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ABSTRACT

We present a detailed visual morphology catalogue for the Euclid Quick Release 1 (Q1). Our catalogue includes galaxy features such as bars,
spiral arms, and ongoing mergers, for the 378 000 bright (IE < 20.5) or extended (area ≥ 700 pixels) galaxies in Q1. The catalogue was created
by finetuning the Zoobot galaxy foundation models on annotations from an intensive one month campaign by Galaxy Zoo volunteers. Our
measurements are fully automated and hence fully scaleable. This catalogue is the first 0.4% of the approximately 100 million galaxies where
Euclid will ultimately resolve detailed morphology.

Key words. Galaxies: structure – Galaxies: spiral – Catalogs, Galaxies: interactions – Galaxies: elliptical and lenticular – Methods: statistical

1. Introduction

Detailed visual morphology refers to the recognizable features
which comprise a galaxy, such as bars, spiral arms, and tidal
tails (Hubble 1926; De Vaucouleurs 1959; Toomre & Toomre
1972; Sellwood & Masters 2022). Understanding how galaxies
acquire their stellar structure provides key insights into the pro-
cesses driving mass assembly in the Universe (e.g. Wuyts et al.
2011; Tacchella et al. 2015; Huertas-Company et al. 2016) Vi-
sual morphology has historically also described the method of
detection; we measure these features visually, by eye. Those eyes
may either belong to professional astronomers (Nair & Abra-
ham 2010; Baillard et al. 2011; Buta et al. 2015) or to mem-
bers of the public taking part in citizen science projects such
as Galaxy Zoo (Lintott et al. 2008; Masters 2019) and Galaxy
Cruise (Tanaka et al. 2023). Visual morphology complements
parametric morphology, such as Sérsic fitting (Sérsic 1963), and
non-parametric morphology, such as concentration and asym-
metry (Morgan 1958; Conselice et al. 2000; Shimasaku et al.
2001; Abraham et al. 2003), which both use rule-based auto-
mated methods to interpret galaxy images. Parametric and non-
parametric morphology have historically been together known
as ‘quantitative’ morphology, contrasting with ‘qualitative’ vi-
sual morphology.

The complexity of galaxies is greater than the complexity
we are able to express in code. Galaxies have features which are
too complex for our rule-based methods, but are real nonethe-
less (see e.g., Lintott et al. 2009; Rudnick 2021; Bowles et al.
2023; Gordon et al. 2024). Astronomers have therefore faced a
trade-off. One can use visual morphology to capture detailed fea-
tures, or quantitive morphology to make measurements which
are scaleable and reproducible (Conselice 2014). There is also
a spectrum of work between these two extremes that makes de-
tailed automated measurements under a degree of manual super-

? e-mail: m.walmsley@utoronto.ca

vision and tuning, e.g., galfit (Peng et al. 2002) and Galaxy
Zoo Builder (Lingard et al. 2020).

Recent advances in computer vision make it possible, even
straightforward, to automate some visual judgements. Seminal
work by Dieleman et al. (2015) won the Galaxy Challenge, a
Kaggle competition to predict the visual judgements of Galaxy
Zoo volunteers, and in doing so introduced deep learning to as-
tronomy. A decade later, deep learning is a ubiquitous tool for
measuring visual morphology (e.g., Khan et al. 2019; Abraham
et al. 2018; Pearson et al. 2019; Ghosh et al. 2020; Bom et al.
2021; iprijanovi et al. 2022 and review by Huertas-Company &
Lanusse 2023). Citizen science and deep learning have together
underpinned detailed visual morphology catalogues for the Hub-
ble Space Telescope (Huertas-Company et al. 2015), the Sloan
Digital Sky Survey (Domínguez Sánchez et al. 2018), the Dark
Energy Camera Legacy Survey (Walmsley et al. 2022a), and the
companion Legacy Surveys (Walmsley et al. 2023b; Ye et al.
2025).

Our core advance here is timing. Morphology catalogues
typically follow years after a telescope data release – 3.5 to 5
years for each of Galaxy Zoo’s morphology catalogues, for ex-
ample. Much of this time is needed for volunteers to annotate
galaxies and, more recently, to train models.

What if we made morphology measurements at the same
time as the survey takes images, just as we already do for other
automated measurements? Placing a trained deep learning model
within the survey image processing pipeline allows for immedi-
ate morphology measurements and immediate use by scientists.
Our models can be trained quickly because we use new ‘founda-
tion’ models (described in Sect. 3.2) that need fewer examples
to learn to classify new surveys. In this work, we deliver a de-
tailed visual morphology catalogue for Euclid in weeks instead
of years.

Euclid will resolve the detailed visual morphology of at least
an order of magnitude more galaxies than have ever been mea-
sured. The largest current detailed morphology catalogues use
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Fig. 1. Galaxies with well-resolved features as a function of redshift,
for morphology catalogues from Euclid vs. Galaxy Zoo 2 (main sample,
Willett et al. 2013), Galaxy Zoo Hubble (Willett et al. 2017), and Galaxy
Zoo DESI (Walmsley et al. 2023b). Euclid will outscale all current vi-
sual morphology catalogues for all redshifts below z < 1.5, typically by
several orders of magnitude. Q1 morphologies may be especially valu-
able between 0.3 < z < 0.7. We define ‘featured’ as a galaxy with an
expected volunteer vote fraction for ‘Featured’ above 0.5 (see Sect. 5).
‘Euclid Q1’ is this catalogue; estimates for ‘Euclid DR1’ and ‘Euclid
Wide’ (EWS) are made by trivially multiplying our catalogue counts
by area. Euclid redshifts are photometric (Euclid Collaboration: Tucci
et al. 2025).

