 5.35 and low uncertainty in estimation. This relatively high
variance suggests that between-group variation is relatively high and plays an important
role in predicting coalescence. A summary of the fixed intercept and the other three
fixed covariates is given in Table 5.2. Since we used a binomial model and a logit link
to estimate the probabilities of the observed binary response through a linear
combination, the intercept represents the baseline of the log odds when other variables
are zero. In the logit model, a positive intercept indicates the baseline probability of the

occurrence of predicted events is larger than 50%. In our case, the posterior mean of
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the intercept is 1.340, suggesting that the baseline probability of the coalescence of an

object is greater than 50%. When converting this log odds into probability, it equals

1.340

79.2% ( ), implying that the default state of an object is that it is likely to coalesce.

el
1+ e1.340

Table 5.2 Summary of the fixed effects of the best-fit coalescence model
parameter Mean sd 0.025quant  0.5quant 0.975quant

o 1.340 0.067 1.210 1.340 1.472
p1 0.367 0.048 0.273 0.367 0.461
B3 0.738  0.046 0.648 0.738 0.829
B7 -6.808 0.156 -7.118 -6.807 -6.506

The posterior mean of £1 and f3, the coefficients of core changed preyear and
nearest 500 changed preyear are positive, suggesting that if the core object changed
in the previous year and if there are changed neighbouring objects within the
surrounding ‘nearest distance plus 500 m’ zone, the probability of coalescence of the
core object will also increase. Nearest 500 changed preyear has greater influence with
a posterior mean of 0.738, which means that if there are changed neighbouring objects
within the buffer, the log odds increase by 0.738, holding other variables unchanged.
The log ratio for nearest 500 changed preyear is e°738= 2.09, indicating that when
holding other covariates fixed, the odds increase by 109%. If we use the baseline
probability, when nearest 500 changed preyear equals 1, the probability of
coalescence increases to 88.9%. For core changed preyear, the posterior mean is 0.367,
indicating a log ratio of e%367=1.443, suggesting that when holding other variables

fixed, if the core object changed the previous year, the odds will increase by 44.4%.

150



Similarly, using the baseline probability and converting it into a probability, the

probability of coalescence increases by around 5.4%.

The posterior mean of /7, the coefficient of nearest distance, is negative but the most
significant, indicating that if the nearest distance between the core object and the
neighbouring objects increases the probability of coalescence will decrease, and the
coalescence of objects is strongly affected by nearest distance. The negative value is
not surprising since if the distance increases, the objects need to grow more to be close
enough to another object to coalesce within one time period. It should be noted that the
credible interval for fs is wider compared to others, indicating greater uncertainty in

estimating the effect of the nearest distance.

5.3.2 Growth model

5.3.2.1 Model selection and validation

Similar to the coalescence model, we first applied our model with all six covariates to
extract balanced non-coalescence objects. The posterior distribution intervals of
percentage 500 1000 changed preyear and nearest changed preyear were not all
positive or negative. So, they were excluded from the model. We then ran the model
with the remaining four covariates plus the random structure and checked the posterior
distribution again, and all these four covariates were significant. Then a backward
stepwise method was wused to select from these four covariates.
Percentage nearest 500 changed preyear was excluded first since it was the least

significant. The DIC slightly increased to 28305.13 from 28296.47. Therefore, all four
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covariates including core changed preyear, percentage changed preyear,
largest change preyear and percentage nearest 500 changed preyear were kept for
the final best-fit model. We also removed the random structure, but the DIC
dramatically increased to 35695.88. Therefore, the random structure was kept in the
model. A 50% threshold was also used to determine whether an object had grown or
not. If the probability is larger than 50%, the object is treated as grown, otherwise, it is

labelled as unchanged.

We fitted the final model to all non-coalescence objects in the whole dataset. The AUC
value was 0.897 suggesting a good discrimination between grown and unchanged
objects. The accuracy was also calculated at 88.8%, slightly smaller than that of the
coalescence model, but still indicating an excellent performance overall. 40% and 60%
thresholds were also used to compare with the 50% threshold, but the accuracies were
slightly lower than for the 50% threshold. Therefore, the 50% threshold was finally
used to determine whether an object had grown or not. Cross-validation was also
conducted in a similar way as for the coalescence model. The average accuracy was
86.9%, which shows that the growth model accurately predicts the object states of

grown and unchanged.

5.3.2.2 Parameter interpretation

Table 5.3 Summary of the fixed effects of the best-fit growth model
parameter Mean sd 0.025quant 0.5quant 0.975quant

o -1.484 0.058 -1.598 -1.484 -1.371
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p1 0316 0.042 0.233 0.316 0.398

B3 0.014 0.001 0.012 0.014 0.016
p4 0.295 0.048 0.200 0.295 0.389
BS 0.006 0.002 0.002 0.006 0.009

The random effects account for heterogeneity within groups, with a mean precision of
0.137 and an interval from 0.124 to 0.150. Compared to the coalescence model, this
indicates a larger variance among groups. Unlike the coalescence model, the posterior
mean of the intercept is negative, suggesting that for the growth model, the base state
is unchanged with a baseline probability of 18.4%. This low probability implies that
objects are unlikely to change by default and other covariates must contribute

significantly to increase the probability to achieve a growth state.