images from the DESI Legacy Surveys (Walmsley et al. 2023b),
with 19 000 deg2 of imaging at 1 .′′1 seeing; and the Sloan Dig-
ital Sky Survey (Willett et al. 2013; Domínguez Sánchez et al.
2018), with 9000 deg2 of imaging at 1 .′′3 seeing (DR7, Abazajian
et al. 2009). The Euclid Wide Survey (EWS) will cover approx-
imately 14 000 deg2 with a spatial resolution of 0 .′′16 (Euclid
Collaboration: Cropper et al. 2025) – a comparable area at ten
times higher resolution. The final Euclid morphology catalogues
will include approximately 108 galaxies. Here, we measure de-
tailed morphology in the first 0.4% – Euclid Quick Release 1
(Q1, Euclid Quick Release Q1 2025).

Euclid connects low-redshift ground-based morphology
measurements with high-redshift space-based measurements,
enabling a continuous view of galaxy morphology through time.
Figure 1 compares, as a function of redshift, the number of
galaxies with visual features in our Q1 catalogue vs. previous
catalogues made with the Sloan Digital Sky Survey (Willett
et al. 2013), the Hubble Space Telescope (HST, Willett et al.
2017), and the Legacy Surveys (Walmsley et al. 2023b). Q1 adds
an order-of-magnitude more galaxies between 0.3 < z < 0.7.
Straightforwardly multiplying our results by area, the EWS will
ultimately increase the number of galaxies with measured mor-
phology features between 0.3 < z < 0.7 by around three orders
of magnitude.

Our Q1 catalogue is available in two forms. First, our initial
trained model is part of the Euclid pipeline, and so the morphol-
ogy measurements from that model are reported as part of the Q1
data release (Euclid Collaboration: Romelli et al. 2025). Those
measurements are accessible through the ESA Science Archive
Service as with other core measurements such as photometry,
redshifts, and so forth. We refer to this as the pipeline catalogue.
Second, we created a separate catalogue by applying our next
generation of models directly to the Euclid images, outside of

the Euclid pipeline. We did this to use the best possible models
(which are updated more frequently than is practical within the
Euclid pipeline) and to create and share our embeddings (vec-
tors which mathematically summarise the visual features of each
galaxy). We refer to this as the dynamic catalogue.

Our catalogue complements parallel work by Euclid Collab-
oration: Romelli et al. (2025) and Euclid Collaboration: Quilley
et al. (2025) to create a morphology catalogue for Q1 with para-
metric and non-parametric measurements. We recommend using
these traditional measurements for galaxies less extended than
around 700 pixels in segmentation area1, below which Euclid
cannot reliably resolve detailed features. Euclid Collaboration:
Quilley et al. (2025) includes a comparison of disk and bulge
measurements using this detailed morphology catalogue and us-
ing Sérsic fits and finds consistent results.

Our catalogue was made possible by the efforts of 9976
Galaxy Zoo volunteers who together contributed 2.9M anno-
tations to adapt the Zoobot foundation deep learning models
for Euclid images. These measurements, combined with paral-
lel work using the Zoobot models to find strong lenses (Eu-
clid Collaboration: Walmsley et al. 2025; Euclid Collaboration:
Rojas et al. 2025; Euclid Collaboration: Lines et al. 2025; Eu-
clid Collaboration: Li et al. 2025; Euclid Collaboration: Hol-
loway et al. 2025), stellar bars (Euclid Collaboration: Huertas-
Company et al. 2025), mergers (Euclid Collaboration: La Marca
et al. 2025) and AGN (Euclid Collaboration: Margalef-Bentabol
et al. 2025) demonstrate the practical value of foundation models
in astronomy.

In Sect. 2, we describe our selection function and image pro-
cessing choices. In Sect. 3.1, we describe how Galaxy Zoo vol-
unteers contributed annotations. In Sect. 3.2, we motivate our
use of foundation models and detail the finetuning process. In
Sect. 4, we validate the performance of our finetuned models. In
Sect. 5, we share our dynamic catalogue, embeddings, and im-
ages, and provide practical guidance on how these might be used.
They can be downloaded from Zenodo2 and HuggingFace3.

2. Data

2.1. Coverage

Euclid will detect approximately 1.5 billion sources (Euclid Col-
laboration: Bretonnière et al. 2022; Euclid Collaboration: Mel-
lier et al. 2025). The largest sources will be revealed in exquisite
detail (Hunt et al. 2025). Most will be barely resolved. In be-
tween will be a middle ground of sources which show some sug-
gestion of detailed morphology (the trace of a disc, an arm, a
bar, etc.). When choosing which galaxies to measure for detailed
morphology, where should we draw the line?

The human annotations guiding the models that, in turn, cre-
ate our catalogue, come from Galaxy Zoo volunteers – members
of the public contributing their time to click through galaxy im-
ages (Masters 2019). We need to make the best possible use of
Galaxy Zoo volunteers’ time, particularly during the one month
labelling campaign to produce the pipeline models (Sect. 3.1).
We should especially avoid showing a high ratio of featureless

1 As measured by SourceExtractor++ within the MERge pipeline
and reported as ‘SEGMENTATION_AREA, (Euclid Collaboration:
Romelli et al. 2025; Bertin & Arnouts 1996). This roughly corresponds
to 1 .′′5 in radius. MERge mosaic images have a pixel scale of 0 .′′1 per
pixel.
2 https://doi.org/10.5281/zenodo.15002907
3 https://huggingface.co/collections/mwalmsley/
euclid-67cf5a80e2a93f09e6e4df2c
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galaxies (‘blobs’) as these are relatively straightforward to clas-
sify automatically and may dissuade volunteers. Therefore, we
chose the following conservative cut to select galaxies with a
moderate chance of showing detailed features,

segmentation_area > 1200 pixels
OR
IE < 20.5 AND segmentation_area> 200 pixels.