All other fixed effects are shown in Table 5.3 which are all positive, indicating that all
these covariates play a positive role in the probability of growth.
Core changed preyear (£1) has the largest log odds of 0.316, suggesting that if the core
object changed in the previous year, the probability increases to 23.8% from the
baseline probability. Percentage changed preyear (B3) and
percentage nearest 500 changed preyear (f5) have a small effect on the log odds,
contributing marginal increases. These increases are small, but it should be noted that
one unit is only 1% suggesting that the accumulated increase should not be neglected.
For example, a 50% percentage changed preyear will increase the probability to 31.3%

from the baseline. Lastly, Largest change preyear (f4) has a slightly smaller effect than
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core _changed preyear, with a 4.9% increase in the probability.

5.3.3 Area model

5.3.3.1 Model selection and validation

Before running the model with all covariates for the grown objects, we first checked
the correlation between the largest interaction and the interaction between the core and
the largest object, the second-largest interaction and interaction with the second-largest
object, the third-largest interaction and interaction with the third-largest object. The
results show that these three pairs have large correlations of 88.6%, 76.1% and 71.5%,
respectively. Therefore, we included only the largest interaction, the second largest
interaction and the third largest interaction, and removed fo to £11 in the model. We then
applied the model including fo to fs first. The third largest interaction preyear,
largest area preyear, second largest area preyear, third largest area preyear and
nearest_area_preyear, had intervals crossing zero. Thus, they were excluded from the
model. Then a model including po, 1, f2 and fg was applied. They were all significant
and so a backward stepwise selection process was  conducted.
Second largest interaction preyear was removed first since it was the least significant
variable. The DIC slightly decreased from -2730.76 to -2743.60, suggesting that the
model without second largest interaction preyear is better fitting. We then removed
the nearest interaction preyear and the DIC decreased to -2756.81. We further
removed year and the DIC significantly increased to -1229.96. Therefore, the final
model included only year and largest interaction preyear. We then added the sized-
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group factor for largest interaction_preyear, and the DIC decreased to -2769.35. Thus,
the final model includes year as a linear temporal effect and the size-class varying

largest_interaction preyear.

5.3.3.2 Parameter interpretation

The posterior fixed effect is shown in Table 5.5. The area model has a fixed intercept
that has a posterior mean of -1.823 with a standard deviation of 0.040. Since we used a
Gamma distribution, the value of the intercept needs to be log-transformed to represent
the area of core objects. Thus, the overall mean baseline of the core area is e~ 1823 =
0.161 km?. For the fixed temporal effects, one unit (i.e., a one-year increase)

corresponds to a 5.2% increase. Time also has an extremely small standard deviation,

implying a low uncertainty relating to the effect of time.

For the interaction effects, as shown in Table 5.4, the parameters are positive for all five
groups, suggesting that if the interaction increases, the area of core objects also
increases. Among the five groups, group E has the least effect with a mean posterior
probability of 0.052 and group D has the largest effect with a mean posterior of 0.186.
Converting these to the original scale suggests that if the interaction increases by 1 unit,
and holding other parts fixed, the area of the core object increases by 5.3% (e%0°2 =
1.053) and 20.4% (e%18% = 1.204), respectively. The credible interval for group D is
very wide, as shown in Figure 5.4, indicating that the interaction effect for this group
has a larger estimation uncertainty compared to other groups. This is probably due to

the limited number of objects in this group. In contrast, groups A, B, C and E have much
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narrower intervals, suggesting low uncertainty of estimation. Apart from group D, the
effect of interaction decreases as the area increases. With a one unit increase in
interaction, the area increases by 9.5%, 8.4%, 6.4% and 5.3% for groups A, B, C and E,

respectively.

Table 5.4 Summary of fixed effects of the best-fit area model

parameter Mean sd 0.025quant 0.5quant 0.975quant

o -1.823 0.040 -1.901 -1.823 -1.745

Bo 0.051 0.002 0.048 0.051 0.055
B1A 0.091 0.008 0.076 0.091 0.106
p1B 0.081 0.009 0.063 0.081 0.098
p1C 0.062 0.011 0.041 0.062 0.084
p1D 0.186 0.063 0.063 0.186 0.310
B1E 0.052 0.013 0.026 0.052 0.078
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Figure 5.5 The posterior distribution of fixed interaction effect for each sized group.

5.3.3.3 Model hyperparameters

The model includes an unstructured identical and independent random effect to account
for between-group variation. Its precision O'MZ has a posterior mean value of 1.42 and
a relatively narrow interval, indicating a variance of 0.704 for between-group variation,
implying that there is moderate heterogeneity between groups. Finally, the precision for
the Gamma observation 62 has a high posterior mean value of 19.46 and a narrow

interval, representing a low variance of 0.05 implying a narrow interval for each object.

Table 5.5 Summary of the hyper-parameters in the best-fit growth model

parameter Mean sd 0.025quant 0.5quant 0.975quant

T, 142 0.067 1.29 1.42 1.56

T, 19.46 0.759 18.00 19.44 20.99

157



5.3.4 Combination of coalescence and growth models

We combined the coalescence and growth models together to predict comprehensively
the state of all objects, following the process illustrated in Figure 5.3. First, the
coalescence model was fitted to the entire dataset. Then the 50% threshold was used to
distinguish between coalescence and non-coalescence objects. Second, the growth
model was fitted to all the non-coalescence objects. Similarly, the 50% threshold was
used to distinguish between grown and unchanged objects. We then acquired the
predicted state of coalescence, growth and unchanged for all objects. The accuracy for
the coalescence and growth models was also calculated for each year. Overall, both
models demonstrated high accuracies, mostly larger than 80%. The only exceptions
were 2017 for coalescence and 1993 for the growth model which both have accuracy

over 75%.

We also used 2010 as an example to illustrate the model’s prediction of the state of
objects. The observed state of each object and the predicted state are mapped in Figure
5.6. The spatial distribution of covariates in 2010 is shown in Figure Al. The mean,
lower and upper bound of posterior probabilities for the coalescence and growth models
are also mapped (Figures 5.7 and 5.8). The colour scheme is the same in figure 5.7 and
5.8 respectively for lower, mean, and upper maps and it can be seen in the figures that
the lower and upper limits generally reflect lower and higher probabilities. It should be
noted that the accuracy is calculated based on the number of objects not considering

their area. The large coalescence objects in the map are notable, but they account for
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only a small number of the whole set of objects. It could be seen from the map that most
large objects experienced coalescence this year. This trend is also shown in the
probability map where large objects have a larger mean probability. Some variability is

shown in the small objects, while growth exhibits more variability.

Observed Object State Map of 2010 Predicted Object State Map of 2010
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Figure 5.6 Observed and predicted objects in 2010.
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Figure 5.7 The posterior (a) lower, (b) mean and (c) upper limits of the 95% credible
intervals of the predicted probability of coalescence in 2010.
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Figure 5.8 The posterior (a) lower, (b) mean and (c) upper limits of the 95% credible
intervals of the predicted probability of growth in 2010.
The grey objects represent coalesced objects which are not included in the modelling.

5.4 Discussion

We proposed a novel object-based approach to explore the states of core urban spatial

objects and their association with the dynamics of neighbouring urban objects. Utilizing
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generalized linear mixed models, fitted in an approximate Bayesian inference
framework via INLA, we were able to effectively model binary data and skewed data
with a within-group structure. Our results demonstrate how changes in the states of
neighbouring objects influence the state of urban objects. Specifically, the fitted models
suggest that the coalescence state of urban objects is strongly affected by the distance
to its nearest neighbouring object in the previous year. Intuitively, this makes sense,
since coalescence requires proximate distance to collapse to zero. Additionally, the
coalescence state is related to the states of the urban object itself and neighbouring
objects located within a buffer around the core object, with a buffer width of the nearest

distance from the core object to the neighbours plus 500 m.

The fitted models suggest that the growth state is related to the state of the core object
itself as well as that of its largest neighbour in the previous year. Furthermore, it is also
associated with the dynamics of local neighbours represented by the percentage of
grown objects amongst its neighbours and the percentage of grown neighbours in a
defined buffer. We found that the area of grown objects has a relation with the largest
interaction between the core object and its neighbours which affects core objects of

varying sizes in different ways.

For the coalescence state, an increase in the nearest distance from the core object to its
neighbours significantly reduces the probability of coalescing. This is not surprising as
for coalescence to occur, objects have to be close enough to be connected. However,

when we analysed our findings further if the nearest distance is only 300 m (i.e., one

162



pixel side) while keeping the baseline probability and the other two covariates to 1, the
probability of coalescence rises to 60.1%. While if the distance extends to 600 m (i.e.,
two-pixel sides), with other variables remaining unchanged, the probability decreases
to 16.3%. At the same time, whether the nearest object changed in the previous year is
insignificant. Taken together, these results suggest that the core does not necessarily
coalesce with its closest object, but nevertheless is likely to coalesce with objects within
a two-pixel plus the nearest distance radius around the core boundary, which
corresponds to 600 m plus the nearest distance around the core object. This aligns with
the observed significance of covariates nearest 500 changed preyear and the

insignificance of nearest 500 1000 changed preyear.

For the growth model, our results indicate that the growth state of the core is
significantly influenced by both the core itself in the previous year and its local
dynamics in the previous year, represented by two relevant covariates (in percentage
units). Similar to the coalescence model, the growth state does not correlate directly
with the state of the nearest object; instead, it tends to be associated with the state of
nearby neighbours. This implies a potential spatial autocorrelation in the growth state.
In reality, a local space may share similar local growth drivers, causing objects within
a neighbourhood to undergo similar changes. Furthermore, this could also explain why
the state of the largest object has the second-largest effect: the largest object can act as
a "source" and diffuse the "growth" outwards within a local space, thereby affecting the