We found segmentation area (the total number
of pixels within the segmentation source mask from
SourceExtractor++, as calculated by Euclid Collabora-
tion: Romelli et al. 2025) to be the critical factor in determining
if a galaxy was well-resolved. Segmentation area is a natural
proxy for assessing if a galaxy is well-resolved because each
morphological feature requires sampling by some number of
point spread function full-width-half-maximum (FWHM) to be
resolved, and this sampling happens in two dimensions. Results
using radii were broadly similar but suffered from orientation
effects or asymmetric sources. Our choice of 1200 pixels was a
subjective choice with the aim of creating an engaging sample
for Galaxy Zoo volunteers (see above), and was ultimately later
revised for the dynamic catalogue (below). The magnitude cut
follows from the common science requirement for complete-
ness, and is complemented by an alternative (far more generous)
segmentation cut to remove galaxies where detailed features are
plainly unmeasurable. Overall, this selection cut includes the
brightest and most extended 0.8% of galaxies in Q1 (195 716
galaxies). These form the selection shown to volunteers and
measured by the pipeline models.

For the dynamic catalogue, we reduce the
segmentation_area cut from 1200 pixels to 700 pixels
(for a total of 380 111 galaxies, 1.5% of Q1). This adds 184 395
galaxies which are fainter and less extended but may still have
resolvable features. We do not (currently) show these less
extended galaxies to Galaxy Zoo volunteers, and instead rely on
our trained models to extrapolate to this regime. The dynamic
catalogue includes the column ‘in_extrapolated_selection’ for
users to include or exclude these additional galaxies as desired.
Lacking ground truth labels, we cannot make any performance
claim for these galaxies, but our expert visual inspection qual-
itatively suggests the models continue to work similarly well
– perhaps because the images are less detailed and therefore
present a less challenging computer vision task, because the
segmentation area is imprecisely measured, or because the
models were pretrained on similar images from other surveys
(Sect. 3.2).

While we could make automated measurements of every
source in Q1, visually inspecting example images suggested
that galaxies with a segmentation area below around 700 pix-
els are insufficiently resolved to clearly show detailed features,
and so we select our lowest area cut as 700 pixels and defer deep
learning morphology measurements of smaller galaxies to future
work. Figure 2 illustrates our choice of selection cuts.

For both selections, we additionally require vis_det= 1 and
spurious_prob< 0.2, to remove artifacts, and require no Gaia
cross-match to remove stars.

2.2. Image processing

We create three jpg cutouts from each source. Figure 3 shows
examples. The three cutouts are:
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Fig. 2. Cuts applied to select galaxies with resolvable visual morphol-
ogy. The pipeline catalogue includes all galaxies with area > 1200 pix-
els or IE < 20.5 (and area > 200 pixels). The dynamic catalogue reduces
the area limit to 700 pixels. The total number of galaxies in the dynamic
catalogue only (orange) vs. in both catalogues (green) are roughly equal
(195 716 vs. 184 395, respectively)
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Fig. 3. Example cutouts shown to volunteers. Left to right: IE and
YE composite, IE-only greyscale with standard processing, IE-only
greyscale with enhanced low-surface-brightness processing.

1. A composite RGB image where the R channel is YE, the B
channel is IE, and the G channel is the mean of the pixelwise
flux in the other two channels, following a 99.85th percentile
clip and an arcsinh stretch, i.e., x′ = arcsinh(Qx) with Q =
100 where x is the flux in each pixel.

2. A greyscale image where the single channel is identical to
the IE/B channel above, maximising resolution

3. A greyscale image where the single channel is again from IE,
but adjusted to highlight low-surface brightness features. We
use the recipe from Gordon et al. (2024) with a stretch of 20
and a power of 0.5, and add a 98th percentile clip.

We designed these processing options to create a comple-
mentary set of images for volunteers; a colour image showing the
general galaxy features, a maximum-sharpness (but greyscale)
image, and an image aimed at highlighting low-surface bright-
ness features which are better revealed when shown on a sepa-
rate scale to the bright galaxy core. We used YE for the colour
image as YE is the sharpest (lowest PSF FWHM) NISP band.
We combined data from different instruments using the aligned
and resampled mosaics provided by the MERge pipeline (Euclid
Collaboration: Romelli et al. 2025).

Volunteers were shown all three images in a flipbook format
with the order above. We then use their responses to adapt our
models. The pipeline catalogue is made by a model shown the
standard IE image (only IE is available within our pipeline stage).
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Fig. 4. Galaxy Zoo annotation interface, as shown to volunteers. Volun-
teers answer a tree of questions, where the next question depends on the
previous answer; only the first question is shown here.

The dynamic catalogue is made by a model shown the composite
IE/YE image.

3. Methods

3.1. Citizen science

We presented Euclid images to Galaxy Zoo volunteers. Volun-
teers annotated images from the EWS, and not from Q1. Our
pipeline models run within the Euclid pipeline that produced the
Q1 data release, and so the pipeline models needed to be ready
before Q1 was available. We showed these EWS images with
permission from ESA and via a Memorandum of Understanding
between the Euclid Consortium and the Zooniverse. The Zooni-
verse is the citizen science platform that hosts Galaxy Zoo and
hundreds of other projects. The Memorandum between the Eu-
clid Consortium and the Zooniverse created a framework for the
Galaxy Zoo team to work with Euclid scientists to share a small
set of EWS images with the public. These images are ideal for
training models that work well on the EWS, and therefore on the
vast majority of galaxies Euclid will image. We plan on return-
ing to specifically annotate the Euclid Deep fields (including the
Q1 area) once full-depth data is available.

The Euclid survey images are available as mosaic tiles of
32′ × 32′ (Euclid Collaboration: Romelli et al. 2025). Galax-
ies were selected from a set of tiles spread uniformly across the
EWS area4. All tiles were drawn from the southern half of the
EWS (declination < 0) as source catalogue data were not yet
available for the northern half.

14 706 volunteers contributed 4.8 million annotations of
172 000 galaxies. Of those, 1.56 million annotations were made
in the initial one month labelling campaign (August 2024)
and used to train the pipeline model (delivered mid-September
2024). All annotations (after quality checks) were used to train
the dynamic catalogue model.

Volunteers were presented with a pop-up tutorial, and shown
examples in ‘help’ instructions for each question alongside a
site-wide ‘field guide’. The annotation interface is shown in Fig.
4. In line with previous Galaxy Zoo projects, a small portion
of highly-engaged volunteers contribute the bulk of the anno-
tations. Volunteer contributions are well-modelled by a Pareto
distribution (Fig. 5).
4 We selected tiles by picking a random tile, then picking the most
distant tile to all previous tiles, repeatedly.
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Fig. 5. Cumulative images annotated when selecting the N volunteers
who annotated the most images. The bulk of annotations come from
highly-engaged volunteers.

We decided to request no more than five volunteer annota-
tions per galaxy for the most galaxies (110 000 of 172 000). Five
volunteers is far fewer than typical; Galaxy Zoo has historically
collected classifications from 40 volunteers per galaxy (for ex-
ample Willett et al. 2013). Asking fewer volunteers per galaxy
increases the noise in our labels but also increases the diversity
of galaxies labelled. We hypothesize that this is a useful trade-
off for maximising model performance provided the model loss
function can handle uncertain labels (see Sect. 3.2). To accu-
rately measure model performance, we also chose a small ran-
dom subset (3500, 2378 after the exclusions below) to be anno-
tated by 20 volunteers.

The publicity around the Galaxy Zoo Euclid launch led to a
temporary shift in the volunteer crowd and hence a distribution
shift in their typical answers. To avoid this shift, we did not train
our dynamic catalogue model on the answers of volunteers who
took part in the first two weeks of the campaign. We also did
not train on the annotations of users who answered ‘problem/ar-
tifact’ implausibly often (at least 25% of the time during at least
100 annotations). The dynamic model was ultimately trained and
evaluated with 3.5 million annotations.

Maximising model performance is our key goal because only
a tiny fraction of galaxies imaged by Euclid will ever be seen
by humans. The complete EWS will include approximately 108

galaxies passing our selection cuts above, compared to . 2M
galaxies in all Galaxy Zoo projects over the last 15 years. It is
impossible for volunteers to annotate more than a few percent of
Euclid galaxies. We therefore do not expect scientists to use the
volunteer annotations directly, as in all Galaxy Zoo projects prior
to Walmsley et al. (2022a), but instead to rely on model predic-
tions. Collecting volunteer annotations to maximise model per-
formance ultimately makes volunteers even more vital because
we gain a multiplicative benefit from each annotation; a volun-
teer annotating one galaxy helps improve a model that annotates
all galaxies.

3.2. Foundation models and finetuning

The models used here are the end result of a research
project developing adaptable models for galaxy morphology. We
briefly summarise the computer science motivation and previous
progress below.
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Transfer learning is the practice of training on one task to
do better at a second task. Image features learned on the first
task are hoped to ‘transfer’ (be relevant) to the second task
(Lu et al. 2015). Transfer learning is especially useful where
data for the second task is scarce. This was recognised early
on as a useful technique in astronomy (Ackermann et al. 2018;
Dominguez Sanchez et al. 2019; Tang et al. 2019).

Separately, models trained simultaneously on a diverse set of
related tasks often outperform models trained on any single task
(Caruana 1997). One explanation is that labels for one task can
help models learn general image features relevant to other tasks.
Earlier work in this project trained models on multiple morphol-
ogy tasks in a single survey (Walmsley et al. 2022a) and then
expanded to training models on several closely related surveys
(Walmsley et al. 2023b).

Foundation models (Bommasani et al. 2021; Oquab et al.
2023) combine both transfer learning and multi-task learning.
Foundation models involve two model-building phases: ‘pre-
training’ on multiple tasks and then ‘downstream finetuning’
where the trained model is adapted to a new task. The hope is
that the foundation model learns to extract generally useful im-
age features (from multi-task learning) which are then applied
to solve the new task (as in transfer learning). Walmsley et al.
(2022b) found that the multi-survey pretrained model extracted
features that were useful for similarity search (finding similar
galaxies to a query galaxy), personalised anomaly recommen-
dation (finding galaxies interesting to a specific user), and new
morphology tasks. This motivated the release of Zoobot (Walm-
sley et al. 2023a), the first galaxy foundation models designed to
be adapted by other people to new galaxy image tasks. Zoobot
is part of a recent trend towards foundation models in astronomy
(Róaski et al. 2023; Leung & Bovy 2023; Koblischke & Bovy
2024; Parker et al. 2024). In related work, Euclid Collaboration:
Siudek et al. (2025) experiments with applying the foundation
model of Smith et al. (2024b) to Q1.