surrounding objects.
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Both the coalescence and growth states were found to be related to the state of the core
object itself in the previous year. However, it is important to note that when we
incorporated an autoregressive correlation structure with order 1, namely the AR1
structure, into the growth model the estimated autocorrelation coefficient (rho) was
minimal, with a mean value of 0.21 and a credible interval of [-0.163,0.568] as
illustrated in Figure A2. This interval includes negative, positive and zero values,
indicating that the temporal autocorrelation could be negative, positive and non-existent.
This implies that although the growth state relates to its previous state, overall, it cannot
be regarded simply through temporal autocorrelation. While most of the objects have a
positive rho value, there remains the possibility of no temporal autocorrelation. This
might be attributed to the complexity of urban systems that exhibit complex
characteristics. It could also be due to local variation in the underlying processes. We
included a random structure to allow for random deviation for each group (i.e., each
continuous object with the same ID). However, there might be spatial heterogeneity
that leads to non-consistent behaviour of urban objects and which cannot be captured
fully by random deviation. Thus, the temporal relation appears to be complex for urban

objects which requires further exploration, accounting for spatial variation.

For the area model, we focused mainly on the relationship between the area of the core
object and its interaction with neighbouring objects. The findings indicate a positive
relation between the size of the core and its largest interaction, with this relationship
varying slightly depending on the size of the core object. Generally, smaller core objects

exhibited a larger correlation with their neighbours, suggesting that the same interaction
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could have a greater influence on smaller objects compared to larger ones. This
observation aligns with our original hypothesis that the interaction could have different
effects on different-sized objects. When rethinking the relationship between objects
from a network perspective, where objects are treated as nodes and interactions as link
weights in the network, larger nodes tend to have greater centrality and connectivity,
thereby influencing the dynamics of surrounding nodes. In contrast, smaller nodes are
more susceptible to being influenced by others. We examined this relationship at the
patch level, and other studies have shown that it applies on a larger scale. For example,
within an urban region, small cities are likely to be influenced by the core city that
serves as a regional centre through flows and interactions occurring between them. Due
to the limitations of our data, we were unable to check whether this relationship (larger
objects tend to exhibit more coalescence and a shorter continuous period of existence)
remains true for objects larger than 9 km?, although the general behaviour is clearly
driven by underlying geometrical laws. This could be investigated in future for the
specific case of China through the collection of more data across different cities. Lastly,
it is also worth mentioning that since the area model modelled only the area of grown
objects which could not be continuous over time, we were not able to include an AR1

structure to examine the temporal autocorrelation in the model.

Models fitted using a Bayesian inference framework have been applied in various fields,
including epidemiology, environmental science and crime geography (Cai and Dunson,
2006; Aguilera et al., 2011, 2011; Smith et al., 2017; Zheng et al., 2024), due to their

ability to handle complex structures and spatial-temporal processes. To the best of our
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knowledge, this is the first study to combine a mixed model fitted in an approximate
Bayesian inference framework with an object-based approach to explicitly model the
relationship between urban spatial objects and their neighbours. The fitted models
handled efficiently the complex binary skewed data with a random structure. They
reveal that the state of the urban spatial objects is associated with both their states in
the previous year and the dynamics within a local neighbour in the previous year. The
package used for approximate Bayesian inference, INLA, offers several spatial
autocorrelation structures such as the commonly used ICAR (Intrinsic Conditional
Autoregressive) and SPDE (Stochastic Partial Differential Equation) terms. However,
since our goal extends beyond merely predicting the state of objects, to explicitly
exploring how the dynamics of neighbouring objects affect the states of core urban
objects we did not include a spatial autocorrelation structure in our model. While the
need for such autocorrelation terms is diminished by the good fit of our models and the
resulting small residuals, this could be explored further in future research alongside our
findings. We also used a weakly informative prior in the Bayesian fitting. When
applying the proposed models to other cities in the future, the information gained here
from analysing the megacity of Shanghai could serve to provide more informative

priors.

Our models predicted the state of coalescence with high accuracy. Amongst the
predicted coalescence states, 93.1% were real coalescence events. 89.4% of all actual
coalescence events were predicted as coalescence. In contrast, the growth model

displayed greater uncertainty, with 67.9% of predicted growth events being actual
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growth events and 61.3% of actual growth events being identified by the model. This
lower accuracy can be partially explained by the fact that the growth model is applied
only to non-coalescence data and 91.1% of the predicted non-coalescence objects are
actual non-coalescence objects. Therefore, taking these two results together (non-
coalescence and growth) the result can be seen as acceptable overall. The uncertainty
may also be attributed to the complexities of the growth process. As discussed earlier
the temporal autocorrelation in growth is complicated. Additionally, there may be social,
economic and other activities not incorporated in the model apart from the inherent
characteristics of urban objects. The underlying assumption of this model is that urban
growth is systematic and exhibits simple characteristics, but temporal or spatial
variation in the underlying processes could increase uncertainty in the models.
Therefore, future research could include other types of data representing underlying

processes and more complex spatial-temporal structures to increase model accuracy.