Model ‘scaling laws’ (not to be confused with galaxy scal-
ing laws) describe how model performance predictably improves
when scaling up the training data, training compute5, or model
parameters, provided the other two variables are plentiful. This
appears to be true largely independently of model architecture
(Kaplan et al. 2020; Hoffmann et al. 2022). Because foundation
models are pretrained on diverse tasks with cumulatively plenti-
ful data, they can take advantage of scaling laws by increasing
in parameter size and training compute. This underlies the re-
cent success of large language models and the recent demand for
AI training hardware. Walmsley et al. (2024) investigated model
scaling laws for galaxy images (see also Smith et al. 2024b) and
released new ‘Zoobot 2.0’ models trained on 108 volunteer an-
notations. We use these models here.

The base models used in this work and deployed in the
Euclid pipeline were not trained on Euclid data. They are the
Zoobot foundation models introduced in Walmsley et al. (2024)
and designed to adapt to new tasks and new surveys. They were
previously successfully tested on Euclidised HST images mor-
phology in Euclid Collaboration et al. (2024).

We use the volunteer annotations to learn a linear mapping,
equivalent to logistic regression, projecting the image features
extracted by the base model onto Euclid morphology measure-
ments. In neural network terminology, we add a new ‘head’ layer
with one neuron per morphology answer and freeze the base lay-
ers.

5 The number of calculations required to train the model, typically
measured in floating point operations (FLOPs).

Fig. 6. Q1 galaxies predicted as most likely to host strong bars.

Specifically, for batches of volunteer-labelled Euclid images,
we use the base model to extract image features (D = 512) and
then use a single fully-connected layer of neurons to predict the
labels. With each batch, we update the parameters of the neurons
in this layer and only this layer to minimise the loss (error) be-
tween the predicted and actual labels. Once this linear mapping
is trained (i.e. we have repeatedly updated the neuron parame-
ters to minimise the error as far as possible), the model is ready
to make predictions for new unlabelled Euclid galaxies and cre-
ate our catalogue.

4. Results

The most intuitive way to demonstrate the quality of visual mor-
phology measurements is visually.

Figures 6, 7, and 8 demonstrate three challenging visual mor-
phology tasks: identifying strong bars, tidal tails, and galaxies
with exactly two spiral arms. Traditional methods for identify-
ing these features are typically only applied to (relatively) small
samples of hundreds to thousands of galaxies, e.g., Hoyle et al.
(2011); Garcia-Gómez et al. (2017); Consolandi (2016); Lee
et al. (2020); Smith et al. (2024a). Figure 9 demonstrates iden-
tifying bulgeless edge-on disk galaxies. These are of particular
scientific interest as they are likely to be free of recent mergers
and hence are useful laboratories for investigating galaxy and su-
permassive black hole growth (Simmons et al. 2013; Smethurst
et al. 2024).

Our catalogue is also useful for measuring less conven-
tional morphology. Figure 10 inverts the previous search for two-
armed spirals (Fig. 8) and shows the galaxies which are featured
but least likely to be two-armed spirals. This identifies galax-
ies involved in multiple ongoing mergers. This illustrates how
Zoobot’s features have generalised beyond the volunteer labels
originally used for training; volunteers were not asked to sepa-
rately identify multiple mergers. Finally, Fig. 11 shows images
of dichrotic ghosts, a common artifact (Euclid Collaboration:
Jahnke et al. 2025). We identify eight categories of problematic
images including stars, saturation features, and bright diffraction
spikes.

For a quantitative assessment of the performance of our mod-
els, we assess their agreement with volunteers on an intensively-
annotated subset of intensively-labelled galaxies created for this
purpose (2378 galaxies each with 25 annotations).

We first report classification metrics. These are created by
binning the fraction of volunteers giving each answer (for exam-
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Fig. 7. Q1 galaxies predicted as most likely to have a major disturbance
(typically interpreted as tidal tails or similar structures, and distinct from
ongoing mergers such as close pairs).

Fig. 8. Q1 galaxies predicted as most likely to have exactly two spiral
arms.

ple, if 60% of volunteers answered ‘Featured’, we bin this label
to ‘Featured’). We report metrics on, both all galaxies and (fol-
lowing Domínguez Sánchez et al. 2018) on galaxies for whom
the class label is confidently known (defined as a volunteer vote
fraction above 80% for that answer). Figure 12 shows the re-
sulting confusion matrices (appendix B presents further tabular
metrics).

Our model is near-perfect at all questions when evaluated
on high-confidence labels, achieving over 99% accuracy on 7 of
13 questions and no lower than 95% accuracy on any question.
Performance including lower-confidence labels is more mixed,
which likely reflects firstly, more challenging images for both
volunteers and models, and secondly, statistical uncertainty in
our binned labels. Figure 13 illustrates this for the first morphol-
ogy question (‘smooth or featured?’). When the volunteers give
a vote fraction decisively skewed to one answer, our model al-
ways predicts that answer. As we move to vote fractions near 0.5,
the model begins to make nominally incorrect class predictions –
but the binomial uncertainty on the volunteer vote fraction sug-
gests that many binned volunteer labels will fall to one side by
chance.

We quantify this by simulating the predictions of a perfect
model. We do this by, for each galaxy, drawing a new set of 20
trials from a binomial distribution with p set to the actual vol-

Fig. 9. Q1 galaxies predicted as most likely to be bulgeless edge-on
disk galaxies. These are likely to be free of recent mergers and hence
are useful laboratories for investigating galaxy and supermassive black
hole growth (Simmons et al. 2013; Smethurst et al. 2024).

Fig. 10. Q1 galaxies predicted as featured but least likely to have spi-
ral arms. Volunteers were never asked to annotate clusters or multi-
mergers, but Zoobot has nonetheless learned to extract features that
identify such galaxies.