Our models generated a probability map for coalescence and growth, along with a
predicted state map (Figures 5.7 and 5.8). Taking 2010 as an example, as can be seen
from Figure 5.7, most large objects are predicted to coalesce and exhibit a high
coalescence probability in 2010. From a network perspective, the changing state of
these objects suggests these key nodes experience changes in their weights and
connectivity, which subsequently influence the dynamics of the entire network.
Consequently, identifying the states of these objects is important for understanding the
dynamics of the entire network. Our labelling process does not directly label continuous

coalescing objects, but our data suggest that larger objects, particularly those larger than
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20 km?, tend to show continuous coalescence. This can also be explained by our model,
in which coalescence in the previous year, classified as changed, increases their

probability of coalescing in the present year.

The selected region covered Suzhou, represented as the second largest object on the
map, to the west of Shanghai which is the largest object (Figures 5.6-5.8). From the
given example map, it could be seen that around the close neighbours of the largest core
urban objects in Shanghai and Suzhou, objects tend to exhibit a greater probability of
coalescence and growth. This implies changes of states in close neighbours around large
objects, which further increases their probability of coalescence or growth in
subsequent years. Interestingly a few urban objects around such large objects have a
low estimated coalescence or growth probability. The potential reasons based on the
fitted model could be (i) the object did not undergo any changes in the previous year,
which would lower the probability of coalescence since the state of the core itself has
an important role in its state in the following year, (ii) the network generated does not
fully capture changes in the neighbours around these objects and (iii) as discussed
earlier, the growth state is complicated and exhibits greater uncertainty. Identifying
these low-probability objects located amongst neighbouring objects that are rich with

changing states could help to increase model performance in the future.

Compared to traditional raster-based methods, our object-based approach provides
insights into the explicit relationships among objects, as well as a framework for

modelling the states of urban objects over time. First, commensurate with an increasing
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focus on network studies in urban science, such as networks of cities, human activities
and urban transportation, our research provides a way to build a spatial-temporal
network of urban objects at the patch level (Cvetojevic and Hochmair, 2021; Mussone
and Notari, 2021; Gu and Wang, 2022; Marin et al., 2022). Rather than concentrating
solely on transitions in the objects themselves, we studied the dynamics of these urban
objects from a relationship perspective. In the real world, urban objects evolve through
growth and coalescence and interact with each other through the various activities
located in objects, which leads to the dynamics of urban objects. We establish graph-
based spatial-temporal connections amongst urban objects to represent, at an abstract
level, their real-world evolution and interactions allowing us to study urban dynamics
directly. Furthermore, this node-link perspective contributes to the study of patterns and
processes in the evolution of urban systems. A central issue in studying urban growth
is to link the spatial-temporal data gathered with relevant processes to uncover the
underlying processes, and how they affect the dynamics of patterns. Our method
incorporates interactions into the study of urban growth, which represent key processes
that influence the dynamics of urban objects. This approach offers a novel perspective
in urban growth studies that could integrate other real-world processes with urban

object change.

This research can be extended in future by considering the following. First, we built
graph-based links amongst urban objects based solely on proximity through a triangular
irregular network (TIN) and, thus, modelled directly only the relationships with close

neighbouring objects. However, within the network, some important nodes might
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influence more distant nodes through direct links. Specifically, the impact of large
urban objects on other objects may not be fully represented in the model. Second, our
analysis focused on the dynamics of the objects themselves. Our implicit assumption
was that urban growth is a systemic phenomenon and, thus, it can be modelled as a
function of the inherent characteristics of the urban objects themselves. However, there
exist many complex interactions in reality, such as population and transportation flows,
occurring within and between the urban objects which may influence urban object
dynamics. These exogenous and ingenuous drivers are not included in the present
model, but integrating different types of data could help to extend the scope of this
research in future. Third, in this research, we focused solely on the relations between
the core urban object and its neighbouring objects. However, the constructed network
structure allows the exploration of more dimensions, such as how the network structure
evolves, including how its connectivity, node attributes and fractal dimensions change
over time. Recently, networks have gained significant attention within urban studies
due to the increasing availability of diverse data types and advances in network analysis
methods. Nevertheless, many of them focus on the city level or the micro level of
specific activities within a city (Castells, 2010; Esch et al., 2014; Inostroza, 2021; Jia
et al., 2021). Patch-level study of objects in urban dynamics is still limited. Future
research could, thus, explore the dynamics of urban object networks from spatial-
temporal perspectives. Finally, this research examined only the linear relationships
between the core urban object and neighbouring objects. Their relationships might be

nonlinear which remains to be further explored.
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5.5 Conclusion

In this research, we built spatial links amongst urban spatial objects and integrated them
with the states of objects to model the states of urban objects and how they relate to the
dynamics of other objects. Our method essentially creates spatial-temporal links among
urban spatial objects which allows further exploration of the spatial-temporal
relationships among objects. The fitted Bayesian linear mixed-effects model suggests
that the coalescence state is related to the previous state of the object itself, the nearest
distance to other objects and the state of neighbouring objects within a specified close
buffer. The model suggests that the growth state is related to the previous state of the
object itself, the state of the largest neighbouring object and the states of objects within
a close buffer. The area of growth objects is affected by the largest interaction between
the core object and its neighbours, with this effect varying for different-sized objects.
The key contribution of our research is not merely to predict the states of urban objects
but more importantly, to build spatial-temporal links among objects to explicitly model
their relationships, which could help to a better understand urban dynamics and its
associated processes. The research provides valuable insights into the evolution of
spatial-temporal networks of urban objects and presents a novel perspective within

urban growth studies.
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6 Discussion

Chapters 3 to 5 analysed urban growth based on a comprehensive object-based
method emphasizing different aspects including growth characteristics, growth
processes, and the relationships between urban objects. This research suggests that
an object-based approach is suitable as a means to capture the spatial-temporal
pattern of urban growth across megacities, depict urban processes both at the patch
level and the city level and explicitly represent the relationships between urban
objects. Collectively, the research provides a new perspective with which to model
and understand the patterns and interactions of urbanization both spatially and

temporally.

6.1 Research Findings and Contribution

Chapter 3 analysed urban growth trajectories from an object-based perspective. It
highlighted the unprecedented urban expansion in China from 1992 to 2014, driven
by national reform policies, economic development and population migration. This
expansion also exhibited disparities across China, with coastal regions experiencing
faster and earlier growth due to policy benefits. By comparing the growth trends in
different spatial buffers, urban growth characteristics at different levels were further
explored. This provided insights into the relationships between core cities and their
surrounding cities within megacity areas, and how the relationships differ across

regions.
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The results also identified synchronous growth trends across regions during certain
periods, suggesting that national policies influenced overall urban growth dynamics.
However, asynchronous patterns were also exhibited, which suggests the role of local
factors such as geographic constraints and regional governance strategies in shaping
urban growth trajectories. The general growth trends and disparities in the growth
patterns of different regions imply that China’s urban growth trajectory is the result
of the interaction between national policies, local governance and geographic
constraints. Understanding the influence of national and regional policies on urban
growth trends and regional patterns could help design future development strategies

as well as maintain future sustainability.

The inherent definition of urban objects determines that the object-based method
provides a temporally-continuous measurement of urban growth. Therefore, it can
directly reveal the evolution of urban objects that is difficult to achieve through other
methods. The results suggests that the object-based method is highly effective at
capturing spatial and temporal urban dynamics. It is scale-independent and, thus, is
comparable across space and time, which makes it particularly useful for inferring

underlying urban growth processes.

Chapter 4 focused on characterizing different urban growth events including
dispersal, establishment and coalescence, representing different growth phases in the
defined zones in four megacities. It provides a framework to measure urban growth

events at the per-object level as well as the city level, which could further infer how
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urban objects emerge, stabilize and merge, and how cities grow over time. Ideally,
dispersal, establishment and coalescence should change at a stable rate if the
underlying growth process remains constant. However, the results show variation in
the growth rate of events for four cities, revealing the influence of “disturbances”
such as the effects and interactions of spatial, economic and policy factors on urban

growth.

By accumulating the occurrence of different events in different defined zones,
synchronous trends in the events within the core areas and buffer zones were
observed, which suggests that urban growth drivers have similar effects on the
dynamics of the different events and, therefore, lead to similar behaviours of these
events at the population level. Previous studies suggest that urban growth would
follow a typical sequence of dispersal, establishment and coalescence. At the patch
level, the proposed sequence is observed. However, varying sequences of dispersal,
establishment and coalescence were observed across four cities at the population
level. This suggests that the states are concurrent, with a dominant state arising
alternately through time. The concurrent and varying sequences of the dominant
events indicate that urban systems are complex and dynamic, influenced by various

factors.

Object-based measurement enables us to track directly the evolution of each urban
object for the first time. Through building temporal links, different states which

correspond to different growth processes are assigned to urban objects. It then reveals
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the urban growth process at the per-object level. When accumulating at the city level,
the overall urban growth process could be further analysed. Through building
temporal links among urban objects, the research findings contribute a
comprehensive understanding of urban growth events at both the patch level and city
level by quantifying changes in different events, which provide valuable insights into
the underlying micro urban growth process and the overall evolution of urban

systems.

Chapter 5 introduced a novel object-based approach to modelling urban growth with
an emphasis on the interactions between urban objects. Using Bayesian linear mixed
effects models and building spatial-temporal links between objects, the research
examined how the states of coalescence, growth and ‘unchanged’ are related to the
dynamics of urban objects and how the area of grown objects is related to the

interaction between objects.

The coalescence state is influenced by the previous state of the objects, the state of
objects in a defined close buffer and the nearest distance between the object in focus
and other objects. Among these, the nearest distance plays a significant role with the
probability of coalescence decreasing significantly as the nearest distance increases.
According to the results, the urban object does not have to coalesce with the nearest
object, but it is likely to coalesce with objects within a buffer of ‘two-pixel radius
plus the nearest distance between the core and neighbouring objects around the core

boundary’. Since coalescence changes the overall urban pattern structure and urban
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land connectivity, this suggests that the spatial proximity of objects plays a pivotal

role in influencing urban growth patterns.

The growth state is heavily influenced by the previous state of the object in focus as
well as the dynamics of its neighbouring objects. The temporal autocorrelation of the
growth state is non-consistent, but the results imply an underlying spatial
autocorrelation. The changes in the objects located in a defined neighbourhood
contribute to increasing the probability of growth of the core urban object, which
indicates that dynamic neighbours are potentially related to the growth of the core
object. This highlights the importance of understanding local interactions in studying
urban growth, as these micro-level dynamics can be accumulated to affect regional

urban growth.