Fig. 11. Q1 sources predicted as most likely to be dichrotic ghosts, a
well-known artifact caused by internal reflections in telescopes (Euclid
Collaboration: Cropper et al. 2025; Euclid Collaboration: Jahnke et al.
2025).
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unteer vote fraction. Because the outcome of those new trials
includes some uncertainty, the fraction of successful trials is not
the same as p. For example, a true vote fraction just below 0.5
(which we should label as 0) will sometimes give a fraction of
successful trials above 0.5 and then be given an incorrect label of
1. In our analogy, these correspond to galaxies where our perfect
model has made the correct prediction of p, but where the bino-
mial uncertainty in volunteer responses has caused us to record
(by misfortune) the wrong label, and so we incorrectly record
the model as wrong. When compared to this perfect model, we
find that Zoobot is only marginally below the best possible clas-
sification accuracy (89.4% vs. 91.1% for a perfect model).

We next report regression metrics – the ability of our mod-
els to predict the fraction of volunteers giving each answer. For
example, if 60% of volunteers answering ‘Featured’, our model
should predict ‘0.6’. These avoid the noise introduced by either
binning uncertain labels or considering only galaxies with con-
fident labels. Figure 14 shows the mean absolute deviation be-
tween the predicted and observed volunteer vote fractions (ex-
cluding the artifact-related questions, for which we have insuf-
ficient examples to calculate reliable metrics). Zoobot typically
estimates the volunteer vote fraction to within 10%. Consistent
with previous work (Walmsley et al. 2023b), increasingly de-
tailed questions are increasingly difficult to precisely predict,
with ‘edge-on disk’ predicted most accurately (4% error) and
‘spiral arm count’ least accurately (17% for 2-armed spirals).

5. Data access

All data is available from Zenodo6. We also share our data in
a machine-learning-friendly format on HuggingFace7. This in-
cludes the catalogue, the cutout images, the embeddings (vec-
tors summarising the content of each image), and the models.
Documentation is provided at those links; below, we provide a
summary.

5.1. Catalogues

The dynamic catalogue contains the columns listed below.

– Cross-matching information for the MERge catalogue: ob-
ject_id ; tile_index.

– id_str. Use to join with embeddings table (below). Formatted
like {release_name}_{tile_index}_{object_id}.

– Key MERge catalogue columns for convenience: right_as-
cension and declination (degrees); kron_radius; mag_seg-
mentation (IE, from flux_segmentation); segmentation_area.

– Paths to jpg cutouts.
– Detailed morphology measurements formatted like

question_answer_fraction
(e.g. smooth-or-featured_smooth_fraction),

question_answer_dirichlet
(e.g. smooth-or-featured_smooth_dirichlet).

We expect that most catalogue users will be primarily inter-
ested in the fraction columns. For example, the column ‘smooth-
or-featured_smooth_fraction’ includes the fraction of volunteers
predicted by Zoobot to give the answer ‘Smooth’ when asked
‘Is this galaxy smooth or featured?’. They can be combined; for
example, ‘smooth-or-featured_featured-or-disk_fraction > 0.5’
and ‘disk-edge-on_no > 0.5’ would select galaxies which are
6 https://doi.org/10.5281/zenodo.15002907
7 https://huggingface.co/collections/mwalmsley/
euclid-67cf5a80e2a93f09e6e4df2c

featured and face-on. Catalogue users might use these columns
as selection cuts (to investigate galaxies with specific morpholo-
gies) or consider how these measurements correlate with other
common measurements like mass, star formation rate, location
in the cosmic web, etc. There is no ‘best’ choice of cuts, because
it depends on your aim; increasing the threshold for any cut will
make your sample purer but smaller. We suggest starting gen-
erously (with thresholds of 0.5 for most questions, or lower for
questions with many or rare answers) and raising your thresh-
olds until the sample reaches your desired purity, as judged from
the images.

The pipeline catalogue includes only the Dirichlet values
and they are named simply as question_answer. For the Dirich-
let columns, each value is a parameter for a Dirichlet distri-
bution. The Dirichlet distribution is the multivariate version of
the beta distribution8. When both beta parameters (that is, both
answers to a morphology question) have low values, the beta
distribution is flat, and we are uncertain about the galaxy mor-
phology. When one answer is high, and one answer is low,
we are confident in that high answer. The ‘_dirichlet’ columns
therefore encode both the predicted vote fraction and the un-
certainty on that predicted vote fraction. One can calculate the
predicted fraction with E(Xi) = αi/

∑
α and the uncertainty with

Var(Xi) = αi(1−αi)/(1+
∑
α) where αi is the Dirichlet concentra-

tion of the chosen answer and
∑
α is the sum of concentrations

for all answers to the chosen question.
The morphology measurements are Zoobot predictions, not

volunteer answers. Zoobot predicts every answer to every ques-
tion. To avoid providing measurements where a question is not
relevant (for example, answering how many spiral arms? for a
smooth galaxy), we set morphology predictions to NaN where
the answer is expected to be not relevant. We define this as a leaf
probability (that is, the product of all the vote fractions which
led to that question) below 0.5.

The detailed morphology measurements in the pipeline cat-
alogue are released as part of the MER (as in, MERged data, see
Euclid Collaboration: Romelli et al. 2025) catalogue. The MER
catalogue also includes common measurements like photome-
try, including photometry from other surveys; please refer to the
ESA Euclid Science Archive website9 for the latest information.