For the model predicting the area of objects that have grown, the result suggests varying
relationships between the size of urban objects and their interactions with neighbouring
objects depending on their size. In general, smaller objects have a greater relationship

with the interaction terms especially for objects smaller than 9 km?.

Combining the coalescence and growth models, an overall state of urban objects was
calculated with high accuracy for the coalescence state and moderate accuracy for the
growth state. In general, this suggests that the coalescence and growth states of urban
objects can be predicted from their previous states and the dynamics of their defined
neighbours. Taking the results of the three models together imply that smaller objects

are more susceptible to object interactions while larger ones tend to affect the states of
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their neighbours, especially for the growth state and their corresponding areas. This
aligns with network theories, where larger nodes have greater influence within a system.
In general, the results provide a novel framework with which to analyse the dynamics
of urban objects and their relationships through the spatial-temporal links between

objects.

Based on the temporal links between urban objects, additional spatial-temporal links
are created. This approach is novel, demonstrating how the dynamics of urban objects
can be viewed in the form of a spatial-temporal network. In this generated network,
interactions between objects are represented as links and objects are treated as nodes.
This means that the dynamics of urban objects can be modelled to analyse how they are

influenced by the attributes of urban objects (nodes) and interactions between objects.

Chapters 3 to 5 demonstrate that urban land can be represented as urban objects which
can be further analysed to study urban growth dynamics. These objects can be used to
characterise urban growth continuously. This research is novel because it builds links
between objects which allows their evolution and their potential interaction with other
objects to be tracked. Through building temporal links between urban objects, urban
growth processes are measured directly at both the patch level and population level,
providing valuable insights into urban growth theory. The generation of spatial-
temporal links between urban objects provides a way to model urban dynamics through
the perspective of spatial-temporal network of urban objects. The results suggest that

urban objects could be treated as an evolving system and the dynamics of objects could
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be modelled by its inherent attributes.

Overall, the results suggest that the object-based method performs well at capturing
urban growth processes at both patch-level and city-level. The key advantage of the
object-based method is that it can represent urban entities directly and, therefore,
analyse explicitly the relationships and interactions between urban entities. In contrast,
in the raster-based method, the relationships between urban land are usually measured
at the pixel level and such relationships are inferred from the analysis of raster data.
The object-based method makes it possible to build spatial-temporal links of urban
objects, which facilitates modelling their relationships directly, which is hard to achieve
using a raster-based method. The temporal link provides an approach to tracking the
dynamics of each urban object to study its evolution characteristics. The spatial link
mirrors the interaction between objects. It not only allows for explicit modelling of the
relationships between objects, but also provides a new perspective for studying the

interplay between urban objects and the underlying processes.

6.2 Limitations and Future Research

While this research provides valuable insights into urban growth, several limitations
should be noted. First, the measurement of urban growth focuses on spatial expansion,
while urban entities are 3D in reality. Thus, the intensification of urban land use and
vertical expansion should be considered as an important aspect when evaluating urban
growth (Lin et al., 2014; Xia et al., 2020; Yang and Zhao, 2022; Yang et al., 2022). In

future research, such vertical height data could be incorporated along with the land
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cover data as a factor representing intensity to fully characterize urban growth. Also,
the land use data used to represent cities necessitates that urban objects can only expand
or be unchanged. However, although much less common, in the real world cities can
also experience a decreasing area, for example, commensurate with a decrease in the
population or economy (Mallach et al., 2017; Vinci et al., 2023). How to represent this
phenomenon remains a further consideration. Another issue is that although the ESA
data generally has a very high accuracy of land cover classification and this was
evaluated through various means in this thesis. Nevertheless, some uncertainty remains,
especially for specific outcomes such as the very high rates of growth reported
synchronously across China in some years. Ideally, possible errors in the data and the
classification process should be further examined through additional validation
procedures. Moreover, the developed object-based methods should be applied to other

data or the combination of multiple data in future research.

When building spatial links amongst urban objects to study their relationships, only the
intrinsic attributes of the objects themselves are included, such as the area and the state
of objects to represent their potential connections. In reality, the relationships between
objects could be defined in multiple dimensions, and described by different types of
activities, such as population flows, economic interactions and wireless connections
(Sultana and Weber, 2014; Gibbons et al., 2018; Yang et al., 2022). These activities also
contribute to the dynamics of urban growth patterns. In this research, the underlying
processes are inferred through the analysis of the dynamics of urban objects. Some

studies focused solely on the interactions of activities within cities, but how to integrate
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these activities with the dynamics of urban spatial objects to study urban growth
remains an open question for further investigation. Linking such data to urban objects
could provide a more comprehensive understanding of the interactions between the

related processes and urban growth patterns.