The detailed morphology measurements in the dynamic cat-
alogue are made outside of the official pipeline. This allows
more experimentation and flexibility. For example, the dynamic
catalogue can use composite IE + YE images, while the official
pipeline uses IE images only. For another example, we can up-
date the model (such as by introducing new labels) and make
new predictions at any time. In general, we expect the dynamic
catalogue to include the latest ‘bleeding edge’ measurements,
while the pipeline catalogue will include slowly-changing mea-
surements that match the release cadence of the Euclid mission
data releases. The difference between the dynamic catalogue and
pipeline catalogue should reduce over time as we settle into ‘nor-
mal operations’.

5.2. Cutouts

We share cutouts of all galaxies in the catalogue, in two formats.
For file-based access, we upload our cutouts as part of our Zen-
odo archive. For machine learning applications, we also share

8 If helpful, a visualisation tool for the beta distribution is available
at https://homepage.divms.uiowa.edu/~mbognar/applets/
beta.html
9 https://eas.esac.esa.int/sas/
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our cutouts on the HuggingFace Hub along with our embeddings
(below). Cutouts are saved in native resolution for storage effi-
ciency; you may wish to resize them to a constant size10.

Images for all of the galaxies in our catalogue are cre-
ated from MERge mosaics, described in Euclid Collaboration:
Romelli et al. (2025) The original Q1 data is available via the
ESA Euclid Science Archive and described in Euclid Collabora-
tion: Aussel et al. (2025).

We also share reference code for creating our images on
GitHub11. This code is primarily intended for making Euclid
cutouts at scale via ESA Datalabs (Navarro et al. 2024) but also
acts as a public record of our exact process.

5.3. Embeddings

We previously (Sect. 3.2) described how foundation models aim
to extract image features that summarise the visual content of
each image. Each feature is an N-dimensional coordinate vec-
tor (here, N = 512) locating (embedding) the image in an N-
dimensional space. The linear mapping we describe in Sect. 3.2
aims to learn which volume in this space corresponds to which
volunteer answers. But embeddings are also useful for broader
tasks such as similarity search, including for galaxy morphol-
ogy (Stein et al. 2021; Parker et al. 2024; Euclid Collaboration:
Siudek et al. 2025).

The Zoobot embeddings are presented on Zenodo and the
HuggingFace Hub as a table with rows of galaxies and columns
like feat_pca_n, where feat_pca_n is the N th principle compo-
nent of our higher-dimensional embedding. We include the first
40 components (preserving 94% variance). We also share the
uncompressed higher-dimensional embedding, similarly with
columns like feat_n. Bear in mind that many methods may strug-
gle (either performing poorly due to the ‘curse of dimensional-
ity’ or becoming impractically slow) in high dimensions.

Figure 15 shows two similarity searches made on the Zoobot
Q1 embeddings. Note that these embeddings were not created
using any Euclid data (Sect. 3.2).

6. Conclusion and outlook

Our catalogue provides robust visual morphology measure-
ments (e.g., spiral arm counts, bars, mergers) for the bright
and extended galaxies in Q1. These measurements comple-
ment traditional morphology measurements (Euclid Collabora-
tion: Romelli et al. 2025) and, together, both catalogues provide
a comprehensive description of morphology for all Q1 galaxies.
Our measurements have already proven useful for addressing a
range of science questions; for example, Euclid Collaboration:
Huertas-Company et al. (2025) presents new precise measure-
ments of the fraction of barred galaxies out to z = 1. We look
forward to seeing the work of the wider community.

Our base model is extremely lightweight when compared
to other astronomy foundation models (Sect. 3.2): we use the
Nano (22.5M parameter) ConvNeXT variant (Liu et al. 2022)
pretrained in W+24. This lightweight model adapts almost as
well as much larger variants (see W+24) and is straightfor-
ward to deploy within the Euclid pipeline, where GPUs are not
available. The model has a negligible computational cost ver-
sus other pipeline tasks. Our work shows that billion-parameter

10 For example, with PIL, you could use
Image.open(original_loc).resize((300,
300)).save(new_loc)
11 https://github.com/mwalmsley/bulk-euclid-cutouts

models (and their associated deployment costs) are unnecessary
for adaptable and accurate galaxy morphology classification.

Deep learning does not automatically resolve the fundamen-
tal limitations of visual morphology – it only makes them scale.
We use human responses to images as our ground truth through-
out and do not attempt to correct for observational biases such as
redshift or angular size12. The catalogue reports what is visible
in each image, as a necessary first step to estimating the intrin-
sic nature of each galaxy. We anticipate that future progress in
large-scale galaxy morphology will come not from more accu-
rate models but from models that take a broader interpretation of
what learning means (for example, Cranmer 2023 and Wu 2024)
and from the thoughtful combination of models with other es-
sential astronomy tools like simulations and statistics.