Although urban land is represented as objects in this research, the object data are
extracted from raster data. The object-based method is scale-independent, but whether
changing the spatial resolution of the raw data would affect the results of the analysis
remains a topic for further research. For example, in the coalescence model, the results
suggest that coalescence is likely to occur with objects located two pixels (i.e., 600 m)
outwards from the core. Whether changing the spatial resolution of the raw data would
influence the result should be further explored to evaluate the sensitivity of the model

to such scale effects.

A key feature of the geographical phenomenon is spatial heterogeneity (Balaguer-Beser
et al., 2013; Brelsford et al., 2017; Reia et al., 2022). Spatial heterogeneity is the
fundamental basis of geographical models, but it also presents challenges in
generalizing model results and applying models across different regions. The models in
Chapter 5 focus on a specific city while whether the findings can be applied to other
cities with differing contexts should be further examined to confirm the model's
generalizability and robustness. Application to other cities could also reveal similarities
and disparities among cities. Another issue with spatial heterogeneity is that it could
also occur at the within-city level which increases the uncertainty of the models. The
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model used implies a similar relationship between objects while there could be spatial
variation in the relationships in practice. Local effects and geographical constraints
could lead to differences in the interactions between objects. Future research could
examine the spatial-temporal heterogeneity to obtain a deeper understanding of urban

dynamics.

Last but not least, since there is limited research on exploring the relationships between
objects, this research uses simple linear models that serve as a starting point for future
research. Linear models are relatively straightforward to interpret which could provide
general insights into the relationships to further exploration. However, the interactions
between objects could be more complicated and non-linear. More advanced and
sophisticated methods should be applied to acquire a deeper understanding of these
complex relationships and more accurate predictions. Similarly in the area model, the
temporal effect is simplified as a linear effect. It is modelled that time has a fixed linear
effect on the area of urban objects suggesting that the growth rate is the same over time,
but there could be short-term fluctuations in the growth of the area. In this research, we
mainly focused on the interaction term, and more complicated structures could be

included to increase model performance.

In this research, a set of spatial-temporal links between objects is constructed which
generates a spatial-temporal network. The network of objects suggests a variety of
aspects that could be further studied, such as the attributes of important nodes, the flow

in the network and network evolution (Castells, 2010; Agryzkov et al., 2019; Maduako
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and Wachowicz, 2019; Mussone and Notari, 2021). Some network studies have been
applied at the city level to study the dynamics of cities at the regional level. Such
methods could also be applied at the patch level to study inter-city dynamics. For
example, some research defines city clusters through urban networks (Yu et al., 2014;
Jia et al., 2021). This could also be applied at the patch level to identify inter-city

structures.

The application of rank-size, fractal dimension and scaling law have been studied
intensively in urban growth research, especially at the city level (Batty, 2012, 2023;
Huang et al., 2015). These studies help to understand city evolution from a hierarchical
perspective, and based on the morphology and spatial complexity of urban patterns.
Based on object-based methods, these approaches could also be applied at the patch

level to reveal the dynamics of objects over time from a unique perspective.
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7 Conclusion

This thesis utilized a novel object-based method to characterize urban growth
trajectories and infer the potential processes underlying them; propose urban growth
events based on temporal links between objects and examine how these events differ
spatial-temporally to rethink urban growth theories; explicitly model the
relationships between urban objects through the spatial-temporal links and predict

the states of objects based on model results. The main conclusions are as follows:

1. The object-based method captured the significant growth rate of megacities
across China which each comprise individual cities and urban areas of various
sizes. Synchronized growth behaviour of the majority of cities was observed in
the early 2000s and these were shown to be correlated with national policy
interventions. The regional differences across the selected megacities implied the
effects of regional policies and local governance. At the regional level, different
morphological trends were identified. The results provide insights into how
policies could affect urban growth trends across different regions and cities of

different sizes.

2. The results of the analysis of object events demonstrated that the establishment,
dispersal and coalescence growth events can be measured directly at the per-
object level. At the population (or landscape) level they exhibited concurrence,
but with varying dominance over time, rather than following a specific logical

sequence (e.g., introduction then growth then coalescence). The research
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quantifies the dynamics of urban growth events and provides new insights into
urban growth processes. A general synchronous trend of growth was observed in

buffer zones where other states exhibit more dynamics.

3. The developed spatial-temporal network model of urban objects facilitated
exploration of the dependence of the state of an urban object on its previous state
and the previous states of its close neighbours. Coalescence was found to be
related to the object’s previous state and the distance to its nearest neighbour and
neighbouring states in the previous year, and likely to occur with other objects
within a buffer of ‘two-pixel radius plus the nearest distance between the core
and neighbouring objects around the core boundary’. The growth state was found
to be related to the previous state and the dynamics of objects in a defined close
neighbourhood and exhibited greater uncertainty. The area of objects that had
grown was related to the largest interaction between the core object and its

neighbours which varied for different-sized objects.

Overall, this research advances the understanding of urban growth patterns and
processes, offering new insights into urban growth, especially for megacities that
comprise 100s of individual urban cities and other urban areas. The results highlight
the importance of spatial-temporal links in urban growth dynamics. This new
approach should be further explored to better understand the dynamics of urban

systems and promote resilient urban and environmental systems.
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Figure A9 The spatial distribution of core changed preyear (a),
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