Summarising deep learning for survey astronomy, Huertas-
Company & Lanusse (2023) write that ‘the majority of works
are still at the proof-of-concept stage’. In this work, we show
that one month of volunteer effort is sufficient to make a science-
ready morphology catalogue for 108 galaxies in Euclid, not just
as a proof-of-concept but by creating the first rows of that cat-
alogue. The foundation model used was only trained on Euclid
data for a final linear mapping. We used it to create a galaxy
morphology catalogue; we might have chosen another image
task. A similar approach has proven successful on strong lenses
(Euclid Collaboration: Walmsley et al. 2025), active galactic nu-
clei (Euclid Collaboration: Margalef-Bentabol et al. 2025), star-
forming clumps (Popp et al. 2024), mergers (Margalef-Bentabol
et al. 2024), tidal features (Omori et al. 2023; ORyan et al.
2023), anomaly searches (Lochner & Rudnick 2024), segmen-
tation Sazonova (2022), etc. We encourage the reader to experi-
ment with using the tools13 behind our catalogue – the founda-
tion models, and the code to adapt them – to create exactly the
catalogue needed for each science case.
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Fig. 12. Confusion matrices for the most commonly-used morphol-
ogy features. Right column includes only galaxies with high confidence
(volunteer vote fraction > 0.8) labels. Our model is near-perfect at all
questions when evaluated on high-confidence labels. Performance in-
cluding lower-confidence labels is more mixed, which likely reflects
more challenging images for both volunteers and models.
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Fig. 13. Detailed model performance for the ‘Smooth or Featured?’
question, illustrating the limitations of classification metrics. Above,
the measured (x-axis) vs. predicted (y-axis) ‘Featured’ vote fractions,
coloured according to whether the binned prediction equals the binned
label (‘correct’) or not (‘incorrect’). Classification errors mostly oc-
cur for vote fractions where the true label is uncertain (when the la-
bel boundary is within our uncertainty on the vote fraction itself). Be-
low, model accuracy as a function of ‘featured’ vote fraction for either
Zoobot or a perfect model (see Sect. 4), illustrating that Zoobot is near-
perfect within the uncertainty on our labels.
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Fig. 14. Mean absolute deviation between the predicted and observed
volunteer vote fractions. Increasingly detailed questions are increas-
ingly difficult to precisely predict, with the most challenging task being
counting spiral arms (17% error for 2-armed spirals). Errors are typi-
cally within 10%. For conciseness, ‘clumps’ and ‘problem’ questions
are not shown.
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Fig. 15. Similarity searches for a pair of stars (above) and strong gravi-
tational lens candidates (below) in Q1.
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Fig. A.1. Q1 galaxies predicted as most likely to host strong bars (as Fig. 6), filtered to below 800px in segmentation area.

Appendix A: Extended Gallery for Low Angular Size Galaxies

Section 4 shows galaxies with the most confident model predictions for common features (strong bars, mergers, two spiral arms, and
so forth). These confident galaxies are typically among the most extended in our sample, likely because the model is (correctly) more
confident at identifying features where those features are clearly resolved. However, our model still performs well on less-resolved
galaxies.

This appendix shares the equivalent galleries as Sect. 4 when additionally selecting only galaxies with a segmentation area below
800 pixels. Despite the vast majority of our labels being collected for galaxies larger than this (Sect. 3.1), and despite the galaxy
features being less resolved, the model still performs well on these confident examples.

Appendix B: Classification metric tables

This section records the classification metrics on, split between all galaxies and high-confidence (p > 0.8) galaxies. For reference,
in the binary case, accuracy is defined as (TP+TN)/N, precision (for astronomers, purity) is TP/(TP+FP), recall (for astronomers,
completeness) is TP/(TP+FN), and F1 is the harmonic mean of precision and recall, i.e., 2TP / (2TP + FP + FN). In the multi-class
case, we take a weighted average, i.e., we calculate binary metrics for each label and weight by the number of true instances of that
label.
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Fig. A.2. Q1 galaxies predicted as most likely to have a major disturbance (as Fig. 7), filtered to below 800px in segmentation area.

Table B.1. Classification metrics on all galaxies. See Sect. 4.

Question Count Accuracy Precision Recall F1

Smooth Or Featured 2378 0.8823 0.8818 0.8823 0.8816

Disk Edge On 848 0.9800 0.9798 0.9800 0.9799

Has Spiral Arms 596 0.9245 0.9188 0.9245 0.9191

Bar 596 0.7752 0.7550 0.7752 0.7471

Bulge Size 596 0.8977 0.8877 0.8977 0.8867

How Rounded 1169 0.7861 0.7903 0.7861 0.7835

Edge On Bulge 111 0.8288 0.8090 0.8288 0.8099

Spiral Winding 377 0.7082 0.7057 0.7082 0.7065

Spiral Arm Count 377 0.7507 0.7513 0.7507 0.7530

Merging 2320 0.8711 0.8440 0.8711 0.8439

Clumps 596 0.8456 0.8527 0.8456 0.8428

Problem 77 0.9091 0.9099 0.9091 0.9088

Artifact 14 0.8571 0.8636 0.8571 0.9250
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Fig. A.3. Q1 galaxies predicted as likely to be bulgeless edge-on disk galaxies (as Fig. 9), filtered to below 800px in segmentation area.
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Fig. A.4. Q1 galaxies predicted as likely to be have exactly two spiral arms (as Fig. 8), filtered to below 800px in segmentation area.
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Fig. A.5. Q1 galaxies predicted as featured but least likely to have spiral arms (as Fig. 10), filtered to below 800px in segmentation area.

Table B.2. Classification metrics on high-confidence (p > 0.8) galaxies. See Sect. 4.

Question Count Accuracy Precision Recall F1

Smooth Or Featured 580 1.0000 1.0000 1.0000 1.0000

Disk Edge On 740 0.9986 0.9987 0.9986 0.9987

Has Spiral Arms 412 0.9854 0.9854 0.9854 0.9854

Bar 126 0.9841 0.9841 0.9841 0.9920

Bulge Size 69 1.0000 1.0000 1.0000 1.0000

How Rounded 595 0.8891 0.8937 0.8891 0.8876

Edge On Bulge 55 0.9818 0.9838 0.9818 0.9823

Spiral Winding 27 0.9630 1.0000 0.9630 0.9810

Spiral Arm Count 109 0.9725 0.9860 0.9725 0.9830

Merging 368 1.0000 1.0000 1.0000 1.0000

Clumps 153 0.9869 0.9872 0.9869 0.9869

Problem 25 1.0000 1.0000 1.0000 1.0000

Artifact 2 1.0000 1.0000 1.0000 1.0000
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